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Abstract—We present a bio-inspired distributed algorithm
which is a fusion of two distinct animal behaviours to solve
three different underwater search missions. One of the two
constituent control modules is called target-drive which models
the hypothesized behaviour of a fish-larva searching for a coral
reef using acoustic cues. Target-drive helps a single Autonomous
Underwater Vehicle (AUV) to adjust its heading towards the
acoustic source. The other control module called group-cohesion,
mimics movements of a golden shiner (Notemigonus crysoleucas)
in a school of fish. The proposed approach only relies on implicit
communication and achieves target convergence only by assuming
a single on-board hydrophone and location estimate of AUV’s
neighbours. The effects of varying key parameters such as group-
size and neighbourhood-radius on convergence times have been
thoroughly investigated. We present a preliminary analysis of
the algorithm’s performance which shows promise in solving
problems employing small teams of AUVs in terms of convergence
times and non-existent inter-agent communication.

I. INTRODUCTION

An AUV can undertake diverse engineering endeavours
such as oceanographic surveys [1], monitoring marine envi-
ronments [2]–[3], reconnaissance/surveillance missions [4] and
offshore exploration [5]. Efficiency of conducting such tasks
can be enhanced if a team of AUVs is deployed [6]–[7]. A
conventional team-based scenario requires flow of information
between surface vehicles/buoys and the AUVs [8]. The multi-
tude of sensors installed on each of the surface and underwater
vehicles are capable of measuring various physical parameters,
and hence synchronizing this vast information in a centralized
network becomes unviable. This is further aggravated if we
consider acoustic communication to be the only mode of long-
range underwater communication [9]. For a communication
system designer, an underwater acoustic channel presents its
fair share of challenges [10]–[11]. Issues like propagation
delay, time varying multi-path fading and frequency-dependent
path-loss further complicates the design of a long-distance
underwater communication system [8],[12]–[13]. Conventional
methods of underwater acoustic communication are more
focussed on achieving robustness and higher data rates but
do not scale well with increasing number of agents [14].

Today, in the world of robotics, there is an increasing
interest in swarms where a swarm can be defined as a large

team of entities interacting locally with common goals [15].
Question is often raised pertaining to the need of a robotic
swarm where a single robot is sufficient to complete a task.
This question can be effectively answered by highlighting
some of the advantages associated with a team of robots.
Firstly, a team can swiftly find targets and areas of interest
[16]–[18], and supports superior situational awareness, entry
and exit strategy [19]. Secondly, an agent break-down in a
single robot/AUV mission implies mission failure but a large
team is robust towards multiple failures [18]–[22]. Moreover,
workload distribution within a team results in more efficient
solutions [23]–[24]. Finally, a team can carry out a large
number of tasks in parallel with simpler and cheaper agents
[23].

However, it is important to note that in case of AUVs
where cost plays an important role, only smaller teams may be
feasible [25]. This fact underscores the need of a distributed
algorithm which can not only exploit deployment of a large
team but is also able to show significant benefits in recruiting
a smaller team (10 or 20 AUVs). In this work, our focus is
to search for an underwater acoustic source with such a small
team of AUVs.

To harness the benefits of a team with minimal inter-
agent communication owing to the intricacies of an underwater
communication channel as discussed earlier, one could look
towards nature. Nature has been choreographing complex
patterns in huge swarms by relying on implicit communica-
tion [26]–[31]. At this point, it is imperative to differentiate
clearly between implicit and explicit communication. Explicit
communication is defined as a deliberate act of invoking
the signal transmission, whereas in implicit communication
there is no such deliberate attempt [32]. In the latter, the
information transfer happens passively, without the need to
actively transmit information to another agent. For example,
an agent may simply observe the behaviour of other agents
using its own sensors. Complex behaviour displayed by natural
swarms arises from simple individual rules [33]. Individuals in
a swarm do not require any knowledge of an overall pattern and
only based on local interactions, they generate very complex
emergent behaviour which is greater than the sum of its parts.

Following nature’s awe-inspiring displays, researchers es-



pecially in the field of robotics have tried to mimic nature.
A significant number of practical implementations on mobile
robots draw inspiration from emergent behaviours of termites
or ants. These behaviours primarily use pheromone deposited
in the environment by their peers as the primary mode of
communication [34]–[37]. Relevant implementations to search
based tasks are those of finding chemical sources. Mobile
robots can successfully detect a chemical source, mimicking
the behaviour of a male moth searching for a female moth
with the aid of her pheromone trail [38]–[39]. There are
also accounts of an AUV finding chemical source by plume
tracing [40]–[41]. However, multi-AUV implementations of
such approaches are only a scaled version of a single agent
case [42] or require explicit inter-agent communication to
coordinate a search mission [43]–[44].

Other than the bio-inspired algorithms, there are other
relevant source detection implementations as well. Single-
agent based extremum seeking search solutions have been
proposed which employ gradient-based methods for point mass
or non-holonomic vehicles having a single onboard sensor
[45]–[46]. In case of underwater acoustic localization, vehicle
homing for AUVs bears some relevance to our proposed work
[47]–[49]. Such solutions, though generic in nature, differ from
our proposed solution primarily in terms of the underlying
multi-agent problem. Our focus is to search for an underwater
acoustic source by exploiting benefits of group cohesion in
a small team. Although this text assumes an acoustic source
to be the target of interest, the concept is easily extendible
to localizing any source characterized by some other physical
variable.

We formally present the problem statement with regards
to three distinct scenarios in Section II with associated as-
sumptions and physical constraints. In Section III, we define
the distributed algorithm with focus on its two constituent
bio-inspired models. After defining the algorithm parameters
we discuss the results in Section IV, establishing variation in
convergence times (arrival at target location) as a function
of group-size and neighbourhood-radius. We conclude by
summarizing the findings in Section V and discuss our future
direction in Section VI.

II. PROBLEM STATEMENT

A. The three scenarios

We define three distinct underwater scenarios which stip-
ulate different requirements for a search mission to be con-
sidered as successful. These scenarios will be used to gauge
performance of the algorithm and will help differentiate what
kind of behaviour is best suited to each one of these. The
scenarios are:

1) First arrival problem: Following the unfortunate event
of an aircraft crashing into the sea, the lost black-box needs to
be found. The black-box is continuously emitting an acoustic
pulse which can be sensed within a certain range. A team of
Underwater Autonomous Vehicles (AUVs) needs to search for
the black-box and the first AUV among the group to find the
black-box will result in the mission being a success.

2) Specific arrival problem: We now suppose that the
black-box, not only has to be discovered but also retrieved to

a safe location. For this purpose, there is a specialized AUV
within the team with the desired payload capacity to undertake
the retrieval task. In this case, as soon as this specific AUV
arrives at the black-box location, the mission can be considered
a success.

3) Last arrival problem: An underwater charging bay,
incorporated with a single beacon has been installed at an
unknown location. A team of AUVs needs to find the charging
bay before each of their batteries run out. As soon as all
the AUVs reach the charging bay, the mission is said to be
accomplished.

B. Assumptions & constraints

For the three scenarios as discussed, we make the following
assumptions:

1) Group size and initialization: The group/team size is
constrained to that of a small team (5 to 30 agents) and is
constant during a particular mission for establishing meaning-
ful comparisons. The team is initialized 2 km away from the
acoustic source.

2) Sensing scheme for source localization: All the AUVs in
the team are assumed to be equipped with a single hydrophone,
able to estimate acoustic intensity to an accuracy of 1 dB. We
also assume that there is no estimate available to an AUV
pertaining to the direction of incoming sound.

3) Acquisition of neighbours’ position estimates: In this
paper, we do not address the question of how an AUV acquires
the position information of its neighbours. For now, any arbi-
trary mechanism, e.g., communication of position estimates
within a neighbourhood or Ultra Short Base Line (USBL)
can be assumed for that purpose. Further simplification of
this position estimation model is focus of our future work
which will allow us to use a simple 2-hydrophone array as
a mechanism to estimate positions of neighbour AUVs.

4) AUV model: All the AUVs have been considered as
point masses and physical constraints like turning rates and
undersea hydrodynamics do not apply.

5) Source’s acoustic level and ambient noise: For the
purposes of the simulation results presented in this paper, the
sound level for the acoustic source is set to 156 dB re 1μPa
at 1m. The ambient noise is set to 123 dB re 1μPa.

III. METHODOLOGY

We consider a team of N AUVs assigned with a search
mission. The target is the acoustic source as described in
Section II-A. In this section, we formulate a novel bio-inspired
algorithm that is a result of fusing two natural behaviours. The
first module, named target-drive, draws its inspiration from
fish larvae or juvenile fish searching for the coral reef by
sensing the acoustic intensity of noise generated by fish and
crustaceans that live on the coral reef [50]–[52] . The second
module, named group-cohesion, draws inspiration from the
group behaviour of schooling fish (golden shiners) [33],[53].
We start by formulating each of these modules and then fuse
them together into a unified distributed algorithm.



A. Target-drive

Target-drive is responsible for driving any arbitrary AUV
n ∈ {1, 2, . . . , N} towards the acoustic source. Pn(t) is
the received mean square pressure at the nth AUV position
0pn(t) = [0xn(t),

0 yn(t)]
T in a two-dimensional world refer-

ence frame {0}. The origin of {0}, without loss of generality,
is assumed to be fixed at the source’s origin and is unknown
to any of the AUVs.

The received mean square pressure Pn(t) at point 0pn(t)
is given by:

Pn(t) =
Psource

‖0pn(t)‖α + Pambient (1)

where Pambient is the mean square ambient noise and α ∈
[1, 2] approximates anywhere from cylindrical to spherical
spreading. For most of the results, discussed in Section IV,
we will assume α = 1 for maintaining consistency and ease
of interpretation. α > 1 is assumed in Section IV-E while
summarizing results to substantiate generalization.

If we assume the ambient noise to be Gaussian then each
sample of received pressure is also Gaussian with variance
Pn(t). Let xi be the received pressure at index i of a time
window of k samples over which the mean square pressure

Pn(t) is computed. Then,
∑k

i=1
x2
i

Pn(t)
is χ2

k distributed with

k degrees of freedom. When k → ∞, χ2
k → N (k, 2k).

Following this, we can approximate estimated mean square
pressure as

P̂n(t) = lim
k→∞

1

k

k∑
i=1

x2
i ∼ N

(
Pn(t),

2Pn(t)

k

)
(2)

The variance of this distribution varies with mean Pn(t) and
measurement mechanism (effective k). In this case, the mean
can be assumed to be much larger than the variance because
of k being very large, the asymmetry due to log operation
applied on (2) is small and hence the dB levels can be modelled
as Gaussian. Since the sensation of loudness is known to be
logarithmic in most animals, we assume a constant ‘a = 1dB’
of measurement accuracy such that

P̂ndB
(t) = 10log10P̂n(t) ∼ N (PndB

(t), a) (3)

The assumed value of a is also true for a typically calibrated
hydrophone. The Normal distribution as characterized by (3)
simulates the sound levels sensed by an AUV hydrophone at
any sampling instant t.

It is assumed that an AUV samples intensity level every
T seconds and maintains a constant speed s(t) = 1.5m/s, ∀t
and a constant heading angle θn(t) during interval (t, t+ T ].
The AUV heading is updated at each sample employing a 90-
degree rule as

θn(t+ T ) =

{
θn(t) if ΔP̂ndB

(t+ T ) ≥ 0

θn(t) +
π
2 if ΔP̂ndB

(t+ T ) < 0
(4)

where ΔP̂ndB
(t+ T ) = P̂ndB

(t+ T )− P̂ndB
(t) .

In essence, target-drive is a complete algorithm which
drives any AUV towards the target location based only on
the gradient of the sensed sound level ΔP̂ndB

(t+ T ). The

90-degree rule draws its inspiration from the hypothesized
motions, a fish larva would undertake to locate the coral
reef based on sensed sound levels. There is no agreement
on the actual rules a larva follows but there are similar
studies with different models to mimic its behaviour [51].
As migrations generally occur under low light or no-light
conditions, a larva uses its hearing as a primary sense to locate
the coral reef other than using chemical cues [54]. Analogously
in AUVs, if the nth agent after a sampling time T thinks
that it is going in the direction of increasing reef sound, it
keeps its direction otherwise it takes a 90-degree turn. This
continues until the AUV converges on to the target position.
The algorithm on its own does not guarantee convergence
and the results depend significantly on the right choice of
sampling time T . Though convergence is not guaranteed, we
can still stochastically predict arrival times for AUV(s) and
their dependence on the group size. However, it has been found
in simulations that convergence occurs up to some threshold
of difference between Psource and Pambient and not beyond
that. Mathematical explanation of this observation is focus
of our future work. It is also to be noted that a 90-degree
turning approach may seem sub-optimal as far as the case for
a single agent is concerned but it generates viable convergence
times for the team, especially when fused with the group-
cohesion behaviour. The efficacy of the target-drive algorithm
with respect to the three scenarios will be discussed in detail
in Section IV.

B. Group-cohesion

It is believed that group behaviour in a school of fish
is based on long-range attraction and short-range repulsion
[33],[51]. However, there have been fewer studies on inferring
rules directly from the empirical data. A recent study [53] has
come up with a novel and intuitive idea of estimating forces
generated by golden shiners, based on respective distances
from their neighbours in order to maintain cohesion. The study
has concluded that there are no independent alignment forces
but only a speeding force nfx(t) and a turning force nfy(t).
These forces depend, respectively on the horizontal and the
vertical distance of the nth fish from its neighbour k1 in its
own reference frame {n}, as shown in Fig. 1. However, it
is to be noted that we implement a simplified model of the
said study and hence the term force carries a slightly different
meaning in our work. We impose a constant velocity constraint
and only the heading of the AUV is computed from the force
vector. This simplification is justified because of the assumed
constraints on the AUV model as given in Section II-B.

We model the speeding force and the turning force as linear
attractive forces as

nfx(t) = −ζ nx(t) (5)

nfy(t) = −ζ ny(t) (6)

where ζ ∈ R
+ is the attraction parameter. ζ can be tuned

beforehand to achieve the desired strength in group cohesion
but remains constant during a mission.

Results in (5) and (6) can be expanded as shown in Fig. 2
to multiple neighbours by averaging respective horizontal and



Fig. 1: Calculation of speeding force nfx(t) and the turning
force nfy(t) by nth fish with respect to the horizontal nx(t),
and vertical distance ny(t) respectively in its own reference
frame {n}.

Fig. 2: Calculation of speeding force nfx(t) and the turning
force nfy(t) by nth fish with respect to multiple neighbours.

vertical distances as follows

nfx(t) = − ζ

M(t)

M(t)∑
i=1

nxki
(t) (7)

nfy(t) = − ζ

M(t)

M(t)∑
i=1

nyki(t) (8)

where all the neighbours of the nth AUV are denoted by ki ;
i ∈ {1, 2, . . . ,M(t)} and there are 0 ≤ M(t) < N neighbours
in a neighbourhood Ψn(t) = {k1, k2, . . . , kM(t)} with constant
Euclidean radius rΨ ∈ R

+ measured from origin of the frame
{n}. The origin is the nth AUV itself being considered as a
point mass.

The resultant force nf(t) = [nfx(t),
n fy(t)]

T gives us
the heading θn(t) = ∠nf(t) while speed remains constant
as sn(t) = υ, where υ ∈ R

+.

C. Fusing Target-drive & Group-cohesion

Once we have the two bio-inspired models in place, it is of
interest to fuse them together into a unified search algorithm.
As discussed earlier, target-drive is a complete algorithm in

Fig. 3: Introducing a hypothetical neighbour khyp in the
direction of assumed target location among other neighbours
ki of the neighbourhood Ψn(t).

itself which can help an AUV find the target. However, group-
cohesion only serves to maintain an arbitrary group formation
and swiftly falls into an equilibrium where there is no net
motion of the group. We would like to investigate the effect
of target-drive on such a cohesive group. Then the challenge
is to find a unified architecture that can drive the group as a
whole towards the target location.

For a unified architecture, we modify the group-cohesion
algorithm by introducing a hypothetical neighbour ki as shown
in Fig. 3. The hypothetical neighbour bears the same angle with
respect to the nth AUV as dictated by ∠nf(t) as described in
Section III-B. The modified group-cohesion model as given in
(7)–(8), fused with the target-drive model, looks like

nf(t) = β

⎛
⎝− ζ

M(t)

M(t)∑
i=1

npki(t)

⎞
⎠+ η (−ζ nphyp(t)) (9)

where β ∈ R
+ is a constant gain of the group cohesion

force, called cohesion-coefficient and η ∈ R
+ is a constant

gain associated with the force that drives a particular AUV
towards the target, called drive-coefficient. Changing the gains
vary the emphasis of the AUVs either towards the target or
the group. The effects of these gains will be discussed in
detail in Section IV. The unified behaviour in (10) can be
more concisely written as

nf(t) = β́

M(t)∑
i=1

npki(t)

M(t)
+ ή nphyp(t) (10)

where β́ = −βζ , ή = −ηζ and npki(t) = [nxki(t),
n yki(t)]

T ,
nphyp(t) = [nxhyp(t),

n yhyp(t)]
T .

Note that the hypothetical neighbour’s position nphyp(t)
is being updated according to (4) at every sample time T .
From (10), the computation of the nth AUV’s heading θn(t)
and speed sn(t) follows the same discussion as presented in
Section III-B.

IV. RESULTS & DISCUSSION

We set the starting point of the team at 0pn(t) =
[1414 m, 1414 m]T , 2 km away from the black-box location

with the sampling time T = 66 s and β́ = 0.5, ή = 5. These



Fig. 4: Average arrival times over 1000 trials for varying
neighbourhood sizes rΨ for a group-size N = 20.

Fig. 5: Average arrival times over 1000 trials for neighbour-
hood sizes rΨ ∈ {210, 220, . . . , 260} for a group-size N = 20.

parameters will remain constant for all the results here and
studying their variation effects will be a part of our future
work (Section VI). As soon as a an agent enters within a
radius ℘ = 100 m of the target location, we term that as an
arrival. 1000 independent trials have been run for computation
of averages or probabilities as discussed earlier in this section.
It is also to be noted that events involving rΨ = 0 m are
a zero-neighbourhood case where there is no group-cohesion
involved. In such a case, only target-drive algorithm is active
which enables each of the AUVs to take the heading decision
based on the sensor reading as given by(3). The speed of the
AUV has been assumed to be constant, i.e., sn(t) = 1.5 m/s ∀t.
The value for α = 1 as given in (1) unless otherwise specified.

A. Average arrival times for varying levels of group-cohesion

1) The dead-region 0 < rΨ ≤ φΨ: We first simulate a
search task involving a team of N = 20 AUVs to gauge
the effect on the average arrival times over 1000 trials as the
neighbourhood radius rΨ is varied from 0 m to 400 m as shown
in Fig. 4. It can be seen that for a range of neighbourhood radii
rΨ = 0 m to 100 m, the behaviour is almost identical. For
rΨ ≥ 200 m the first-arrival on average gets delayed whereas
the last-arrival is earlier in time. As there is quite a difference
between the arrival times pertaining to neighbourhood radius
of 200 m and 300 m, Fig. 5 shows a uniform change for
variations in neighbourhood radius from 210 m to 260 m.

To generalize the effect on average arrival times by varying
neighbourhood radius, we need to show the same effect on

Fig. 6: Average arrival times over 1000 trials for varying
neighbourhood sizes rΨ for group size N = 10.

Fig. 7: Average arrival times between group size N ∈ {10, 20}
over 1000 trials for neighbourhood sizes rΨ ∈ {200, 300, 400}.

other group sizes as well. Fig. 6 shows the average arrival
times for a group size of N = 10 AUVs when neighbourhood
radius rΨ is varied from 0 m to 400 m. The same pattern is seen
as was seen for the group size of N = 20. There is a similar
dead-region 0 < rΨ ≤ φΨ of neighbourhood radii, which
displays nearly the same behaviour as a zero-neighbourhood.
When rΨ = φΨ, it is the point where arrival times start varying
from that of a zero-neighbourhood region. More intuitively, we
can say that φΨ is the minimum neighbourhood radius required
for the group-cohesion to have any impact on the convergence
times. Also, the rate of change in arrival times, as rΨ is varied,
is not as much as was the case in Fig. 4 for N = 20. This
means that a larger neighbourhood radius is required in case of
N = 10 to clock the same average arrival times as was required
for N = 20. In fact, this can be clearly shown by comparing
the effect of neighbourhood variation as shown in Fig. 7. To
help us generalize more, we show results for averaged arrivals
for a group of N = 5 AUVs in Fig. 8 where the response is
even flatter than that of N = 10.

2) Maximum neighbourhood radius rΨmax : We have men-
tioned the term larger neighbourhood a number of times in the
preceding discussion. One may wonder if there is any limit on
the neighbourhood radius. The answer is yes for two reasons.
First, there will always be a physical constraint on the sensing
range of a sensor. Secondly, increasing the neighbourhood
radius beyond a certain point r > rΨmax

will result in nearly
the same averaged last-arrival times as shown in Fig. 9 where
rΨmax


 800 m, whereas first-arrival will start occurring in



Fig. 8: Average arrival times over 1000 trials for varying
neighbourhood sizes rΨ for group size N = 5.

Fig. 9: Average arrival times over 1000 trials for varying
neighbourhood sizes rΨ for a group-size N = 20: Showing
the significance of rΨmax

.

Fig. 10: Comparison of average arrival times between group
size N ∈ {5, 10} over 1000 trials for neighbourhood sizes
rΨ ∈ {200, 300, 400}.

a smaller time interval. However, it has to be kept in mind
that this first-arrival advantage is not as significant as it was
for a zero-neighbourhood case. Hence, we have to be mindful
of this upper limit on the neighbourhood radius beyond which
there is no significant improvement in arrival times.

3) The transition neighbourhood radius ŕΨ: One of the
interesting things to note is the transition neighbourhood radius
ŕΨ which acts as a threshold for the decision making process
of employing a larger or a smaller group of AUVs. Looking
at Fig. 7, it is seen that the advantage of using a larger

group, i.e., N = 20 is significantly beneficial in terms of
averaged last-arrival time only for a neighbourhood radius
rΨ ∈ {300 m, 400 m}. As rΨ is decreased to 200 m, the
advantage is swapped in favour of employing a smaller team
(N = 10). In fact, this holds in general as we compare group
sizes of N = 10 and N = 5 in Fig. 10 where the advantage
of using a larger group is valid only for rΨ = 400 m in
terms of averaged last-arrival, and is quite the opposite for
rΨ ∈ {200 m, 300 m}. Hence, we can say that there exists a
transition neighbourhood radius ŕΨ which acts as a threshold,
above which (rΨ ≥ ŕΨ) it is advantageous to use a larger
group size to clock smaller last-arrival times whereas this
advantage switches to employment of a smaller group below
this threshold (rΨ < ŕΨ). It is also to be noted that this critical
ŕΨ is lower for comparisons between larger group sizes such
as N ∈ {10, 20} where it is 
 210 m whereas ŕΨ is higher for
comparisons between smaller group sizes such as N ∈ {5, 10}
where it happens to be 
 340 m.

The same discussion holds in an opposite fashion if we
would have been talking about averaged first-arrival. The ŕΨ
shifts the advantage to smaller group sizes once rΨ ≥ ŕΨ and
to larger group sizes if rΨ < ŕΨ.

B. First-arrival times with and without group-cohesion

The cumulative distribution function (CDF) and probability
density function (PDF) for first-arrival times are shown in Fig.
11 and Fig. 12 respectively. It is shown that the event involving
the first-arrival for a group size of N = 20 AUVs surely
occurs before 2 hours had there been no group-cohesion. So
in a case such as Scenario 1 in Section II, implementing only
the target-drive algorithm would have delivered better results.
Though no group-cohesion is required in such a scenario, it is
important to note that group-size still plays a pivotal role in
the first-arrival problem. Increasing the group size increases the
chances of having a first-arrival in a shorter span of time. Fig.
13 emphasizes the same point in which we compare a group
size of N = 5 to N = 30. We can establish from these results
that scenarios in which only the first-arrival is sufficient to
claim mission success; we do not require group-cohesion and
only the target-drive algorithm is sufficient. Moreover, better
convergence times can be observed if a larger group size is
deployed.

C. Last-arrival times with and without group-cohesion

If, on the contrary, we were interested in the last-arrival
times where the whole group should have reached the target
location; the results are quite the opposite to what we have
shown for the first-arrival case. For example, as stipulated in
Scenario 3 in Section II, we would require each and every AUV
to be at the charging bay before the respective batteries run out.
A comparison of CDFs and PDFs of last-arrival times for a
group size of N = 20 has been made between neighbourhood
radii rΨ = 0 m and 300 m in Fig. 14 and Fig. 15 respectively.
Then, it becomes clear that having a stronger group-cohesion
results in faster convergence times for the whole team in
comparison to weaker or no group-cohesion. In case, where
we would not want to use any group-cohesion, increasing the
group size would actually worsen the last arrival times as
shown in Fig. 16 where a comparison of CDFs concerning
last arrival of group size N = 5 and N = 30 has been made.



Fig. 11: CDF for first-arrival times for neighbourhood radii
rΨ ∈ {0, 300} for a group-size N = 20.

Fig. 12: PDF for first-arrival times for neighbourhood radii
rΨ ∈ {0, 300} for a group-size N = 20.

Fig. 13: CDF for first-arrival times for neighborhood radii rΨ ∈
{0} and group-size N = {5, 30}.

D. Specific-arrival case

Realizing such a constraint as given by Scenario 2 in
Section II-A, where we have a particular AUV with additional
capabilities which needs to reach the target location to mark
the mission as a success; we need to find the probability of an
arbitrary AUV within a group of N to reach the target location
in a given amount of time. Fig. 17 and Fig. 18 refer to such a
scenario where for a group size of N = 20 AUVs, comparison
has been made between a group-cohesion case of rΨ = 300 m
and no group-cohesion case of rΨ = 0 m. The results suggest
that we can say with some level of certainty that the specialized
vehicle will reach the target location in a period of 3 hours

Fig. 14: CDF for last-arrival times for neighbourhood radii
rΨ ∈ {0, 300} for a group-size N = 20.

Fig. 15: PDF for last-arrival times for neighbourhood radii
rΨ ∈ {0, 300} for a group-size N = 20.

Fig. 16: CDF for last-arrival times for neighbourhood radii
rΨ ∈ {0} and group-size N = {5, 30}.

when the neighbourhood radius rΨ = 300 m. On the other
hand, without any group-cohesion, it will take t > 6 hours to
achieve the desired task. Hence, the group cohesion does play
a significant role in case of a specific-arrival problem.

E. ‘α > 1’ case

Fig. 19 shows the average convergence response of a team
of 20 AUVs where α = 1.2 in (1) with varying levels of
group cohesion. Results in Fig. 19 show the same trend as
for α = 1 in Fig. 4. What is more significant in the case
of α > 1 is the relative improvement in last-arrival times
when a larger rΨ is used, compared to the case α = 1.



Fig. 17: CDF for robot arrival times for neighbourhood radii
rΨ ∈ {0, 300} for a group-size N = 20.

Fig. 18: PDF for robot arrival times for neighbourhood radii
rΨ ∈ {0, 300} for a group-size N = 20.

This suggests that group-cohesion plays a more significant role
with its underlying concept of implicit averaging as α values
increase and an individual AUV’s decision-making becomes
more prone to error.

V. CONCLUSION

We presented a novel bio-inspired algorithm for searching
an underwater acoustic source in context of three different
scenarios. The algorithm is a distributed infrastructure that only
employs sensory data and does not depend on any explicit
communications. This solves the major problem of coordi-
nating an underwater team mission where communication
methods are complex and hard to scale. The algorithm itself
is a unified infrastructure derived from two different natural
behaviours. Though inspiration has been drawn from natural
swarms, the implementation of the algorithm is such that it
preserves benefits of group cohesion even for very small teams.
Detailed results have been presented which highlight the effect
of varying neighbourhood-radius and group-size on the arrival
times. For now, we have purposefully kept other algorithm
parameters such as cohesion-coefficient, drive-coefficient and
sampling time as constant. We can sum up our findings as
follows:

1) There is a dead-region (0 < rΨ ≤ φΨ) of neighbourhood
radii for which there is no significant change in arrival
times compared to the zero-neighbourhood response. φΨ

decreases with increasing neighbourhood radius and vice
versa.

Fig. 19: Average arrival times over 1000 trials for varying
neighbourhood sizes rΨ ∈ {0, 200, 300, 400} for group size
N = 20 and α = 1.2.

2) To clock comparatively similar averaged arrival times,
a larger group requires a smaller neighbourhood radius
whereas a smaller group requires a larger neighbourhood
radius.

3) There exists a limit rΨmax to which we can increase the
neighbourhood radius to gain any significant advantage in
terms of arrival times.

4) A transition neighbourhood radius ŕΨ has also been iden-
tified as a function of comparative group-sizes which acts
as a threshold of swapping advantage either to employing
a smaller or a larger group. This transition radius becomes
important when we consider the practical constraints of a
range measurement sensor.

5) In cases where first-arrival is of pivotal importance, we
have shown that it is advantageous to keep the group-
cohesion module inactivated. At the same time, first-
arrival depends significantly on the group-size that we
would employ. A larger group-size without any group-
cohesion will guarantee a faster first-arrival.

6) In cases where we are more interested in the last-arrival,
employing group-cohesion is beneficial. It has also been
substantiated that larger group-size with group-cohesion
and ŕΨ ≤ rΨ ≤ rΨmax

will ensure faster convergence for
last-arrivals.

7) In cases where a specific AUV’s arrival is more important,
a larger neighbourhood radius when rΨ ≥ ŕΨ will ensure
a faster specific-arrival. Increasing the group size further
reduces the arrival time.

VI. FUTURE WORK

The bio-inspired algorithm presented in this paper is a
preliminary study which constitutes of a number of variable
parameters and a set of assumptions. In future, one of the main
emphasis would be to simplify and optimize the structure of
the algorithm, and eliminate any redundant parameters. Some
of the assumptions may also be relaxed to ensure that the
simulation is in close agreement with the real world scenario.

In the presented work, we have kept ourselves to varying
only group-size and neighbourhood-radius and investigating
their role in influencing the arrival times. Two of the most
important parameters of this algorithm are the cohesion-
coefficient and the drive-coefficient, which if varied dynam-
ically in some optimum way may improve the arrival times.



Fig. 20: SwarmBot is the smaller AUV being developed for
future team-based operations.

Another critical mainstay of this algorithm is the 90-degree
rule. We wish to investigate relaxing this rule so that based
on actual conditions, AUV may choose the most optimum
heading.

Apart from the on-going investigation pertaining to the
algorithm parameters, we are also developing a flexible bio-
inspired behavioural model that can accept different AUV
models as input. This will enable us to gauge the approximate
performance a particular team of AUVs may produce if pro-
grammed with this bio-inspired approach. This can be further
extended to devising a unified infrastructure which can take
an arbitrary bio-inspired model and an arbitrary AUV model
as inputs and simulate the approximate scenario.

The real test of the performance of any algorithm is in the
real-world. Currently, the number of STARFISH AUVs [55]
we have developed at our lab, is not sufficient to give us any
meaningful real-world analysis of the presented algorithm. To
address this problem, we are developing a miniature version
AUV known as SwarmBot for lake deployment. SwarmBot as
shown in Fig. 20 will be a low-cost solution with minimum
on-board sensors. This will give us a test-bed to gauge real-
world performance of the algorithm for a small team of AUVs.
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