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Abstract- Underwater acoustic recordings containing dolphin representation of the whistle's frequency variation over time.
vocalizations are often analyzed in time-frequency domain using However due to the low SNR of recordings, harmonics and
spectrograms. Spectrogram feature extraction techniques are frequency spread, most researchers use time consuming man-
widely adopted in whistle classification studies because they pro- ual methods to trace whistles ([1], [3]). The work presented
vide a visual representation of the whistle's frequency variation
over time. However due to the low SNR of recordings, harmonics in this paper attempts to automate this process.
and frequency spread, most researchers use time consuming We adopt a combination of signal and image processing
manual methods to trace whistles. The work presented in this techniques to remove acoustic noise, enhance the spectrogram
paper attempts to automate this process. images and spectrogram segmentation to perform the tracing

I. INTRODUCTION of the fundamental frequency variation of a whistle.

Dolphins have impressive vocalization capabilities that can II. METHOD
be categorized into three classes: (i) broadband short-duration
clicks (ii) broadband pulsed sounds and (iii) narrowband A. Acoustic Noise Filtering
frequency modulated whistles [1]. The third kind of signals Snapping shrimp are common in warm shallow waters and
(i.e whistles) are used in animal communication, and are produce highly transient broadband noise. The statistics of this
chosen for this study. Whistles are non-stationary waves, particular type of noise can be accurately modelled by the
and are of particular interest to researchers studying animal symmetric alpha-stable (SaS) family of distributions [4], which
behavior and communication. Underwater acoustic recordings enables us to derive a statistical de-noising filter.
containing dolphin vocalizations are often transformed into Let x(t) be the time-series of the signal and n(t) be the
time-frequency space by the short-time Fourier transform time series of the additive noise, then y(t) = x(t) + n(t)
(STFT) for analysis as it allows visual inspection of whistles' is the received signal. The aim of the statistical filter is to
frequency variation over time. produce an estimate of the signal x(t) denoted by Nc(t) such
The STFT of a function f(t) with respect to the window that E[±(t)] = E[x(t)], where E is the statistical expectation.

function 0(t) evaluated at the location (b, () in time-frequency At a given time t, we have have a measurement y = y(ti)
plane is defined as [2]: and want to derive x = j(ti). We can use the maximum

______ likelihood (ML) estimate for this derivation, i.e choose the x

G, f(b,() ff(t) Ob, (t)dt (1) that maximizes P(x y) as x. We use the Bayes Rule for this

where computation

Ob,((t) _ (t-b)eijt (2) P(x ) P(y x) P(x) (3)
the window function q(t) used in our experiments is a periodic P(Y)
Hanning window. Let fx((x) be the PDF of the signal and f (in) be the PDF

The output of this operation is often interpreted as a gray- of the noise. Then fy(y) f= (x() 08 f (in) is the PDF of
level intensity 2-D image called the spectrogram. Spectro- the received signal, where 0 is the convolution operator. We
gram feature extraction techniques are widely adopted in the can estimate the unknown probabilities as PQr) fx((x) and
studies of whistle classification because they provide a visual P(y x) f (in), as x is deterministic in expression P(y x)
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which makes it only dependent on the stochastic behavior of rows represent linear frequency increase. Let us define a pixel
n. Since n = y - x, (3) can be rewritten as intensity vector Ii that contains the pixels in the jth row of the

p fn(Y ) fz(z) spectrogram, and let f. be the frequency of the jth row. Then
P(X y) - f() the harmonic suppression update equation for the tLh row can

fy (y) ~~~~bewritten as
fnY- X)fixX) (5)fn(Y-S)fx(z) ~(4) Ii = Ii-k I1, (5)

[fx (X) O8 fn (Y-X)]I
where k is a user defined scalar constant and the vector IThe ML estimate of x(t) is argmax{ff(x i'y)}I over all X. contains the pixel values of th row for which fJ = fi/N. The

P(y x) is evaluated by substituting a pre-computed SaS dis- i
tribution for fn and assuming Gaussian distribution for fx. integer multiplesothes fundament frequncyithtohaof the integer multiples of the fundamental frequency that has
B. Spectrogram De-noising produced the harmonic pattern. In practise N e {2, 3, 5} is

1) Adjusting for Non-uniform Energy Distribution: The used, and (5) is applied to every row from top to bottom, and1)Ajusilng fo on-unijorm En sgDsri a iOlon h iterted fo eah vau of N.
spectrogram is a special image that has its pixel intensities
correlated to the instantaneous energy of the generating time D. Spectrogram Segmentation
series. The average energy contained in a given time window There is a vast amount of literature on Image segmentation;
of the time series varies in a stochastic manner, an creates however the choice of an algorithm should depend on the
an effect similar to that of non uniform illumination in con- characteristics of the input images. Since we are trying to
ventional images. Therefore we employ a simple adjustment segment spectrogram intensity images, we have the advantage
operator to correct for non-uniform energy distribution as a of certain a priori knowledge but on the other hand the images
pre-processing step. The local background energy is estimated often have low SNR. Therefore we propose a 2-stage algorithm
for each 32 x 32 block by taking the minimum, and the whole which uses global thresholding followed by region growing.
block is normalized to this value to complete the adjustment. A thresholding function f operates on an intensity image I

2) Noise Model Normalization: The ambient noise charac- and produces a binary image J, using a global threshold T
teristics of the recorded time series are dynamic. However
for a small time interval, they can be assumed constant. 1 if I(x,y) > T
Therefore a local time-average of the noise distribution over J(,Y) = (6)
the discrete frequency bins can be computed, and used for 0 else
local normalization of the spectrogram image. In view of the low SNR, we want to compute a global

In this implementation the small time interval is taken as threshold T which slightly under-segments the image. The use
100 columns in the spectrogram. The columns within this of global thresholding instead of local thresholding and the
time interval are normalized to a 'noise column', which is computation of a higher than optimal threshold ensures that
computed by randomly selecting 10 columns from the current noisy pixels are less likely to be segmented as foreground.
time interval and computing a time-average. Spectrograms vary in their gray level distributions, and noise

3) Bilateral filtering: As a second step in spectrogram statistics depending on the recording environment and the type
denoising, various image noise filtering algorithms (including of dolphin vocalizations. Therefore a robust algorithm must
mean, weighted-mean, median, adaptive Wiener and bilateral) be able to compute threshold value T adaptively. Therefore
were tested. Among the filters tested, bilateral filtering [5] we adopt a simplified variant of the method proposed in [6].
produced the best results and hence adopted in the design. A global threshold is computed adaptively based on the fist

The bilateral filter is a spatially adaptive filter and its kernel and second order statistics of the image gray levels using the
coefficients for a local neighborhood are computed based on Niblack Method.
both the geometric closeness and the gray level similarity T + k (7)
between the neighborhood center and the other neighborhood
pixels. Therefore the bilateral filter is better at preserving edges where ,u is the mean gray value, or is the standard deviation
while smoothing effectively. and k is a user defined constant.

For the purpose of calculating k we assume a normal
C. Iterative Harmonic Suppression distribution of gray values. Even though the actual distribution

Whistles are not pure tones and therefore contain harmonics can differ this assumption is valid for computing k [6]:
that are similar in shape to the fundamental frequency variation +k*
with only a shift in frequency and can potentially hinder its ] N,C,(x)dx = p (8)
accurate tracing. The instantaneous frequency of a harmonic -°
is an integer multiple of the fundamental frequency, and this where p is the percentage of background pixels. Using a
can be exploited to remove them from the spectrogram image. priori knowledge that over 90% of a spectrogram contains

Each pixel row in a spectrogram represents a single fre- background we compute a high threshold by setting p =0.96.
quency variation over time (technically it is the time variation The calculation of k using (8) is done by the use of a pre-
of a discrete frequency bin), and from bottom to top, the calculated Z-table per image.
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TABLE I: Morphological Filtering and Enhancement TABLE II: Kalman Filter Model

Step Structuring Element Morphological Operation State vector x =[f v a]

Ii f - frequency (position)
1 s= Jo Is (closing) v - is the rate of change of frequency (velocity)

L
a - is the second derivative of frequency (acceleration)

1 1 1 State equations f(k) = u* t(k) + *a * t2(k)
2 s2 1 Jo 82 (opening) v(k) = u + a * t(k)

1 1 1 where u is the initial velocity
discreet update f(k + 1) = f(k) + v(k) * 8T + 2 * a * 62

3-_ / |equations v(k + 1) = v(k) + a * 6T
a(k + 1) = a(k) where 8T t(k + 1) - t(k)

2.5 [' | fk1 1 [ I 6T 2 *61[ fk
VkT1 (0 1x T Vkx

L ak±1 [ 0 0 O J Lak J

x 10'
1.5-25
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Fig. 1: The change of intensity of whistle pixels over time ridge line).
XX0

0.5 xxx0 0

As an additional precaution we use mathematical morphol-
ogy to improve the segmentation and remove noise from J. m
This is done by fist applying morphological closing with a 2 x 2 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8

square structuring element (SE)se followed by opening ith
Fig. 2fwhistle smoothat if the withou mer

a 2 x 3 square SE s2. The closing operator helps to fill gaps Fig 2: whistlesmothng usi te Kmnfiler
and holes smaller than the SE s cwhile opening removes noisy
outliers smaller than the SE s2. This intermediate operation is
illustrated in Table I. transform (i.e., choosing the intensity ridge line).
The whistles we are aiming to segment start off with low Since the points on the whistle should trace a smooth curve,

intensity and gradually increase with time before similarly the candidate points are then passed onto a 2sd order Kalman
decreasing and 'trailing-off'. This trend is illustrated in Fig. filter for smoothing. The confidence values for each measure-
1 and implies that with a high threshold the starting and end ment are calculated and saved in the previous tracing step.
points of the whistle is likely to be left out as background. Low confidence values are assigned to whistles points that
Therefore after removing outliers with the morphological exhibit sudden jumps in frequency. The assignment function
operators, the pixels of the segmented image are input into a has memory of 1, in the sense that if the previous measurement
2D region growing algorithm as seeds. which uses 0.9 x T as had low confidence the current measurement's confidence will
the new threshold to include pixels connected to the segmented be partially based on that previous value. Fig. 2 shows a
image. This helps to include the 'fading' ends of the whistle. selected set of candidate points, the Kalman filter corrections

E.cWhiseny tracingtemxm ofecclm ofhdian and the measure of confidence R for each measurement. High
E. WhistleTracing ~~~~~~Rvalues indicate low confidence in the measurement.

After segmentation, a one pixel thick trace is to be drawn The second order Kalman filter is designed using the
on the segmented image to represent the shape of the whistle. same process model that is used for trajectory tracking of a
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(a) (b) (a) (b)
Fig. 3: Effect of adjusting for non-uniform energy distribution. Fig. 4: The effect of noise model normalization. (a) shows the
(a) shows the original image and (b) shows the adjusted image. original image and (b) shows the normalized image.

Kalman model is illustrated in Table II.
As one image may contain multiple whistles, the Kalman

filter variables need to be reset at the start of a new whistle.
This is done by taking note of their time discontinuities. The
same technique is used in drawing the chosen whistle points
as piece-wise continuous curves.

F Spectrogram Reconstruction
The enhanced spectrogram can be converted back into (b) (b)

audio by implementing a inverse spectrogram function, which
attenuates the complex FFT coefficients that correspond to the
background pixels. The points on the trace are amplified and
provides audible improvement over the original recording.

III. RESULTS AND DISCUSSION
In spectrogram denoising, the time domain statistical filter-

ing is useful in reducing non-Gaussian noise characteristics
introduced by snapping shrimp noise, and thus improves
the subsequent image processing tasks. However finding the h

correct statistical parameters are a computationally intensive (c) (d)
process. Fig. 5: Effect of bilateral filtering. (a) shows the original

Adjusting for non-uniform energy distribution is a useful image and (b) shows the bilateral filtered image. (c) shows
pre-processing step. Fig. 3 illustrates the effectiveness of this illumination adjustment followed by bilateral filtering and (d)
method. noise model normalization followed by bilateral filtering

Local noise model normalization is useful particularly in
spectrograms with low SNR or transient noise patterns (Fig. 4),
while for most images bilateral filtering alone gives good re-
sults (Fig. 5). Iterative harmonic suppression is very effective,
and helps with robust tracing of the fundamental frequency

VW

variation as show in (Fig. 6).
Global thresholding is the more robust than the localM

thresholding as it is less sensitive to local maxima. Local
thresholding usually causes some background pixels to be
misclassified as foreground points, and this complicates the T

tracing process. Local Thresholding results are also heavily (a) (b)
dependant on the choice of the local window size. These Fig. 6: Iterative harmonic suppression. (a) shows the original
effects are illustrated in Fig. 7. image with harmonics and (b) shows the resulting image with

The whistle tracing depends on the segmentation quality, harmonics erased.
and becomes more complicated when multiple whistles are
present. To make the process more robust, a discontinuity-
detection mechanism and Kalman filtering is used. This en- curves. However some whistles that have complicated shapes
ables us to trace whistles as smooth piecewise continuous such as the whistles shown in Fig. 8 cause problems for
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accurate tracing as they have more than one frequency value
corresponding to one discrete time bin.

IV. CONCLUSION AND FUTURE WORK
We have presented a multi stage automated method for

tracing dolphin whistles in spectrograms. In the next phase of
our work, this software will be used to automatically extract
pertinent features from the spectrogram, which will be used as
inputs to a whistle classification system. It is hoped that this

Time(s Time (s

(a) (b) work will aid to speed-up the work of researchers in the area of
dolphin communication and similar acoustic processing tasks.
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Fig. 8: The 'fork' shape at the end of the second whistle in
(a) proves to be difficult to trace. (b) shows the tracing result
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