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Abstract

The conventional additive white Gaussian noise (AWGN) model adequately

simulates many noisy environments. The performance of digital communication

schemes in the presence of AWGN has been widely studied and optimized.

However if the noise is impulsive, this model fails to mirror the physical attributes

of the channel effectively. Impulsive noise is non-Gaussian in nature and is

modeled well by random processes based on heavy-tailed symmetric α-stable

(SαS) distributions. If the noise samples are independent and identically

distributed (IID), the additive white SαS noise (AWSαSN) model may be used

to simulate the channel.

System performance is conventionally analyzed at the baseband level.

Therefore we investigate characteristics of complex noise derived from passband

AWSαSN using conventional (linear) passband-to-baseband conversion schemes.

We use a characteristic function (CF) based approach to analyze the noise

statistics as the probability density functions (PDF) of SαS random variables

cannot be (generally) expressed in closed form. When converted to its complex

baseband form, the resulting noise is radically different from its Gaussian

counterpart. By varying certain physical parameters, such as the passband

sampling rate and the carrier frequency, we may attain different anisotropic

(yet symmetric) distributions. Furthermore, the real and imaginary components

of the converted noise may be dependent. The bivariate distribution of each
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complex noise sample takes on a star-like geometrical configuration. Given that

the in-phase and quadrature (I & Q) components are decoded separately, we

prove that the uncoded error performance for baseband noise with independent

components is the best amongst all possible statistical configurations. We

highlight a sampling criterion that guarantees independent noise components.

Using the anisotropy offered by the baseband distribution, efficient placement

of signal points on constellation maps for phase-shift keying (PSK) and

quadrature amplitude modulation (QAM) are proposed. It is shown that good

constellations significantly improve the uncoded error performance of the system

under Maximum-Likelihood (ML) detection. Also, as ML detection may be

difficult to implement due to the lack of closed-form SαS PDFs, we introduce

analytic baseband detectors that achieve near-ML performance.

Though error performance may be enhanced using a discretized linear

passband-to-baseband conversion block, further analysis reveals that this is

a lossy (sub-optimal) process in non-Gaussian AWSαSN. Therefore, the next

logical step is to modify the passband-to-baseband conversion block at the

receiver. We discuss and investigate the performance of non-linear schemes based

on the myriad filter, Lp-norm and the asymptotic PDF of SαS variables. In

conjunction with efficient constellations and suitable baseband detectors, the

error performance is significantly better than conventional (linear) receivers.

It is shown that if the receiver bandwidth is large enough relative to the

symbol rate, impulsive noise may be effectively countered using ‘good’ decoding

methodologies.

We extend our research to multi-carrier communications. In orthogonal
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frequency-division multiplexing (OFDM) a single impulse will corrupt several

symbols in the same block. In conjunction with a modified linear

passband-to-baseband conversion block, we show how ML baseband detection

performance improves as the number of sub-carriers increases in non-Gaussian

AWSαSN. Results are presented for Rayleigh block fading and pure noise

scenarios with emphasis on binary and quadrature phase-shift keying

(BPSK/QPSK) constellations. As the number of carriers increases, the ML

detector error performance actually tends towards the Gaussian noise error

curve irrespective of the noise impulsiveness. On the downside, the detection

complexity increases exponentially with the number of carriers and is therefore

unrealisable. Using results for the single-carrier case, we develop a theory

for practically realizable near-optimal receiver schemes for OFDM signals in

AWSαSN.
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Chapter 1

Introduction

1.1 Motivation

The justification of using the well-known additive white Gaussian noise (AWGN)

model stems from the central limit theorem (CLT), which states that for a

fixed power constraint, the sum of N independent and identically distributed

(IID) random variables tends to a Gaussian distribution as N → ∞ [1]. The

AWGN model is a good approximation for the cumulative effect of random noise

producing phenomenon encountered in practical communication scenarios [1],[2].

If however the noise is impulsive in nature, i.e., there are sudden high deviations

(spikes) in the amplitude of subsequent noise samples, then the AWGN model

does not work as well [3], [4]. Therefore, techniques optimized for AWGN

cannot be blindly extended to impulsive noise. In certain practical scenarios,

impulsive noise dominates the available spectrum. To name a few: the shallow

underwater channel [3],[4], communication over power lines [5], digital subscriber

line transmission [6] etc. Therefore, a solid understanding of its impact on digital

receivers is required. This will further propel the development of new error

mitigation techniques in impulsive noise. Though these topics individually cover

a vast range of specialized research areas, we try our best to provide adequate

discussion to both in this thesis.
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CHAPTER 1. INTRODUCTION

Gaussian distributions are part of the larger general family of stable

distributions [8]. If the power constraint is removed from the CLT, the sum

of N IID random variables tends to a stable random variable as N → ∞. This

is called the generalized central limit theorem (GCLT) [7]–[9]. Non-Gaussian

stable distributions are heavy-tailed and therefore model impulses much more

effectively [8], [9]. In this thesis, we use the additive white symmetric α-stable

noise (AWSαSN) channel to model impulsive noise in all our analysis. This

approximation is suitable when the impulsive noise samples are IID [10]. Further

still, the stability property allows exact tractability of the noise statistics within

linear systems.

In wireless communications, signals are transmitted in the passband [1], [2].

However, in the literature, a digital communications system is typically designed

and analyzed for a given baseband model [1], [2]. This is done mainly due

to the fact that transmitted information is embedded in the baseband signal

and therefore most operations are performed in the baseband [1]. In such

a scenario, the received signal is implicitly assumed to have gone through a

passband-to-baseband conversion process. In the presence of passband AWGN,

the optimal passband-to-baseband conversion block is a linear system that only

retains the in-band noise information [1]. The corresponding baseband noise

samples are circular symmetric complex Gaussian random variables [1], [2]. This

noise model is well-known and has been employed vastly in the literature [1], [2].

However, if AWSαSN is passed through this block, the resulting noise statistics

are still not truly understood. This thesis offers much needed clarity in this

regard. With new insight into the baseband noise model, a communication

2



1.2. THESIS GOALS

system can be designed to be more robust in AWSαSN. In due course, we show

that the improvement in error performance over conventional linear receivers is

significant.

It is well-known that linear systems are far from optimal in AWSαSN

[3], [9]. Though characterizing and analyzing baseband noise in linear receivers

offers much insight into developing robust systems in impulsive noise, the

receiver is still suboptimal. A major part of this thesis explores non-linear

design methodologies for a communications receiver. The resulting schemes far

outperform any linear receiver in AWSαSN.

1.2 Thesis Goals

The aims of this thesis can be succinctly summarized as follows:

1. To provide a solid understanding of the effects of impulsive noise (modeled

by AWSαSN) in a single and multi-carrier digital communications receiver.

2. To propose new mechanisms that mitigate the effect of impulsive noise for

both linear and non-linear receivers.

3. To harness modern advances in signal processing that allow robust yet low

complexity reception of digital signals in impulsive noise.

1.3 Research Contribution

A digital communications receiver is made up of a number of crucial parts. Our

work focuses primarily on the front-end of the physical-layer. The contributions

of this thesis are summarized as follows:

1. The baseband statistics of impulsive noise (modeled by AWSαSN)

3
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is shown to take on a plethora of anisotropic symmetric star-like

statistical configurations on introducing uniform passband sampling to the

conventional (linear) receiver.

2. The probability density functions (PDFs) of stable distributions do not

exist in closed-form. The statistics of the baseband noise are therefore

derived using a characteristic function (CF) approach that results in

analytic expressions.

3. If the real and imaginary components of the received signal are processed

separately, we prove that the case with IID real and imaginary noise

components offers the best error performance. This results in a bivariate

four-tailed symmetric distribution per complex noise sample. Further, a

sampling rule is introduced that guarantees this scenario.

4. New constellation design rules are proposed that harness the true potential

of the anisotropic baseband noise. The resulting gains for single-carrier

systems are large.

5. As closed-form expressions of stable density functions are unavailable,

maximum-likelihood (ML) detection may be cumbersome. We therefore

analyze the error performance of various analytic cost functions that offer

near-ML performance.

6. The linearity of the system may be sacrificed to harness even larger

performance gains. This is shown by invoking various non-linear estimation

schemes on the passband signal that output soft-values of the transmitted

4
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symbol.

7. If joint-detection is performed directly on the passband samples, this offers

the best performance. Further still, this is also exempted from the proposed

sampling rule.

8. An orthogonal frequency division multiplexing (OFDM) system with a

large number of carriers is shown to naturally mitigate the adverse influence

of impulsive noise. This is true even if all carriers are transmitting data.

We highlight this by presenting the ML error performance of an OFDM

system with increasing number of carriers. The dependency on the optimal

constellation is also shown to reduce with the number of carriers for both

pure-noise and block fading channels.

9. Due to its computational complexity, ML detection for OFDM in impulsive

noise is unfeasible for large number of carriers. Robust approaches based

on compressive sensing (CS) and convex programming are employed to

generate near-ML estimates of the transmitted OFDM symbol albeit under

some additional constraints.

10. Like its single-carrier counterpart, we show that the sampled passband

OFDM signal may be processed directly through an estimator to output

soft-values of the transmitted symbol block. This approach is devoid of

any sampling constraint besides Nyquist’s criterion.

11. Various signal-to-noise (SNR) measures have been introduced in the

literature. A complete SNR analysis of the discussed schemes are

5
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presented. It is analytically shown how baseband conversion via linear

receivers actually reduces the operational SNR of the system.

1.4 Organization

A study of related works is important to provide an understanding of the impact

of our research. This is presented in Chapter 2. In Chapter 3 we briefly introduce

preliminary concepts and notations that are used in our analysis. Chapter 4

presents an in-depth analysis of the structure of baseband noise in passband

AWSαSN in linear receivers. Using the results in Chapter 4, we analyze various

single-carrier linear and non-linear schemes that mitigate impulsive noise in

Chapter 5. We also discuss new constellation design rules that, along with the

new receivers, are necessary to enhance overall error performance. Chapter 6

extends inferences and results in the single-carrier case to OFDM. Using modern

tools like CS and convex programming, we show that near-ML performance

may be achieved at relatively much lower computational cost than the optimal

detector by introducing a few constraints. Finally, we wrap up this work by

presenting our conclusions and highlighting future problems in Chapter 7.

6



Chapter 2

Literature Review

2.1 Impulsive Noise Modeling

Due to the CLT, the cumulative effect of thermal noise (and even external

interference from sources with finite power) is modeled by Gaussian distributions

[11]. If the samples are IID, then the AWGN channel is used to model the noise

process [1]. Though this is a limiting argument, it has been adequately backed

up via experimental data. Further still, decades worth of in-depth performance

analysis for a large variety of digital communication schemes operating in

Gaussian-inspired noise models have been amassed in the literature [1]. This

is still an ongoing research area and is the reason we see communication systems

as they presently are.

In certain communication scenarios, impulsive noise dominates the available

transmission spectrum. Examples include the shallow underwater channel

littered with snapping shrimp [4], [10], [12]–[15], communication over power lines

[5], [16], [17], digital subscriber line transmission [6], [18]–[21] and atmospheric

noise [22]–[25]. Though not as widely prevalent as thermal noise, it can cause

severe degradation if not specifically accounted for [10]. The nature of the

noise may vary for different scenarios. For example, in power lines the observed

noise has two components; an asynchronous process and one that is cyclic and
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Figure 2.1: A realization of ambient noise in shallow coastal waters in Singapore.

bursty [5],[17]. The findings in one, however, may be directly or indirectly applied

to another. In Fig. 2.1, we present the ambient noise heard by an underwater

acoustic receiver operating in shallow waters of the coast of Singapore. The data

was collected during sea-trials by members of the Acoustic Research Laboratory

at the National University of Singapore [26]. The sampling frequency was

500kHz. One can clearly see the impulses (or outliers) in the noise process.

In the literature, several noise models have been used to simulate impulsive

noise environments. Analytic representations coupled with ‘sufficiently good’

empirical fits to practical data have propelled the use of the Middleton

class A,B and C models [27]–[29]. These have been used extensively in the

literature for several scenarios (for e.g. [17], [30], [31]). Mixtures such as

the Cauchy-Gaussian [32]–[34], the Gaussian mixture [14], [17], [33] and the

Gaussian-Bernoulli-Gaussian (GBG) [35]–[38] models have also been widely

employed to model impulsive noise. Mixture models may have good attributes
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such as closed-form PDFs or finite first and second-order moments (in the case

of the Gaussian mixture/GBG model), however they may not truly depict the

noise characteristics at the tails (and hence the impulses) [14]. They also lack the

stability property due to which limiting arguments may be needed to characterize

the resulting distribution after processing. The same can be stated about the

Middleton noise models. Another commonly employed model is based on the

heavy-tailed generalized Gaussian distribution [39]–[41]. Though it also has an

analytical PDF and finite first and second-order moments, it is devoid of the

stability property.

As discussed in Chapter 1, the motivation for using non-Gaussian stable

distributions to model impulsive noise in this thesis stems not only from the

fact that they are heavy-tailed, but from the GCLT as well [8], [9]. Further

still, they model practical impulsive noise models well [3], [9], [14] and have been

employed vastly in the literature. They do have a few drawbacks such as the

general unavailability of closed-form PDFs and the lack of finite second-order

moments [7]–[9]. However, efficient numerical approximations of the density

function do exist [42]–[44] and may be used accordingly. Likewise, closed-form

approximations of the PDFs have been employed in many instances in the

literature. In this thesis we design and analyze systems based on the AWSαSN

model. An updated list of the literature employing stable distributions is kept

on J. P. Nolan’s website [45].

9
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2.2 Communication in Impulsive Noise

Single-carrier systems are extensively used in modern day wireless standards.

Research on their performance and spectral efficiencies have been studied

thoroughly for various fading and noise channels [1], [2]. Due to a number

of favorable properties, multi-carrier schemes (namely OFDM) are being

increasingly endorsed in new and emerging wireless standards [1], [2], [46].

Coupled with multiple-input multiple-output (MIMO) techniques, they offer

robustness to fading and higher spectral efficiency to a communications system.

In the literature, capacity analysis has been performed for some impulsive

noise models. However, there still is much to do. Very recently, [47] and [48]

proposed new capacity bounds and results for the GBG channel model. These

works focused on single-input single-output systems at the complex baseband

level. For the α-stable scenario, [49] offered new results on the capacity of SαS

and skewed-stable random variables. The authors considered a real additive

noise channel model. There are many open problems for capacity analysis in

impulsive noise. For example, a direct extension of the aforementioned research

would target passband transmission and MIMO systems.

Various signal processing techniques for stable distributions have been

presented in the literature. Common approaches are based on ML [50], fractional

lower order moments [9], [51], [52] and CF [9], [53]–[55]. As closed-form PDFs

do not exist and the objective is to achieve near-ML performance, analytic

approximations to stable densities are sometimes employed. In this regard,

the mixture distributions previously discussed have been used to develop
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near-optimal techniques for AWSαSN [34], [56]. In additive noise scenarios, the

location vector of the joint-PDF corresponding to the received observations is

a function of the transmitted symbol. Therefore robust estimates of location

form an integral part of good receivers. The Lp-norm for 0 < p < 2 [10], [57],

the myriad filter [58]–[62], the generalized Cauchy estimator [59], [63] and the

meridian filter [64] are a few examples of measures that mitigate the effect of the

impulsive component in received observations. The motivation of using these

techniques stems from robust statistics and/or generalized ML estimation (or

M-estimation) theory [65].

In digital communications, performance analysis is typically performed at the

baseband level [1]. A linear passband-to-baseband conversion process is assumed.

However, we show that linear conversion actually reduces the operational SNR

at the receiver in the presence of passband non-Gaussian AWSαSN. Due to the

lack of finite second-order moments, the conventional definition of SNR does not

extend to the general AWSαSN model [9]. Therefore, a suitable SNR measure

needs to be introduced to analyze system performance in such scenarios [9], [10],

[58], [66].

Another inherent issue with current research trends in mitigating impulsive

noise is the implicit assumption that the baseband noise vector is isotropic or

has IID samples [9], [62], [67]. Yet the underlying theory that substantiates

this assumption has never been formulated. We highlight and address these

issues in this thesis. In fact, we show that within the framework of linear

passband-to-baseband conversion, one can achieve either statistical configuration

by setting the system parameters appropriately. We also show which noise
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configuration can be exploited to achieve better results.

The effect of impulsive noise in single and multi-carrier systems has been

studied [9], [36], [37], [68], [69]. Schemes based on blanking (threshold-based

erasure), clipping or clipping-blanking are easy to implement and mitigate

the effect of impulsive noise [70]–[75]. Though they outperform conventional

techniques tailor-made for AWGN, they are suboptimal. Also, capacity analysis

and the ultimate error performance of these schemes in impulsive noise is still an

open problem. More recently, error control coding has been used for impulsive

noise mitigation in OFDM by taking advantage of the nulls and pilots that are

typically located within the transmitted symbol block [37], [38], [76]. However,

this method is computationally extensive [36]. The inherently sparse nature

of impulsive noise allows using a CS approach to estimate the noise process,

which is then used to cancel out the impulses [36], [77]. Due to powerful convex

optimization algorithms [78], the computational cost of this approach is not as

high [36]. In this thesis, we discuss the CS technique in the light of M-estimation

of the passband noise samples. A thorough error analysis of the CS-based receiver

is conducted and the results are compared with ML detection.

12



Chapter 3

Summary of Concepts: Stable Distributions

3.1 Univariate Stable Distributions

3.1.1 Stable Random Variables

A random variable X is classified as stable or (α-stable) if and only if

a1X
(1) + a2X

(2) d
= cX + d (3.1)

where X(1) and X(2) are IID copies of X and a1, a2, c and d are real numbers

[7]–[9]. The symbol
d
= implies equality in distribution. By induction, we can

extend (3.1) to a sum ofK random variables. Formally, ifX(i) ∀ i ∈ {1, 2, . . . ,K}

are IID copies of X and

K∑
i=1

aiX
(i) d

= cX + d (3.2)

where K ∈ Z
+ and ai, c, d ∈ R, then X is a stable random variable [8]. If d = 0,

then X is termed as strictly stable. With the exception of the Gaussian and

Cauchy cases, a closed-form expression for the PDF of a stable random variable

does not exist [8], [9]. On the other hand the CF of such a variable has a closed

form [7], [8]. The CF ΦX(θ) of a random variable X is the Fourier transform of
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its PDF fX(x) and is defined as

ΦX(θ) = E[ejθX ] =

∫ +∞

−∞
fX(x)ejθx dx (3.3)

where E[·] is the expectation operator and θ ∈ R is the frequency domain variable

[11]. Because of their relationship, the CF is a suitable replacement for the PDF

to statistically characterize any random variable. For stable random variables,

there are different parameterizations of ΦX(θ) which are summarized in [7], each

of which have their own desirable properties. We stick to a commonly used

convention [7], [8]:

ΦX(θ) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(−δα|θ|α(1− jβ(sign θ) tan πα

2 ) + jμθ
)

for α �= 1

exp
(−δ|θ|(1 + jβ 2

π (sign θ) log |θ|) + jμθ
)

for α = 1

(3.4)

The parameters α, β, δ and μ are real and completely define the distribution of

X which in turn is denoted by S(α, β, δ, μ). α is the characteristic exponent and

determines the heaviness of the tails for the distribution. The skew parameter β

alters the symmetry. δ controls the spread and is consequently termed the scale

parameter. Finally, the value of μ determines the position and is the location

parameter of the distribution. A summary of these parameters is listed in Table

3.1.

When α = 2, (3.4) is the CF of a Gaussian random variable with distribution

N (μ, 2δ2), where μ and 2δ2 are the mean and variance of the distribution

respectively [7]–[9]. Notice that when α = 2, the skew parameter β is nullified

and has no effect on the distribution. For α = 1 the CF in (3.4) is that of a
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Table 3.1: Parameter descriptions for Stable Distributions.

Parameter Name Range

α characteristic exponent (0, 2]

β skew parameter [−1,+1]

δ scale parameter (0,+∞)

μ location parameter (−∞,+∞)

Cauchy random variable.

3.1.2 Symmetric α-Stable Random Variables

A random variable is symmetric α-stable (SαS) if β and μ are equal to zero

[8], [9]. The distribution of such a variable reduces to S(α, 0, δ, 0). The term

‘symmetric’ stems from the fact that fX(x) = fX(−x) where fX(x) is the

distribution function of X. Further still, as fX(x) ∈ R, then from the properties

of the Fourier transform we have ΦX(θ) real and symmetric about θ, i.e.,

ΦX(θ) = ΦX(−θ) = Φ∗
X(θ). This relationship between a PDF and its CF is

unique to symmetric distributions and is an appropriate test to validate if a

stable distribution is indeed SαS or not [8]. We can see this by substituting

β = 0 and μ = 0 in (3.4) to get the CF of X [8]:

ΦX(θ) = exp (−δα|θ|α) . (3.5)

Any SαS random variable is also strictly stable, the converse does not hold

when α = 1 but holds otherwise [8]. Therefore, if X is SαS, then from (3.2)

K∑
i=1

aiX
(i) d

= cX. (3.6)
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The relationship between the coefficients in (3.2) is [7]–[9]

cα =

K∑
i=1

|ai|α. (3.7)

From (3.5), the PDF of an SαS random variable is completely parameterized

by α and δ. We therefore denote it using the abridged notation S(α, δ). For the

Gaussian case, S(2, δ) is equivalent to N (0, 2δ2), i.e., the zero-mean Gaussian

distribution with variance 2δ2:

fX(x) =
1√
4πδ2

exp

(
−x

2

δ2

)
. (3.8)

For the Cauchy case, the PDF corresponding to the CF in (3.5) is

fX(x) =
δ

π(x2 + δ2)
. (3.9)

An SαS PDF is termed as standard if δ = 1. Do note that this is different

from the conventionally applied definition for a standard Gaussian PDF, i.e.,

N (0, 1)
d
= S(0, 1√

2
).

Besides stability, a defining characteristic of non-Gaussian SαS distributions

is that they have algebraic (heavy) tails [8]. The heaviness of these tails is

characterized by α. As α → 0, the tails become increasingly heavier. This

effect can be seen from the asymptotic convergence of an SαS PDF for α �= 2 as

|x| → +∞ [7]:

fX(x) ≈
(
αδα sin(πα/2)Γ(α)

π

)
|x|−α−1. (3.10)
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Figure 3.1: Comparison of standard SαS PDFs for different α.

Here, Γ(·) denotes the gamma function. As
∫∞
ε xq dx is divergent for q ≥ −1

for all finite ε > 0, then from (3.10), we clearly observe that the pth-order

moments for p > α are infinite. Thus, second-order moments are infinite for all

non-Gaussian SαS random variables. Further still, for α ≤ 1 even the first-order

moment (mean) is infinite.

We highlight various standard SαS PDFs in Fig. 3.1. One can clearly see

that as α → 2, the tails of the PDFs get increasingly lighter. Do note that as

α→ 0, the peak gets more prominent at x = 0.

3.2 Multivariate Stable Distributions

3.2.1 Stable Random Vectors

The expression in (3.2) can be extended to define a stable random vector x =

[x1, x2, . . . , xN ]T where x ∈ R
N and N ∈ Z

+ such that

K∑
i=1

aix
(i) d

= cx+ d (3.11)
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and x(i) ∀ i ∈ {1, 2, . . . ,K} are IID copies of x. Here, ai, c ∈ R and d ∈ R
N. If

d = 0N×1, then x is strictly stable [8], [9]. The joint-CF of x is evaluated by

Φx(θ) = E
[
exp

(
jθTx

)]
(3.12)

where θ = [θ1, θ2, . . . , θN ]T and θk ∈ R is the frequency domain variable

corresponding to the kth element in x. To get the marginal CF corresponding

to xk from (3.12), one needs to substitute θl = 0 ∀ l �= k. Unlike the univariate

case, Φx(θ) generally does not have a closed form and is given by

Φx(θ) = exp

(
−
∫
SN

|〈θ, s〉|α
(
1− j sign(〈θ, s〉) tan πα

2

)
Λ(s) ds+ j〈θ,μ〉

)

(3.13)

for α �= 1 and

Φx(θ) = exp

(
−
∫
SN

|〈θ, s〉|α
(
1 + j

2

π
sign(〈θ, s〉) log |〈θ, s〉|

)
Λ(s) ds+ j〈θ,μ〉

)

(3.14)

for α = 1, where SN represents all points on the (N − 1)-dimensional unit

circle lying in N -dimensional space and 〈·, ·〉 denotes the inner product of two

vectors [8], [9]. Mathematically,

SN = {s|s ∈ R
N , ‖s‖ = 1}. (3.15)

Here, μ ∈ R
N is the location vector and Λ(s) ∈ R is a finite spectral measure.

Λ(s) contains information related to the scale and skewness of the distribution
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and is non-zero only over s ∈ SN . The integration in (3.13) and (3.14) is

performed over all points s ∈ SN .

3.2.2 SαS Random Vectors

The PDF fx(x) of a stable random vector x is SαS if fx(x) = fx(−x). This

implies that the CF is real and symmetric about θ = 0, i.e,

Φx(θ) = Φx(−θ) = Φ∗
x(θ). (3.16)

Like the univariate case, this is an appropriate test to validate if a stable

distribution is SαS or not. If x is SαS, it is also strictly stable. The converse,

however, is not true [8]. On applying the condition in (3.16) to (3.13) and (3.14),

we see that the CF of a SαS random vector x is given by

Φx(θ) = exp

(
−
∫
SN

|〈θ, s〉|αΛ(s) ds
)
. (3.17)

We note that Λ(s) is equal for any two antipodal vectors s, i.e., Λ(s) = Λ(−s),

and assigns weights to |〈θ, s〉|α [8]. To better understand the relationship

between Λ(s) and the configuration of an SαS PDF, we briefly discuss two special

cases:

The Isotropic Case

If x is an isotropic SαS vector with each component S(α, δ), the CF in (3.17)

reduces to

Φx(θ) = exp (−δα‖θ‖α) (3.18)
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where ‖ · ‖ represents the Euclidean norm , i.e., ‖θ‖ = (
∑N

i=1 θ
2
i )

1/2. We note

that the CF is solely a function of the magnitude of the frequency domain vector

θ. On comparison with (3.17) we see that Λ(s) is constant over all s ∈ SN [8].

IID Components

If the components of x are IID copies of X ∼ S(α, δ), the joint-CF is given by

the multiplication of N individual copies of the expression in (3.5), i.e.,

Φx(θ) = E

[
exp

(
j

N∑
i=1

θixi

)]
=

N∏
i=1

E [exp (jθixi)]

=
N∏
i=1

ΦX(θi)

= exp

(
−δα

(
N∑
i=1

|θi|α
))

. (3.19)

As (3.19) satisfies the condition in (3.18), it is SαS. Here, Λ(s) is non-zero

only for a finite number of s ∈ SN . Precisely, it is a sum of N -dimensional

equal-weighted Dirac delta functions located at the Cartesian axis intercepts with

the (N−1)-dimensional unit circle. An example is the univariate SαS case, which

in essence is a 1-dimensional random vector with a single S(α, δ) distributed

component. In this case S1 = {−1, 1} and Λ(s) = δα/2(D(s − 1) + D(s + 1))

where D(s) is the Dirac delta function.

Contrary to the univariate case, closed-form CFs generally do not exist for

multivariate SαS distributions. However, there are certain subclasses that are

exceptions to this rule, with one of them being the sub-Gaussian α-stable vector

family [8].
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3.2.3 Sub-Gaussian α-Stable Random Vectors

If a non-Gaussian SαS random vector can be factored into

x = A1/2g (3.20)

where g is a zero-mean Gaussian vector of dimension equal to that of x and

A is a totally right-skewed stable random variable independent of g, then x is

sub-Gaussian α-stable or α-sub-Gaussian [8], [9]. Further still, the distribution

of A will be S(α/2, 1, (cos πα
4 )2/α, 0).

The density of x in (3.20) shares structural similarities with that of

the underlying Gaussian vector. For e.g., an N -dimensional non-degenerate

α-sub-Gaussian vector implies an underlying non-degenerate N -dimensional

Gaussian vector and will have its equiprobable density surfaces shaped as

N -dimensional ellipsoids. These surfaces become spherical if the elements of

the underlying Gaussian vector are IID [9]. This concept may be extended to

the degenerate case. Also note that due to A in (3.20), the elements of x will

always be dependent, irrespective of the elements of g being independent or

not [8]. The CF of x is further given as

Φx(θ) = exp

(
−
∣∣∣∣12θTRθ

∣∣∣∣α/2
)

(3.21)

where R is the covariance matrix of g and α is the characteristic exponent of

x [8], [9]. For α = 1 and α = 2 the joint CF in (3.21) reduces to that of an

α-sub-Gaussian Cauchy and a zero-mean Gaussian vector, respectively. As R is

21



CHAPTER 3. SUMMARY OF CONCEPTS: STABLE DISTRIBUTIONS

a covariance matrix, it is positive semi-definite [1], [11]. Therefore, we can omit

| · | and write (3.21) as

Φx(θ) = exp

(
−
(
1

2
θTRθ

)α/2
)

(3.22)

For the univariate case, (3.20) can be written as

X = A1/2G (3.23)

where G ∼ N (0, 2δ2) and A ∼ S(α/2, 1, (cos πα
4 )2/α, 0) and are mutually

independent. We see that a SαS random variable is α-sub-Gaussian. The

converse is true as well. This is observed by comparing (3.22) for scalar x to

(3.5) and noting that they are equal. Multivariate SαS distributions, however,

may not be α-sub-Gaussian.

3.2.4 The Additive White Symmetric α-Stable Noise Model

The AWSαSN channel has been used in the literature to model practical

impulsive noise channels [3], [4], [9], [10]. By definition, samples of AWSαSN

are real and IID copies of X ∼ S(α, δ). This implies that the AWSαSN process

is stationary. If the N -tuple x = [x1, x2, . . . , xN ]T consists of dissimilar samples

of an AWSαSN process, the joint-CF of x is given by (3.19) and therefore x is

SαS. However, on comparison with (3.22) we see the joint-CF in (3.19) is not

sub-Gaussian. If we denote the PDF of X by fX(·), the joint-PDF of x is given
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Figure 3.2: Realizations of AWSαSN for different values of α and δ = 1.

by

f(x) =
N∏
i=1

fX(xi). (3.24)

When α = 2, the more general AWSαSN channel reduces to the AWGN model.

The term ‘white’ implies a flat power spectral density (PSD) spanning over all

frequencies for the Gaussian case. It should be noted that this definition does not

hold when associated with non-Gaussian AWSαSN. This is due to the fact that

second-order moments of stable non-Gaussian distributions are infinite [8], [9].

The term is maintained because it asserts independence of noise samples in

AWGN which is what is implied in the case of non-Gaussian AWSαSN.
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Figure 3.3: Realizations of AWSαSN for different values of α and δ = 1 on a
larger scale.

In Fig. 3.2, realizations of AWSαSN for different values of α have been

plotted. Each sample is distributed by S(α, 1). One can clearly observe the

varying impulsive behavior of the noise processes. The same realizations are

reproduced on a larger scale in Fig. 3.3 to highlight the difference in amplitudes

of the impulses.

3.2.5 Complex SαS Random Vectors

If xc = [xc1 , xc2 , . . . , xcN ]
T is an N -dimensional complex random vector, its

statistics can be completely characterized by a 2N -dimensional PDF [11].

Denoting x = [�{xc}T �{xc}T]T, i.e., x ∈ R
2N , we state that xc is a complex

SαS random vector if x is symmetric and satisfies (3.11).
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Chapter 4

Characterization of Complex Baseband SαS Noise

In this chapter we derive a general bivariate-CF for complex noise under

conventional (linear) passband-to-baseband conversion for passband AWSαSN.

We prove that the baseband noise is SαS. Using the derived expressions, we

extract useful insight into the characteristics of the resultant noise. It is

well known that the baseband noise derived from AWGN is isotropic and its

components are IID Gaussian [11]. For the non-Gaussian AWSαSN case, the

components may or may not be independent. Further still, the noise might

not even be isotropic. In fact, by varying system parameters one may achieve a

variety of baseband noise distributions. Due to these differences, techniques that

are optimized for Gaussian noise scenarios might not be effective in the presence

of impulsive noise. The work presented in this chapter has been published

in [79]–[81].

4.1 Linear Passband-to-Baseband Conversion

The relationship of a continuous-time passband signal s(t), indexed by t ∈ R, to

its baseband form s̃(t) is represented by the well known expression [1]

s(t) = �{s̃(t) exp (j2πfct)} , (4.1)
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where fc is the carrier frequency. In a typical digital communications scheme,

the information is usually embedded in the baseband signal. However, the actual

transmission is performed in the passband [1]. This is done primarily to allow

effective propagation through the communication medium [1], [2]. Examples

of such mediums are the wireless electromagnetic channel and the underwater

acoustic channel [1], [2]. Another inherent advantage of passband transmission

is that desired frequency bands can be allocated by modifying fc. This allows

efficient use of the available spectrum. If (4.1) is sampled, we get

s[n] = �
{
s̃[n] exp

(
j2π

fc
fs
n

)}
, (4.2)

where fs and s̃[n] are the passband sampling frequency and the upsampled

baseband signal, respectively. Also, n ∈ Z is the discrete-time index. The square

bracket notation is used to denote discrete-time signals, i.e., s[n] = s(t/fs) and

so forth. We note that (4.1) is the limiting case of (4.2) as fs → +∞.

At the receiver, the signal is converted back to its baseband form. To do

this, one essentially has to shift s[n] by fc in the spectral domain and pass the

result through a low pass filter, the impulse response of which we denote by

v[n]. The filter is of L-taps and of bandwidth equal to the normalized message

signal bandwidth B/fs where B is the baseband sampling frequency. We assume

the order of the filter, and hence L, to be sufficiently large so that there is

an adequate low-pass filtering effect. In the presence of a passband signal the

Nyquist criterion should be satisfied, i.e., fs > 2fc +B [1]. Mathematically, the
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4.1. LINEAR PASSBAND-TO-BASEBAND CONVERSION

passband-to-baseband conversion is given by

s̃[n] = 2v[n] ∗ s[n]e−j2π fc
fs

n
, (4.3)

where ∗ denotes the linear convolution operation. The scale factor of 2 is

appended so that the relationship in (4.4) is maintained [1].

If s[n] and hence s̃[n] are random processes, then in addition to the

relationship in (4.2), a joint-PDF is associated with either of these signals.

Adhering to convention in standard texts [1], [11], we use capitalized letters to

represent random processes. We define W [n] ∀ n ∈ Z to be samples of a real

passband AWSαSN process and further state W̃ [n] to be its upsampled baseband

counterpart. Therefore, from (4.2) and (4.3), we have

W [n] = �
{
W̃ [n] exp

(
j2π

fc
fs
n

)}
(4.4)

and

W̃ [n] = 2v[n] ∗W [n]e
−j2π fc

fs
n
, (4.5)

respectively. As (4.5) consists only of linear operations, W̃ [n] may be analyzed

irrespective of the transmitted signal [1]. This is done next.

We note that though W [n] is a real process, W̃ [n] is complex. The shifting
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operation in (4.5) is given by

W+[n] =W [n]e
−j2π fc

fs
n

=

(
cos(2π

fc
fs
n)− j sin(2π

fc
fs
n)

)
W [n]. (4.6)

We can write (4.6) in vector form as

w+[n] =

⎡
⎢⎢⎣W

+
R [n]

W+
I [n]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ cos(2π fc

fs
n)

− sin(2π fc
fs
n)

⎤
⎥⎥⎦W [n], (4.7)

where W+
R [n] and W+

I [n] are the real and imaginary components of W+[n] ∈ C,

respectively. We use the + symbol in our notation to highlight that the positive

band of the passband signal is shifted to zero. The subsequent filtering operation

in (4.5) is expressed as

W̃ [n] = 2
L−1∑
k=0

v[n]W+[n− k]. (4.8)

As W̃ [n] ∈ C is complex, it can be written in vector form as well:

w̃[n] =

⎡
⎢⎢⎣W̃R[n]

W̃I [n]

⎤
⎥⎥⎦

= 2
L−1∑
k=0

v[k]

⎡
⎢⎢⎣W

+
R [n− k]

W+
I [n− k]

⎤
⎥⎥⎦

= 2
L−1∑
k=0

v[k]w+[n− k], (4.9)
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Figure 4.1: A schematic of an uncoded digital communication system with
AWSαSN along with a descriptive block diagram of the passband-to-baseband
conversion block.

where W̃R[n] and W̃I [n] are the real and imaginary components of W̃ [n],

respectively. Therefore, w̃[n] ∈ R
2. To get the actual baseband signal Z[n] ∈ C,

W̃ [n] is downsampled by a factor of fs/B, i.e.,

Z[n] = W̃ [fsn/B]. (4.10)

Similarly, in vector form,

z[n] =

⎡
⎢⎢⎣ZR[n]

ZI [n]

⎤
⎥⎥⎦ = w̃[fsn/B]. (4.11)

where ZR[n] and ZI [n] are the real and imaginary components of Z[n],

respectively.

29
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A schematic for an uncoded digital communication system is shown in Fig.

4.1 along with an elaborate diagram of the passband-to-baseband conversion

block. The mapper converts a sequence of M information bits to a symbol that

is represented as a signal point on a constellation diagram. The total number of

symbols is consequently assumed to be 2M . The operation of the demapper is

the inverse of the mapper.

4.2 Complex Baseband SαS Noise

In this section we derive the bivariate CF of complex baseband SαS noise with

the assumption that the passband noise is AWSαSN. We will first characterize

w+[n]. On the basis of that we will derive the CF of w̃[n] and z[n]. We assume

the passband samples W [n] are each distributed by S(α, δw).

From the discussion in Section 3.2.3, the samples W [n] are individually

sub-Gaussian as they are each univariate SαS. Using (3.23) we can express W [n]

as

W [n] = A
1
2 [n]G[n], (4.12)

where A[n] ∼ S(α2 , 1, (cos πα
4 )2/α, 0) and G[n] ∼ N (0, 2δ2w) are independent of

each other. As the samples W [n] are IID, so will be the samples A[n] and G[n]

for all n ∈ Z.

Proposition 1: For any n and α ∈ (0, 2], w+[n] is α-sub-Gaussian with the
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4.2. COMPLEX BASEBAND SαS NOISE

covariance matrix of the underlying Gaussian vector g[n] being:

R[n] = 2δ2w

⎡
⎢⎢⎣ cos2(2π fc

fs
n) −1

2 sin(4π
fc
fs
n)

−1
2 sin(4π

fc
fs
n) sin2(2π fc

fs
n)

⎤
⎥⎥⎦ . (4.13)

Proof: By substituting (4.12) in (4.7) we get

w+[n] =

⎡
⎢⎢⎣ cos

(
2π f

fs
n
)

− sin
(
2π f

fs
n
)
⎤
⎥⎥⎦W [n]

= A
1
2 [n]

⎡
⎢⎢⎣ cos

(
2π f

fs
n
)

− sin
(
2π f

fs
n
)
⎤
⎥⎥⎦G[n]

= A
1
2 [n]g[n], (4.14)

where

g[n] =

⎡
⎢⎢⎣ cos

(
2π f

fs
n
)

− sin
(
2π f

fs
n
)
⎤
⎥⎥⎦G[n].

We see that g[n] is zero-mean bivariate Gaussian and therefore due to the form

in (4.14), w+[n] is α-sub-Gaussian. The covariance matrix of g[n] is calculated

by evaluating R[n] = E[g[n]g[n]T], which results in (4.13). �

As the rank of the covariance matrix in (4.13) is 1 ∀ n ∈ Z, g[n] and hence

w+[n] are degenerate.
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Corollary 1: The characteristic function of w+[n] is

Φw+[n](θ) = exp

(
−
(
1

2
θTR[n]θ

)α/2
)
. (4.15)

Eq. (4.15) results from substituting (4.13) for R in (3.22).

Proposition 2: For all n ∈ Z and α ∈ (0, 2], the random vector w̃[n] is SαS

and has the following joint-CF:

Φw̃[n](θ) = exp

(
−

L−1∑
k=0

∣∣∣2v2[k]θTR[n− k]θ
∣∣∣α/2

)
. (4.16)

Proof: We use (4.9) and the whiteness of passband noise samples to get:

Φw̃[n](θ) = E
[
exp

(
jθTw̃[n]

)]
= E

[
exp

(
j2

L−1∑
k=0

v[n]θTw+[n− k]

)]

=
L−1∏
k=0

E
[
exp

(
j2v[n]θTw+[n− k]

)]

=

L−1∏
k=0

E

[
exp

(
j
(
2v[n]θ

)T
w+[n− k]

)]
. (4.17)

From (3.12), we have

Φw+[n−k] (2v[n]θ) = E

[
exp

(
j
(
2v[n]θ

)T
w+[n− k]

)]
. (4.18)
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Therefore, we can write (4.17) as

Φw̃[n](θ) =

L−1∏
k=0

Φw+[n−k] (2v[n]θ) (4.19)

On substituting (4.15) in (4.19), we get

Φw̃[n](θ) =
L−1∏
k=0

exp

(
−
(
2v2[k]θTR[n− k]θ

)α/2)

= exp

(
−

L−1∑
k=0

(
2v2[k]θTR[n− k]θ

)α/2)
. (4.20)

To see if the distribution of w̃[n] is bivariate SαS, we merely note that (4.20) is

real and symmetric about θ, i.e., it satisfies (3.16). �

4.2.1 Marginal Distributions

We can get the marginal CFs ΦW̃R[n](θ) and ΦW̃I [n]
(θ) by substituting θ = [θ, 0]T

and θ = [0, θ]T into (4.20), respectively.

Corollary 2: The CFs of the marginal distributions of w̃[n] are

ΦW̃R[n](θ) = exp

(
−

L−1∑
k=0

(
4v2[k]θ2 cos2

(
2π
fc
fs

(n− k)

)
δ2w

)α/2
)

(4.21)

ΦW̃I [n]
(θ) = exp

(
−

L−1∑
k=0

(
4v2[k]θ2 sin2

(
2π
fc
fs

(n− k)

)
δ2w

)α/2
)

(4.22)

From (3.5), (4.21) and (4.22), we note that both W̃R[n] and W̃I [n] are SαS
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random variables. Their scale parameters are

δW̃R[n] =

(
L−1∑
k=0

∣∣∣∣2v[k] cos
(
2π
fc
fs

(n− k)

)
δw

∣∣∣∣α
)1/α

and (4.23)

δW̃I [n]
=

(
L−1∑
k=0

∣∣∣∣2v[k] sin
(
2π
fc
fs

(n− k)

)
δw

∣∣∣∣α
)1/α

, (4.24)

respectively. It is observed that the relationship between the CFs of Z[n] and

W̃ [n], i.e., Φz[n](θ) = Φw̃[fsn/B](θ), extends to the marginal distributions of Z[n]

corresponding to (4.21) and (4.22).

4.2.2 An Example: The AWGN Case

The validity of the joint-CF in (4.16) and its marginals in (4.21) and (4.22) may

be verified by applying the results to the case where W [n] is an AWGN process.

The following facts of the resulting baseband noise are already known [1]:

1. For a given sample W̃ [n], the real and imaginary components are IID.

Therefore, the bivariate distribution of any complex baseband sample is

isotropic.

2. All complex baseband samples Z[n] are IID. Hence, the distribution does

not vary with time.
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We first calculate the CF of the marginal distribution of W̃R[n] for this case.

From (4.21) we have

ΦW̃R[n](θ) = Φw̃[n](θ1 = θ, θ2 = 0)

= exp

(
−

L−1∑
k=0

4v2[k]θ2 cos2(2π
fc
fs

(n− k))δ2w

)

= exp

(
− 4θ2δ2w

L−1∑
k=0

v2[k] cos2(2π
fc
fs

(n− k))

︸ ︷︷ ︸
convolution

)
. (4.25)

We know that v[n] is a fixed low-pass filter which allows frequencies within

[− B
2fs
, B
2fs

] to pass through. Therefore, v2[n] is in essence also a low-pass filter as

the magnitude of the frequency response of v2[n] is a triangular function scaled

by B/fs and lies within [−B/fs, B/fs]. Looking at the convolution term in

(4.25), we see that v2[n] succeeds to terminate the high frequency component in

cos2(2π fc
fs
n) = cos(4π fc

fs
n)/2+1/2 and retains the latter term after scaling it by

B/fs. Therefore (4.25) is independent of n (time-invariant) and reduces to:

ΦW̃R[n](θ) = ΦW̃R
(θ) = exp

(
−2Bδ2wθ

2

fs

)
. (4.26)

Using the same arguments we also evaluate

ΦW̃I [n]
(θ) = Φw̃[n](θ1 = 0, θ2 = θ)

= ΦW̃I
(θ) = exp

(
−2Bδ2wθ

2

fs

)
. (4.27)

From the discussion in Section 3.1.2, we see that the individual distributions of

the real and imaginary components of W̃ [n] coincide with N (0, 4Bδ2w/fs). Also,
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the marginal CFs are independent of the sample index n, highlighting the fact

that the distributions of the components of w̃[n] do not vary with time. We can

substitute δ2w by N0fs/4 in (4.26) and (4.27) where N0/2 is the two-sided PSD

of the passband AWGN process to get the marginal CFs in terms of N0:

ΦW̃R
(θ) = ΦW̃I

(θ) = exp

(
−BN0θ

2

2

)
. (4.28)

Now to see if the real and imaginary parts of W̃ [n] are mutually independent

at any n, we apply the same principle used in simplifying the convolution term

in (4.25) to the joint-CF in (4.16):

Φw̃[n](θ) = exp

(
−

L−1∑
k=0

(
2v2[k]θTR[n− k]θ

))

= exp

(
− 4θ21δ

2
w

L−1∑
k=0

v2[k] cos2(2π
fc
fs

(n− k))

︸ ︷︷ ︸
=B/2fs

− 4θ22δ
2
w

L−1∑
k=0

v2[k] sin2(2π
fc
fs

(n− k))

︸ ︷︷ ︸
=B/2fs

+ 4θ1θ2δ
2
w

L−1∑
k=0

v2[k] sin(4π
fc
fs

(n− k))

︸ ︷︷ ︸
=0

)
. (4.29)

Therefore,

Φw̃[n](θ) = exp

(
−2Bδ2wθ

2
1

fs
− 2Bδ2wθ

2
2

fs

)
.
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On comparison with (4.26) and (4.27), we have

Φw̃[n](θ) = ΦW̃R
(θ1)ΦW̃I

(θ2). (4.30)

So the real and imaginary components of W̃ [n] for any n are also independent.

We further see that Φw̃[n](θ) is independent of n, thus showing that the bivariate

distribution of all baseband samples are identical.

Finally, we note that the impulse response of the FIR filter will have a similar

form to

v[n] =

⎧⎪⎪⎨
⎪⎪⎩

B
fs

sinc
(

B
fs

(
n− L

2

))
for 0 ≤ n ≤ L− 1

0 otherwise,

(4.31)

where sinc = sin(πx)
πx ∀ x ∈ R is the normalized sinc function. From (4.31), when

n−L
2 is a multiple of fs/B, then v[n] = 0, except at n = 0. The baseband samples

are mutually independent because of the whiteness of passband samples, the

placement of nulls in the impulse response v[n] and the fact that we downsample

by fs/B after filtering to generate the baseband signal. Precisely, the convolution

operation in conjunction with the downsampling block allows each Z[n] to be

expressed as a projection of W+[k] over

�n[k] = 2v[fsn/B − k]

=

⎧⎪⎪⎨
⎪⎪⎩

2B
fs

sinc
(
n− B

fs

(
k + L

2

))
for fsn/B − L+ 1 ≤ k ≤ fsn/B

0 otherwise.

(4.32)
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From (4.8) we have

Z[n] = W̃ [fsn/B] = 2

L−1∑
k=0

v[k]W+[fsn/B − k]. (4.33)

Without loss of generality, we may express (4.33) as

Z[n] = 2
+∞∑

k=−∞
v[k]W+[fsn/B − k]

= 2
+∞∑

k=−∞
v[fsn/B − k]W+[k]

=
+∞∑

k=−∞
�n[k]W

+[k]. (4.34)

For v[n] in (4.31), the set of �n[k] ∀ n ∈ Z are orthogonal functions over k ∈ Z

for sufficiently large L. This coupled with the fact that W+[n] ∀ n ∈ Z are

independent random variables ensures that Z[n] ∀ n ∈ Z are independent random

variables for the Gaussian case [1].

4.2.3 Analysis of non-Gaussian SαS Noise Samples

The AWGN example was a verification exercise for the joint-CF. We will now

analyze the statistics of Z[n] for the non-Gaussian scenario.

Independence of Samples

Though the orthogonal argument associated with (4.34) is sufficient to guarantee

independence of Z[n] ∀ n ∈ Z for the Gaussian case, it does not extend to the

remaining SαS family. By setting

L ≤ fs/B, (4.35)
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one ensures no overlap (of non-zero values) of the orthogonal function set

�n[k] over k ∈ Z. In other words, this condition ensures that any passband

noise sample W [n] is involved in creating only one baseband sample Z[n]. As

W [n] ∀ n ∈ Z are IID random variables, this guarantees the mutual independence

of all Z[n] ∀ n ∈ Z.

Identical Samples

To see if the baseband samples are identical, the expression in (4.16) may be

rewritten as

log(Φw̃[n](θ)) = −
L−1∑
k=0

(
2v2[k]θTR[n− k]θ

)α/2

= −p[n] ∗ q[n], (4.36)

where

p[n] = (2v2[n])α/2 (4.37)

q[n] =
(
θTR[n]θ

)α/2
(4.38)

and ∗ represents the convolution operator. Using (4.31), p[n] becomes

p[n] =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣√2B
fs

sinc
(

B
fs

(
n− L

2

))∣∣∣α for 0 ≤ n ≤ L− 1

0 otherwise.

(4.39)

It is observed that p[n] is in essence a low-pass filter. To depict this, the

magnitude response of (4.39) for α = 1 and 2 are presented in Fig. 4.2a with
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fs = 21 Hz, fc = 4 Hz, B = 1 Hz and L = 800. In practical scenarios, typical

estimates of α lie within [1.5, 2) [3]. The low-pass characteristics of p[n] may

be extended to other values of α within this range. We also note that q[n] is a

periodic signal as the term θTR[n]θ in (4.38) may be expanded as

q[n] =

(
2δ2w

(
θ21 cos

2

(
2π
fc
fs
n

)
+ θ22 sin

2

(
2π
fc
fs
n

)
− θ1θ2 sin

(
4π
fc
fs
n

)))α/2

.

(4.40)

Any function of a periodic signal is periodic as well and in turn may be

represented as a Fourier series. It should be noted that the number of harmonics

of q[n] is equivalent to fs/ gcd(4fc, fs) (where gcd is the greatest common divisor)

and does not depend on α, θ and/or δz. For θ1 = θ2 = 1 and δz = 1, we have

plotted the magnitude response of q[n] for the Cauchy case in Fig. 4.2b. The

result in (4.36) may be visualized as the multiplication of the respective frequency

responses of p[n] and q[n]. For any combination of θ, it has been evaluated that

the convolution in (4.36) (after subsequent downsampling) is independent of n,

i.e., all harmonics of q[n] are effectively suppressed. This can be seen from the

instances of the magnitude frequency response of p[n] and q[n] presented in Fig.

4.2. Thus the distribution of all samples Z[n] are identical. We should highlight

that these arguments are valid only if L is large enough to induce an effective

low-pass filtering effect.

On the other hand we know that L ≤ fs/B for Z[n] to be independent in

time. If L is constrained to fs/B, we still get a low-pass frequency response for

p[n] in (4.39). We depict this for the Cauchy and Gaussian cases in Fig. 4.3
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Figure 4.2: In part (a), the magnitude frequency response of p[n] for the Gaussian
case (solid line) and the Cauchy case (dashed line) are shown. Part (b) presents
the magnitude response of q[n] for the Cauchy case with θ1 = θ2 = 1.

for a certain instance of system parameters. Therefore, it is possible to get IID

Z[n] ∀ n ∈ Z.
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Figure 4.3: the magnitude frequency response of p[n] for the Gaussian case (solid
line) and the Cauchy case (dashed line) are shown for L = fs/B.

Independence of Components

In the Gaussian case, it was determined that the real and imaginary components

of Z[n] are always independent. This is generally not true for non-Gaussian

baseband SαS noise. For the components of Z[n] to be independent, (4.16) has

to break up into a product of its two marginal CFs in (4.21) and (4.22).

Corollary 3: For any given sample Z[n], the real and imaginary components

are independent if and only if fs = 4fc.

Corollory 3 follows from the fact that only for fs = 4fc does the matrix

R[n] in (4.16) become diagonal for any n. Further still, only one of the diagonal

elements will be non-zero for all n ∈ Z. The joint-CF then reduces to the product

of its marginal CFs which proves independence of components.
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Bivariate Tail Statistics

A question pertaining to the structure of the bivariate PDF of non-Gaussian z[n]

arises, which unlike the Gaussian case (isotropic), varies for different ratios of

fc/fs. An intuitive look into the expression in (4.7) reveals that the joint-PDF

of w+[n] is degenerate and lies along an angle of 2π fc
fs
n from the positive real

axis. The filtering operation in (4.9) essentially scales and sums the independent

vectors w+[n], which results in a 2-dimensional convolution of these rotated

degenerate PDFs. Due to the heavy tail phenomenon accompanying stable

random variables, one would expect the resultant bivariate PDF of w̃[n] to have

tails along angles that are multiples of 2πfc/fs from the positive real axis. If the

ratio fc/fs to be rational, the number of tails will be finite and will be uniformly

distributed around the origin, hence resulting in non-isotropic distributions. The

angle between the tails is given as

ψz =

⎧⎪⎪⎨
⎪⎪⎩

2π gcd(fc,fs)
fs

if fs is an even multiple of fc

π gcd(fc,fs)
fs

otherwise.

(4.41)

The total number of tails is noted to be equal to 2π/ψz.

Fig. 4.4 presents the bivariate density functions for the Cauchy case (α = 1).

The different system parameters used to obtain these plots are summarized in

Table 4.1. For all cases, the order of the FIR filter was 800. The PDFs were

evaluated by taking the inverse Fourier transform of (4.16). For Fig. 4.4b the

real and imaginary components are independent following Corollary 3. For all

other two cases, the real and imaginary parts are dependent. In Fig. 4.4d, the
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 4.4: Bivariate PDFs of complex baseband SαS noise are presented for the
Cauchy case (α = 1) under the assumption that the passband noise is AWSαSN.
The parameters that generate each of these plots are summarized in Table 4.1.

baseband noise is near-isotropic. From the trends in Fig. 4.4, as 2π/ψz → ∞,

it would be reasonable to expect the PDF of z[n] to converge to an isotropic

distribution. In wireless communications, passband-to-baseband conversion is

performed in the continuous time domain, i.e., with fs → ∞ [1]. In Chapter 5

we prove that for fs → ∞ and finite fc the resultant PDF of z[n] is indeed

isotropic.

Identical Components

On a final note, the marginal distributions of z[n], although are time-invariant,

are also not exactly identical. From Fig. 4.4, we observe that they are only
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Table 4.1: Parameter settings for generating the density functions

in Fig. 4.4.

Case fc fs gcd(fc, fs)/fs B

1. 4 12 1/3 1

2. 4 16 1/4 1

3. 4 20 1/5 1

4. 4 21 1/21 1

identical if there exists a tail along the imaginary axis as in Fig. 4.4b or if the

number of tails is large, i.e., ψz is small. One way to get around this is by

modifying the definition of a baseband signal in (4.2) to

s[n] = �
{
s̃[n] exp

(
j(2π

fc
fs
n− π

4
)

)}
. (4.42)

This ensures that the tails of the bivariate distribution are uniformly distributed

about both the real and imaginary axis.

4.3 Bounds on the Baseband Scale Parameter

An important relationship is that of the baseband scale parameter with the

noise impulsiveness and system parameters. As the marginal distributions are

not exactly identical we restrict our analysis to (4.23). We adopt a limiting

approach that is also applicable to (4.24). As per the discussion in the previous

section, W̃ [n] (and therefore Z[n]) are IID complex samples ∀ n ∈ Z. From

(4.23), we have

δαZR
= (2δw)

α

(
L−1∑
k=0

∣∣∣∣v[k] cos
(
2π
fc
fs

(n− k)

)∣∣∣∣α
)
, (4.43)
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where δZR
is the scale parameter of ZR[n]. We note that δZR

changes linearly

with δw. We comment on (4.43) for two special cases:

1. The Gaussian Case: We have discussed the baseband Gaussian CF in

detail in Section 4.2.2. From the results in (4.26) and (4.28), (4.43) reduces

to

δ2ZR
= (2δw)

2 B

fs
=
BN0

2
(4.44)

for α = 2. Thus, δW̃R
∝√

B/fs or N0/2.

2. Extremely Impulsive Noise: As α → 0, the passband noise becomes

increasingly impulsive. In the limit, (4.43) converges to

δαZR
→ L (4.45)

for α = 0. From (4.45), we note that δZR
∝ L1/α. The order of the FIR

filter thus plays an important role in evaluating δZR
as α→ 0.

We will now analyze δαZR
for the general SαS case. Eq. (4.43) may be written

as

δαZR
= (2δw)

α (a[n] ∗ b[n]) , (4.46)
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where

a[n] = |v[n]|α and (4.47)

b[n] =

∣∣∣∣cos
(
2π
fc
fs
n

)∣∣∣∣α (4.48)

As (4.43) is time invariant, (4.46) simplifies to:

δαZR
= (2δw)

α (ADBD) , (4.49)

where AD and BD are the dc terms of a[n] and b[n], respectively. Noting that

b[n] is periodic, we have from the Fourier transform

BD =
1

N

N−1∑
n=0

b[n], (4.50)

where N = fs/gcd(2fc, fs) is the period of b[n] and signifies the number of tails

in distribution of Z[n]. This can be seen by comparing N to ψz in (4.41). As

N → ∞, BD converges to

BD =
fs
N

N−1∑
n=0

b[n]/fs =
fs
N

N−1∑
n=0

b (n/fs) /fs

→ fs
N

∫ N
fs

0
b(t) dt. (4.51)
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Figure 4.5: BD against α for different values of N .

Using the inherent structure of b(t), (4.51) simplifies to

BD = 4fc

∫ 1
4fc

0
b(t) dt

=
Γ
(
1+α
2

)
√
πΓ

(
1 + α

2

) . (4.52)

Although (4.52) is evaluated for the limit N → ∞, it offers a good approximation

for a large range of N . In Fig. 4.5, we highlight this by plotting (4.52) and

(4.50) against α for increasing values of N . In the limit, BD depends only on the

impulsiveness, which is quantified by α, and not on any of the system parameters

B, fc, fs and L− 1.

We note that (4.52) also extends to its counterpart in (4.24), i.e, if

b[n] =

∣∣∣∣sin
(
2π
fc
fs
n

)∣∣∣∣α , (4.53)
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then (4.52) is true as N → ∞. This implies that δZR
= δZI

for large N and

therefore the marginal CFs of Z[n] are identical.

We will now focus on evaluating an analytical expression for AD. From

Fourier transform properties:

AD =

L−1∑
k=0

a[k]. (4.54)

Using the same sequence of steps in (4.51) and noting that a(t) is symmetric

about t = L−1
2fs

,

AD → fs

∫ L
fs

0
a(t) dt = 2fs

∫ 2(L−1)+1
2fs

L−1
2fs

a(t) dt

= 2fs

∫ L
2fs

0
a

(
t+

L− 1

2fs

)
dt. (4.55)

As fs >> B, (4.55) is a good approximation for AD. Evaluating (4.55) is still

not trivial. We accomplish this by introducing a tight upper-bound ã(t) for

a
(
t+ L−1

2fs

)
,

ã(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∣Bfs ∣∣∣α 0 ≤ t < 1
2B∣∣∣ 1

πfst

∣∣∣α 1
2B ≤ t < L

2fs

0 otherwise.

(4.56)

In Fig. 4.6, we compare both a(t + (L − 1)/(2fs)) and ã(t) for α = 1. We

observe that ã(t) correctly highlights the decay in a(t+(L−1)/(2fs)) as t→ L/fs.

The bound becomes tighter as α → 0. On substituting a(t + (L − 1)/(2fs)) by
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Figure 4.6: a
(
t+ L−1

2fs

)
and ã(t) against time for α = 1.

ã(t) in (4.55) and solving, we get the following upper bound on AD:

ÃD =

(
B

fs

)α−1(
1 +

2α

πα(α− 1)

)
−
(
1

L

)α−1( 2α

(α− 1)πα

)
. (4.57)

To ensure adequate low-pass filtering in the passband-to-baseband conversion

process, L− 1 has to be large enough. In practice, there is a limit to how large

L− 1 can be as it adds to the complexity of the system. We may factor L into

L =
2fs
B
L̃, (4.58)

where L̃ is a measure of the number of lobes of the sinc function in v[n]. For

L̃ = 1, v[n] consists of only the main lobe. For L̃ = 2, the main lobe and its

two adjacent side lobes (one on either side) constitute v[n]. Usually L̃ > 1 to

ensure good low-pass filtering. In Fig. 4.7, we plot the error between ÃD and

AD against α for various values of L̃ with B/fs = 0.05. The error curve is
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Figure 4.7: Error (dB) between AD and ÃD against α.

almost the same for any fs >> B. Also, increasing L̃ further hardly results in

any difference. This shows that (4.57) tracks the transitions in AD consistently

for all possible combinations of the system parameters.

The bound in (4.57) is a fruitful result. For any given α, ÃD is a function of

1/Lα−1 and (B/fs)
α−1. As (4.57) is a tight bound, the trends observed in ÃD

against the system parameters can be extended AD. We analyze these trends

for three different cases:

1. Gaussian-Like: If L − 1 is large enough to guarantee adequate low-pass

filtering, increasing L− 1 any further will not affect AD significantly. For

this case, B/fs plays a larger role in determining δZR
. From (4.44), it is

known that L − 1 plays no part in the evaluation of the baseband noise

spread for the Gaussian case. We may substitute (4.58) in (4.57) to get

AD < cα,L̃

(
B

fs

)α−1

, (4.59)
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where

cα,L̃ = 1 +
2α

(α− 1)πα

(
1− 1

(2L̃)α−1

)
.

For α within the vicinity of 2, cα,L̃ is hardly affected by increasing L̃ or α

and is almost constant.

2. Cauchy-Like: For the special case of α = 1, (4.57) is

AD < 1 +
2 log(Bfs ) + 2 logL

π
. (4.60)

It is observed that ÃD increases logarithmically with B/fs and L−1. Using

(4.58), we may simplify this further to

AD < 1 +
2 log(2) + 2 log(L̃)

π
. (4.61)

Thus ÃD may be expressed solely as a function of L̃.

3. Very Impulsive Noise: As α→ 0, the order L− 1 plays a more significant

role than B/fs in evaluating δZR
. This can be seen from (4.45). Further

still, as α→ 0, (4.57) converges to (4.54). We may rewrite (4.57) as

AD < dα,L̃L
1−α, (4.62)
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where

dα,L̃ =
1

(2L̃)1−α
+

2α

(1− α)πα

(
1− 1

(2L̃)1−α

)
. (4.63)

As α→ 0, dα,L̃ depends less on L̃ and α and is almost constant.

On plugging (4.57) and (4.52) in (4.49) we see a direct relationship between

δZR
, δw, B/fs and L− 1. As δαZR

∝ AD, the results in (4.59), (4.61) and (4.62)

for AD are easily extended to δαZR
.

Practical impulsive noise is usually approximated well by AWSαSN for α

in the range of 1.5 and 1.9 [82]. In this range, B/fs plays a pivotal role in

determining δZR
, as depicted by (4.59). In the literature, various SNR measures

have been introduced to analyze error performance of digital communication

systems [58]. These measures are inversely proportional to δ2ZR
. Thus for

practical impulsive noise,

SNRmeasure ∝
(
fs
B

) 2(α−1)
α

=

(
fs
B

)(
fs
B

)α−2
α

. (4.64)

In comparison to the traditional Gaussian SNR, which varies proportionally with

fs
B , we see that there is an additional term. As fs > B, this term incurs an SNR

loss on the order of

SNRloss = 10

(
2

α
− 1

)
log10

(
fs
B

)
(4.65)

on the decibel scale. For a given fs
B , the loss in SNR varies linearly with

(
2
α − 1

)
.

Therefore, the ratio fs
B should be taken under account in receiver design. This
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is covered in more detail in the next chapter. Similarly, if the noise is more

impulsive, we may use (4.60) or (4.62) to see how the SNR varies in impulsive

noise scenarios.

4.4 Summary

In this chapter we have analyzed complex baseband noise derived from passband

AWSαSN. All baseband noise samples are proven to be IID and any given

noise sample is shown to be SαS. The characteristics of the resulting noise are

dissimilar to those obtained in the Gaussian case. It has been shown that the

real and imaginary components of each sample are generally dependent and

the distribution of each sample may be non-isotropic. The baseband noise

samples are identically SαS and have star-like distributions. The distribution

is completely determined by the system parameters. Varying these parameters

allows constructing multi-tailed bivariate PDF structures with the tails always

being uniformly distributed around the origin. The scale parameter of the

baseband noise distribution has been analyzed and bounds have been proposed

that show it to be a function of the system parameters and noise impulsiveness.
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Chapter 5

Receiver Design for Single-Carrier Systems

In a single-carrier scheme, a symbol is selected from an M-point constellation

lying in the complex plane. The in-phase and quadrature (I & Q) components

are the real and imaginary parts of the symbol, respectively. These are then

upsampled, pulse-shaped, converted to passband and transmitted. At the

receiver, the exact opposite is performed to estimate the transmitted symbol

which now also has the added element of complex noise. Conventionally, the

receiver is optimized for AWGN. This results in the linear system discussed in

Section 4.2 [1]. The passband-to-baseband conversion process is also performed

in the continuous-time domain. If pure AWSαSN is passed through this receiver,

the resulting baseband noise samples are complex SαS circular symmetric (or

isotropic) random variables. In Section 4.2, we presented a CF approach to

characterize the joint-distribution of a baseband noise sample. The isotropic

configuration was intuitively explained as a limiting argument of the number of

tails in the resulting bivariate PDF. We discuss this with more mathematical

detail in Section 5.2.1.

In the previous chapter we investigated the statistics of complex baseband

noise derived from passband non-Gaussian AWSαSN and found the resulting

distribution to be radically different from its Gaussian counterpart due to
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the introduction of uniform passband sampling. By varying certain physical

parameters we may attain different non-isotropic distributions. A question of

choosing the best statistical configuration that minimizes the error performance

arises. Amongst these PDFs, the one with independent components is of special

interest as it can be exploited to attain the best possible ML error performance

if the I and Q channels are processed separately. We show this in Section 5.2.2.

By introducing efficient constellations, suitable baseband detectors and passband

sampling, the uncoded error performance of the conventional (linear) receiver can

be enhanced given the I and Q components of the transmitted signal are decoded

separately.

We further show that there is non-negligible SNR degradation if the

passband-to-baseband process is linear. The performance may be improved

by sacrificing the linearity of the system. Various non-linear estimation and

joint-detection schemes are discussed and their error performance analyzed. It

is shown that if the receiver bandwidth is large enough, impulsive noise may be

effectively countered.

It is pertinent to mention, that in some practical scenarios, implementing

passband sampling may not be feasible. For example, in wireless communications

the signal is transmitted via RF waves operating at high-frequencies

(hundreds/thousands of MHz) [1]. Due to the limitation of current technologies,

sampling at the Nyquist rate will result in costly hardware implementation.

However, in underwater communications, signal transmission is performed via

acoustic waves [13]. Typical ranges for carrier frequencies run into tens of

kHz, a significant difference from those adopted in wireless communications [82].
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Sampling the passband signal is therefore practically feasible and is employed in

some underwater modems [82].

The work presented in this chapter has been published in [79], [80], [83]. We

now introduce notation and concepts specific to single-carrier communication

that will allow us to construct good receivers in AWSαSN.

5.1 Transmission & Reception via Orthonormal Signaling

Assuming memoryless modulation, the passband transmit-receive equation is

given by

r(t) = si(t) + w(t) (5.1)

where si(t) ∀ i ∈ {0, 1, . . . ,M − 1} is the transmitted passband signal

corresponding to the ith symbol in the constellation of size M , w(t) is a

continuous-time AWSαSN process and r(t) is the corresponding received signal.

We denote the PDF of any passband noise sample by fW (·) whereW ∼ S(α, δw).

In an M -QAM signaling scheme, si(t) is written as

si(t) = �
{√

2Exi

Eg g(t)ejφiej2πfct

}

=

√
2Exi

Eg g(t) cos(2πfct+ φi) (5.2)

where 0 ≤ t < T , g(t) is a real baseband pulse-shaping signal of duration T

and fc is the carrier frequency [1]. The symbol rate is 1/T and fc = ξ/T for

some ξ ∈ Z
+, i.e., the carrier frequency is a multiple of the baseband symbol

rate. In the spectral domain, g(t) is band limited to [− β
2T ,

β
2T ], where β ≥ 1 is
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a measure of the excess bandwidth relative to 1/T . Though no signal can be

time-limited and band-limited simultaneously, practically only the significant

part of the spectrum is considered. Therefore, β is assumed a finite value.

To avoid distortion in the passband signal, fc >
β
2T and therefore ξ > β/2.

Typically, fc is set to be at least a few multiples greater than β
2T . The energies

of si(t) and g(t) over t ∈ [0, T ) are denoted by Exi and Eg, respectively. The

baseband symbol
√Exie

jφi is represented by the constellation point (xIi , xQi) =

(
√Exi cos(φi),

√Exi sin(φi)) in the complex plane.

Conventionally, orthonormal signaling is used to represent the passband

modulated signal [1]. This is highlighted below:

si(t) =
√Exi cos(φi)�I(t) +

√Exi sin(φi)�Q(t)

= xIi�I(t) + xQi�Q(t). (5.3)

On comparison with (5.2),

�I(t) =

√
2

Eg g(t) cos(2πfct) and (5.4)

�Q(t) = −
√

2

Eg g(t) sin(2πfct). (5.5)

We observe that �I(t) and �Q(t) is an orthonormal basis over t ∈ [0, T ), i.e.,

∫ T

0
�2I(t) =

∫ T

0
�2Q(t) = 1,

∫ T

0
�I(t)�Q(t) = 0. (5.6)

As �I(t) and �Q(t) are periodic over t ∈ [kT, (k + 1)T ) ∀ k ∈ Z and w(t) is
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stationary, the transmit-receive equation in (5.1) can be mapped onto the interval

[0, T ) for any t ∈ R. Thus we restrict our analysis to this interval.

The elegance of the representation in (5.3) is that one determines the I and Q

components of the transmitted symbol by mere inspection. At the receiver, one

may retrieve xIi and xQi by multiplying (5.3) with �I(t) and �Q(t), respectively,

and integrating over t ∈ [0, T ) [1]. If the same process is applied to the corrupted

signal in (5.1), the resultant output can be expressed in the following form:

y = xi + z (5.7)

where

y =

⎡
⎢⎢⎣yI
yQ

⎤
⎥⎥⎦ , xi =

⎡
⎢⎢⎣xIi
xQi

⎤
⎥⎥⎦ and z =

⎡
⎢⎢⎣zI
zQ

⎤
⎥⎥⎦ .

Thus the continuous signal form in (5.1) is converted to the vector form in (5.7)

which is termed as the baseband transmit-receive equation. This is then followed

by baseband detection to estimate the transmitted symbol. Given equiprobable

symbols and (5.7), ML detection is optimal in reducing the error probability at

the receiver. Mathematically, this is given by

x̂ = arg max
xl∈M

fz(y − xl) (5.8)

where fz(·) is the bivariate PDF of z and M is the set of all symbols in the

constellation.
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Figure 5.1: Conventional continuous-time correlator-based receiver
implementation.

In Fig. 5.1 we present the receiver block structure based on the orthonormal

signaling concepts discussed above. We term this as the conventional receiver

and note it to be a linear system. The scheme is optimal in the ML-sense if

w(t) is an AWGN process [1]. In this case, z is an isotropic Gaussian random

vector. The components of z are IID N (0, N0/2) where N0/2 is the two-sided

PSD of the AWGN channel. In non-Gaussian AWSαSN, z is also an isotropic

SαS vector. This is shown in Section 5.2.1.

An isotropic SαS PDF fz(x) has favorable geometric properties.

Mathematically, fz(x) is a function of ‖x‖, the Euclidean norm of x [9]. This

implies that its equiprobable density contours are in the form of concentric circles

around the origin. Further still, the marginal PDFs are identical [9]. In the

Gaussian case, an isotropic distribution is only possible if z has independent

components [1]. However, for α �= 2, z has dependent components [8], [9].

The conventional receiver performs poorly in non-Gaussian AWSαSN as it is
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a linear system and does not exploit the dependency between the I and Q

components [9], [79]. It is therefore imperative that the receiver be designed

more robust to impulsive noise.

In this chapter, we study robust single-carrier receivers that fall into two

broad categories:

1. Soft-Estimates & Baseband Detection: Soft-estimates of the transmitted

symbol are generated via a linear or non-linear operation on the passband

samples. This is the passband-to-baseband conversion process. The result

is then given to a detector which maps the estimate onto a constellation

point. The conventional receiver falls under this category.

2. Joint-Detection: Instead of initially converting to baseband, one can

directly map the passband samples onto a constellation point.

We designate a section to either category.

5.2 Soft-Estimates & Baseband Detection

5.2.1 Conventional Passband-to-Baseband Conversion

If the schematic in Fig. 5.1 is employed in passband AWSαSN, then z is a

bivariate isotropic SαS vector. These properties are proven below:

Proposition 4: If w(t) is a continuous-time real AWSαSN process and the

conventional receiver is employed, then z is isotropic in the limit fc → ∞.
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Proof: We can express z as

zI + jzQ =

∫ T

0
w(t)(�I(t) + j�Q(t))dt (5.9)

=

√
2

Eg

∫ T

0
w(t)g(t)ej2πfctdt. (5.10)

The integral in (5.10) may be divided into a sum of ξ integrals over adjacent

intervals:

√
2

Eg
ξ−1∑
λ=0

(λ+1)T/ξ∫
λT/ξ

w(t)g(t)ej2πfctdt (5.11)

We note that exp(j2πfct) is periodic in t with period T/ξ, thus we may express

(5.11) as

√
2

Eg
ξ−1∑
λ=0

(λ+1)T/ξ∫
λT/ξ

w(t)g(t)ej2πfc(t−λT/ξ)dt (5.12)

Applying a change of variable from t− λT/ξ to t results in

√
2

Eg
ξ−1∑
λ=0

∫ T/ξ

0
w

(
t+

λT

ξ

)
g

(
t+

λT

ξ

)
ej2πfctdt (5.13)

The integration and summation operations may be interchanged to get

√
2

Eg

∫ T/ξ

0

ξ−1∑
λ=0

w

(
t+

λT

ξ

)
g

(
t+

λT

ξ

)
ej2πfctdt (5.14)
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From (3.2) and (3.7), we note that

ξ−1∑
λ=0

w

(
t+

λT

ξ

)
g

(
t+

λT

ξ

)
d
= w(t)c(t;α, ξ, g(t)) (5.15)

where

c(t;α, ξ, g(t)) =

(
ξ−1∑
λ=0

∣∣∣∣g
(
t+

λT

ξ

)∣∣∣∣α
)1/α

(5.16)

We observe that (5.16) corresponds to sampling |g(t)|α at a rate of fc = ξ/T .

Therefore, the summation term in (5.16) is the sum of ξ samples of g(t) which

are uniformly spread over the interval t ∈ [0, T ). Consequently, as ξ → ∞, we

may express (5.16) as

c(t;α, ξ, g(t)) = c(α, ξ, g(t)) =

(
ξ

T

∫ T

0
|g(t)|α dt

)1/α

. (5.17)

Finally, from (5.15) and (5.17), we may express (5.14) as

zI + jzQ
d
=

√
2

Eg c(α, ξ, g(t))
∫ T/ξ

0
w(t)ej2πfctdt. (5.18)

Now for z to be isotropic,

zI + jzQ
d
=

√
2

Eg c(α, ξ, g(t))
∫ T/ξ

0
w(t)ej(2πfct+φ)dt (5.19)

for all φ ∈ R. We note that the phasors exp(j2πfct) in (5.18) and exp(j2πfct+

jφ) in (5.19) complete a full rotation in the complex plane over t ∈ [0, T/ξ)

for any φ. This, coupled with stationary w(t) proves that (5.18) and (5.19) are
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statistically equivalent, thus z is isotropic. �

Note that the formulation in (5.10)-(5.19) may be applied to any IID

noise process (albeit with some modifications), irrespective of its samples being

symmetric or asymmetric. Due to the transition in (5.16)-(5.17), proposition 4

is valid for ξ → ∞ (the narrowband case as fc � 1
T ). However, this condition

can be somewhat relaxed for any band-limited g(t). For example, if g(t) is a

rectangular pulse then (5.16) and (5.17) are both equal to ξ1/α for all ξ. For

general g(t), fc needs to be greater than the Nyquist rate of |g(t)|α for (5.17) to

be equivalent to (5.16). Two cases are highlighted below:

• For α = 2, The Fourier transform of g2(t) can be expressed as the

convolution of the spectra of g(t) with itself. Consequently, g2(t) lies within

[−β/T, β/T ] as its bandwidth is roughly twice that of g(t). When sampled

at fc, the Nyquist criterion is satisfied for ξ > 2β.

• As α → 0, |g(t)|α tends to the unit-amplitude rectangular pulse and

therefore (5.17) is exact for any ξ ∈ Z
+.

For other values of α ∈ (0, 2], ξ need only be a few multiples greater than β for

z to be sufficiently isotropic. Increasing ξ would cause negligible change in the

distribution of z.

Proposition 5: If w(t) is a continuous-time real AWSαSN process, then z is

a SαS vector in the conventional receiver.
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Proof: We may write (5.9) in vector form:

z =

⎡
⎢⎢⎣
∫ T
0 w(t)�I(t)dt∫ T
0 w(t)�Q(t)dt

⎤
⎥⎥⎦ . (5.20)

Let z(i) ∀ i ∈ {1, 2, . . . ,K} be IID copies of z, then from (3.7) we have

K∑
i=1

aiz
(i) =

K∑
i=1

ai

⎡
⎢⎢⎣
∫ T
0 w(i)(t)�I(t)dt∫ T
0 w(i)(t)�Q(t)dt

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
∫ T
0

(∑K
i=1 aiw

(i)(t)
)
�I(t)dt∫ T

0

(∑K
i=1 aiw

(i)(t)
)
�Q(t)dt

⎤
⎥⎥⎦ (5.21)

where w(i)(t) ∀ i ∈ {1, 2, . . . ,K} are IID copies of w(t). On invoking (3.6), we

get

K∑
i=1

aiz
(i) d

=

⎡
⎢⎢⎣
∫ T
0 cw(t)�I(t)dt∫ T
0 cw(t)�Q(t)dt

⎤
⎥⎥⎦ = cz (5.22)

where c may be evaluated from (3.7):

c =

(
K∑
i=1

|ai|α
)1/α

(5.23)

Therefore, we conclude that z is SαS with characteristic exponent α. �

Due to the linearity of the conventional receiver, the characteristic exponent

of z is equivalent to that of the passband noise samples. From the discussion in

Section 3.2.2, the components of isotropic z for α �= 2 are identically distributed
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but dependent. In Appendix A.1 we evaluate the scale parameters of zI and

zQ as a function of the bandwidth. The conventional receiver does not exploit

the dependency between the components of z. As shown in the next Section,

this severely inhibits error performance of the system. This situation can be

avoided entirely by introducing passband sampling (under some constraints) at

the receiver.

5.2.2 Where Conventional Conversion Fails

We have discussed the baseband noise statistics of the discretized receiver in

Chapter 4. The noise statistics vary with respect to the system parameters.

From an information theoretic perspective, we now explain why the conventional

receiver does not perform well and which baseband noise configuration can be

exploited to give us the best error performance:

We assume that the transmitted information is fully preserved in the

conversion from r(t) to y. By Nyquist’s theorem, s(t) may be sampled at

any fs > 2fc + β/T ⇒ Tfs > 2ξ + β to avoid aliasing and hence loss of

information. If this axiom is satisfied, then irrespective of whatever Tfs may

be, xi can be fully recovered from si(n/fs) ∀ n ∈ {0, 1, . . . , Tfs� − 1}. If the

accompanying noise samples w(n/fs) ∀ n ∈ {0, 1, . . . , Tfs� − 1} are passed

through the estimator, the information within z remains the same for any given

Tfs. In other words, only the noise component that affects the transmitted

symbol is retained. However, this information may vary for different non-lossy

estimation schemes. Mathematically, the retained noise information is quantified

by the joint-entropy H(zI , zQ) of the components of z. This may be expressed
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as

H(zI , zQ) = H(zI) +H(zQ)− I(zI ; zQ) (5.24)

where H(zI) and H(zQ) are the self-entropies of zI and zQ, respectively, and

I(zI ; zQ) is the information shared between them [84]. For any given unbiased

estimator and Tfs, H(zI , zQ) will be constant. In the presence of non-zero

I(zI ; zQ), the self-entropies increase correspondingly to maintain equality in

(5.24). Therefore, receivers that process the I and Q channels separately (like

the one in Fig. 5.1) perform better when I(zI ; zQ) = 0 as H(zI) and H(zQ) will

be at their respective minimums. For fs = 4fc, the Nyquist criteria is fulfilled

if ξ > β/2. Further still, it is only in this case that zI and zQ are independent

for any IID noise process w(t) (see corollary 3, Section 4.2.3). This guarantees

H(zI) and H(zQ) to be at their respective minimums.

From (3.24), if z is an SαS vector with IID components, its PDF may be

split as

fz(x) = fZ(x1)fZ(x2). (5.25)

where zI
d
= zQ

d
= Z. In Section 4.2, an intuitive discussion pertaining to the

identicalness of zI and zQ for general fc and fs was presented. We show that zI

and zQ are in fact identical for fs = 4fc in Section 5.2.3. The PDF corresponding

to (5.25) will have four ‘tails’ in the non-Gaussian case. These tails are positioned

along both the positive and negative directions of each axis in the complex plane.
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An instance of this is shown for the standard Cauchy case in Fig. 4.4b.

5.2.3 Linear Baseband Conversion with Passband Sampling

As discussed, if the I and Q channels are processed separately, the case of z

with independent components offers the best error performance over all possible

statistical structures. We therefore focus on this particular scenario. We

modify our initial definition slightly to use the square bracket notation to denote

discrete-time signals sampled at fs = 4fc. In the remainder of this chapter, we

assume fs = 4fc unless explicitly stated otherwise. For fs = 4fc, (5.3) reduces

to

si[n] = xIi�I [n] + xQi�Q[n] (5.26)

where

�I [n] =

√
2

Eg g[n] cos(πn/2) and (5.27)

�Q[n] = −
√

2

Eg g[n] sin(πn/2). (5.28)

We note that only one of the functions in (5.27) and (5.28) is non-zero at any

given n ∈ Z. This implies that any sample of si[n] consists of either the I

or Q component, never a combination of both. We can split (5.26) into a

superimposition of two distinct sequences:

si[n] =

⎧⎪⎪⎨
⎪⎪⎩

xIi�I [n] ∀ n ∈ {0, 2, . . . , 4ξ − 2}

xQi�Q[n] ∀ n ∈ {1, 3, . . . , 4ξ − 1}
(5.29)
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By substituting variables in (5.29), we can separate the I and Q components

completely:

si[2n] = xIi�I [2n] and

si[2n+ 1] = xQi�Q[2n+ 1]

(5.30)

∀ n ∈ {0, 1, . . . , 2ξ − 1}. From (5.1), the sampled received signal is

r[n] = si[n] + w[n] (5.31)

∀ n ∈ {0, 1, . . . , 4ξ − 1}. Following (5.29) and (5.30), the transmit-receive

equation can be expressed as two parallel channels:

rI [n] = r[2n] = si[2n] + zI [n] (5.32)

rQ[n] = r[2n+ 1] = si[2n+ 1] + zQ[n] (5.33)

where

zI [n] = w[2n] and

zQ[n] = w[2n+ 1]

(5.34)

∀ n ∈ {0, 1, . . . , 2ξ − 1}. The expression in (5.34) can be thought of

two independent (yet similar) AWSαSN processes. As the noise samples

contaminating si[2n] and si[2n + 1] are mutually independent, sampling at

fs = 4fc and separately processing (5.32) and (5.33) is sufficient to ensure

that z will have independent components. This corroborates with corollary 3 in
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Section 4.2.3. Further still, the arguments in this section may be extended to

any noise process w(t) that has IID samples.

Mathematically, the integrals in (5.6) reduce to the following sums:

4ξ−1∑
n=0

�2I [n] =

4ξ−1∑
n=0

�2Q[n] = fs (5.35)

4ξ−1∑
n=0

�I [n]�Q[n] = 0 (5.36)

Eq. (5.36) is straightforward, we however prove (5.35) below.

4ξ−1∑
n=0

�2I [n] =
2

Eg
4ξ−1∑
n=0

g2[n] cos2(πn/2)

=
2

Eg
4ξ−1∑
n=0

g2[n]

2
(1 + cos(πn))

=
2

Eg
4ξ−1∑
n=0

g2[n]

2
. (5.37)

As discussed in Section 5.2.1, the Nyquist criteria for g2(t) is met if it is sampled

at a rate greater than 2β/T . Therefore, if fs > 2β/T ⇒ ξ > β/2, we may

express Eg as

Eg =
1

fs

4ξ−1∑
n=0

g2[n]. (5.38)

Substituting this back into (5.37) gives us

4ξ−1∑
n=0

�2I [n] =
2

Eg × Egfs
2

= fs. (5.39)

Like its continuous counterpart, the goal of the linear discrete receiver is
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Figure 5.2: Linear receiver schematic with fs = 4fc.

to re-acquire the I and Q components of the transmitted symbol. This is

accomplished by initially estimating y from r[n]. The properties of �I [n] and

�Q[n] in (5.35) and (5.36) may be exploited to achieve this. We present the

receiver structure in Fig. 5.2 and term this as the discretized linear receiver.

Following (5.34), z will have independent components if the passband noise

is AWSαSN. These are expressed as

zI =
1

fs

4ξ−1∑
n=0

w[n]�I [n], zQ =
1

fs

4ξ−1∑
n=0

w[n]�Q[n]. (5.40)

From (3.2), zI and zQ are each SαS random variables with characteristic

exponent α. This in turn implies that z is an SαS vector. Denoting the scale

parameters of zI and zQ by δzI and δzQ , respectively, from (3.2) and (3.7) we

can express zI as

zI
d
=

1

fs

(
4ξ−1∑
n=0

|�I [n]|α
)1/α

w[n].
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Therefore, we can express δzI as

δzI =
δw
fs

(
4ξ−1∑
n=0

|�I [n]|α
)1/α

. (5.41)

On substituting �I [n] with (5.27), we get

δzI =
δw
fs

√
2

Eg

(
2ξ−1∑
n=0

|g[2n]|α
)1/α

≈ δw
fs

√
2

2
fs

∑2ξ−1
n=0 g

2[2n]

(
2ξ−1∑
n=0

|g[2n]|α
)1/α

(5.42)

=
δw√
fs

(∑2ξ−1
n=0 |g[2n]|α

)1/α
(∑2ξ−1

n=0 g
2[2n]

)1/2 . (5.43)

We observe that g[2n] results from sampling g(t) at a rate of fs/2. The

approximation for Eg in (5.42) is valid as long as fs/2 > 2β/T ⇒ ξ > β. The

form in (5.43) is intuitive as it depicts δzI varying proportionally with δw/
√
fs

for all ξ > β. Do note that fs is the available receiver bandwidth. Similarly, δzQ

may also be evaluated from (5.28) and (5.40):

δzQ =
δw√
fs

(∑2ξ−1
n=0 |g[2n+ 1]|α

)1/α
(∑2ξ−1

n=0 g
2[2n+ 1]

)1/2 . (5.44)

Given that the Nyquist criterion is also satisfied for |g(t)|α with sampling rate

fs/2, we note that (5.43) and (5.44) are equivalent. Therefore, z has IID

components and a PDF of the form in (5.25) with Z ∼ S(α, δz).

Specifically for the Gaussian case, δz = δw/
√
fs. Therefore, zI and zQ are

each N (0, 2δ2w/fs). The variance or power of a band-limited AWGN channel
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can be written as a product of its PSD (N0/2) and bandwidth (fs). In our case

2δ2w = N0fs/2, which implies that zI
d
= zQ ∼ N (0, N0/2). Thus, z is statistically

equivalent to its counterpart in the conventional receiver in Fig. 5.1. Intuitively,

this is of no surprise as the transmitted information is kept intact in the sampling

process and the operations in both receivers are identical. In fact, if w[n] are

IID Gaussian, the ML soft estimates of xIi and xQi in (5.31) are determined by

the linear correlator [1]:

yI =

∑4ξ−1
n=0 r[n]�I [n]∑4ξ−1

n=0 �
2
I [n]

=

∑4ξ−1
n=0 r[n]�I [n]

fs
(5.45)

yQ =

∑4ξ−1
n=0 r[n]�Q[n]∑4ξ−1

n=0 �
2
Q[n]

=

∑4ξ−1
n=0 r[n]�Q[n]

fs
(5.46)

On comparing Fig. 5.2 and the expressions above, we note that the

implementation is indeed ML-based.

5.2.4 Non-Linear Baseband Conversion

As w(n/fs) ∀ n ∈ {0, 1, . . . , Tfs�− 1} are IID, we note that y can be evaluated

from the minimization

y = arg min
μ

�Tfs�−1∑
n=0

− log ρ

(
r

(
n

fs

)
− μI�I

(
n

fs

)
− μQ�Q

(
n

fs

))
(5.47)

where μ = [μI , μQ]
T ∈ R

2, ρ(x) ∈ R
+ ∀ x ∈ R and fs > 2fc + β/T .

The expression in (5.47) stems from robust generalized ML estimation (or

M-estimator) theory [65]. If ρ(·) = fW (·), then y is the ML estimate of μ. In the

context of digital communications, y is the soft-ML estimate of xi. Substituting

ρ(·) with the Gaussian PDF corresponding to S(2, δw) in (5.47), results in two
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single-variable minimizations:

yI = arg min
μI

�Tfs�−1∑
n=0

μ2I
fs

− 2μI�I

(
n

fs

)
r

(
n

fs

)

yQ = arg min
μQ

�Tfs�−1∑
n=0

μ2Q
fs

− 2μQ�Q

(
n

fs

)
r

(
n

fs

)

Therefore, the ML estimator of μ separately processes the I and Q channels

for all fs in the Gaussian case and its form is similar to (5.45) and (5.46).

However, (5.47) cannot be split into separate minimizations of μI and μQ if w(t)

is non-Gaussian AWSαSN.

Proposition 6: For fs = 4fc, the bivariate minimization in (5.47) is equivalent

to individually evaluating

yI = arg min
μI

2ξ−1∑
n=0

− log ρ(rI [n]− μI�I [2n]) and (5.48)

yQ = arg min
μQ

2ξ−1∑
n=0

− log ρ(rQ[n]− μQ�Q[2n+ 1]) (5.49)

for all ρ(x).

Proof: For fs = 4fc, (5.47) becomes

y = arg min
μ

4ξ−1∑
n=0

− log ρ (r[n]− μI�I [n]− μQ�Q[n]) (5.50)

From the discussion in Section 5.2.3, we know that �I [n] is non-zero for n ∈

{0, 2, . . . , 4ξ − 2} and �Q[n] for n ∈ {1, 3, . . . , 4ξ − 1}. Therefore, (5.50) may be
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Figure 5.3: General receiver schematic with fs = 4fc.

rewritten as

y = arg min
μ

(
2ξ−1∑
n=0

− log ρ (r[2n]− μI�I [2n])

+

2ξ−1∑
n=0

− log ρ (r[2n+ 1]− μQ�Q[2n+ 1])

)
. (5.51)

We observe that evaluating (5.51) is equivalent to individually minimizing over

μI and μQ to get yI and yQ, respectively. Since no assumption was made about

ρ(x), (5.48) and (5.49) hold for all ρ(x). �

Corollary 4: The separation in (5.51) is possible for all ρ(x) if and only if

fs = 4fc. This is a direct consequence of the fact that r(n/fs) splits into (5.32)

and (5.33) if and only if fs = 4fc.

Therefore, fs = 4fc is a sufficient condition for any scheme to achieve the

ML estimate of μ in (5.47) if the estimation is done individually for the I and Q

components. In Fig. 5.3, we present a general uncoded receiver schematic that

optimizes error performance if the I and Q channels are processed separately.

From an implementation perspective, the ML estimator of μ in AWSαSN

may not be desirable due to the lack of closed form SαS PDFs. As highlighted
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in Chapter 2, numerical methods to exist to evaluate the PDF, but implementing

them in real-time may still be cumbersome. Therefore, the next step is to

find good functions for ρ(·) that approach the ML estimator performance.

Closed-form expressions also offer an intuitive feel to the design of a system.

We use this in Section 5.4.2 where we discuss good methodologies for symbol

placement in constellations.

Our focus for the remainder of this section will be on analyzing (5.48) and

(5.49). As the expressions are similar, we drop the subscripts and deal with the

general expression

y = arg min
μ

2ξ−1∑
n=0

− log ρ(x[n]− μ�[n]). (5.52)

The PDF of a Cauchy random variable X ∼ S(1, δw) is given by (3.9). On

substituting this for ρ(·) in (5.52) and simplifying, we get the ML Cauchy

estimator for μ:

y = arg min
μ

2ξ−1∑
n=0

log
(
δ2w + (x[n]− μ�[n])2

)
. (5.53)

The cost function in (5.53) consists of multiple local minimas/maximas in μ. To

observe this, we can rewrite (5.53) equivalently as

y = arg min
μ

2ξ−1∏
n=0

(
δ2w + (x[n]− μ�[n])2

)
. (5.54)

Clearly, (5.54) is a 4ξ order polynomial in μ. Under certain regularity conditions,

y tends towards a Gaussian distribution as ξ → +∞ [85], [86]. The ML
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Cauchy estimator and its variants have been employed vastly in the literature to

combat impulsive noise [59]. This approach is intuitively gratifying as Cauchy

distributions share the heavy-tailed property associated with impulsive noise

distributions. However, these estimates are still sub-optimal when α �= 1 and

are not supported by any underlying theory.

The MMyF Estimate

The ML Cauchy estimate for μ in (5.53) may be seen in the light of a class of

robust M-estimators; namely the matched myriad filter (MMyF) [58], [59], [61].

The MMyF estimate y(K) of μ with linearity parameter K ∈ R
+ is given by

y(K) = arg min
μI

2ξ−1∑
n=0

log

(
K2 + �2[n]

(
x[n]

�[n]
− μ

)2
)
. (5.55)

From observation, (5.55) is equivalent to the cost function in (5.53) whenK = δw,

i.e., y(δw) is the Cauchy ML estimate of μ. By appropriately tuning K, the

MMyF offers robustness in impulsive noise for all α. We highlight the following

aspects of the MMyF [58]:

1. As K → +∞, the MMyF converges to the linear correlator, which is the

optimum ML estimate in Gaussian noise, i.e., α = 2.

2. As K → 0, the MMyF becomes a mode-selector, i.e., the estimate is equal

to the element in {x[n]/�[n]} ∀ n ∈ {0, 1, . . . , 2ξ − 1} that has the largest

frequency of repetition. If there is no repetition of elements, any one

element is selected as the estimate. This is usually chosen from within a

cluster of closely spaced values. The mode-selector is the optimal (ML)
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estimator in extremely impulsive noise, i.e, α→ 0.

Thus by varying K, one may achieve ML optimality for three scenarios within

the SαS framework. We observe that by decreasing K the estimate of μ is made

more robust to impulsive noise. Similarly, for mildly impulsive scenarios, we

can consider higher values of K to achieve better results. Therefore, we may

express the linearity parameter K = K(α, δw) as a monotonically increasing

function of α and δw that attains the three points of optimality: K(2, δw) = +∞,

K(1, δw) = δw and K(0, δw) = 0. Further still, if K(α, δw) offers the optimal

estimate of μ for all α ∈ (0, 2] in (5.55), the scale parameter is separable, i.e.

K(α, δw) = K(α)δw [ [59], Eq. 31]. The MMyF estimate in (5.55) can now be

written as

y(K) = arg min
μ

2ξ−1∑
n=0

log

(
K2(α)δ2w + �2[n]

(
x[n]

�[n]
− μ

)2
)
. (5.56)

In the literature, a heuristic function has been proposed for K(α) that works

well for all α ∈ (0, 2] [59]:

K(α) =

√
α

2− α
. (5.57)

The MMyF offers good near-optimal estimates of μ in the general AWSαSN

case. Like (5.53), the cost function in (5.56) has at most 4ξ minimas/maximas

in μ. As the number of samples in (5.56) increases, y(K) converges to a normal

distribution for all α ∈ (0, 2] [53], [58]. Keeping this in mind, it is correct

to assume that y has an isotropic Gaussian distribution for large values of ξ.
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Thus, as ξ → +∞, Euclidean detection will be optimal given MMyF estimation.

However, there still is a residual impulsive noise component when ξ is small. In

such a case, the statistics of z needs to be determined before invoking ML (or

near-ML) detection.

The Lp-Norm Estimator

Besides the Cauchy estimator and the MMyF, other functions known to perform

well in impulsive noise may also be used as ρ(x) in (5.52). As the objective is

to approximate ML estimation as close as possible, it is logical to find analytic

functions fW̄ (x) that closely resemble fW (x) and substitute them for ρ(x). An

example is the PDF

fW̄ (x) =
d1
δw̄

exp(−d2
∣∣∣∣ xδw̄

∣∣∣∣p) (5.58)

where 0 < p < α. Here, d1 and d2 are positive (normalizing) constants and δw̄ is

the scale parameter of the distribution. On substituting (5.58) for ρ(x) in (5.52)

and simplifying, we get

y = arg min
μ

2ξ−1∑
n=0

|x[n]− μ�[n]|p

= arg min
μ

‖x[n]− μ�[n]‖pp (5.59)

where ‖ · ‖p is the Lp-norm. Thus the Lp-norm is based on the approximation of

fW (x) that is provided by (5.58). The Lp-norm for 0 < p < α is convergent in the

ergodic sense and is known to perform very well in impulsive noise [9], [10], [57].

By changing p one can tweak the ‘tails’ of the general PDF in (5.58). For p = 2,
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(5.58) is a Gaussian PDF. On the other hand, as p → 0, f̄W (x) becomes a

constant (zero), i.e., fW̄ (x) → (d1/δw̄) exp(−d2). This implies that the tails of

(5.58) become increasingly heavier as p→ 0. In the medium-to-high SNR regime,

errors are predominantly determined by the tail probabilities of the impulsive

noise distribution. In this region, the value of p for which the estimate of μ is

optimized will depend on α and ξ.

The Log-Norm Estimator

Similarly, the asymptotic PDF expression in (3.10) may be employed as ρ(x) to

get

y = arg min
μ

2ξ−1∑
n=0

log |x[n]− μ�[n]|. (5.60)

We term this as the log-norm estimator. On comparison with (5.56), we note that

(5.60) is the MMyF estimate with K(α) = 0 which corresponds to a mode-type

estimator. This is not surprising as (3.10) assumes each w[n] to be an impulse.

The cost functions in (5.56), (5.59) and (5.60) are in analytic forms. However,

the estimators themselves cannot be represented in closed form. Therefore, the

minimizations have to be numerically evaluated. One issue that arises is that the

global minima cannot be generally found for a small number of samples as the

cost functions will have multiple local minimums (traps). An exception to this

is the Lp-norm for p ≥ 1, as it is convex and may be readily solved by convex

programming [78] irrespective of the number of samples. For larger samples, the

MMyF cost function ‘smooths’ out and may be solved via unconstrained descent.

The number of samples for which sufficient smoothing is attained depends on
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α. For example, in the case of AWGN, the MMyF does not have any local traps

as it is equivalent to the L2-norm.

As y is of the form in (5.7), the statistics of z need to be known before the

detection stage. The components of z are independent as fs = 4fc. From (5.48)

and (5.49), it is not hard to convince ourselves that zI
d
= zQ, therefore z has

IID components. The list of near-optimal robust estimators certainly does not

exhaust here [9], [63], [64]. We have discussed popular schemes and due to the

lack of space, we cease further discussion on non-linear estimators.

5.2.5 Baseband Detection

Till now, we have discussed how r(t) can be processed to get y. The next

step is to detect the transmitted symbol within M from y. We comment on a

few detectors and their performance in conjunction with linear and non-linear

estimation of μ in non-Gaussian AWSαSN with fs = 4fc.

Maximum-Likelihood Detection

In non-Gaussian AWSαSN, z is radically different for the conventional and

discretized receivers. It is isotropic with dependent components in the first

case and possesses a four-tailed symmetric PDF (similar to Fig. 4.4b) with

IID components in the latter. The sampling process keeps the transmitted

information intact, yet it statistically changes z. We may rewrite the ML detector

in (5.8) as

x̂ = arg max
xl∈M

fZ(yI − xIl)fZ(yQ − xQl
). (5.61)
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where fZ(·) is the marginal PDF corresponding to zI
d
= zQ

d
= Z ∼ S(α, δz). As

fZ(·) does not generally exist in closed form, numerical evaluations such as those

in [42], [43] are employed to evaluate (5.61). The statistics of z need to be fully

known to evaluate (5.61). In the non-linear case, the statistics of z depend on

α, ξ and the estimator. As the estimators are based on good approximations of

fW (·), then from the discussion in Section-5.2.4 z should approximate a Gaussian

vector with increasing ξ. Therefore z should be near-isotropic.

The Euclidean Detector

The detection rule for this is

x̂ = arg min
xl∈M

‖(y − xl)‖2 = arg min
xl

(
Exl

− 2yTxl

)
(5.62)

and is optimal in the ML sense for unimodal isotropic z. This is true for the

conventional receiver and the MMyF estimator as ξ → ∞.

The Myriad Detector

We may invoke the myriad detector at the output of the linear estimator. The

detection rule is

x̂ = arg min
xl∈M

(
log |K(α)δ2z + (yI − xIl)

2|+ log |K(α)δ2z + (yQ − xQl
)2|) (5.63)

We note that α and δz need to be estimated to invoke the myriad detector.
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The Lp-Norm Detector

For the discretized linear receiver, the Lp-norm detector for p < α is defined as

x̂ = arg min
xl∈M

‖(y − xl)‖pp

= arg min
xl∈M

(|yI − xIl |p + |yQ − xQl
|p) . (5.64)

As shown later, the optimal value of p depends on the SNR. At low SNR,

the errors are determined by the background noise in the system (not by the

impulses) for any α. This phenomenon is a characteristic of Gaussian noise and

therefore p close to 2 performs well in this regime. In the medium-to-high SNR

regime, the impulses predominantly determine the errors and thus the optimal

p is close to zero.

The Log-Norm Detector

Like its estimator counterpart, the asymptotic detector is based on (3.10). On

substituting (3.10) in place of fZ(·) in (5.61), we get

x̂ = arg min
xl∈M

(|yI − xIl ||yQ − xQl
|) (5.65)

or equivalently

x̂ = arg min
xl∈M

(log |yI − xIl |+ log |yQ − xQl
|) . (5.66)

We note that (5.66) is merely the logarithm of the cost function in (5.65). Either

one may be used. The log-norm detector may be employed in the linear case as z
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is SαS. Like the Lp and myriad detectors, it also offers near-optimal performance.

However, it has the added advantage of not requiring any knowledge about α

and δz.

5.3 Joint-Detection

Till now we have focused on a mechanism consisting of passband-to-baseband

conversion followed by detection in the complex plane. If the soft-values are not

required, we may perform joint-detection of xi directly from r(n/fs). Analogous

to (5.47), the joint-detector is given by

x̂ = arg min
xl∈M

�Tfs�−1∑
n=0

− log ρ

(
r

(
n

fs

)
− xIl�I

(
n

fs

)
− xQl

�Q

(
n

fs

))
. (5.67)

From the discussion in Section 5.2.4, if the passband noise is impulsive, one

can use ρ(x) = log(K2(α) + x2) (the myriad detector) for robust detection.

Similarly, the Lp-norm for 0 < p < α and the log-norm detectors can be used by

substituting − log ρ(·) by (5.58) and (3.10), respectively. Though cumbersome,

one may also substitute ρ(·) with fW (·) to implement ML joint-detection. In

this case, the pdf will have to be numerically evaluated for each of its arguments

in (5.67). Do note that (5.67) corresponds to a Tfs�-dimensional detection

problem.

From an implementation perspective, the joint-detector is preferred as

evaluating μ in (5.52) for non-Gaussian AWSαSN requires a numerical technique

even if ρ(·) is in analytic form. The computational cost on solving (5.52) depends

on the minimization algorithm. Also, the fs = 4fc constraint, which is required

to reduce (5.47) into two single variable minimizations, does not significantly
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reduce complexity in joint-detection and may therefore be discarded. More

importantly, converting r(n/fs) to the vector form in (5.7), even if y is the

ML estimate of μ, may result in loss of information (due to the local traps) and

thereby is sub-optimal. Intuitively, the conversion corresponds to simplifying a

Tfs�-dimensional problem to a 2-dimensional one and therefore is optimal only

in specific scenarios such as minimizing the Lp-norm for p ≥ 1 or the MMyF

with large ξ. Even if their are no traps, there will be some loss at the detection

stage as the statistics of z are not truly known and are assumed to be isotropic.

Though joint-detection is advantageous in both performance and

implementation, it lacks the flexibility of integrating it with other schemes such

as equalizers and soft-decoders as it does not output soft-values. One way to

ensure compatibility with soft-decoders is to use the costs in (5.67) to generate

approximates to the log-likelihood ratios (LLRs) involved. For example, in the

case of binary modulation, the LLR measure would be given by

log

�Tfs�−1∏
n=0

ρ
(
r
(

n
fs

)
− xI0�I

(
n
fs

)
− xQ0�Q

(
n
fs

))
�Tfs�−1∏

n=0
ρ
(
r
(

n
fs

)
− xI1�I

(
n
fs

)
− xQ1�Q

(
n
fs

)) .

The LLR is exact for ρ(·) = fW (·). Do note that though the LLRs can be

approximated, we do not have soft-estimates of the transmitted symbol which

may be necessary for processing in baseband. To evaluate the soft-estimates,

the PDFs of zI and zQ are also required. Before we present a performance

comparison of the discussed receiver mechanisms, we discuss the importance of

constellation design in non-Gaussian AWSαSN.
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5.4 Efficient Constellation Design

Signal constellations are conventionally designed for isotropic z. This is

reasonable as the passband noise process is typically modeled by AWGN and

the receiver in Fig. 5.1 is employed. As per the discussion in Section 5.2.1,

such constellations would be effective if the conventional receiver is employed

in AWSαSN due to isotropic z. This approach is also validated when the

MMyF is employed in Fig. 5.3 with large ξ in AWSαSN. However, as highlighted

previously, z is anisotropic with IID components if the discretized linear receiver

is used in non-Gaussian AWSαSN. Similarly, if non-linear passband-to-baseband

conversion is employed for small ξ, it is reasonable to assume that z still retains

some impulsiveness. In such a case fz(·) will be anisotropic and of the form in

Fig. 4.4b.

Statistically, the symmetry of the four-tailed PDF is given by

zI + jzQ
d
= zI − jzQ

d
= (zI + jzQ)e

jkπ/2 (5.68)

∀ k ∈ Z. If the constellation xi = xIi + jxQi ∀ i ∈ {0, 1, . . . ,M − 1} has a

certain error performance, then from (5.7) and (5.68), the symbol sets xie
jkπ/2

and x∗i e
jkπ/2 ∀ i ∈ {0, 1, . . . ,M − 1} offer similar performance for any k ∈ Z.

Finding the constellation that offers globally optimal/near-optimal performance

is a problem of interest, especially if the gains are large. Given (5.7), the symbol
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error probability (SEP) is evaluated by

SEP =
1

M

M−1∑
i=0

∫
y/∈Mi

fz(y − xi)dy (5.69)

where Mi ∈ R
2 is the set of points (determined by the detection rule) that

lie in the decision region of xi. Optimizing the constellation corresponds to

minimizing (5.69) with respect to xi ∀ i ∈ {0, 1, . . . ,M − 1}. As shown in

Section 5.4.1, the ML decision regions for non-Gaussian SαS fz(·) with IID

components are complex and cannot be expressed in closed form. Intuitively,

given xi is transmitted, one would want the tails of fz(y − xi) directed away

from any other constellation point as there is a significant amount of probability

in the tails. Due to the symmetry in (5.68), this ensures that the tails do not

point towards each other, hence avoiding complete tail overlap and allowing

an impulse/s to lie within the right decision region. We propose minimizing a

simpler cost function:

M−1∑
i=0

M−1∑
l=0,
l �=i

fz(xl − xi) (5.70)

or equivalently

M−1∑
i=0

M−1∑
l=0,
l �=i

log fz(xl − xi). (5.71)

Eq. (5.70) is merely (5.69) with Mi restricted to only xi. This ensures that the

tails are diverted away from the constellation points. We validated this approach
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by Monte Carlo simulations and found the resulting constellations to work very

well.

5.4.1 Rotated PSK Maps & Decision Regions

The optimal decision boundaries for isotropic baseband noise are evaluated from

the Euclidean distance between signal points. This implies that for a given

constellation map and any one of its rotated version, there is no advantage in

terms of error rate between them as the optimum decision boundaries rotate

accordingly. By a ‘rotated version’ we imply that all signal points in the

constellation have been rotated by a similar angle. The same deductions do

not hold for the non-Gaussian case in the discretized receiver as the bivariate

distribution of z is anisotropic (four-tailed). If phase shift keying (PSK) is

adopted as the modulation scheme, then from (5.71), the optimal angle of

rotation is determined by

φmin = arg min
φ∈[0,π/4)

M−1∑
i=0

M−1∑
l=0,
l �=i

log fz((xl − xi)e
jφ)

︸ ︷︷ ︸
J(φ)

. (5.72)

where φ is the rotation angle or the angle (in radians) of the signal point in the

first quadrant from the positive real axis. Do note that φ will lie in [0, π/4).

This is a direct consequence of the symmetry rule in (5.68).

In Figs. 5.4 & 5.5 we show scatter plots and the corresponding ML decision

regions (via the rule in (5.61)) for various rotated BPSK and QPSK schemes,

respectively, for α = 1. We denote these schemes by BPSK-φ and QPSK-φ.

Constellation points are signified by the red dots plotted on top of the decision
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(d) BPSK-π/4: ML Decision Regions
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(f) BPSK-π/8: ML Decision Regions

Figure 5.4: Scatter Plots and Optimum decision regions for the Cauchy case
(α = 1) with independent baseband noise components for various rotated BPSK
schemes.
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(d) QPSK-π/4: ML Decision Regions
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(f) QPSK-π/8: ML Decision Regions

Figure 5.5: Scatter Plots and Optimum decision regions for the Cauchy case
(α = 1) with independent baseband noise components for various rotated QPSK
schemes.
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regions. The discretized linear receiver is employed which is why the received

observations depict a four-tailed geometry. For the plots, we assume the signal

points lie on the unit circle and δz = 1. We note that the decision regions in

Figs. 5.4b & 5.5d are the same as the isotropic case, but it will be seen later that

they are not efficient in terms of error probability. The reason for this can be

seen in the corresponding scatter plots in Figs. 5.4a & 5.5c, which clearly show

tails directed towards other constellation points. Similarly, Fig. 5.5a also depicts

tails being directed towards adjacent symbols. This makes BPSK-0, QPSK-0

and QPSK-π/4 undesirable. Do note that results from the Cauchy case may be

intuitively extended to other non-Gaussian SαS scenarios due to the fact that

fz(·) is a four-tailed PDF.

5.4.2 Globally Optimal QAM Constellations

For α = 2, optimizing (5.69) corresponds to maximizing the minimum Euclidean

distance between all points. Extending this concept to non-Gaussian z, it is

reasonable to maximize a measure within the points of the constellation. This

can be observed by splitting fz(·) in (5.71) into a product of its IID marginals

and substituting (3.10) in place of fZ(·):

M−1∑
i=0

M−1∑
l=0,
l �=i

− log |xIl − xIi | − log |xQl
− xQi |. (5.73)

Similarly we may use (5.58) (with δw̄ = δz) for fZ(·) to get

M−1∑
i=0

M−1∑
l=0,
l �=i

−‖xl − xi‖pp. (5.74)
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Figure 5.6: Optimal Constellations for various M for medium-to-high SNR.

Therefore, minimizing (5.71) can be interpreted as maximizing the combined

log-norm or Lp-norm between the constellation points. As (5.73) is independent

of α, the resultant constellation will be efficient for all non-Gaussian z. For

(5.74), we need to set a suitable p before the minimization takes place.

Eq. (5.73) and (5.74) (for small p) get more accurate with increasing SNR.

The minimization has to be performed over 2M variables; {xIi , xQi} ∀ i ∈

{1, 2, . . . ,M}. This may be accomplished via general search methods like
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Table 5.1: Optimal symbol placement.

M = 2 M = 4 M = 8√Exi φi
√Exi φi

√Exi φi

1 45 1 -15.3679 1.1736 -20.7183

1 225 1 74.6321 1.1736 -69.2818

- - 1 164.632 1.1627 80.0703

- - 1 -105.368 1.1627 -170.0700

- - - - 1.0392 135.0000

- - - - 0.8491 -122.2640

- - - - 0.8491 32.2645

- - - - 0.1386 135.0000

Differential Evolution [87] or Simulated Annealing [88],[89]. Though the optimal

constellation generally varies with SNR for α �= 2, it is almost constant in the

medium-to-high regime where the errors are predominantly determined by the

tails of fz(·).

In Fig. 5.6 we present constellations for various M that offer the best error

performance for Cauchy z with IID components for δz = 0.001 and E[Exi ] ≤ 1

(this corresponds to an SNR of 30 dB). The unit circle is also plotted for

comparison. In complex form, the ith point is
√Exie

jφi . In Table 5.1, we

have listed down
√Exi and φi (in degrees) ∀ i ∈ {0, 1, . . . ,M − 1} for each

of the constellations in Fig. 5.6. There are no noticeable changes in the optimal

constellation as the SNR decreases to as low as 10 dB. Further still, the results

can be extended to any α �= 2 as the tail directions are similar [79]. We show

this by presenting numerical results later. On a final note, it is worth mentioning

that the globally optimal constellation for the M = 2 and M = 4 case is that of

a rotated BPSK and QPSK, respectively.
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5.5 Error Performance: Linear Receivers

Before we present the error performance of various receiver schemes, it is

important to identify a suitable SNR measure. This is done next.

5.5.1 SNR Measures

For digital communication systems in Gaussian noise scenarios, the bit error rate

(BER) or symbol error rate (SER) curves are conventionally plotted against the

SNR per information bit (Eb/N0), where Eb is the energy of an information bit

and N0/2 is the two-sided PSD of passband AWGN [1]. Recall, the concept of

PSD does not extend to other stable random variables as their respective second

moments are infinite. Consequently, one needs a suitable equivalent measure for

the non-Gaussian stable case. To our knowledge, there are two different measures

that have been proposed in the literature. In essence, there is no difference

between the both of them except for an α-dependent scaling parameter. We

highlight these measures for the discretized linear receiver. It is worth recalling

from the discussion in Section 5.2.3 that zI
d
= zQ

d
= Z ∼ S(α, δz).

For the first approach we represent Eb/N0 for the Gaussian case in terms of

the scale parameter δz instead of N0 as the concept of second-order does not

extend to stable distributions. We may then directly use this form for other

stable random variables as δz exists for each of them. This measure has been

used in [3], [10]. The conversion is done as follows:

Eb
N0

=
Eb
4δ2z

(5.75)
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As Eb = E[Exi ]/ log2M where log2M is the number of information bits per

message symbol, we get

Eb
N0

=
E[Exi ]

4δ2z log2M
(5.76)

The second is based on the geometric signal-to-noise ratio (GSNR) approach.

This was first proposed in [58] and has been used in [66], [90]–[93]. To explain

what the GSNR is, we have to define the geometric power of an SαS random

variable. The geometric power of an SαS random variable X is defined as:

S0 = eE[log |X|] = δC
1
α
−1

g (5.77)

where δ is the scale parameter of X and Cg is the exponential of Euler’s constant

and is approximately 1.7811. It has been proven that E[log |X|] exists for stable

X [9]. Given (5.7), the GSNR is defined as

GSNR =
1

2Cg

(
E[Exi ]

S0

)2

=
1

2Cg

⎛
⎝ E[Exi ]

δzC
1
α
−1

g

⎞
⎠2

=
E[Exi ]

2

2δ2zC
2
α
−1

g

(5.78)

The GSNR is designed such that for α = 2 (the Gaussian case),

GSNR =
E[Exi ]

2

2δ2z
=
E[Exi ]

2

N0
. (5.79)

From (5.75), this implies that

Eb
N0

=
GSNR

log2M
(5.80)
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for the Gaussian case. Extending the definition in (5.80) to α �= 2, we have

Eb
N0

=
E[Exi ]

2

δ2zC
2
α
−1

g log2M
. (5.81)

On comparing (5.81) and (5.76), we see that they only differ by the scale

factor 1/C
2
α
−1

g . For a given α the scale factor is constant. No expression holds

any advantage over the other; in fact, the two different derivations arrive at

a somewhat similar result, showing the consistency of both measures. Some

authors prefer using γ
1/α
z instead of δz as the way it was initially proposed in [9],

where γz is the dispersion parameter of z. We choose the measure in (5.76) for

its simpler mathematical form.

5.5.2 Simulations

We start off by presenting results for rotated PSK schemes and graphically depict

the accuracy of (5.72) as a rule for constellation design. Fig. 5.7 presents

the BER/SER curves for the Cauchy AWSαSN under the discretized linear

receiver for rotated versions of QPSK using the ML decision regions highlighted

in Fig. 5.5 and Gray coding. The results were generated for a minimum of

4000 errors for high BER/SER (> 10−3) and 1000 errors for low BER/SER. It

is observed that when the distribution tails are directed away from the signal

points, the BER/SER falls drastically. The QPSK-π/8 scheme has therefore

better BER/SER performance than its QPSK-0 and QPSK-π/4 counterparts.

An interesting observation is that of the SER and BER for QPSK-0. We see

that the SER and BER are almost equal as the tails are pointed exactly towards

the opposing neighbors for each signal point. The gain between the worst and
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Figure 5.7: BER/SER curves for various QPSK schemes are presented for the
Cauchy case in the discretized linear receiver under ML detection. The dashed
lines represent the SER. ML decision boundaries were used for decoding.

optimum cases for is over 35 dB at an error rate of 10−5. For comparison, we also

plot the SER performance of QPSK in the conventional receiver in Fig. 5.7. An

analytical expression for Eb/N0 of the conventional receiver is given in Appendix

A.2. One can clearly see the advantage in performance gain of the discretized

receiver over the conventional receiver.

Estimates for α within the AWSαSN framework for practical underwater

ambient noise have been recorded to be as low as α = 1.5 [4]. We also present

SER plots in Fig. 5.8 for independent components with α = 1.5 in the discretized

and conventional receivers. It is observed that the trends encountered in the

Cauchy case extend to this case as well due to their common heavy-tailed

property. Similarly, we may extend results to other values of α as well.

Fig. 5.9 depicts the variation of the uncoded SER for the Cauchy case

with independent components against the rotation angle assuming QPSK for
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Figure 5.8: SER curves for various QPSK schemes are presented for α = 1.5 in
the discretized linear receiver. ML decision boundaries were used for decoding.
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Figure 5.9: The SER for the Cauchy case with independent components plotted
against the rotation angle for three different values of Eb/N0 (dB).

three different values of Eb/N0. Each curve was evaluated using Monte Carlo

simulations for a minimum of 3000 errors for selected rotation angle. One

can observe that there is an optimum angle (albeit not unique) for uncoded

QPSK transmission that ensures minimum error probability. The plot clearly
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Figure 5.10: SER / J(φ) vs. φ for the Cauchy case with independent noise
components for Eb/N0 = 40dB.

shows that the SER is a periodic function of φ with period π/2 radians and is

symmetric about the vertical line φ = π/4. This is a direct consequence of the

symmetry of fz(·) in (5.68). From the discussion in Section 5.4, one would want

to direct the tails towards the gaps between the constellation points. Intuitively,

for high Eb/N0, one would expect the tails to align a little towards the opposite

constellation point as it is further away in comparison to the adjacent points,

i.e., the optimal φ (or φopt) is less than π/8. On the other hand δz is high at low

Eb/N0. This results in thickening of the tails. The small relative distance between

the adjacent and opposite points becomes inconsequential allowing the tails to

bisect the spaces between the points equally, i.e., the QPSK-π/8 (22.5 degrees

of rotation) case would be optimal. As the SNR increases, it was numerically

determined that φopt converges to 15.3 degrees.

To validate the proximity of the expression in (5.72), we show how the cost

function in (5.72) varies with φ for QPSK in Fig. 5.10. Also highlighted is
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Figure 5.11: SER vs. Eb/N0 (dB) for the Cauchy case for various rotated BPSK
schemes.

Table 5.2: Performance Gain (dB) over the Conventional Receiver

for various Rotated PSK Maps in the Linear Discretized Receiver.

The results are compiled for ML detection at SER= 10−5
.

α QPSK-0 QPSK-π/4 QPSK-π/8 BPSK-0 BPSK-π/4 BPSK-π/8

1 2.0 11.0 38.0 2.0 36.0 37.5

1.5 0.5 7.0 18.0 - - -

φmin. The solid line depicts the variation of the SER against φ. Both curves

were generated for Eb/N0 = 40 dB. This value is of practical interest as the

corresponding SER is approximately 10−4 for φ equal or close to φopt (see

Fig. 5.7). We see that φopt is closely approached by the approximation φmin

in (5.72). It is observed that the SER is approximately the same for a certain

range of φ, i.e., between 10 to 30 degrees approximately. Any φ chosen from this

interval gives good results.

To wrap up the discussion on rotated-PSK maps, we plot in Fig. 5.11 the

BER performance of various rotated BPSK schemes in the conventional and
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Figure 5.12: SER for various detectors in the discretized linear receiver in Cauchy
AWSαSN for M = 8.

discretized linear receivers for the Cauchy case with ML detection. The trends

encountered in QPSK can be clearly seen here as well. We summarize the

performance gain at SER=10−5 of all schemes in Figs. 5.7, 5.8 and 5.11 over

the corresponding conventional receiver in Table 5.2. The results are rounded to

the nearest 0.5 dB.

We plot the SER for various detectors in the discretized linear receiver for α =

1 and α = 1.5 in Fig. 5.12 and Fig. 5.13, respectively. The 8-QAM constellation

in Fig. 5.6 is employed. For comparison we have also plotted the SER for the

conventional receiver with the same constellation. Similarly, for M = 4, we

have presented results for the globally optimal constellation for the Cauchy and

α = 1.5 case in Fig. 5.14 and Fig. 5.15, respectively. The increase in performance

due to sampling at fs = 4fc and invoking good constellations and detectors

over the conventional receiver is clear. The myriad, log-norm and Lp-norm (as

p → 0) detectors perform very well over a large range of Eb/N0. To emphasize
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Figure 5.13: SER for various detectors in the discretized linear receiver in
AWSαSN with α = 1.5 and M = 8.
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Figure 5.14: SER for various detectors in the discretized linear receiver in Cauchy
AWSαSN for M = 4.

the importance of constellation design, we have also plotted results of the myriad

detector for the well-known 8-QAM and 4-QAM rectangular maps for both the

Cauchy and α = 1.5 cases. For Cauchy noise, myriad detection corresponds to

ML detection. We have additionally presented the ML detector performance

102



5.5. ERROR PERFORMANCE: LINEAR RECEIVERS

0 5 10 15 20 25 30 35 40 45 50
10−5

10−4

10−3

10−2

10−1

100

S
E
R

Eb/N0 (dB)

Myriad

Log-Norm

L0.1

L0.5

Myriad - 4QAM Rectangular

Conventional Receiver
ML

1) Myriad - 4QAM

Rectangular

2) Conventional

Receiver

Figure 5.15: SER for various receiver schemes in AWSαSN with α = 1.5 and
M = 4.

Table 5.3: Performance Gain (dB) over the Conventional Receiver

at SER = 10−5
for various Detectors in the Linear Discretized

Receiver with Optimal Constellations.

α M Myriad L0.1 L0.5 Log-Norm

1
4 37.5 37.0 16.0 37.0

8 36.5 36.0 11.5 36.0

1.5
4 18.5 18.0 9.5 18.0

8 18.0 17.5 8.5 17.0

for the α = 1.5 case in Figs. 5.13 & 5.15. As α → 2, the SER performance

between the discretized linear receiver with ML detection and its conventional

counterpart converge.

As there are many results, we summarize the performance gain at SER=10−5

of various detectors in the discretized linear receiver over the conventional

receiver in Table 5.3. Optimal constellations are employed and ML detection

is used for the conventional receiver. Results are rounded off to the nearest 0.5

dB.
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5.6 Error Performance: Joint-Detection & Non-Linear Receivers

5.6.1 SNR Measures

For fair comparison, the performance of each receiver needs to be analyzed for

the passband AWSαSN process that amounts to (5.76) in the discretized linear

receiver. Therefore, we need to evaluate Eb/N0 as a function of δw (the scale

parameter of the passband noise samples). From (5.43),

δz =
d(α, ξ, g[n])√

fs
δw (5.82)

where

d(α, ξ, g[n]) =

(∑2ξ−1
n=0 |g[2n]|α

)1/α
(∑2ξ−1

n=0 g[2n]
2
)1/2 (5.83)

We note that (5.83) is a ratio of the Lα and L2 norms of g[2n] ∀ n ∈ {0, 1, . . . , 2ξ−

1} and is solely a function of α, ξ and the sampled baseband shaping pulse.

Finally, on substituting (5.82) in (5.76) we get

Eb
N0

=
E[Exi ]fs

4δ2w log2M︸ ︷︷ ︸
SNR

× 1

d(α, ξ, g[n])
(5.84)

or in dB

10 log10
Eb
N0

= SNR (dB)− 20 log10 d(α, ξ, g[n]). (5.85)

Do note that the SNR term in (5.84) and (5.85) is not the actual SNR
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(
signal power
noise power

)
at the receiver. It is in fact a measure of Eb/N0. This is due to

the fact that d(α, ξ, g[n]) = 1 for all g(t) and ξ ∈ Z
+ when α = 2. Therefore,

Eb/N0 = SNR in the Gaussian case. The term in (5.84) is denoted as SNR to

differentiate between the definition of Eb/N0 in (5.76).

As ‖x‖p ≥ ‖x‖2 for all x ∈ R
2ξ and 0 < p ≤ 2, we see that d(α, ξ, g[n]) ≥ 1.

In the Gaussian case, d(2, ξ, g[n]) = 1 for all g(t) and ξ ∈ Z
+. Analogous to the

Gaussian case, 4δ2w/fs may be interpreted as the pseudo-PSD of the AWSαSN

process. For a given pseudo-PSD, we see that Eb/N0 varies with d(α, ξ, g[n]) for

α �= 2 in the discretized linear receiver. In fact, increasing d(α, ξ, g[n]) for α �= 2

decreases the operational SNR. In the special case of g(t) being a rectangular

pulse, (5.85) reduces to

10 log10
Eb
N0

= SNR (dB)− 10

(
2

α
− 1

)
log10 ξ (5.86)

We note that (5.86) decreases linearly with 10 log10 ξ at a rate proportional to

2
α−1. In essence, one can arbitrarily reduce the SNR by increasing ξ. For α close

to 2, increasing ξ causes no significant effect in SNR. However, as α decreases,

the reduction in SNR becomes apparent. As the non-linear performance can

be made arbitrarily better than that of the linear receiver by increasing ξ (and

hence decreasing (5.86)), we plot the SER against

SNR (dB) = 10 log10
E[Exi ]fs

4δ2w log2M
. (5.87)

To compare these results with those of the conventional/discretized linear
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receivers, one needs only to shift the latter’s results by 20 log10 d(α, ξ, g[n]) to

the right.

Remark: The previous discussion raises the question of finding the optimum

g[n] in the discretized linear receiver that reduces the SNR. From (5.85), we note

that the latter term is equivalent to zero when g[n] is a single impulse. In the

spectral domain, this implies that the baseband signal spans the bandwidth fs.

Therefore, the SNR of the system is maximized for a given pseudo-PSD when

the receiver bandwidth is equivalent to the signal bandwidth.

5.6.2 Simulations

We present the joint-detector performance for different non-linear receivers in

Cauchy AWSαSN for Tfs = 40 in Fig. 5.16 and Tfs = 400 in Fig. 5.17. All

plots are generated for g(t) a rectangular pulse and the 8-QAM constellation in

Fig. 5.6. For comparison, we have also plotted the Gaussian error curve for the

same constellation in both figures.

We observe that for Tfs = 400, the myriad joint-detector performance (which

corresponds to ML detection in the Cauchy case) actually converges to the

Gaussian error curve. We tested this empirically for even larger values of Tfs.

Increasing Tfs expands the available bandwidth fs relative to the symbol rate.

To show the effect of constellation design, we plot the joint-myriad detection

performance for the 8-QAM rectangular map for Tfs = 40 in Fig. 5.16. We can

clearly see the degradation in error performance. Similar effects have also been

empirically observed for other joint-detectors for Tfs = 40. In the Tfs = 400

case, there is no significant gain for the optimized 8-QAM constellation over its
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Figure 5.16: SER for various joint-detection schemes in Cauchy AWSαSN with
Tfs = 40 and M = 8.
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Figure 5.17: SER for various joint-detection schemes in Cauchy AWSαSN with
Tfs = 400 and M = 8.

rectangular counterpart.

In Fig. 5.18 we present SER results for different non-linear

passband-to-baseband conversion schemes with isotropic baseband detection.

We show results for Tfs = 40 (ξ = 10) and Tfs = 400 (ξ = 100) with the added
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Table 5.4: Performance Loss (dB) with respect to the Gaussian

error curve at SER = 10−5
for the Joint-Detection schemes in

Figs. 5.16 and 5.17.

Tfs Myriad L0.01 L0.5 L1 Log-Norm

40 2.3 4.0 2.4 3.6 4.0

400 0.2 3.2 1.2 0.9 3.3

Table 5.5: Performance Loss (dB) with respect to the Gaussian

error curve at SER = 10−5
for the Non-Linear schemes in Fig. 5.18.

Tfs Myriad L1

40 4.8 4.6

400 0.2 0.8

constraint of fs = 4fc. These results can be compared to their joint-detector

counterparts in Fig. 5.16 and Fig. 5.17. The isotropic assumption of z causes

slight performance degradation for the L1-norm based passband-to-baseband

conversion for both Tfs = 40 and Tfs = 400. However, for the MMyF based

conversion, there is no error for the Tfs = 400 case. We see a deviation for the

MMyF curve for Tfs = 40 after 13 dB. This is because the MMyF cost function

is not smooth enough and the local traps hinder the soft-value estimation

process.

In Table 5.4, we present the performance loss (in decibels) of all

joint-detection schemes in Figs. 5.16 and 5.17 with respect to the Gaussian error

curve at SER=10−5. Results are rounded of to the nearest 0.1 dB. Similarly,

we evaluated the performance loss for the non-linear schemes in Fig. 5.18 and

presented them in Table 5.5.
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Figure 5.18: SER for various receiver schemes in Cauchy AWSαSN with M = 8.

5.7 A Practical Implementation: Rotated PSK Schemes

From a practical perspective, the rotation of a constellation map can

be accomplished at the receiver without actually transmitting the rotated

constellation symbols themselves. This of course is only of interest if the

baseband noise components are anisotropic. We propose a simple mechanism

that not only incorporates constellation rotation at the receiver, but also

generates baseband noise with independent components assuming passband

AWSαSN.

Let us assume that a single-carrier scheme is to be implemented over an

impulsive noise channel and the transmitted symbols are chosen from the

QPSK-φ1 configuration. Also, let the optimal constellation map for this

particular realization of the channel be QPSK-φopt. Each symbol in QPSK-φ1

can be mapped on to a unique point in QPSK-φopt by multiplying it with

exp(jΔφ) where Δφ = φopt−φ1. This mapping corresponds to a rotation of the
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constellation points in QPSK-φ1 to attain QPSK-φopt.

The relationship between the transmitted passband signal and its baseband

counterpart is given in (5.2). Let s̃i(t) =
√

2Exi
Eg g(t)e

jφi , then from (5.2) we have

s(t) = �{s̃i(t) exp(j2πfct)} (5.88)

Note that (5.88) is the continuous-time version of (4.2). As s̃i(t) is the baseband

signal corresponding to (a sequence of) symbols in QPSK-φ1, s̃i(t) exp(jΔφ)

will be the baseband signal if the symbols are chosen from QPSK-φopt. We can

rewrite (5.88) as

s(t) = �{s̃i(t) exp(jΔφ) exp(j(2πfct−Δφ)
)︸ ︷︷ ︸

carrier

}
(5.89)

On comparing (5.88) with (5.89), we observe that given s(t), s̃i(t) exp(jΔφ) can

be acquired if the carrier (or clock) at the receiver lags that of the transmitter by

Δφ. For example, if QPSK-π/4 is the transmitted constellation and φopt = π/8,

the QPSK-π/8 constellation map can be generated by letting the receiver clock

lag the transmitter clock by Δφ = −π/8.

Though we have concocted a mechanism that rotates the constellation at

the receiver, independence of baseband noise components is only ensured if the

received signal s(t) is sampled at

t =
n

fs
+

Δφ

2πfc
(5.90)

where fs = 4fc and n is the discrete-time index. The sampling rule in (5.90)
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Figure 5.19: Practical implementation of a single-carrier receiver employing
rotated-constellations.

does not effect the constellation rotation at the receiver. On substituting (5.90)

in (5.89) we get

ś[n] = �
{
˜̃si[n] exp

(
j2π

fc
fs
n

)}
(5.91)

where

ś[n] = s

(
n

fs
+

Δφ

2πfc

)
and

˜̃si[n] = s̃i[n]

(
n

fs
+

Δφ

2πfc

)
exp (jΔφ) .
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In reality, ś(n) is a sampled version of s(t), which in turn consists of the

transmitted signal corrupted with impulsive noise. As (5.91) is the same as (4.2),

the additive noise in ˜̃si(fsn/B) has independent I and Q components under the

AWSαSN framework.

In Fig. 5.19 we present a schematic that depicts a practical implementation

of passband-to-baseband conversion with constellation rotation at the receiver.

By setting fs = 4fc, independent baseband noise components are guaranteed.

This scheme is applicable for any constellation map that requires rotation while

ensuring independence of noise components. The analog and digital blocks of

the receiver are also highlighted.

5.8 On Fading Channels and AWSαSN

Till now we have discussed and analyzed digital communication schemes in a

pure AWSαSN channel. If the analysis is extended to incorporate fading as well,

then (5.2) modifies to

si(t) = �
{√

2Exi

Eg g(t)hejφiej2πfct

}
(5.92)

= �{√Exie
jφih}�I(t) + �{√Exie

jφih}�Q(t). (5.93)

where h ∈ C is a circular symmetric complex Gaussian random variable. This

channel is termed as a Rayleigh flat-fading channel. If h is independent over

subsequent symbol transmissions, then (5.93) depicts block fading as well. We

will analyze this channel in detail for multi-carrier transmission in Chapter 6,

for which a single-carrier scheme is a special case. However, it is pertinent
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to comment briefly on the changes that need to be made to the mechanisms

introduced in this chapter in the presence of fading.

From (5.93), do note that though M is the constellation employed at the

transmitter, the received symbols are rotated by ∠h and scaled by |h|. The

alphabet at the receiver is M̄ such that
√Exie

jφih ∈ M̄ ∀ i ∈ {1, 2, . . . ,M}. As

the constellation structure is critical for the fs = 4fc case, the random rotation

caused by h will degrade error performance. From the discussion in Section 5.7,

once the receiver is synchronized with the transmitter, the constellation may

be rotated at will by introducing a sampling-offset at the receiver. Though the

discussion revolves around QPSK, it can be extended to any constellation map.

Therefore, if the channel is known at the receiver one needs only to rotate the

constellations by −∠h. If not catered for, then on the average ∠h will produce

a near-optimal rotation as highlighted for QPSK in Fig. 5.10. If the channel

estimate is error-prone, then from Fig. 5.10 it is also noted that the scheme

is robust to rotational error in the constellation. Divergence from the optimal

rotation will result in a very small degradation in performance for a large range

of rotational error as seen in Fig. 5.10.

For large M , the rotation principle at the receiver via sampling-offset still

holds. Though the range of ‘good’ rotations is limited due to the packing of

more symbols, one can still find a suitable range of sampling offsets to work

with. The higher the number of points in the constellation, the more stringent

the requirement of getting the exact rotation and therefore estimating ∠h. Thus,

the limit to the size of a good constellation will be determined by the channel

estimation scheme employed at the receiver.
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With the constellations now rectified, the next step is to update the

arguments of the cost functions used for detection in Sections 5.2.5 & 5.3. Instead

of searching over M one needs to search over ¯̄
M, where

√Exie
jφi |h| ∈ ¯̄

M ∀ i ∈

{1, 2, . . . ,M}.

5.9 Summary

In this chapter we have discussed and analyzed features of a good

communications receiver for single-carrier modulation in impulsive noise. The

analysis covers several schemes under the following design methodologies,

1. Soft-Estimates & Baseband Detection

2. Joint-Detection

The conventional (continuous-time) receiver was shown to perform poorly in

non-Gaussian AWSαSN. By introducing a passband sampling criteria, suitable

baseband detectors and efficient constellations, the error performance of the

receiver is enhanced significantly while maintaining linearity of the system.

From a practical perspective, linear receivers are easy to implement due to

the availability of closed-form estimates. Further still, existing baseband signal

processing techniques that assume system linearity, such as equalizers [1], may

be used (without modification) in the receiver prior to the detection stage. A

drawback of linear systems in AWSαSN is that they are far from optimal. We

have categorized this mathematically as SNR degradation at the receiver.

If the linearity of the system is sacrificed, the error performance is enhanced

further by employing suitable passband-to-baseband conversion schemes that

generate more robust soft-estimates of the transmitted symbol. In terms of
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implementability, a cost-function needs to be minimized with respect to a

complex variable every time a new estimate is generated. For fs = 4fc, we have

shown that the bivariate minimization problem is reduced to two single-variable

minimizations. Even then, this will be computationally taxing when large data

rates are required. Further still, if the channel changes due to multipath and

fading, the cost-functions need to be updated accordingly.

If soft-estimates are not required in the baseband, joint-detection can be used

directly on the passband signal. Compared to the non-linear receiver schemes

mentioned above, the error performance is better as the prior assumes isotropic

baseband noise for detection purposes. Joint-detection is computationally

efficient as minimizing the cost requires evaluating it for a small finite set

of points and choosing the minimum within. However, due to the lack of

soft-estimates, this approach has a drawback in terms of integration and

flexibility with baseband processing techniques such as soft-decoders and

equalizers. This can be circumvented by evaluating approximate LLRs. Like

non-linear soft-estimation, any change in the channel requires modifying the

cost-function for subsequent transmission.

We also propose an innovative but simple implementation of a single-carrier

system that takes advantage of the baseband noise anisotropy by rotating

constellations solely at the receiver side while also ensuring independence of

noise components.
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Chapter 6

OFDM in Impulsive Noise

Previously, we have highlighted the effect of AWSαSN in a single-carrier

communication system. Statistical analysis of the noise process was thoroughly

conducted after conversion to its complex baseband form. Conventional

matched-filter conversion warrants the resulting noise to be heavy-tailed and

isotropic. Under some rules and modification to the passband-to-baseband

conversion mechanism, the in-phase and quadrature components of the

resulting noise can have IID components. This provides significantly

better maximum-likelihood (ML) detection performance over the conventional

conversion case. These results open up a number of worthy problems including

its application and analysis to multicarrier systems, which is the purpose of this

chapter.

Orthogonal frequency-division multiplexing (OFDM) has garnered significant

attention from the research community these last few decades. Modern day

multicarrier systems are increasingly being incorporated with OFDM as it

provides a number of advantages in terms of implementation and performance

over other digital modulation schemes [1], [46]. High spectral efficiency, low

inter-symbol interference (ISI) due to a guard interval, single-tap equalization

and efficient implementation via the fast Fourier transform (FFT) algorithm are
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some of its attractive properties. The effects of impulsive noise on an OFDM

system are established and well-known [37]. At the receiver, an N -point FFT is

invoked on the received vector to generate an OFDM symbol block. The same

operation would cause an impulse in the noise vector to be mapped onto an

N -point complex sinusoid that affects all symbols in the OFDM block. Therefore,

the transformed noise vector will have dependent components. As the FFT is a

linear operation, multiple impulses in the noise vector will result in a summation

of sinusoids with varying frequencies and amplitudes in the transformed noise

vector. The frequency and amplitude of each of these sinusoids depend on the

corresponding impulse location and weight, respectively, in the original noise

vector.

A number of well-written articles discuss methods to mitigate this effect.

The most applied concept is noise cancellation. Though sub-optimal, this is a

valuable technique. In a practical OFDM system, a few symbols are reserved as

nulls and pilots due to various constraints. Taking advantage of this, conceptual

similarities between the OFDM transmit-receive equation and the syndromes

in a block code are highlighted in [37], [38]. Reed-Solomon codes are then

used to exploit the information in these symbols to estimate the noise with

good effect. Similarly in [36], the authors have employed the relatively new

concept of compressed sensing (CS) along with efficient and robust convex

programmes developed in [77] to estimate the noise. The quoted articles focus

on the Gaussian-Bernoulli-Gaussian (GBG) noise model and inherently assume

the application of a linear passband-to-baseband conversion mechanism (like the

one discussed in Chapter 4) that preserves the impulsiveness of the noise. In all
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impulsive noise cancellation techniques the objective is to remove (cancel) the

impulses from the received vector so that Gaussian detection/decoding may be

performed.

In this chapter we analyze the performance of ML detection in baseband

OFDM for a channel contaminated with AWSαSN. Simulation results

surprisingly depict that the achieved error rates approach the Gaussian error

curve as the number of carriers increase. The results can be used as benchmarks

for various schemes developed to mitigate impulsive noise. We provide insight

to the relationship between ML detection and the CS approach in [78]. The pros

and cons of the latter are discussed.

One of the main assumptions in the current literature is that the noise

vector at the baseband level is sparse. Though a passband noise process

may be impulsive (and thus sparse), this does not guarantee sparsity in the

baseband. Building on the concepts acquired in Chapters 4 and 5, we highlight

the design constraints within a linear passband-to-baseband conversion block

that are sufficient to induce sparsity in the baseband noise vector for OFDM. It

is shown that linear passband-to-baseband conversion is suboptimal and reduces

the SNR at the receiver. We show how this can be entirely avoided by estimating

the transmitted symbol block directly from the passband samples. The work

presented in this chapter has been published in [94], [95].

6.1 The Baseband OFDM System Model

In digital communications, analysis is typically performed at the baseband level

[1], [2]. Let z = [z1, z2, . . . , zN ]T be the complex noise vector, i.e., z ∈ C
N .
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Also define x = [x1, x2, . . . , xN ]T as the N × 1 OFDM symbol vector and A =

[a1,a2, . . . ,aN ] the N -point unitary discrete Fourier transform (DFT) matrix

with columns ak. Each xk ∀ k ∈ {1, 2, . . . , N} is selected from an M -symbol

constellation. The baseband transmit-receive OFDM equation is then

y = HcA
Hx+ z (6.1)

where y = [y1, y2, . . . , yN ]T is the received vector and Hc is the N ×N complex

circulant channel matrix. We consider zero-Doppler and Rayleigh block fading,

therefore, Hc is time-invariant. The use of a cyclic-prefix and a sufficient-length

guard interval is assumed. From the properties of A and Hc, the latter can be

diagonalized by H = AHcA
H, where H = diag[h1, h2, . . . , hN ] [46],[96]. We can

thus rewrite (6.1) as

y = AHHx+ z (6.2)

where hk ∼ CN (0, σ2h) ∀ k ∈ {1, 2, . . . , N} and all hk are IID. The notation

CN (0, σ2h) implies a circular-symmetric complex normal distribution with

variance σ2h. Typically, an OFDM symbol block consists of data, pilots and

nulls. The locations of these within x are known. Also, the receiver is assumed

to have complete knowledge of the channel.

Practical systems assign nulls and pilots within an OFDM block due to

various design/channel constraints [46]. For our analysis, we use 0 < K ≤ N

data-carriers and N − K nulls. As the pilots are known, they can easily be
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accommodated within our problem formulation. We discuss this briefly in

the last paragraph of Section 6.4.1. Other techniques such as forward error

correction, time/frequency interleaving and reduction of the peak-to-average

power ratio (PAPR) are typically employed to enhance OFDM performance.

As our goal is to analyze the ML performance in impulsive noise at the

baseband level, these schemes are considered as independent problems and are

not discussed in this chapter.

Eq. (6.2) can be expressed in terms of only the actual transmitted data.

Defining Lx = {�1, �2, . . . , �K} as the set whose elements are the locations

(indices) of the data symbols in x and x(1) = [x
1 , x
2 , . . . , x
K ]
T as the K-tuple

data vector, we have from (6.2)

y = ĀHH̄x(1) + z (6.3)

where ĀH = [a∗
1 ,a
∗

2
, . . . ,a∗
K ] is of size N ×K and H̄ = diag[h
1 , h
2 , . . . , h
K ].

The notation a∗
1 denotes the complex conjugate of all elements in the vector

a
1 . Similarly, we can combine the columns of A∗ whose indices are not in Lx to

form the N × (N −K) matrix ¯̄AH. These columns correspond to the position of

the nulls in x. Like its vector counterpart, the notation A∗ denotes the complex

conjugate of all elements in A. As the columns of A are orthonormal, we get

ĀĀH = IK ,

¯̄A ¯̄AH = IN−K and

Ā ¯̄AH = 0K×(N−K).

(6.4)
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where IK and 0K×(N−K) represent theK×K identity matrix and theK×(N−K)

all-zero matrix, respectively.

In Section 5.4, the performance of single-carrier phase-shift keying with

non-Gaussian SαS z with IID components was analyzed. Large error

performance gains were achieved by exploiting the baseband PDF via rotated

constellations. The optimal rotation angle and performance gain depends on

the employed constellation. An extension of this scheme to the multi-carrier

case, could comprise of rotating the symbols on every carrier by a certain angle.

For the purpose of comparison, we will also show a few results for the case of

no fading and near-optimal per-component rotation with K = N . The channel

model for this is

y = AHHφx+ z (6.5)

where Hφ = diag(ejφ1 , ejφ2 , . . . , ejφN ) and φk is the rotation angle for the kth

carrier ∀ k ∈ {1, 2, . . . , N}. From (6.5), we observe that Hφx is the transmitted

OFDM symbol and therefore the receiver will have full knowledge of Hφ.

In (6.5), the optimal rotation angles are functions of the SNR, the per-carrier

constellation pattern, the number of carriers and the noise impulsiveness.

Evaluating a suitable Hφ may not be feasible as practical channels introduce a

random phase to each carrier via fading. This is mathematically characterized by

H in (6.2). Also, transferring channel information to the transmitter is usually

not an option. This problem is augmented by the fact that the channel may

change by the time H is estimated and delivered. Further still, calculation of
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the optimal angle is computationally very complex. On the bright side, the range

of angles for which the system performs at near-optimum levels is large and most

random instances of Hφ will offer good performance with high probability. As

we will see later, the performance gain as N increases does not warrant the cost

of calculating the optimal Hφ.

A more appropriate approach would allow analyzing the average error rates

over all possible combinations of H in (6.2) and Hφ in (6.5). From a practical

point-of-view, this would provide a benchmark for the error performance of

any instance of H the channel introduces or a random Hφ. The statistical

characteristics of z will be briefly discussed next.

6.2 Statistical Characterization of the Complex Noise Vector

A typical passband-to-baseband conversion block is a linear system which retains

in-band information [1]. As discussed in Chapter 4, this is optimal (in the

ML sense) for AWGN and may be implemented in either continuous-time or

on a non-lossy sampled version of the passband signal. Regardless of the

implementation, the statistics of z do not change for passband AWGN. Precisely,

if the double-sided noise PSD is N0/2, then zn ∼ CN (0, N0) ∀ n ∈ {1, 2, . . . , N},

i.e., zn has IID real and imaginary components such that �{zn} d
= �{zn} d

=

Z ∼ N (0, N0/2) ∀ n ∈ {1, 2, . . . , N}. Further still, the components of z are

independent. As z is a Gaussian vector, this in turn implies it is isotropic [1]. For

this case, without losing any information of the noise component contaminating
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x(1), one may multiply (6.3) with Ā to get

ý = H̄x(1) + ź. (6.6)

Here ý = Āy and ź = Āz. The elements of ź are also CN (0, N0) and independent

[46].

For non-Gaussian AWSαSN, the distribution of z varies significantly with

the passband sampling frequency. Extending the argument in Section 5.2.2 to

the multi-carrier case, we see that the case of z with IID real and imaginary

components offers the best error performance. In such a case, �{zn} d
= �{zn} d

=

Z ∼ S(α, δz) ∀ n ∈ {1, 2, . . . , N} and the components of z are independent. This

implies isotropy if z is Gaussian. However, the joint-PDF for α �= 2 has tails

directed along the positive and negative directions of each axis. Though still

heavy-tailed, this should offer good system performance as z retains the sparsity

(to some extent) of the passband AWSαSN process. This is the case primarily

considered in the remainder of the chapter.

From the discussion in Section 4.2.3, if a continuous-time implementation

is adopted, zn is a complex isotropic SαS random variable in non-Gaussian

AWSαSN. Therefore, �{zn} d
= �{zn} d

= Z ∼ S(α, δz) ∀ n ∈ {1, 2, . . . , N} [9].

Unlike the Gaussian case, �{zn} and �{zn} are dependent [8],[9]. Note that this

is not equivalent to defining z as an isotropic random vector with CF in (3.18).

The dependency within the components of z depends on the length of the low-pass

filter in the passband-to-baseband conversion block. Though it is possible to

ensure independence within the components of z, the isotropy between the I and
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Q components of zn essentially reduces the sparsity of z by a factor of two in

comparison to the IID case. This is due to the fact that information in the tails

within each sub-carrier are lost. As pointed out in Section 5.5, the effect of this

on a single-carrier system is severe.

In the literature, baseband analysis in impulsive noise has been conducted

both for the per-carrier isotropic case with independent components and for z

with IID real and imaginary components [37], [58], [67]. For easy reference, we

term these configurations as zISO and zIID, respectively. Though our primary

focus is on the latter, we discuss ML detection results for both in the next section

to see their similarities and differences.

6.3 Performance Analysis of Baseband OFDM

6.3.1 ML Detection

The ML detection rule of the OFDM symbol block in (6.3) is given by

x̂(1) = arg max
ζ∈M

fz(y − ĀHH̄ζ) (6.7)

where fz(·) is the 2N -dimensional joint-PDF of z and M is the set of all possible

OFDM symbols such that x(1) ∈ M. Given that z
d
= zIID and denoting Ā =

[ā1, ā2, . . . , āN ], we have

x̂(1) = arg min
ζ∈M

(
N∏

n=1

fz(yn − āHnH̄ζ)

)−1

(6.8)

= arg min
ζ∈M

N∑
n=1

− log fz(yn − āHnH̄ζ) (6.9)

124



6.3. PERFORMANCE ANALYSIS OF BASEBAND OFDM

where fz(·) = fZ(�{·})fZ(�{·}) is the bivariate PDF of zn ∀ n ∈ {1, 2, . . . , N}.

The expressions in (6.8) and (6.9) are equivalent as the cost function in (6.8) is

strictly positive and log(·) is a monotonically increasing function in this region.

For z
d
= zISO, we note that fz(·) has algebraic tails when z is non-Gaussian

SαS and therefore is an algebraic function of ‖ · ‖ due to the isotropy. The rule

in (6.9) then simplifies to

x̂(1) = arg min
ζ∈M

N∑
n=1

log |yn − āHnH̄ζ|2. (6.10)

For the Gaussian case we note that z
d
= zIID

d
= zISO. From (6.6), we can

simplify (6.9) to

x̂(1) = arg max
ζ∈M

fz(ý − H̄ζ)

= arg min
ζ∈M

K∑
k=1

− log fz(ýk − h
kζk)

= arg min
ζ∈M

K∑
k=1

|ýk − h
kζk|2 = arg min
ζ∈M

‖ý − H̄ζ‖2 (6.11)

where ý = [ý1, ý2, . . . , ýK ]T, ζ = [ζ1, ζ2, . . . , ζK ]T and ‖ · ‖ is the Euclidean norm.

In fact, (6.11) is the ML-detection rule for any unimodal isotropic ź as its PDF

is a monotonically decreasing function of ‖ź‖. Though (6.11) is a combinatorial

problem, the computational cost increases linearly with the number of carriers

[46]. This is because the cost function is a sum of individual terms for each k

and therefore each term can be independently minimized. This makes it easy to

perform even for moderately large N . Do note that the cost function in (6.9) is

a sum of N elements, while that in (6.11) is a sum of K. This is due to the fact
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that the information in the null carriers is irrelevant for the Gaussian case, but

not in general.

6.3.2 Optimizing Constellations

One key attribute of z = zIID is that its joint-PDF will have tails directed along

each Cartesian axis in both the positive and negative directions. This has already

been presented for the single-carrier (N = 1) Cauchy case in Fig. 4.4d. The real

and imaginary axis correspond to �{z1} and �{z1}, respectively, and are IID

Cauchy random variables. For values of α near 2, the tails are still visible but

less pronounced than those in Fig. 4.4d.

A strong result from the discussion in Section 3.2.2 is that Λ(s) corresponding

to z is non-zero only when s is directed along each positive and negative Cartesian

axis. In other words, as z ∈ C
N , there are 4N unique vectors s ∈ S2N (where

S2N = {s|s ∈ R
2N , ‖s‖ = 1}) and their respective weights Λ(s) that completely

characterize the statistics of z. We denote the set of these vectors by T. The

relationship between the PDF’s tails and s ∈ T is very clear: The tails are

directed along the vectors in T. If X has a CF of the form in (3.19), then any

linear mapping of X results in a similar transformation in the tails of its PDF,

and hence the vectors in T. The example below depicts the tail transformation

of an SαS random vector under linear mapping:

Example

Let Y = BX, where Y and X are real N -dimensional SαS vectors with IID

components and B is a real N × N matrix with its ith column denoted by bi.
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Then

ΦY(θ) = ΦX(BTθ)

= ΦX(θ) = exp

(
−δα

(
N∑
i=1

|bT
i θ|α

))
. (6.12)

On comparison with (3.17) and (3.19), we observe that Λ(s) consists of a finite

sum of Dirac delta functions located at si = ±bi/‖bi‖ with weight δα‖bi‖/2

∀ i ∈ {1, 2, . . . , N}. The weight of each transformed tail is proportional to ‖bi‖.

If B is invertible then the number of tails in the PDF of Y is the same as that

of X. �

We know that an impulse in z affects all symbols in x after the FFT operation.

From a statistical perspective, this phenomenon is represented by the tails in the

PDF of H−1Az and HH
φAz in (6.2) and (6.5), respectively. With suitable values

of φi in (6.5), the tail vectors in T of the baseband noise PDF (shifted toAHHφx)

do not point directly towards any other OFDM constellation point. One may

use a geometric approach using T and the OFDM constellation to accomplish

this. However, we derive Hφ by minimizing a cost function based on the SEP.

For z
d
= zIID, the ML detection rule for (6.5) given x is transmitted is

x̂ = arg min
ζ∈M

N∑
n=1

− log fz(yn − aHnHφζ) (6.13)

where fz(·) = fZ(�{·})fZ(�{·}) is the bivariate PDF of zn ∀ n ∈ {1, 2, . . . , N}.

Analogous to (5.69), if the OFDM symbols are equiprobable, the symbol error
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probability for the detection scheme in (6.13) is given by

SEP(Hφ) =
1

MN

MN∑
i=1

∫
y:x̂ �=xi

N∏
l=1

fz(yl − aHl Hφxi)dy (6.14)

where xi ∀ i ∈ {1, 2, . . . ,MN} is the ith N -tuple in the set M. The integration

is performed over all y such that x̂ �= xi where xi is the transmitted OFDM

symbol.

The expression in (6.14) is not solvable as the integration is performed over

complex areas. This is augmented by the fact that fz(·) is not available in closed

form with the exception of the Cauchy case and averaging needs to be performed

over all transmitted symbols xi ∈ M. On the other hand, by extrapolating the

results in Section 5.4, the ML error performance for (6.13) is almost constant

(near-optimal) for a large range of φi at high SNR. Thus evaluating the optimal

Hφ at every SNR instance does not provide adequate gain. Therefore Hφ may be

evaluated just once for a given SNR where error performance meets requirements.

Calculating Hφ from (6.14) is not trivial and requires further simplifications.

Using a similar line of reasoning in (5.70), we propose minimizing the following

cost function:

J(Hφ) =
MN∑
i=1

N∏
l=1

MN∑
m=0,
m �=i

fz

(
aHl Hφ (xm − xi)

)
. (6.15)

Observe that J(·) is a normalized version of SEP(·) with the detection regions

limited to the points y = aHi Hφxm where m �= i. The expression in (6.15) is

convex in Hφ and can be minimized via conventional techniques such as gradient
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descent. However, this is still very complex to solve for large N . Though many

sub-optimal schemes may be designed to evaluate Hφ, it is a different problem

which will not be pursued in this work.

6.3.3 Simulations

Following the discussion in Section 5.5.1 and the expression in (5.76), we use the

following definitions for Eb/N0:

Eb
N0

=
Exσ2h

4δ2z log2M
(6.16)

for (6.2) and

Eb
N0

=
Ex

4δ2z log2M
(6.17)

for (6.5). where Ex = E[‖x‖2]/K is the average energy per-carrier.

All simulations and analysis in this section are conducted for Cauchy z with

K = N . The Cauchy distribution shares the heavy-tailed property common to

all non-Gaussian SαS distributions. Thus, results for this case can be intuitively

extended to all other heavy-tailed SαS cases. The simulations are conducted via

the Monte Carlo method. At least 4000 errors are accumulated for BER/SER<

10−3 and 1000 errors otherwise.

In Fig. 6.1 we present the BER curves for the model in (6.2). The per-carrier

constellation is BPSK and z
d
= zIID is a Cauchy random vector. The BER is

averaged over all possible instances of H and the receiver is assumed to have

full knowledge of the channel. It is observed that the error rates tend towards
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the Gaussian error curve as N increases. We see a similar trend for the SER in

Fig. 6.2 when the per-carrier constellation is QPSK. Though not presented here,

similar convergence is expected of other constellations.

Intuitively, we know that the information within an impulse is scattered over

a large bandwidth. This will be larger than the available bandwidth per-carrier.

Increasing N essentially allows the scheme to access a larger bandwidth. In

fact, the increase in bandwidth is directly proportional to N . This allows

the detection process to harness more noise information and thus enhance

performance in non-Gaussian AWSαSN. Increasing N in AWGN does not

improve error performance as the noise information that affects any sub-carrier

is constrained to the latter’s bandwidth. According to this reasoning, one can

expect the detection performance in impulsive noise to converge to a certain

level when sufficient information is harnessed. This, in turn, is accomplished by

increasing the OFDM symbol bandwidth (and therefore N).

For the model in (6.13), we present results in Fig. 6.3 for the Cauchy case

with per-carrier constellation BPSK. We evaluate Hφ at Eb/N0 (dB)= 20dB for

each scheme by minimizing (6.15) via gradient descent. The error performance

is then calculated over all Eb/N0 values with the same Hφ. As with Fig. 6.1,

the error performance becomes better with increasing N . This trend however is

more pronounced in Fig. 6.3.

ThoughHφ significantly influences the error performance in the single-carrier

case, the range of values for which it performs well enhances with increasing

N . We plot the average BER over all possible values of Hφ for N = 2, 4

and 8 in Fig. 6.4. For comparison, the near-optimal error curves in Fig. 6.3

130



6.3. PERFORMANCE ANALYSIS OF BASEBAND OFDM

0 5 10 15 20 25 30 35 40 45 50
10−4

10−3

10−2

10−1

100

B
E
R

Eb/N0 (dB)

Single Carrier

N = 2 Carriers
N = 4 Carriers
N = 6 Carriers
N = 8 Carriers
N = 10 Carriers
Gaussian Error Curve

Figure 6.1: ML detection BER performance averaged over H with Cauchy z
d
=

zIID in (6.2). The curves are generated for various K = N with per-carrier
constellation BPSK.
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Figure 6.2: ML detection SER performance averaged over H with Cauchy z
d
=

zIID in (6.2). The curves are generated for various K = N with per-carrier
constellation QPSK.

corresponding to these values of N are redrawn in Fig. 6.4. We note that as the

number of carriers increase, the difference between the near-optimal and average

error performance decreases substantially. Thus the probability of a random Hφ
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Figure 6.3: ML detection BER performance for various K = N with Cauchy

z
d
= zIID in (6.5). The per-carrier constellation is BPSK and Hφ is optimized for

Eb/N0 (dB)= 20dB.
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Figure 6.4: ML detection BER performance averaged over Hφ with Cauchy

z
d
= zIID in (6.5). The curves are generated for various K = N with per-carrier

constellation BPSK.

producing near-optimal error performance in PSK increases with N . In essence,

the dependence on the constellation structure actually reduces with increasing

N in OFDM. These trends can be extended to the fading model in (6.2) where
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Figure 6.5: ML detection BER performance averaged overH for Cauchy z
d
= zISO

(solid lines) in (6.2). The curves are generated for variousK = N with per-carrier
constellation BPSK and compared with those in Fig. 6.1 (dashed lines).

Hφ is essentially replaced by the random channel matrix H.

In Fig. 6.5, we compare the BER for z
d
= zISO to their counterparts in Fig. 6.1

for the model in (6.2). One can clearly see the performance difference between

the two statistical configurations of z especially when N = 1 and N = 2. Further

still, for N = 4 the error performance is almost identical, implying that zIID and

zISO offer almost equal information about the impulses under ML detection. In

either case, however, there is a remarkable improvement in error performance in

comparison to their single-carrier (N = 1) counterpart. This is clearly observed

even for small N > 1. The increase in performance is attributed to the fact that

the DFT operation spreads the transmitted information amongst the carriers. If

a received sample is affected by an impulse, joint-detection takes advantage of

the spread in information to output more robust estimates of the transmitted

symbol block.
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The results in this section clearly highlight the advantages of OFDM in

AWSαSN. As N increases the error performance of the system improves and

approaches the Gaussian error curve, even for K = N , for both z
d
= zIID and

z
d
= zISO for the channel model in (6.2). Further still, the optimal constellation

structure, which is a significant design characteristic in the single-carrier case,

offers decreasing performance advantage with increasing N .

A problem associated with the ML-detection rules in (6.9) and (6.10) is

that the computational cost increases exponentially with K. This is not an

issue when K is small. In (6.9), the issue is further compounded due to the

unavailability of closed-form SαS PDFs. Therefore, estimating x(1) for large K

becomes computationally inefficient and eventually, intractable. Further still,

one needs to estimate α and δ associated with zn before ML detection can be

truly applied. In the next section, we lay out an approach that is not only

unhampered by these problems but (under some constraints) results in near-ML

performance when K is large.

6.4 Baseband OFDM Receiver Design

Our analysis will be primarily based on z
d
= zIID. We use the results to comment

on the z
d
= zISO case as well.

6.4.1 Problem Formulation

Instead of performing detection directly in (6.9), one can first try to evaluate

soft-estimates of x(1). The detection stage may then be employed subsequently.
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We can modify (6.9) to get the ML estimate of x(1):

x̂(1) = arg min
μ∈CK

N∑
n=1

− log fz(yn − āHnH̄μ). (6.18)

Do note how μ spans the entire C
K space. By using a change of variables

γn = yn − āHnH̄μ, we can convert the unconstrained problem in (6.18) into a

constrained one with linear equalities:

x̂(1), ẑ = arg min
μ,γ

∑N
n=1− log fz(γn)

s.t y = ĀHH̄μ+ γ.

(6.19)

Here γn is the nth element of γ ∈ C
N . The vector γ = ẑ is an estimate of z, and

along with μ = x̂(1), minimizes the cost function in (6.19). As any one-to-one

mapping of the constraints (or cost function) does not influence the minimization

process [78], we may express (6.19) as

x̂(1), ẑ = arg min
μ,γ

∑N
n=1− log fz(γn)

s.t Ay = AĀHH̄μ+Aγ.

(6.20)

From the equalities in (6.4), we can further simplify (6.20) to

x̂(1), ẑ = arg min
μ,γ

∑N
n=1− log fz(γn)

s.t Āy = H̄μ+ Āγ

¯̄Ay = ¯̄Aγ.

(6.21)
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Do note that there are two sets of equalities in (6.21); the first consists of the

data vector and the latter just the nulls. We can express x̂(1) explicitly in terms

of x(1) and the estimation error e. From (6.3), y = ĀHH̄x̂(1) + ẑ, so

x̂(1) = H̄−1Ā (y − ẑ)

= x(1) + H̄−1Ā (z− ẑ)︸ ︷︷ ︸
estimation error

= x(1) + e. (6.22)

ML estimation theory in reference to stable distributions and their

parameterizations have been covered well in [50], [97], [98]. Under certain

regularity conditions, the limiting properties generally associated with ML

estimates extend to stable parameters: they are efficient, consistent and

asymptotically normal [99]. In the limit N → ∞, e is a Gaussian vector with

independent real and imaginary components, and is given by

e ∼ CN (0N×1,
2δ2z
I(0)

(H̄HH̄)−1), (6.23)

where I(0) is the Fisher information of the location parameter provided by

one real noise sample with distribution S(α, 1) [100]. A proof is provided in

Appendix-A.3. Given (6.22) and (6.23), the optimal detection rule is

x́(1) = arg min
ζ∈M

‖H̄(x̂(1) − ζ)‖

= arg min
ζ∈M

K∑
k=1

|x̂
k − ζk|2. (6.24)
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where x̂(1) = [x̂
1 , x̂
2 , . . . , x̂
K ]
T. Analogous to (6.11), the minimization in (6.24)

is equivalent to minimizing per-carrier and is therefore computationally easy

to perform. As N is finite in practical OFDM systems, (6.23) may not truly

represent the distribution of e. Moreover, as α decreases, the convergence to

(6.23) is increasingly slower [50]. However, the reason for generating soft-values

in the first place is to allow for low-complexity at the detection stage. Also, the

approximation in (6.24) offers good error performance for practical values of α

and moderately large N . This is justified by the BER results in our simulations

- see Section 6.4.3.

In the Gaussian case, the ML estimate of x(1) is evaluated from (6.11) by

substituting ζ with μ ∈ C
K and is in analytical form:

x̂(1) = H̄−1ý

= x(1) + H̄−1ź︸ ︷︷ ︸
e

. (6.25)

This is also the linear least square solution of (6.2). From the discussion on

(6.6), ź is a Gaussian vector. Therefore,

e ∼ CN (0N×1, E[eeH])

= CN (0N×1, 4δ
2
z(H̄

HH̄)−1)

for all N . Given (6.25), one can then employ isotropic (per-carrier) detection

via the rule in (6.24). This overall process is equivalent to the joint-detection

rule in (6.11).
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As discussed in Chapter 3, fz(·) is generally not in closed form. Further still,

the cost function in (6.21) is not convex as fZ(·) ≈ Dα,δz |·|−α−1 at the tails where

Dα,δz is a positive constant dependent on α and δz [8], [9]. Therefore, solving

(6.21) (even for small N) may not be practically feasible. From generalized ML

estimation (or M-estimation) theory [65], fz(·) in (6.21) is replaced by a more

general function ρ(·) ∈ R
+, i.e.,

x̂(1), ẑ = arg min
μ,γ

∑N
n=1− log ρ(γn)

s.t Āy = H̄μ+ Āγ

¯̄Ay = ¯̄Aγ.

(6.26)

To achieve near-ML performance, ρ(·) should approximate fz(·) very well.

Though the efficiency of the estimator reduces, choosing a suitable ρ(·) may

significantly lessen the computational cost of evaluating x̂(1). This is discussed

next.

On a final note, to accommodate the pilot symbols in the formulation,

one needs to add the additional equalities APy = HPxP + APγ to (6.26).

Analogous to the constructions of Ā and x(1), A
H
P consists of the columns of

AH corresponding to the locations of the pilot symbols xP in x. Similarly, HP is

the diagonal submatrix of H with entries corresponding to the locations of the

elements of xP in x.

6.4.2 The Lp-norm as a Cost Function

In the literature, the Lp-norm for p < 2 has been used effectively to counter

impulsive noise with IID samples [9],[10],[57]. Substituting − log ρ(·) = |�{·}|p+
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|�{·}|p in (6.26), we get

x̂(1), ẑ = arg min
μ,γ

‖γ‖p

s.t Āy = Hμ+ Āγ

¯̄Ay = ¯̄Aγ

(6.27)

where ‖·‖p denotes the Lp-norm. The Lp-norm for 1 ≤ p ≤ 2 is a convex function

and may be readily solved via low-complexity numerical techniques [78]. From

another perspective, (6.27) arises from approximating fz(·) by

fz(·) ≈ fG(�{·})fG(�{·})

= C2
p,δz exp

(
−|�{·}|p + |�{·}|p

δpz

)
, (6.28)

where

fG(x) = Cp,δz exp

(
−|x|p
δpz

)
(6.29)

is the zero-mean univariate PDF of a generalized Gaussian distribution (GGD)

with scale δz, shape parameter p ∈ R
+ and Cp,δz is a positive constant dependent

on p and δz. The GGD is heavy-tailed for p < 2.

Unlike (6.21), it is observed that the cost function in (6.27) is not dependent

on δz. As the qth order moment of an SαS distribution is finite if and only if

q < α [9], (6.28) converges (in the ergodic-sense) to a finite value for p < α.

For the problem to be simultaneously convex and convergent, 1 ≤ p < α. It

is desirable for p to lie within this range. This is justifiable too as α ≥ 1.5 is
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typically a good fit for practical impulsive noise scenarios [3], [4].

From the discussion in Section 6.2, one aspect of z
d
= zIID is that the noise

realizations will be sparse. Drawing insights from compressed sensing (CS)

theory [77], [101], the L1-norm recovery of z given the N −K complex samples

¯̄Ay is

ẑ = arg min
γ

‖γ‖1

s.t ¯̄Ay = ¯̄Aγ.

(6.30)

From (6.3) and (6.4), one can subsequently evaluate the soft-estimate of the

OFDM symbol:

x̂(1) = H̄−1Ā (y − ẑ) . (6.31)

If the CS approach is compared with (6.27) for p = 1, we see that though both

may be readily solved via linear programming, the latter has more computational

cost due to the added equality constraints. Do note that the CS or Lp-norm

estimation schemes do not require any information about α and δz and are

therefore non-parametric. However, p may be optimized as a function of α in

the latter. Although (6.27) contains added information and z is not truly sparse

as the probability of any zn ∀ n ∈ {1, 2, . . . , N} to be equal to zero is infinitely

small, our simulations showed that both techniques perform at par for any K

and N . For the extreme case K = N , ẑ = 0N×1 in (6.30) and therefore (6.31) is

equivalent to (6.25). The application of CS in OFDM to combat impulsive noise

is not a new concept [36]. However, its performance and relationship with the
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ML detection problem have not been discussed before.

Though we have highlighted computationally efficient ways of evaluating x̂(1)

via (6.27) and (6.30), there is still the problem of detecting the transmitted

OFDM symbol from (6.22). In the ML estimation case, we know that

e is asymptotically normal with distribution (6.23). Therefore, H̄e should

approximate a Gaussian vector with IID real and imaginary components for large

N . If the L1-norm minimization is employed, we see that H̄e is a near-Gaussian

vector if (N−K)/N is large enough. We therefore employ the Euclidean detector

in (6.24) to compute BER in the next section.

6.4.3 Performance Analysis

Though ML joint-detection offers much better performance in OFDM over

a single-carrier system, it is important to know how the CS or L1-norm

minimization problem compare. Do note that one can directly apply the

joint-detection rule in (6.9) for small K as computational complexity is

low. Therefore, we only test the proposed estimation approaches when K is

sufficiently large.

In Fig. 6.6, we present the BER performance for z
d
= zIID with real and

imaginary components for α = 1.5 and N = 32. The results are plotted for

varying null carriers. The percentage of nulls is given by N−K
N × 100. The

Lp-norm estimation scheme in (6.27) with p = 1 was employed with Euclidean

detection. Our simulations further revealed that estimation with the L1-norm

and the CS approach offers almost similar performance over a variety of K and

N combinations. For clarity, we plot only one BER curve instead of two for each

141



CHAPTER 6. OFDM IN IMPULSIVE NOISE

0 5 10 15 20 25 30 35 40
10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
E
R

K = 1

50% Nulls

25% Nulls

10% Nulls

K = N

L1 Detection (Single-Carrier)

Gaussian Error Curve

Figure 6.6: L1-norm BER performance for BPSK-OFDM averaged over H̄ for

z
d
= zIID and α = 1.5. The curves are generated for N = 32.
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Figure 6.7: L1-norm BER performance for BPSK-OFDM averaged over H̄ for

z
d
= zIID and α = 1.5. The curves are generated for N = 256.

combination of K and N . As anticipated, the detection performance improves

with the number of null carriers. Using the same approach we also plot for

N = 256 and N = 512 in Figs. 6.7 and 6.8, respectively, for α = 1.5.

To see the range in which the BER results lie, we plot the best (K = 1) and
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Figure 6.8: L1-norm BER performance for BPSK-OFDM averaged over H̄ for

z
d
= zIID and α = 1.5. The curves are generated for N = 512.

the worst (K = N) cases as well. The K = N scenario implies invoking the

Euclidean detection rule in (6.11), while K = 1 corresponds to a single-carrier

system with N samples. In all plots, we observe that the K = N case worsens

as N increases. Also, for 10%, 25% and 50% of null carriers, the BER remains

the almost the same irrespective of N . For comparison, we have plotted the

Gaussian error curve and the BER of a single-carrier system (K = N = 1)

under L1 detection in all figures.

Though the CS approach makes decoding the OFDM signal feasible, one can

see that a certain number of nulls are required for the system to outperform its

single-carrier counterpart. On the contrary, as seen in Fig. 6.1, ML detection

outperforms a single-carrier system even for K = N . The trends seen for the

α = 1.5 and α = 1 case may be extended intuitively to any α �= 2 as z is sparse

in such scenarios.
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6.5 Receiver Characteristics

Till now we have analyzed computationally-efficient techniques for robust

detection of baseband OFDM signals in non-Gaussian AWSαSN. In this section,

we highlight the design constraints that need to be considered to ensure z
d
=

zIID. We also show that linear passband-to-baseband conversion is actually

sub-optimal in impulsive noise and reduces the operational SNR of the system.

We propose a way around this in Section 6.6.

6.5.1 Passband-to-Baseband Conversion

The continuous-time passband transmit-receive equation for an OFDM signal is

given by

r(t) = s(t) + w(t) (6.32)

where r(t), s(t) and w(t) are the received signal, the passband OFDM signal and

a real AWSαSN process, respectively. The relationship of s(t) with its baseband

counterpart s̃(t) is

s(t) = �
{
s̃(t)ej2πfct

}
(6.33)

where

s̃(t) =

N/2−1∑
k=−N/2

√
2

T
hkxke

j2πkt
T , (6.34)
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T is the time period of the N -carrier OFDM symbol block and fc is the carrier

frequency. For simplicity of notation, N is assumed to be even. In (6.2), xk is

the symbol mapped onto the kth sub-carrier ∀ k ∈ {0, 1, . . . , N − 1}. To make

this definition consistent with that in (6.34), we define xk = xl and hk = hl if

k ≡ l (mod N) ∀ k, l ∈ Z, i.e., xk and hk are periodic in k with period N . As

before, we assume K data carriers and N −K nulls. Also, the passband signal

energy per-symbol Es is related to Ex as follows

Es = 1

K

∫ T

0
E[|s(t)|2]dt = 1

2K

∫ T

0
E[|s̃(t)|2]dt

=
1

K

N/2−1∑
k=−N/2

E[|hk|2]E[|xk|2]

= Exσ2h. (6.35)

The transmitted signal in (6.2) can be obtained by scaling and sampling s̃(t).

From the properties of the IDFT, we have

aHnHx =
N−1∑
k=0

1√
N
hkxke

j2πkn
N

=

N/2−1∑
k=−N/2

1√
N
hkxke

j2πkn
N

=

√
T

2N
s̃(nT/N) (6.36)

∀ n ∈ {0, 1, . . . , N − 1}. To allow downsampling via an integer factor, T should

be restricted to a multiple of N and this is therefore implicitly assumed.

To ensure undistorted passband transmission, fc has to be greater than the

largest absolute frequency component in (6.34). This is the sum of N/(2T ) (the
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largest |k|/T in (6.34)) and a factor proportional to the bandwidth per-carrier

(1/T ). For simplicity, we choose the factor to be equal to 1. Therefore,

fc >

(
N

2
+ 1

)
1

T
. (6.37)

The nulls in x are typically placed at the ends of the index set k ∈

{−N/2, . . . , N/2 − 1} [46]. The bound in (6.37) can be relaxed depending on

the number of nulls. However, it does guarantee undistorted transmission for all

K ≤ N .

From Section 4.2, to attain z
d
= zIID, the passband signal needs be discretized.

This is a difficult task to do as fc is large in practical wireless systems. However,

in scenarios such as underwater acoustic communications, operational values of

fc are much lower and therefore this approach is feasible [4], [82]. We briefly

discuss the design constraints required to get z
d
= zIID and extend the results to

the z
d
= zISO case.

Denoting the passband sampling frequency by fs = λ/T , where λ ∈ Z
+, the

discrete-time equation corresponding to (6.32) can be written as

r[n] = s[n] + w[n] (6.38)

∀ n ∈ {0, 1, . . . , λ − 1}, where w[n]
d
= W ∼ S(α, δw). The abridged square

bracket notation to denote a discrete signal, i.e., r[n] = r(n/fs). We also assume
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that the Nyquist criterion is met. Mathematically, this is given by

fs > 2

(
N
2 − 1

T
+

1

T
+ fc

)
= 2fc +

N

T

⇒ λ > 2fcT +N. (6.39)

The discretized versions of (6.33) and (6.34) are

s[n] = �
{
s̃[n]e

j2πfcn
fs

}
(6.40)

and

s̃[n] =

N/2−1∑
k=−N/2

√
2fs
λ
hkxke

j2πkn
λ , (6.41)

respectively. As discussed in Section 4.1, to get s̃[n] from s[n], one needs to

multiply the latter with a complex exponential, scale by a factor of 2 and pass

the result through a low-pass filter. Precisely,

s̃[n] = 2v[n] ∗
(
s[n]e

− j2πfcn
fs

)
. (6.42)

where v[n] ∀ n ∈ {0, 1, . . . , L − 1} is the L-tap impulse response of the lowpass

filter and ∗ is the linear convolution operator. Only the in-band information is

retained, therefore the effective frequency response of v[n] lies in [−N
2λ ,

N
2λ ]. From

(6.36), we have

aHnHx =

√
λ

2fsN
s̃[λn/N ] (6.43)
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∀ n ∈ {0, 1, . . . , N − 1}. To allow downsampling by an integer factor, λ needs to

be a multiple of N , i.e., gcd(N,λ) = N . This is implicitly assumed.

6.5.2 Design Constraints

As the passband-to-baseband conversion process is a linear system, analogous to

(6.41) and (6.43), we get

w̃[n] = 2v[n] ∗
(
w[n]e

− j2πfcn
fs

)
(6.44)

∀ n ∈ {0, 1, . . . , λ− 1} and

zn =

√
λ

2fsN
w̃[λn/N ] (6.45)

∀ n ∈ {0, 1, . . . , N − 1}, respectively. To ensure zn has IID real and imaginary

components, from (6.45), it is sufficient that w̃[n] has IID real and imaginary

components. For this to hold, the condition fs = 4fc must be met for α �= 2.

This has been discussed in Section 4.2.3. We can see this by substituting fs = 4fc

in (6.44) to get

w̃[n] = 2v[n] ∗
(
w[n]e−

jπn
2

)
(6.46)

and observing that

�{w̃[n]} = 2v[n] ∗ w[n] cos(πn/2) and (6.47)

�{w̃[n]} = −2v[n] ∗ w[n] sin(πn/2). (6.48)
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As cos(πn/2) is non-zero only when sin(πn/2) = 0 ∀ n ∈ Z and vice-versa, we

note that the real and imaginary components of w̃[n] are generated from two

dissimilar sample sets of w[n]. Therefore, �{w̃[n]} and �{w̃[n]} are mutually

independent ∀ n ∈ {0, 1, . . . , N − 1}.

In Section 4.2.3, an intuitive argument was given to explain that the

expressions in (6.47) and (6.48) are statistically identical for all n. We provide

a proof in Appendix A.4 and show that

�{w̃[n]} d
= �{w̃[n] d

=
2

21/α
W

(
L−1∑
m=0

|v[m]|α
)1/α

(6.49)

for fs = 4fc.

Though fs = 4fc ensures that the real and imaginary parts of zn are IID, it

does not guarantee independence within the components of z. From (6.45), a

sufficient condition for this to hold is the mutual independence of w̃[λn/N ] ∀ n ∈

{0, 1, . . . , N − 1}. As w[n] are samples of an AWSαSN process, from (4.35) and

(6.45) we see that the condition is satisfied by constraining L to

L ≤ λ/ gcd(N,λ) = λ/N. (6.50)

Do note that the filter order and its cutoff both depend on λ/N .

As discussed in Section 6.2, for z
d
= zISO, the passband-to-baseband

conversion needs to be performed in the continuous-time domain. Also, from the

discussion in Section 4.2.3, the fs = 4fc constraint does not apply here. However,

to attain independence within the components of z the impulse response v(t)
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needs to be limited to the time interval t ∈ [0, T/N ]. To attain this result, we note

that the passband-to-baseband conversion block is a linear system. Therefore,

from (6.36)

zn =

√
T

2N
w̃(nT/N) (6.51)

Analogous to the relationship between (6.45) and (6.50), the constraint on v(t)

follows directly from (6.51).

6.5.3 SNR Degradation

The passband-to-baseband process is lossy in impulsive noise. Even if z
d
= zIID,

the process is still sub-optimal. This can be quantified as SNR degradation. We

can evaluate the distribution of zn from (3.7), (6.45) and (6.49):

�{zn} d
= �{zn} d

=
1

21/α

√
2λ

fsN
W

(
L−1∑
m=0

|v[m]|α
)1/α

(6.52)

∀ n ∈ {0, 1, . . . , N − 1}. From (3.7) and (6.52) we have

δz =
1

21/α

√
2λ

fsN
δw

(
L−1∑
m=0

|v[m]|α
)1/α

(6.53)

Let V (f) be the discrete-time Fourier transform (DTFT) of v[n]. As V (f) is

(effectively) non-zero (with unit magnitude) only in the interval f ∈ [−N
2λ ,

N
2λ ],
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we have from Parserval’s theorem:

L−1∑
n=0

|v[n]|2 =
∫ 1/2

−1/2
|V (f)|2df ≈ N

λ

⇒
(

L−1∑
n=0

|v[n]|2
)1/2

≈
√
N

λ
. (6.54)

This allows us to express (6.53) as

δz ≈ 1√
fs
δw

21/2
(∑L−1

m=0 |v[m]|α
)1/α

21/α
(∑L−1

m=0 |v[m]|2
)1/2 (6.55)

or from (A.23) and (A.25),

δz ≈ 1√
fs
δw

(∑�L−1
2

�
m=0 |v[2m]|α

)1/α

(∑�L−1
2

�
m=0 |v[2m]|2

)1/2
. (6.56)

Defining ṽ = [v1, v2, . . . , v�L−1
2

�+1]
T such that vm+1 = v[2m] ∀ m ∈

{0, 1, . . . , L−1
2 �}, we have

δz ≈ 1√
fs
δw

‖ṽ‖α
‖ṽ‖2 . (6.57)

Substituting this back into (6.16), we get

Eb
N0

=
Exσ2hfs

4δ2w log2M
× ‖ṽ‖2

‖ṽ‖α = SNR× ‖ṽ‖2
‖ṽ‖α (6.58)
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or in dB scale

10 log10
Eb
N0

= SNR (dB)− 20 log10
‖ṽ‖α
‖ṽ‖2 . (6.59)

As 4δ2w/fs = N0 for the Gaussian case, we term 4δ2w/fs as the pseudo-PSD of

the passband AWSαSN process. For a given pseudo-PSD, as observed in (6.58),

Eb/N0 depends on v[n], α and L. As ‖ṽ‖α ≥ ‖ṽ‖ for any ṽ ∈ R
�L−1

2
�, the latter

term in (6.59) is always positive and therefore causes reduction in the actual

SNR, i.e., SNR ≥ Eb/N0. Thus, the linear passband-to-baseband conversion

process actually reduces the true SNR. This is analogous to the findings in the

single-carrier case leading to the expression in (5.85). To visualize this effect, let

v[n] = 1
L ∀ n ∈ {0, 1, . . . , L− 1}, i.e., the low-pass filter computes the average of

the samples that fall into the convolution window. This results in

20 log10
‖ṽ‖α
‖ṽ‖2 = 10

(
2

α
− 1

)
log10

⌊
L+ 1

2

⌋
. (6.60)

We see that the SNR degradation varies logarithmically with
⌊
L+1
2

⌋
and linearly

with 2/α−1. Table 6.1, lists down outcomes of (6.60) for various α and L. Even

for α close to 2, there is at least a loss of 1 dB. On a final note, we observe that

for α = 2, the latter term in (6.59) is equal to zero for any ṽ. This signifies that

the SNR depends only on the signal and noise powers in AWGN [1].

On the lines of the discussion on (5.84) and (5.85), the SNR term in (6.59)

is a measure of Eb/N0. We call it SNR to differentiate between the definition in

(6.16).
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Table 6.1: Tabulated Values for (6.60).

L

20 40 100 200

α

1 10.0 13.0 17.0 20.0

1.2 6.7 8.7 11.3 13.3

1.4 4.3 5.6 7.3 8.6

1.6 2.5 3.3 4.2 5.0

1.8 1.1 1.4 1.9 2.2

6.6 Passband Estimation and Detection

Instead of conversion to baseband, we can estimate soft-values of x(1) directly

from the passband samples. By doing so, we can completely avoid the SNR loss

in passband-to-baseband conversion. Further still, the constraints that induce

sparsity in z (discussed in Section 6.5.2) do not need to be enforced.

We define xk = xl and hk = hl if k ≡ l (mod λ), i.e., hk and xk are periodic

in k with sample period λ. As before, there are K data-carriers but now with

λ−K null-carriers. We fix the data location set Lx to {−K/2, . . . ,K/2−1} and

fc = ξ/T where ξ ∈ Z
+. From (6.40), (6.41) and the properties of the IDFT

s[n] = �
⎧⎨
⎩
√

2fs
λ

K/2−1∑
k=−K/2

hkxke
j2π(k+ξ)n

λ

⎫⎬
⎭

= �
⎧⎨
⎩
√

2fs
λ

λ/2−1∑
k=−λ/2

hkxke
j2π(k+ξ)n

λ

⎫⎬
⎭

= �
{√

2fs
λ

λ−1∑
k=0

hkxke
j2π(k+ξ)n

λ

}
. (6.61)
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On applying a change of variables from k + ξ to k in (6.61), we have

s[n] = �
{√

2fs
λ

λ−1∑
k=0

hk−ξxk−ξe
j2πkn

λ

}
. (6.62)

As xk, hk and e
j2πkn

λ are periodic in k with period λ,

λ−1∑
k=0

h∗k−ξx
∗
k−ξe

− j2πkn
λ =

λ−1∑
k=0

h∗k−ξx
∗
k−ξe

j2π(λ−k)n
λ

=
λ−1∑
k=0

h∗λ−k−ξx
∗
λ−k−ξe

j2πkn
λ . (6.63)

Using (6.63), we can express (6.62) as

s[n] =

√
fs
2λ

λ−1∑
k=0

(
hk−ξxk−ξe

j2πkn
λ + h∗k−ξx

∗
k−ξe

− j2πkn
λ

)

=

√
fs
2λ

λ−1∑
k=0

(
hk−ξxk−ξ + h∗λ−k−ξx

∗
λ−k−ξ

)
e

j2πkn
λ . (6.64)

Let D be the anti-diagonal λ×λ matrix with all non-zero elements equal to one.

Defining the block diagonal matrix

Hλ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0ξ−K
2

0 · · · 0

0 H̄ · · · 0

... 0λ−2ξ−K+1
...

DH̄∗D

0 · · · 0ξ−K
2
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.65)
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and the λ× 1 vector

xλ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(ξ−K
2
)×1

x(1)

0(λ−2ξ−K+1)×1

Dx∗
(1)

0(ξ−K
2
−1)×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.66)

we can represent (6.64) in the following vector form:

s =

√
fs
2
AH

λHλxλ. (6.67)

Here Aλ is the unitary λ-point DFT matrix. Though Hλ and xλ are complex,

do note that s ∈ R
λ. Finally, using (6.67) we can write (6.38) as

r =

√
fs
2
AH

λHλxλ +w, (6.68)

where r[n] and w[n] ∀ n ∈ {1, 2, . . . , λ − 1} are the nth elements of r and w,

respectively. The problem in (6.68) is similar to that in (6.2). The difference lies

in the inherent structure of Hλ and xλ. We also note that r,w ∈ R
λ. Denoting

the elements of xλ by the λ-tuple [xλ0 , xλ1 , . . . , xλλ−1
]T, we plot |xλk

| against k

in Fig. 6.9 for added clarity. From Fig. 6.9, we see that the constraints

ξ >
K

2
+ 1 (6.69)
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Figure 6.9: Placement of symbols and nulls in xλ.

and

λ > 2ξ +K, (6.70)

ensure that the sidebands do not overlap and therefore need to be enforced to

guarantee non-lossy transmission.

Analogous to (6.30), the CS estimate of w is given by

ŵ = arg min
γ∈Rλ

‖γ‖1

s.t ¯̄Aλr = ¯̄Aλγ.

(6.71)

where ¯̄Aλ ∈ C
(λ−2K)×λ consists of the columns of A∗

λ corresponding to the

locations of nulls in xλ. Given ŵ, a modified passband equation may be
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constructed from (6.68)

r̃ =

√
fs
2
AH

λHλxλ + (w − ŵ). (6.72)

If λ − 2K is greater than a certain threshold, the recovery of w via (6.71) will

be good. Typically, λ − 2K will be of large value. Following a similar line of

reasoning as in Section 6.4.2, w − ŵ can be approximated well by a Gaussian

distribution with IID components. Thereafter, r̃ may be passed through a

linear passband-to-baseband conversion block to construct (6.2) with isotropic

Gaussian z. The ML detector in (6.11) may then be subsequently employed to

generate hard-estimates of the transmitted symbols. Alternatively, (6.72) can

be normalized by
√

fs
2 and multiplied by H−1

λ Aλ from the left to form

ŕ = Hλxλ + é (6.73)

where ŕ =
√

2
fs
Aλr̃ and é =

√
2
fs
Aλ(w − ŵ). Do note that é ∈ C

λ is

approximately Gaussian as it is a linear transformation of w − ŵ. Further

still, é has IID components due to the orthonormal columns of Aλ. Precisely,

é ∼ CN (0λ×1, 2δ
2
éIλ), where 2δ2é is the variance of each component of é.

Therefore, we can remove the nulls and express (6.73) in terms of x(1) and the

corresponding observed and received components:

⎡
⎢⎢⎣ŕ1
ŕ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ H̄x(1)

DH̄∗x∗
(1)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣é1
é2

⎤
⎥⎥⎦ , (6.74)
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Figure 6.10: L1-norm BER performance for BPSK-OFDM averaged over H̄ for
α = 1.5. The curves are generated for λ = 256 and decoding was performed
directly on the passband samples.

where ŕ1, ŕ2, é1, é2 ∈ C
K . Finally, the soft-estimate of x(1) can be evaluated as

x̂(1) = H̄−1 ŕ1 +Dŕ∗2
2

= x(1) + H̄−1 é1 +Dé∗2
2︸ ︷︷ ︸

e

(6.75)

where e ∼ CN (0K×1, 2δ
2
é(H̄

HH̄)−1). This will be followed by the ML detection

rule in (6.24).

In contrast to the baseband approach, there have been no assumptions about

the relationship between the fc and fs. Further still, by performing operations in

the passband, there is no SNR degradation due to linear passband-to-baseband

conversion. Also, as λ is typically greater than 2K, the CS algorithm will have

more samples to work with and therefore w will be a better estimate. On the

downside, passband sampling is difficult to perform when fc is large. This is
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augmented by the fact that as λ increases, the DFT and CS operations increase in

complexity as well. To sum up our discussion, we present the BER performance

of BPSK-OFDM for N = 256 with varying nulls in Fig. 6.10. The trends are

similar to those encountered in Fig. 6.7. If the measure in (6.59) is used, then the

BER performance may be increased arbitrarily over its baseband counterpart by

varying ṽ. Therefore, we plot against

SNR (dB) = 10 log10
Exσ2hfs

4δ2w log2M
. (6.76)

This measure is analogous to (5.87) in the single-carrier case. To highlight the

increase in performance over a system that employs baseband conversion, we

also plot the BER for the latter in Fig. 6.10 for λ = 256 and 10% nulls for

α = 1.5. We employ a 40-tap low pass filter with impulse response v[n] =

1
40 ∀ n ∈ {0, 1, . . . , 39}. From (6.60), the loss in SNR due to baseband conversion

is approximately 4.3 dB. The advantage of passband processing can be clearly

appreciated in Fig. 6.10.

6.7 Summary

We have investigated the performance of ML detection for uncoded OFDM in

passband AWSαSN. It was assumed that the passband-to-baseband conversion

scheme maintained independence between the components of the baseband noise

vector. One novel result is that the error performance improves substantially by

increasing the number of carriers in an OFDM system. This is depicted for

channels with zero-Doppler and Rayleigh block fading. When the number of

carriers is small, ML-detection can be performed with low computational cost.
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This offers much better error performance over a single-carrier system. In a

pure AWSαSN scenario, the rotation angle of the constellation has a significant

influence in the single-carrier case. It is shown that the optimal rotation angles

(per-carrier) need not to be evaluated for large carrier schemes. In fact, any

random rotation may offer near-optimal error performance with high probability.

One significant disadvantage of ML detection is that the computational

cost grows exponentially with the number of carriers. In recent years, CS

theory has garnered much attention. One of its potential applications lies

in the estimation and removal of impulses within an impulsive noise process

as the latter is sparse. The relationship between the CS approach with the

ML-estimation/detection problem has been discussed. We highlighted the

pros and cons of this approach for OFDM in AWSαSN and compared the

BER performance with the ML detection results. The constraints within a

linear passband-to-baseband conversion block that guarantee sparsity at the

baseband level has also been discussed. As in the single-carrier case, linear

baseband conversion is shown to be a lossy process in AWSαSN and causes

SNR degradation. This can be avoided by directly invoking a noise cancellation

approach on the passband noise samples.
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Conclusions & Future Research

7.1 Conclusions

In some practical scenarios, impulsive noise is the dominant noise process in

the available transmission spectrum. Gaussian-based techniques perform poorly

in such environments. This is primarily due to the fact that impulsive noise

distributions are heavy-tailed.

In our work, we have modeled the passband impulsive noise process as

AWSαSN. If passed through a linear passband-to-baseband conversion block, the

resultant complex noise samples have been shown to take a number of anisotropic

but symmetric star-shaped bivariate SαS distributions. The exact statistics

depend on the system parameters. Conventionally, passband-to-baseband

conversion is performed in continuous-time and is optimized for AWGN. This

results in decoding the I and Q components of the passband signal separately.

Within this framework, we proposed a sampling rule that ensures independence

between the I and Q channels for AWSαSN for all α. The resulting baseband

distribution was shown to be anisotropic and offered the best error performance

over all possible bivariate SαS noise configurations.

To harness the true potential of the aforementioned scheme, we have proposed

new constellations and a corresponding design methodology. The advantage
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of the resulting system over a conventional continuous-time implementation of

the passband-to-baseband conversion block is significant. With the exception

of the Gaussian and Cauchy cases, the PDF of an SαS distribution does

not exist in an analytic form. Though the PDF may be evaluated via

efficient numerical techniques, a closed-form approximation is required in some

instances. For a single-carrier system employing optimized constellations, we

analyzed various closed-form detectors and compared them to ML detection.

If the linearity in passband-to-baseband conversion is sacrificed, the error

performance of a single-carrier system was shown to improve further. This

was highlighted by evaluating soft-estimates of the transmitted symbol from

the passband samples via various non-linear estimation schemes. Alternatively,

one may perform joint-detection directly on the passband samples. Though more

computationally intensive due to the high-frequency sampling, this provides a

Linear passband-to-baseband conversion is found to be a lossy process. We have

shown that there is significant SNR reduction in this case.

We have further presented ML detection results for a baseband OFDM

system contaminated with SαS noise. Depending on the passband-to-baseband

conversion process, the complex baseband noise vector can take up a number

of statistical configurations. By ensuring the components of the vector are

independent, the sparsity of the passband AWSαSN process is retained at

the baseband level. We have proposed important rules within a linear

passband-to-baseband process that ensure the noise vector is sparse. For this

case, we have shown that ML detection performance improves as the number

of carriers increases for a channel with zero-Doppler and Rayleigh block fading.
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This has been observed even if all carriers are reserved for data. The advantage

over a single-carrier system is apparent, even when the number of carriers is

small. Further still, the dependence on the optimal constellation reduces as the

number of carriers increases.

ML detection is feasible to implement when the number of carriers is

small. However, the computational cost grows exponentially with the number of

carriers. Therefore, one has to revert to sub-optimal techniques for large OFDM

systems. Instead of employing joint-detection, we have evaluated soft-estimates

of the transmitted OFDM symbol block followed by carrier-wise detection. We

have discussed estimators under the framework of M-estimation theory and

have shown CS estimation as a special case. Similar to the single-carrier case,

linear passband-to-baseband conversion is shown to incur SNR reduction at the

receiver. This can be avoided using an estimation plus detection scheme directly

on the passband samples.

7.2 Future Research

One of the main challenges in engineering is to bring theoretical work to

production. Though the motivation of using AWSαSN stems from the good

statistical fit it provides to practical impulsive noise data, the schemes proposed

in this thesis need to be tested in practical systems operating in impulsive noise.

In Section 5.7, we briefly discussed a practical implementation for good PSK

maps in impulsive noise. The proposed scheme rotated the constellations at the

receiver by introducing a phase delay between the clocks at the transmitter and

receiver. Likewise, future research could focus on the implementability of the
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schemes proposed in this thesis. This would be followed by experimental trials

in impulsive noise environments.

The schemes that we have analyzed are all single-input single-output systems.

In recent years, MIMO schemes have garnered much attention. This is due

to the added performance they offer in terms of diversity gain (robustness

against fading) and space-time coding. In the literature, MIMO systems are

conventionally analyzed for Gaussian noise. Performance analysis is done

in terms of second-order moments of the noise samples, which are infinite

in non-Gaussian stable models. In Chapter 6, we have discussed OFDM

performance in impulsive noise. Due to the correlation within the noise samples

affecting an OFDM symbol block, ML detection is able to enhance error

performance relative to its single-carrier counterpart. It would be interesting

to see how both mechanisms could be combined to provide robustness against

impulsive noise and fading.

Another logical step is to develop and analyze receivers operating in

time-varying channels in the presence of impulsive noise. Such a channel

distorts the transmitted signal by introducing a Doppler shift/spread [1], [2].

To compensate for this, the channel needs to be estimated periodically at the

receiver. As highlighted many times in this thesis, techniques that have been

optimized for Gaussian noise models perform poorly in the presence of impulsive

noise. The channel estimates will be error-prone unless the receiver is specifically

designed for such scenarios. Therefore, new robust mechanisms need to be

employed at the receiver. The analysis and techniques discussed in this thesis

will be helpful to explore this area.
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Till now we have considered only uncoded schemes in this thesis. In

the current literature, there is a lot of information on error correction codes.

However, research on error control coding for impulsive noise channels is still in

its initial phase. In OFDM, the DFT operation spreads a corrupting impulse

across the carriers. This results in a colored noise vector that is heavy-tailed.

A potential future direction could focus on developing error control codes that

would take advantage of the correlation between the noise components. The

concepts developed in this thesis would be fruitful in this regard.
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Various Proofs

A.1 Noise Scale Parameters in the Conventional Receiver

Due to the linearity of the receiver, zI
d
= zQ ∼ S(α, δz) in AWSαSN. From (5.18),

we have

zI
d
=

√
2

Eg c(α, ξ, g(t))
∫ T/ξ

0
w(t) cos(2πfct)dt (A.1)

By approximating the integration term with a limiting Riemann sum, we get

zI
d
=

1

fs

√
2

Eg c(α, ξ, g(t))
�Tfs/ξ�−1∑

n=0

w(n/fs) cos(2πfc/fsn)

=

�Tfs/ξ�−1∑
n=0

(
1

fs

√
2

Eg c(α, ξ, g(t)) cos(2πfc/fsn)
)
w(n/fs) (A.2)

as fs → +∞. In this formulation, fs is the passband sampling frequency of the

AWSαSN channel. As w(n/fs)
d
= W ∼ S(α, δw) ∀ n ∈ {0, 1, . . . , Tfs/ξ� − 1},

then using (3.6), (3.7) and (A.2), we can express zI as

zI
d
=

⎛
⎝�Tfs/ξ�−1∑

n=0

∣∣∣∣∣ 1fs
√

2

Eg c(α, ξ, g(t)) cos(2πfc/fsn)
∣∣∣∣∣
α
⎞
⎠1/α

W (A.3)
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The scale parameter of zI can be evaluated from (A.3) (3.7) and (A.2),

δz = δw

⎛
⎝�Tfs/ξ�−1∑

n=0

∣∣∣∣∣ 1fs
√

2

Eg c(α, ξ, g(t)) cos(2πfc/fsn)
∣∣∣∣∣
α
⎞
⎠1/α

=
δw
fs

√
2

Eg c(α, ξ, g(t))
⎛
⎝�Tfs/ξ�−1∑

n=0

| cos(2πfc/fsn)|α
⎞
⎠

1
α

≈ δw

f
(1− 1

α
)

s

√
2

Eg c(α, ξ, g(t))
(∫ T

ξ

0
| cos(2πfct)|αdt

) 1
α

(A.4)

The approximation in (A.4) is justified for fs → +∞. As

∫ T
ξ

0
| cos(2πfct)|αdt =

Γ(1+α
2 )√

πΓ(1 + α
2 )

(A.5)

and c(α, ξ, g(t)) is given in (5.17), we may express (A.4) as

δz =
δw

f
(1− 1

α
)

s

√
2

Eg

(∫ T

0
|g(t)|α dt

) 1
α

(
Γ(1+α

2 )√
πΓ(1 + α

2 )

) 1
α

(A.6)

Using the same approach one can easily evaluate (A.6) from zQ instead of zI in

(A.1).

A.2 SNR Derivation for the Conventional Receiver

As the reference SNR is defined in (5.76) for the discretized linear receiver, we

need to express it in terms of δz in the conventional receiver. We slightly abuse

notation by equating (A.6) to δc. We reserve δz for the baseband scale parameter

in the discretized linear receiver. As ξ is assumed to be large, we may express
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δz in (5.41) as

δz =
δw
fs

(
4ξ−1∑
n=0

|�I [n]|α
) 1

α

=
δw
fs

√
2

Eg

(
2ξ−1∑
n=0

|g[2n]|α
) 1

α

≈ δw
fs

√
2

Eg

(
fs
2

∫ T

0
|g(t)|αdt

)1/α

=
δw

f
(1− 1

α
)

s

2(
1
2
− 1

α
)√Eg

(∫ T

0
|g(t)|αdt

)1/α

. (A.7)

On dividing (A.7) by (A.6) and simplifying, we get

δz = δc2
− 1

α

(
Γ(1+α

2 )√
πΓ(1 + α

2 )

)−1/α

. (A.8)

Finally, we substitute (A.8) in (5.76)

Eb
N0

=
E[Esi ]

4δ2c log2M
× 2

2
α

(
Γ(1+α

2 )√
πΓ(1 + α

2 )

)2/α

. (A.9)

A.3 Asymptotic Normality of e

Let us define

y̆ =

⎡
⎢⎢⎣�{y}
�{y}

⎤
⎥⎥⎦ , x̆ =

⎡
⎢⎢⎣�{x(1)}

�{x(1)}

⎤
⎥⎥⎦ and ĕ =

⎡
⎢⎢⎣�{e}
�{e}

⎤
⎥⎥⎦ (A.10)

We can express (6.3) in terms of y̆ and x̆

y̆ = ĂTH̆x̆+ z̆ (A.11)
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where

Ă =

⎡
⎢⎢⎣�{Ā} −�{Ā}

�{Ā} �{Ā}

⎤
⎥⎥⎦ and

H̆ =

⎡
⎢⎢⎣�{H̄} −�{H̄}

�{H̄} �{H̄}

⎤
⎥⎥⎦ .

From the asymptotic normality property of ML estimation,

ĕ ∼ N (02N×1,Σ
−1), (A.12)

as N → ∞, where Σ is the Fisher information matrix of x̆ with respect to the

distribution f̃z(y; x̆) = fz(y − ĀHH̄x(1)). Further still, as the model in (6.3) is

that of linear regression, we have from [100], [102], Eq. 58

Σ =
I(0)

δ2z
(ĂTH̆)TĂTH̆

=
I(0)

δ2z
H̆TĂĂTH̆ =

I(0)

δ2z
H̆TH̆, (A.13)

where I(0) is the Fisher information of the location parameter provided by one

real noise sample with distribution S(α, 1) [100]. On substituting (A.13) into

(A.12), we have

ĕ ∼ N (02N×1,
δ2z
I(0)

(H̆TH̆)−1) (A.14)
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As

H̆TH̆ =

⎡
⎢⎢⎣H̄

HH̄ 0K×K

0K×K H̄HH̄

⎤
⎥⎥⎦ (A.15)

is a diagonal matrix, we can clearly see that the elements of ĕ are independent.

Finally, taking advantage of the form in (A.15) and the fact that e = [IN jIN ]ĕ,

we have

e ∼ CN (0N×1,
2δ2z
I(0)

(H̄HH̄)−1). (A.16)

A.4 �{w̃[n]} and �{w̃[n]} are Statistically Identical for all n

The convolution operation in (6.47) can be written in its true form:

�{w̃[n]} = 2

L−1∑
l=0

v[l]w[n− l] cos(π(n− l)/2) (A.17)

=
L−1∑
l=0

(
2v[l] cos(π(n− l)/2)

)
w[n− l] (A.18)

As w[n]
d
=W ∼ S(α, δw), we can use (3.6) to express (A.18) as

�{w̃[n]} d
=W

(
L−1∑
l=0

|2v[l] cos(π(n− l)/2)|α
)1/α

(A.19)

d
= 2W

(
L−1∑
l=0

|v[l] cos(π(n− l)/2)|α
)1/α

(A.20)

We know that cos(π(n − l)/2) is non-zero only for l = 2m when n is even and

l = 2m + 1 when n is odd, where m ∈ Z. Further still, the result will lie in

the set {−1,+1}. As symmetric distributions are not influenced by the sign, we
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have

�{w̃[n]} d
= 2W

⎛
⎝�L−1

2
�∑

m=0

|v[2m]|α
⎞
⎠

1/α

(A.21)

when n is even and

�{w̃[n]} d
= 2W

⎛
⎝�L

2
�−1∑

m=0

|v[2m+ 1]|α
⎞
⎠

1/α

(A.22)

when n is odd. The expressions in (A.21) and (A.22) depend on the sums of the

even and odd samples of |v[n]|α, respectively. We know that v[n] is effectively

band-limited to [−N
2λ ,

N
2λ ]. Denoting the discrete-time Fourier transform (DTFT)

of |v[n]|α by Vα(f), we note that Vα(f) still retains characteristics of a low-pass

filter, i.e., most of the energy of |v[n]|α occupies the lower spectrum for finite

L [79]. From the properties of the DTFT,

Vα(0) =

L−1∑
m=0

|v[m]|α (A.23)

=

�L−1
2

�∑
m=0

|v[2m]|α +

�L
2
�−1∑

m=0

|v[2m+ 1]|α. (A.24)

If Vα(f/2) is truly band-limited, the energy is divided equally amongst the two

summation terms in (A.24). Therefore,

1

2
Vα(0) =

�L−1
2

�∑
m=0

|v[2m]|α =

�L
2
�−1∑

m=0

|v[2m+ 1]|α. (A.25)

In practical filters, L is finite and therefore Vα(f/2) is not truly band-limited.

However, (A.25) provides a good approximation for a large range of L as long
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as λ is at least a few multiples of N . Therefore, from (A.23) and (A.25), we can

express (A.21) and (A.22) as

�{w̃[n]} d
= 2W ×

(
1

2
Vα(0)

)1/α

d
=

2

21/α
W

(
L−1∑
m=0

|v[m]|α
)1/α

. (A.26)

Using a similar approach as in (A.18)-(A.26) we can evaluate the distribution of

�{w̃[n]} and observe that

�{w̃[n]} d
= �{w̃[n]}. (A.27)

We note from (A.26) and (A.27), that the distribution of w̃[n] is independent of

n and therefore time-invariant.
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