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Abstract

Purposeful collective behaviour in multi-agent systems can be achieved

from a mix of simple individualistic and social behaviours of an agent.

Social behaviours are the basis of cooperation in multi-agent systems and are

fundamental in achieving collective behaviour. Practical implementation

of conventional social behaviour models require explicit inter-agent

communication, whereas in some environments, communication bandwidth

and delays are critical constraints which may compromise the intended

collective behaviour. This thesis introduces three source localization

algorithms. Each algorithm is a set of individualistic and social behaviours,

which do not require explicit inter-agent communication and rely solely on

agent’s passive sensing.

The first source localization algorithm is composed of static individualistic

and social behaviours. The individualistic behaviour is inspired from a

bacterium’s random walk while performing chemotaxis and is self-sufficient in

localizing sources of interest. Self sufficiency means that an agent can localize

a source on its own using only its individualistic behaviour without any team

cooperation via its social behaviours. However, better localization performance

can be achieved when an agent uses an optimized weighted average of both

individualistic and social behaviours. The social behaviours are inspired from

the long-range attraction and the short-range repulsion behaviours of a fish.

The second source localization algorithm assumes an adaptive individualistic

x



behaviour while keeping the social behaviours static. Finally, the third

source localization algorithm is based on adaptive social behaviours without

a self-sufficient individualistic behaviour and source localization is achieved as

an emergent property of the social interactions between agents.

The agent behaviours for each source localization algorithm have been

optimized using a Genetic Algorithm. Small homogeneous multi-robot systems

are considered where neither the position information of the agents nor the

position information of the source is available. An agent is assumed to have a

single sensor to sense the source intensity and hence conducts temporal sensing

to sense the gradient. For social interaction, an agent is assumed to have

two sensors to detect the neighbour-majority either in its right or left sensing

half. The behavioural optimization is carried out for a realistic underwater

acoustic source in a range of initialization distances, neighbourhood radii and

team sizes. The optimization data has been estimated by an analytical model

for each localization algorithm. The performance of the collective behaviour

resulting from the estimated model has been validated against agent’s sensor

and actuator noise along with strong multi-path interference due to variability

of the environment.

Given the constraints of temporal sensing and loss of information due

to noisy and simplistic passive sensing, the collective behaviours show

remarkable robustness and scalability in terms of mean, median and variance

of the arrival time distributions. Investigation of the team expanse in strong

multi-path interference shows that team remains cohesive with minimal or no

agent loss during the localization mission.
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Chapter 1

Introduction

1.1 Motivation

Multi-agent systems have seen significant application in various fields

of engineering [1–5]. In robotics, researchers have formulated multi-agent

strategies for platforms such as Unmanned Aerial Vehicles (UAVs),

Autonomous Underwater Vehicles (AUVs) and Unmanned Ground Vehicles

(UGVs) [6–9]. Using such multi-robot platforms, efficiency of conducting

search missions in large search spaces can be enhanced [10, 11]. An example

of an extremely large search space is the Earth’s oceans, covering 71 % of the

Earth’s surface; 95 % of which is still unexplored [12]. The recent events of

aircraft crashes in the sea [13], algal blooms in water bodies [14] and oil spills

undersea [15] have further underscored the importance of developing a large

scale multi-robot system which can cooperatively localize sources of interest in

real world. However, no such systems exist outside the laboratory environment

[16].

1.1.1 Bio-inspiration

A large contribution to the literature on physical multi-agent systems is

biologically inspired [17–19] from the collective behaviour in nature [20, 21].

Collective behaviour results from local and simple agent behaviours. The

agent behaviours may either be individualistic or social. Individualistic

1
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behaviours mean rules of agent’s interaction with its environment, whereas

social behaviours mean rules of agent’s interaction with its neighbours. The

field of robotics that studies the design of such interactions which can result

in a desired collective behaviour is called swarm robotics [22]. In swarm

robotics, foraging has been the main testbed application [16]. It has been used

for investigating navigational behaviours such as collective exploration [23],

collective transport [24] and collective decision making [25]. Source localization

can be thought of as a subproblem of foraging where it benefits from collective

exploration and collective decision making behaviours.

1.1.2 Explicit Communication vs. Implicit Communication

Any cooperative task requires some kind of information transfer which

depends on the modality of a communication infrastructure, i.e., explicit or

implicit [26]. Explicit-communication is defined as a deliberate act of invoking

the signal transmission, whereas in implicit communication there is no such

deliberate attempt [26, 27]. For example, an AUV sending out its position

estimate in form of a data packet to another AUV is considered as an act of

explicit-communication, whereas an AUV trying to estimate the position of

its neighbour by analysing the neighbour’s thruster noise is a form of implicit

communication.

1.1.3 Limitations of Explicit Communication

Performance of explicit communication based strategies suffer substantially

in environments with severely limited communication bandwidth and

delays, e.g., undersea environments [28, 29]. In the range of hundreds of

meters, undersea communication is restricted to the use of acoustic waves
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[30]. Issues like propagation delay, time varying multi-path fading and

frequency-dependent path-loss make the design of an acoustic communication

system more complicated than the ground-based or airborne communication

systems [31]. These phenomena also limit a team’s capability to benefit from

an effective distributed inter-agent communication [32]. Since the early days

of swarm robotics, researchers have been interested in designing collective

behaviour through implicit communication [33, 34] and comparing the relative

performance degradation to that of an explicit communication strategy [35,36].

However, it has been shown in [26] that a certain minimal communication

pertaining to an agent’s state is sufficient and more elaborate communication

may not result in a significantly more efficient system. Nevertheless, if a purely

implicit communication based approach is reasonably efficient for a particular

task then having a minimal explicit communication based scheme may help

improve the efficiency further. In cases where explicit-communication would

fail, a system with an effective implicit-communication scheme will gracefully

degrade in performance, avoiding a complete breakdown.

1.1.4 Implicit Communication: Stigmergy vs. Passive Sensing

Implicit communication can itself be classified into two types. The first

one is stigmergy [37], referred to as interaction via environment [38] where the

information is acquired through memory of the environment. Pheromone-trail

deposition based collective behaviour of ants and termites has been a major

inspiration in designing stigmergic multi-agent systems [39–41]. The other

implicit communication approach is based on the interaction of an agent

with its neighbours without using environment’s memory, referred to as

interaction via sensing [38]. In this thesis, we simply refer to agents using
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implicit communication without stigmergy to interact with each other as social

behaviours based on passive sensing. All the source localization strategies

proposed in this thesis assume the same constraint on social behaviours. This

limitation has been put in place because actively leaving a pheromone-like

trail or modifying the environment so that other agents can use cues from the

environment memory may not be desirable or even possible in many real world

localization problems.

1.1.5 Instantaneous vs. Temporal Sampling for Gradient Sensing

Most of the source localization studies assume multiple sensors per agent

for gradient detection [42]– [44]. However, the ability to sense the gradient

instantaneously using multiple sensors is subject to the available intensity

variations over the body length of an agent and the sensor or ambient noise

levels. The size-problem discussed for the case of a bacterium performing

chemotaxis in [45] relates well with a miniature agent sensing a gradient in

real world. In case, an agent cannot detect the gradient instantaneously or is

only equipped with one sensor, it resorts to temporal sampling to sense the

gradient [46].

1.1.6 Ambient Noise

In most real world scenarios, instantaneous intensity values of the source

are corrupted with high levels of ambient noise [47]. Especially in underwater

environments, multipath constructive and destructive interference due to

variability of the environment makes gradient sensing a hard problem to solve

[30]. The phenomenon makes multiple sensor based instantaneous gradient
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sensing almost impossible to achieve and underscores the need to have an

efficient temporal sampling approach for a cooperative multi-agent system.

1.1.7 Team Size

Though there are examples of a massive swarm of real robots [48], their

purpose is to support the collective behaviour research in a lab environment

[49, p. 1302–1303]. There are no known examples of robotic swarms solving

a real world problem [16, p. 31], mainly owing to the cost of fabricating

a massive swarm of agents which have viable mission endurance for a real

world problem. Hence from a practical standpoint and considering current

state-of-the-art, it is important to investigate algorithms that can invoke

collective behaviour in small multi-agent systems which is both robust and

scalable.

1.1.8 Robustness & Scalability

Robustness and scalability are the most important desirable characteristics

of a swarm robotic system. It is important to properly define both these terms

owing to their extensive use in the following discussion in this thesis. Let us

follow the definitions put forth by Erol Şahin in [22]:

Robustness: The property of a swarm robotic system where it is able to

continue to operate, although at a lower performance, despite agent failures

or ambient noise.

Scalability: The property of a swarm robotic system where it should be able

to operate in a wide range of team sizes, i.e., the operation of the swarm should

not be disturbed by change in the team size.
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1.2 Research Scope

The scope of this thesis is to design simple source localization algorithms,

i.e., a set of agent behaviours or interaction rules, that can invoke robust and

scalable collective behaviours for multi-agent systems. Each source localization

algorithm assumes constraints of temporal sampling for gradient sensing and

social behaviours based on passive sensing.

1.3 Related Work

Nature has been a predominant source of inspiration for artificial

multi-agent systems or swarm robotic systems [22,50], resulting in a significant

number of bio-inspired contributions to the source localization problem [51–54].

1.3.1 Designing Collective Behaviour

In nature, complex collective behaviours emerge from agent’s

individualistic and social behaviours which are mostly based on some

form of implicit communication [20]. Simple behaviours mean smaller, simpler

and cheaper entities [38]. The challenge is to design the individualistic and

social behaviours so that a desired collective behaviour emerges from them.

The problem of source localization can be solved cooperatively by having a

mix of individualistic and social behaviours [54]. An individualistic behaviour

may either be self-sufficient to achieve the source localization such as a moth’s

casting behaviour [55] or it may not be, e.g., an agent changing its speed as a

function of instantaneous intensity [56].
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1.3.2 Individualistic Behaviours

1.3.2.1 Random Walks

Random walks are commonly used individualistic behaviours used in

artificial multi-agent systems [57, 58]. Individualistic behaviours like Lévy

walk and correlated random walk have long been representative of foraging

patterns of many animal species [59, 60] and hence become a natural source

of inspiration. However the application of random walk models for source

localization is limited to a small and constrained search space where source

intensities are unavailable or hard to detect. For a large and unconstrained

search space where source intensity can be sensed, a biased random walk is a

better alternative.

1.3.2.2 Biased Random Walks

There are many biased random walk implementations in the domain of

chemical source localization [61, 62] where the researchers have designed

behaviours inspired by a male moth finding a female moth via its pheromone

trail [55]. The male moth travels upwind to localize a chemical source where

the search space can span tens of meters [63]. Rapid upwind surge lasts for

a short period of time (about four-tenths of a second) followed by a casting

behaviour which lasts for a longer period of time (about four seconds) [64].

The casting behaviour refers to the turning back and forth behaviour of the

moth perpendicular to the wind direction especially when it loses contact with

the plume [65]. A similar behaviour is shown by the dung beetle, Geotrupes

stercorarius, while searching for fresh cow pats [66]. Many biologically inspired

chemotaxis implementations on robotic platforms exist in the literature, a
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comprehensive review of which has been given in [67] and [44]. However,

the implementations inspired from the casting behaviour assume two or more

sensors per agent to localize the source.

Similarly, Valentine Braitenberg gave the idea of six very simple

sensorimotor connections [68] that resulted in different agent responses

towards the source such as attraction, repulsion and speed variability. As far

as the proposed self-sufficient source localization behaviour is concerned, it

localizes the sources by varying the speed of the left and the right motors

driving the agent. However, this and similar other strategies [69, 70] assume

more than one sensor per agent.

1.3.2.3 E.coli’s Temporal Sampling

As we discussed, most of the source localization studies assume multiple

sensors per agent for gradient sensing. The robotic implementations of a

single sensor based gradient detection are generally inspired from the biased

random walk of a bacterium, Escherichia coli, performing chemotaxis [67, 71,

72]. The bacterium has multiple chemoreceptors over its body, however,

insignificant difference between concentration levels over its body length keeps

it from instantaneous gradient sensing [45]. Hence, it resorts to temporal

sampling to sense the gradient [46, 73]. The bacterium swims in a straight

path interrupted by abrupt random turns at constant intervals [74, p. 225].

Increasing concentrations result in decreased frequency of abrupt turns and

decreasing concentrations result in increased frequency, i.e., if a bacterium

detects increasing concentrations then it swims relatively straight and takes

random turns otherwise. A similar behaviour-based biased random walk

was used to localize an underwater acoustic source [54, 75, 76]. However,
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the randomness in the walk was because of the sensing noise and an agent’s

turn was deterministic – contrary to the bacterium model [77]. Since many

bio-inspired robotic implementations use the bacterium’s biased random walk

model [67, 71, 72], it is worthwhile to investigate the role of randomness in an

agent’s turning decision. This thesis assumes a general biased random walk

model inspired from Escherichia coli as an agent’s individualistic behaviour,

incorporating both the randomness from the agent’s sensor noise as well as the

randomness in its turns. It is interesting to note that the optimization data in

Chapter 4 and Chapter 5 shows that randomness in an agent’s decision making

is not always the best strategy – especially in cooperative teams.

1.3.3 Social Behaviours

Many of the cooperative multi-agent approaches include an individualistic

behaviour in addition to one or more social behaviours to invoke collective

behaviour. For example, a modified version of Lévy Walk (LW) has been

implemented for a team of miniature Autonomous Underwater Vehicles

(AUVs) localizing multiple targets within a small search space (8 × 8 × 1.5

meters) [78]. In this research, a part of the CoCoRo project [79], the authors fuse

an individualistic random walk model with a social firefly attraction behaviour

that helps the AUVs to aggregate at the targets of interest. The aggregation

is achieved by employing explicit communication between agents within a

local neighbourhood where the exchange of information becomes the basis of a

collective behaviour.

Similarly, school-of-fish social behaviours, i.e., short-range repulsion and

long-range attraction [80] have been fused with a biased random walk to

localize an underwater acoustic source using a team of AUVs [54]. Explicit
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inter-agent communication of the position data was used to invoke cooperation

in a small multi-agent system.

As far as the temporal sampling based multi-agent implementations

are concerned, they either require centralized [81] or decentralized explicit

inter-agent communication [54, 82]. Most of the multi-agent source localization

approaches, irrespective of the what individualistic model they use, are

either scaled versions of the individualistic behaviour [83] or require explicit

inter-agent communication for social behaviours [84]. Those which use implicit

communication for social behaviours are inspired from ants’ pheromone

sensing and hence use stigmergy [40, 41, 85, 86].

1.3.4 Social Behaviours using Passive Sensing

Implementation of social behaviours using strictly passive sensing is rare in

the robotics literature. Even the strategies that assume passive sensing for one

social behaviour, assume explicit communication for other social behaviours

and hence can be categorized as hybrid strategies. For example, [35], uses

a passive sensing based short-range repulsion behaviour, however, flocking

behaviour requires explicit communication. In [87], some social behaviours

are based on agent’s capability of observing other agents via multiple sensors

like stereo vision, proximity, force and touch etc. However, minimal explicit

communication is used to exchange high level task goals and strategies.

There are no known cooperative source localization algorithms that use

social behaviours under the constraints of passive sensing and individualistic

behaviours under the constraints of temporal sampling. Recently, the author

proposed a distributed source localization algorithm which addresses this gap

[75]. The localization performance of the proposed algorithm was gauged
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using a bio-inspired metric, i.e., in terms of localization time, the benefit a

specific individual enjoys being in a team as compared to being alone. The

primary focus of the study was to highlight the practical issues of implementing

conventional bio-inspired models in multi-agent systems which require explicit

inter-agent communication. Though it was shown that the proposed strategy

works at par with its explicit communication based counterparts, it did not

validate the robustness of the collective behaviour against different noise

sources.

In [76], the author proposed an adaptive temporal sampling strategy where

sampling time is a function of sensed intensity values. The adaptive temporal

sampling strategy improved the performance of the localization algorithm

proposed in [75] which was originally based on a static temporal sampling

strategy. However, the performance of the localization algorithm against

common noise sources was not validated and only a team size of 10 agents

was considered.

1.4 Thesis Outline & Research Contributions

Practical implementation issues of conventional collective behaviour

models, requiring social behaviours based on explicit inter-agent

communication, are highlighted in Chapter 2. An alternative passive

sensing model for each social behaviour is presented along with justifications

for practical implementation. All the source localization algorithms presented

in this thesis build on the same passive sensing models and their respective

source localization performances have been compared against hypothetical

counterparts based on lossless explicit communication channel without any

communication delays.

11



CHAPTER 1. INTRODUCTION

The problem statement along with the experimental setup is presented in

Chapter 3. The performance of the collective behaviours is validated against

a conservative performance metric inspired by a real world source localization

problem. The performance metric is the arrival time of the last agent inside

a circular success zone defined around the source location. The experimental

setup is based on a realistic underwater acoustic propagation model and can

simulate a range of noise levels from sensing noise of a typical hydrophone to

strong constructive and destructive multipath interference due to environment

variability.

A distributed source localization algorithm is presented by the name of

Bio-inspired Control Algorithm for Small Teams (Bio-CAST) in Chapter 4. The

presented work is an extended version of the author’s previously published

work [75]. Bio-CAST has a self-sufficient individualistic behaviour under

the constraints of static temporal sampling for gradient sensing and social

behaviours based on the passive sensing models defined in Chapter 2. The

individualistic behaviour is inspired by the biased random walk of a bacterium,

Escherichia coli, performing chemotaxis [77]. This helps us investigate the

role of uncertainty in decision making, both at the individualistic and the

collective level. Extensive optimization of the individualistic and social

behaviours is carried out on a range of initialization distances, team sizes

and neighbourhood sizes which results in an estimated analytical model

for optimized Bio-CAST. Simulated experiments validate the robustness and

scalability of the collective behaviour against strong multipath interference in

gradient sensing, initialization distance sensitivity, noise in passive neighbour

detection and agent loss. Investigation of team’s trajectories and expanse reveal

that a cooperative team’s cohesion is well regulated during the simulated
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experiments and no agents break away from the team. Proof-of-concept

real-robot experiment validates the optimized Bio-CAST against realistic noise

patterns in sensors and actuators of the robots.

Bio-CAST with an adaptive temporal sampling approach is presented in

Chapter 5 and is an extended version of the author’s preliminary work in

[76]. The adaptive temporal sampling approach is composed of Intensity

based Adaptation (IbA) and Connectivity based Adaptation (CbA). IbA varies

the agent’s sampling time as a function of sensed intensity values and

reports significant improvement over the static temporal sampling strategy in

Chapter 4. In [76], IbA was assumed to be an arbitrary non-linear function

of the sensed intensity values. The performance of the localization algorithm

against common noise sources was not validated and only a team size of 10

agents was considered. In Chapter 5, these gaps are addressed where IbA

is optimized along with other behaviours of an agent across a range of team

sizes, initialization distances and neighbourhood radii. An optimized shape

for the sampling function is identified which emerges from the optimization

data. The robustness of the collective behaviour is validated against varying

noise sources. It is revealed in the robustness analysis that IbA is sensitive

to high noise levels such as strong multipath interference. To address the

noise sensitivity of IbA, CbA is introduced which regulates IbA based on an

agent’s estimate of number of its neighbours within a local neighbourhood.

Effectively, CbA regulates the expanse of the team by eliminating the number of

agents breaking away from the team as a mechanism for robust behaviour. The

resulting collective behaviour shows remarkable robustness to strong multipath

interference as well as outperforms other temporal sampling strategies in all the

considered scenarios.
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In Chapter 6, an Adaptive Cohesion based Localization Algorithm (ACLA)

is presented which does not require a self-sufficient individualistic behaviour

to localize a source. Source localization is achieved as an emergent property

through agent interactions. ACLA follows the same adaptive sampling strategy

as given in Chapter 5. Given absence of a self-sufficient individualistic

behaviour, CbA is crucial in controlling agent loss. Even a single agent

breakaway would mean an increasing team expanse in time. A two phase

optimization strategy is introduced which is simpler than the previous

optimization strategies of Chapter 4 and Chapter 5. In the first phase, IbA

and an agent’s cohesion behaviour are optimized for infinite neighbourhood

and in the second phase CbA is optimized for limited neighbourhoods.

It is in contrast to the earlier optimization strategies where the whole set

of behaviours were optimized both for the infinite neighbourhood and the

limited neighbourhood. The collective behaviour resulting from the estimated

analytical model of optimized ACLA is validated against strong multi-path

interference and other noise sources. Furthermore, the arrival time performance

of ACLA has been compared against a similar emergent source localization

algorithm and Bio-CAST. The emergent source localization algorithm is based

on speed variation as a function of instantaneous intensity values. However, the

algorithm fails to localize the source for the considered problem in this thesis.

Against Bio-CAST, ACLA performs significantly better for low ambient noise,

however, Bio-CAST shows more robustness than ACLA for high ambient noise

levels.

Finally, a summary of the important findings of this thesis is provided in

Chapter 7. Also, the chapter focuses on the current state-of-the-art in swarm

robotics and the potential of the proposed strategies in making of a viable and a
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reliable multi-agent system which is able to solve real world problems. Future

work has also been proposed which highlights some of the points which can

help in improving the proposed strategies further and gaining new insights.
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Chapter 2

Social Behaviours based on Passive Sensing of

Neighbours

The material in this chapter draws significantly on the author’s previously

published work [75].

2.1 Background

Social behaviours are the basis of cooperation in multi-agent systems

and are fundamental in achieving collective behaviour. Conventional social

behaviour models require explicit inter-agent communication. However

in some environments, communication bandwidth and delays are critical

constraints which may compromise the desired collective behaviour. This

chapter introduces agent interaction models which do not require any explicit

inter-agent communication and use only agent’s passive sensing abilities to

invoke collective behaviour in a multi-agent system. The chapter starts by

reviewing the conventional social behaviour models followed by highlighting

the implementation issues associated with these models in a real world

scenario. The chapter concludes with proposing the passive sensing based

social behaviours and substantiating their implementation viability. The three

main source localization algorithms proposed in the following chapters assume

the same passive sensing models for agent interaction as presented in this

chapter.

16



2.2. CONVENTIONAL SOCIAL BEHAVIOURS

2.2 Conventional Social Behaviours

In a school of fish, the collective behaviour is believed to emerge from an

individual’s social behaviours, i.e., its interaction with its neighbours [88, 89].

Many years of research [90–92] has classified three social behaviours as basis

for complex collective behaviour in nature, i.e., the long-range attraction, the

short-range repulsion and the neighbour alignment. An agent is attracted

towards its neighbours unless it gets too close, in which case repulsion takes

over attraction – a phenomenon jointly known as the long-range attraction

and short-range repulsion. Also, an agent aligns its heading with some of

its neighbours which is known as neighbour alignment. Current literature on

animal collective behaviour shows a lack of consensus on whether these social

behaviours are based on metric/zonal interactions [90, 92–94] or topological

interactions [95–97]. By metric interaction, one assumes the interaction of the

focal agent with its neighbours within a fixed radius. There are three distinct

zones defined within the fixed radius of interaction as shown in Fig. 2.1. For

a distance, r ∈ R+ (m), away from the focal agent, there exists a Collision

Avoidance (CA) zone such that, 0 < r ≤ rCA, within which short-range

repulsion behaviour is active, an orientation (O) zone such that, rCA < r ≤ rO,

within which neighbour alignment behaviour is active and a Group Cohesion

(GC) zone such that, rO < r ≤ rGC, within which the long-range attraction

behaviour is active. By topological interaction, one assumes that the focal

animal interacts with a fixed number of nearest neighbours. However, these

models are more restricted in explaining the collective behaviour in some flocks

of birds and their generic application is rather debatable [56, 88].
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Group Cohesion zone

CAr

Or

Figure 2.1. Zonal model of fish interaction.

2.2.1 Unit Vector based Long-Range Attraction and Short-Range Repulsion

For metric/zonal interaction, there are numerous models having some

very subtle differences between them but many of them fit the experimental

data quite well. A very simple model [56, 90] is based on the unit vector

information of the neighbour positions. For example, in case the focal agent,

i, with position, xi(t), at time, t, detects any neighbour(s), j, inside its CA zone,

i.e., the inter-agent distance, rij(t) = |xj(t)− xi(t)| ≤ rCA, it assumes heading

according to the following unit direction vector

dCAi(t + TCA) = −

nCA(t)

∑
j 6=i

xj(t)− xi(t)
rij(t)∥∥∥∥ nCA(t)

∑
j 6=i

xj(t)− xi(t)
rij(t)

∥∥∥∥
(2.1)

where TCA is the sampling time and nCA(t) are the number of neighbours in

the CA zone. Similarly for any neighbour(s), j, in the GC zone such that

rO < rij(t) ≤ rGC, the focal agent, i, would assume heading according to the
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following unit direction vector

dGCi(t + T) =

nGC(t)

∑
j 6=i

xj(t)− xi(t)
rij(t)∥∥∥∥ nGC(t)

∑
j 6=i

xj(t)− xi(t)
rij(t)

∥∥∥∥
(2.2)

where T is the sampling time and nGC are the total number of neighbours in the

GC zone.

2.2.2 Centroid based Long-Range Attraction and Short-Range Repulsion

There are other collective behaviour models which build more directly

on the significance of the centroid of the school’s mass [98–101]. Some of

these models assume a somewhat unrealistic notion that a focal agent has the

knowledge of the global centroid and tries to bias itself towards that center.

Nevertheless, there are models that only assume knowledge of the centroid of

neighbour positions within a fixed radius [93, 102, 103]. In fact, we can write a

very simple centroid model by slightly modifying (2.1) and (2.2) such as

dCAi(t + TCA) = −

nCA(t)

∑
j 6=i

(
xj(t)− xi(t)

)
∥∥∥∥ nCA(t)

∑
j 6=i

(
xj(t)− xi(t)

) ∥∥∥∥
(2.3)

and

dGCi(t + T) =

nGC(t)

∑
j 6=i

(
xj(t)− xi(t)

)
∥∥∥∥ nGC(t)

∑
j 6=i

(
xj(t)− xi(t)

) ∥∥∥∥
(2.4)

respectively. By limiting the rGC in the centroid model, we can mimic

knowledge of the local centroid and by increasing it to a very large number,

we can mimic knowledge of the global centroid.
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2.2.3 The Neighbour Alignment

As for the orientation zone, the focal agent, i, with velocity, vi(t), at time,

t, aligns itself with the orientation of its j neighbour(s) by assuming heading

according to the following unit direction vector

dOi(t + T) =

nO(t)

∑
j 6=i

vj(t)
|vj(t)|∥∥∥∥ nO(t)

∑
j 6=i

vj(t)
|vj(t)|

∥∥∥∥
(2.5)

where T is the sampling time and nO(t) are the number of neighbours in the

orientation zone.

2.2.4 Fusion of Social Behaviours

Conventionally, the repulsion behaviour holds the highest priority and in

case a neighbour is found inside the CA zone, the attraction and orientation

behaviours are suspended [90]. Attraction and orientation behaviours are

active at the same time and are generally given equal weights in calculating

the resultant heading of the agent.

2.3 Practicalities of the Long-range Attraction

Long-range attraction contributes towards the cohesion and compactness

of a group. It is interesting to investigate the advantages of having an

attraction behaviour in multi-agent systems for some real world problem. It

has been shown that the long-range attraction behaviour without aid of any

other collective behaviours (repulsion or orientation) can contribute towards

increasing the efficiency of a source localization problem [54]. However,

the implementation cost of behaviours given by (2.2) and (2.4) is in terms
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of an agent acquiring its own reliable position estimate and to establish

communication with other agents to exchange the position information.

Acquiring a reliable position estimate and/or communication with acceptable

delays and bandwidth in certain environments is a hard and an expensive

problem to solve [30, 104].

Having a small attraction radius may alleviate the communication issues to

some extent [105, 106]. However from the perspective of a source localization

problem, having a small attraction radius may consequentially require a very

large team of agents [107]. For example, a small team with agents having small

attraction radius will be potentially sampling a strong spatially-correlated cue

which may have detrimental effects on its collective decision making in noisy

environments [108]. Fishes are known to have small neighbourhoods but some

schools of fish undertaking distant migration are composed of several million

individuals connected through small neighbourhoods over several kilometers

[109, 110]. It is highly unlikely in the present times to build such a massive

swarm of autonomous agents with sufficient mission endurance to solve a real

world problem. Especially in the case of an agent using temporal sampling for

gradient estimation, we investigate the dependence of initialization distance,

attraction radius and team size in Chapter 4. We show that a smaller attraction

radius requires a larger cooperative team to invoke collective behaviour, i.e.,

performing significantly better than an individualistic team. It is intuitive if we

imagine reducing the attraction radius of a small team while demanding the

team remains cohesive, we are approaching the case of a single individual. The

team members in such a case would have very small sampling times to alleviate

the risk of an agent breaking away from the team and hence very poor gradient

estimates.
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2.4 Practicalities of the Short-range Repulsion

Repulsion allows more volume to a school allowing it to span more space.

Also, increasing rCA results in decreasing cohesion in a school [92]. There is also

a difference of opinion on the effect of repulsion on the overall schooling, e.g.,

some studies report that removing the CA zone causes school disintegration

[91, 111], whereas some report that removal of the CA zone has insignificant

effect on schooling [92, 112, 113]. Nevertheless, the short-range repulsion

allows sophisticated multi-agent systems such as land robots, UAVs or AUVs

to avoid collisions with their peers during a cooperative mission. From the

perspective of an agent safety, collision avoidance control is indispensable in

most multi-robot setups.

Short-range repulsion suffers from the same issues as discussed in the

preceding section for the long-range attraction. Models defined in (2.1) and

(2.3) also require the focal agent to acquire the position information of all the

neighbouring agents.

2.5 Practicalities of the Neighbour Alignment

The neighbour alignment model in (2.5) serves the purpose of mimicking

the polarization of a school, i.e., the mean of the angle deviation of each agent

to the mean swimming direction of the fish group [92]. School polarization

increases as degree of alignment among individuals in a school increases and

decreases otherwise. It is generally measured as a normalized parameter

varying between 0 (maximally confused state) and 1 (optimally parallel state) as

defined in [90]. The long-range attraction and the short-range repulsion models

without the orientation model account well for the expanse of a school, i.e., the
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mean distance of all the fish from the school’s centroid, but not so much for

the polarization [88]. It is also known that the phenomenon of alignment is

dependent on the radial neighbour density. For example, a low density would

result in a disordered orientation and only for a certain threshold of density,

order emerges and increases thereafter as a function of group size [114, 115].

Such a transition from disorder to order (alignment) is seen in a group of locusts

[116] where for small populations, there was no significant alignment among

individuals. Similar transitions are observed in a school of fish [117]. These

observations also hint towards the possibility of alignment being an emergent

property that is a consequence of the long-range attraction and the short-range

repulsion phenomenon in a high density group.

From the perspective of source localization, there is a high chance that

alignment may result as an implicit consequence of following a certain cue. For

example, a recent study has shown that alignment emerges from the long-range

attraction and short-range repulsion phenomenon when agent speeds are

varied as a function of instantaneous cue intensities [80]. Working with a

small team of autonomous agents, it is interesting to investigate if alignment

would be of any help, especially in the source localization problems. Recently,

the author showed that the alignment behaviour only helps marginally over

the long-range attraction and short-range repulsion behaviours in a source

localization problem [118].

As far as the implementation issues are concerned, the orientation model

requires the focal agent to have a good estimate of the velocity vectors of each

of its neighbours. In addition to the knowledge of the position coordinates of

all the neighbours as in the case of the long-range attraction and the short-range

repulsion, this would require agent memory to compute velocities of their
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Figure 2.2. (a) Passive sensing based interaction zones for CA and GC. (b) Explicit
communication based interaction zones for CA, GC and O.

neighbours from the past and present position coordinates. Alternatively

information regarding neighbours’ range and heading can help in achieving

the alignment behaviour [23, 119]. However in most real world environments,

acquisition of the heading information is not possible over large distances

without explicit communication. This is also reflected in [23, 119] where a

virtual sensor comprising of a compass and a communication unit was assumed

to exchange the heading information between robots.

2.6 The Alternative: Passive Sensing based Social Behaviours

As discussed earlier, the conventional social behaviour models require

explicit inter-agent communication. Our focus is to adopt an alternative set of

social behaviours that build on the conventional counterparts but only require

passive sensing to achieve similar characteristics and performance.

We assume that each agent is equipped with two passive sensors, one

on its right side and one on its left side. This effectively partitions the

two-dimensional sensing world of an agent as shown in Fig. 2.2(a) into a right

and a left half plane. Now, there are two interaction zones, i.e., the CA and the
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GC zone as compared to the three zones of the conventional case in Fig. 2.2(b).

As discussed in the preceding section, given the neighbour alignment requires

an agent to acquire neighbours’ heading information [23,119], we have ignored

the orientation zone as acquiring such an information is not possible without

explicit communication. Moreover, it is also important to note that even if we

had the resources to implement explicit inter-agent communication, the role of

the neighbour alignment behaviour is controversial in the biological world [75]

and the performance benefits of its addition to the other two behaviours is

marginal [118] as discussed in the preceding section.

The following information is required for the passive sensing based social

behaviours:

1. Where is the majority of neighbours in my GC zone? Either to my right

or to my left?

2. Are there any neighbours inside the CA zone? If so, what is the estimated

range to the closest one and which half is it located in?

Based on this information an agent exercises short-range repulsion and

long-range attraction behaviours. We discount the neighbour alignment

behaviour following the discussion in the preceding section.

2.7 Practicalities of the Passive Sensing Model

Here we provide some examples of using the dual sensor topology from the

perspective of practical implementation. A very simple scenario is using two

microphones or hydrophones per agent where the focal agent can listen for the

presence of its neighbours. In most of the situations the drive or propulsion

systems of land robots, UAVs or AUVs make a significant amount of noise
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which can be sensed easily by the focal agent within some local neighbourhood.

Using the time-of-arrival analysis on the sensors’ data can help the focal agent

detect where the majority of neighbours is located. In harsh environments

such as undersea environments, where communication bandwidth is severely

limited, low frequency sound signals like the thruster noise can travel several

hundreds of meters [47,120,121]. The thruster noise of a typical AUV or a ROV

is in the range of 120 dB to 160 dB re1 1 µPa at 1 m [122, 123]. AUVs can also

be mounted with locator beacons which emit an acoustic pulse at a fixed rate in

time. For example, a 20 kHz pinger with a source level of 180 dB re 1 µPa at 1 m

can be heard over several kilometers undersea. In environments where light

can travel, e.g., clear waters, the two sensors can simply be light detectors. For

example, in the case of CoCoRo project, the researchers use small AUVs which

can emit light [78]. Comparing the mean value of light intensity sensed by each

sensor over some time window can give a good estimate of where the majority

of the neighbours are. Cameras can also be an option as two passive sensors

in environments where robots can detect the neighbour majority using simple

image processing techniques.

Where an estimate of the neighbour majority completely defines the

long-range attraction behaviour, the short-range repulsion behaviour requires

the estimated range from the nearest neighbour. We can think about the

neighbour as an additional source. Given an agent has some prior knowledge

of the source (neighbour in this case) intensity and its propagation model, it can

obtain a good estimate of the range in a close proximity. This is especially true

for sources which follow the inverse square law, i.e., the intensity is inversely

proportional to the distance squared. Since the repulsion radius is generally

1an abbreviation of ‘reference to’
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small, the assumption pertaining to the knowledge of the estimated nearest

neighbour distance is practically valid.
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Chapter 3

Problem Statement & Experimental Setup

3.1 Problem Statement

Let us say that we have a team of homogeneous, miniature and simple

robots such as shown in Fig. 3.1, called Swarmbots. An agent cannot

explicitly communicate with other agents, however, it can detect the majority of

neighbours in either its left or right half within some local neighbourhood using

two sensors. Each agent is also equipped with one sensor to sense the signal

of the source and hence conducts temporal sampling to sense the gradient.

Note that neighbour-majority detection and gradient sensing may require two

separate sensing mechanisms. For example, a team of agents localizing a

chemical source where each agent senses the gradient via a single chemical

sensor and its neighbours via two acoustic sensors. The whole team needs

to travel a certain distance in an unconstrained search space and arrive at the

source location. In a GPS denied environment where the robots do not have a

sense of their own position or of the source location, this becomes a challenging

task. We can have a single point-source such as a Radio Frequency (RF) beacon

(on land) or an Underwater Locator Beacon (ULB) (in sea) installed at the source

location, the signal strength of which can help the robots to localize the target.

We can also flip the notion. For example, when a team consisting of

miniature and simple robots is employed for a certain task, it is natural to

consider its post-mission retrieval. Assuming the same constraints on the team
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(a) (b)

Figure 3.1. (a) A small team of four Swarmbots at Pandan Reservoir. (b) A Swarmbot
during a mission in the lake.

and knowledge of the positional data, team retrieval is a challenging task.

For example, a team of Swarmbots is exploring a certain area cooperatively.

After some desired period of exploration time, the team needs to be retrieved.

Assuming each agent has a single hydrophone to sense the gradient of an

acoustic source, a ULB may be suspended from a surface vessel to aid in the

team retrieval. Though the idea of having a huge number of inexpensive units is

to have some tolerance of losing a few during a mission, it is important to have

retrieval algorithms that are robust in maximizing the percentage of retrieved

units – ideally to 100%.

We define arrival time as the time taken by the last agent in a team to enter

a success zone of radius, rs, centered around the point-source where each agent

that enters the success zone does not diverge from the source afterwards.

To substantiate that a specific source localization algorithm is invoking

collective behaviour, the localization performance in terms of the mean, median

and the variance of the arrival time distribution of a cooperative team (using
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individualistic and social behaviours) needs to be significantly better than a

non-cooperative team (using only individualistic behaviours).

3.2 Simulation Setup

A team of N ∈ {1, 2, . . . , 20} homogeneous agents is considered. Simulated

model of an agent follows the kinematics of Swarmbot where each agent is

assumed to be of length, l, has its turning rate, θ̇ and speed, s. A constant speed

operation with non-holonomic constraints has been assumed and both the

turning rate and the speed have been further corrupted with additive Gaussian

noise for each agent to simulate the effects of turbulence in the medium. The

compass reading, θ, has also been corrupted with additive Gaussian noise, εθ

which follows the empirical characterization of the sensor, i.e., Ocean Server’s

OS5000. A simplistic motion model is meant to keep the model-specific artifacts

resulting from a more realistic dynamical model from affecting the results of the

collective behaviours we study in this thesis.

The attraction radius, rGC, i.e., the maximum size of an agent’s

neighbourhood in which it interacts with its neighbours, is expressed as a

fraction of the initialization distance, i.e., rGC = γr0 where γ ∈ [0, 1]. The

repulsion neighbourhood radius (see Section 2.2), rCA, has been set to twice

the minimum distance, rmin = 2sTCA + l
2 . Note that rCA needs to be greater

than 2sTCA + l
2 for an agent to detect all the potential collisions. The constraint,

rmin = 2sTCA + l
2 , has been calculated assuming the worst case scenario of a

head-on collision between two agents travelling at speed, s, where the sensor is

assumed to be mounted at the center of each agent’s body length, l. Since the

formulation for rmin makes sense if both the agents are travelling at the same

speed, rCA needs to be sufficiently larger than rmin to compensate for any noise
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Table 3.1. Symbols, Description and explored values of the mission variables in
simulation.

Sym. Description Value(s)

N Total number of team members 1 to 20

r0 Initialization distance {200, 600, 1000, 1400}m

rs Radius of the success zone 50 m

rGC Attraction radius {0.1r0, 0.2r0, . . . , 0.6r0, ∞}

rCA Repulsion radius 7.6 m

TCA CA sampling time 1 s

rmin Minimum radius of the repulsion
zone

3.8 m

l Length of an agent 0.8 m

s Speed of an agent ∼ N (1.5, 0.15) m s−1

εθ Compass heading error ∼ N (0, 1) °

θ̇ Turning rate of an agent ∼ N (35, 3.5) ° s−1

σ Noise in received intensity level {1, 2, . . . , 6} dB

in speed regulation. The sampling time for the collision avoidance module,

TCA, is arbitrarily fixed at 1 s.

Each of N agents is assumed to be deployed with a random pose in a circular

area of radius 10 m centered around the initialization point. The initialization

distance, r0, i.e., the distance of the initialization point from the source is varied

in a range to simulate different Signal to Noise Ratio (SNR) conditions. The

radius of the success zone centered around the source, rs, is set to 50 m.

All the values for the variables with their description have been listed in

Table 3.1.
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3.2.1 Sound Propagation

The acoustic source is assumed to be a Dukane DK-180 ULB with a

frequency of 8.8± 1.0 kHz and an effective bandwidth of 100 Hz [124]. The

Source sound-Level, SL, is set to 180 dB re 1 µPa at 1 m. The assumed ambient

Noise Level, NL, is set corresponding to the pressure spectral density level of

52 dB re 1 µPa2 Hz−1 pertaining to sea state 3 [47]– [120] which is equal to a

sound level of 84 dB re 1 µPa in the operating frequency band of the ULB.

We adopt a simple incoherent model for sound propagation taking into

account the transmission losses due to spherical spreading and absorption

in seawater [125] (see Appendix A.1). Spatial profiles of a realization of

received source-intensity, I, are shown in Fig. 3.2. Intensity levels have

been corrupted with additive Gaussian noise of zero mean and equivalent

dB-scale standard deviation of σ = 1 dB in Fig. 3.2(a) and of σ = 6 dB in

Fig. 3.2(b). Assuming the noise of a typically calibrated sensor, σ = 1 dB

of noise in received intensity levels is a valid assumption given a sufficiently

long sampling window. However, in dynamic environments where there is a

strong constructive and destructive multipath interference [126], the variation

in received intensity levels can be estimated by setting σ within the range of 3 dB

to 6 dB. We will consider the more conservative case of σ = 6 dB in conjunction

with σ = 1 dB to validate the robustness of the source localization algorithm

against noise.

For reference, a realization of noise-corrupted source-intensity as a function

of distance from the source is shown in Fig. 3.3 for σ = 1 dB and σ = 6 dB.

32



3.2. SIMULATION SETUP

-1000 0 1000
x-axis (m)

-1000

-500

0

500

1000

y
-a
x
is
(m

)

100

120

140

160

180

(a)

-1000 -500 0 500 1000
x-axis (m)

-1000

-500

0

500

1000

y
-a
x
is
(m

)

100

120

140

160

180

(b)

Figure 3.2. (a) A realization of source-intensity spatial profile for σ = 1 dB. (b) A
realization of source-intensity spatial profile for σ = 6 dB.
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Figure 3.3. A realization of the noise-corrupted spatial intensity levels.

3.2.2 Evolutionary Optimization

The parameters of the individualistic and social behaviours of each

localization algorithm discussed in this thesis are optimized using a Genetic

Algorithm (GA) [127]. According to the classification given in [16], agent

behaviours can be designed by either behaviour based design or automatic

design. Behaviour based design involves manually developing the individual

behaviors of the agents which result in a desired collective behavior. It is

generally a trial and error procedure where iterative tuning of the individual

behaviors is carried out until the desired collective behavior is achieved. On

the other hand, automatic design for multi-robot systems is mainly based on

33



CHAPTER 3. PROBLEM STATEMENT & EXPERIMENTAL SETUP

the evolutionary robotics approach. In evolutionary robotics approach, initially

a population of individual behaviors is generated at random. In each iteration,

a certain number of experiments or simulations for each individual behavior are

conducted. In each iteration, a fitness function is used to evaluate the collective

behavior resulting from the individual behavior. Individual behaviors with

a good fitness value are modified by genetic operators and then used for the

subsequent iterations. Once no improvement is seen in the fitness value of the

best individual behaviour for a specific number of iterations, the evolutionary

process is ended.

In this thesis, we have a fixed general structure of the individualistic and

social behaviours. Let us take the example of the individualistic behaviour

where an agent would move for some time in a straight path and then take a

random turn. However, the optimal values of the sampling time and turn’s

probability distribution parameters are found through GA. The process is

identical to that of the evolutionary robotics approach where each behaviour

in a population would be a different set of values of the sampling time and the

turn’s probability distribution parameters. Our approach differs from a purely

evolutionary robotics approach since the search space has been constrained by

an already fixed behavioural structure. Hence our approach can be seen as a

hybrid of behaviour based design and automatic design. However, note that

GA itself is not critical in the design process since any optimization strategy

that is suitable for a high-dimensional, nonseparable and nonlinear problem

without any guarantees of convexity can be used to find the optimal parameter

values.

The GA has been implemented using NVIDIA® CUDA™ computing

platform and employing three NVIDIA® Tesla® K20 Graphical Processing Units
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(GPUs) in parallel [128]– [129]. The GPU-based architecture enables us to have

48 individuals in a single generation of the GA and all of the individuals to be

evaluated in parallel. The GA structure and implementation details have been

given in Appendix A.2.

The GA’s fitness function is the mean arrival time (defined in Section 3.1)

over 1024 simulated source localization missions. The number of simulated

missions have been calculated using the Vargha and Delaney’s A-measurement

test [130] to ensure similar distributions for the entire GA population. The

justification of using the particular number of simulated missions is given in

Appendix A.3.

When dealing with the evolutionary optimization techniques, it is

important to ascertain that the optimized solution is not exploiting any specific

information that is local to the particular environment or any initial condition,

which would not hold in general [131]. For this reason, measures are taken to

ensure that no artifacts make their way into the optimization process, e.g., when

initializing from a constant distance we ascertain the reported solution to be

the same even if the multi-agent system is initialized from different quadrants

of the search space relative to the source location. Also, the trajectories of the

agents during a mission, both in the simulation environment and real-world

experiments, are carefully studied to rule out any artifacts.

3.2.3 Robustness Analysis

A general trend in this thesis is to optimize the behaviours of a certain

collective behaviour for an ambient noise level of 1 dB, followed by estimation

of the optimized behaviours with an analytical model. The collective

behaviours based on these analytical models are then validated against varying
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degrees of ambient noise in the range of 1 dB to 6 dB. The validation is mainly

based on the statistical analysis of the arrival time distributions via box-plots

where each plot represents 5× 104 simulated experiments, a band represents

the median of a distribution, a box delineating the 25th to the 75th percentile,

the whiskers show the lowest datum still within 1.5 Inter Quartile Range (IQR)

of the lower quartile, and the highest datum still within 1.5 IQR of the upper

quartile. Wherever comparisons between different localization algorithms have

been made, significance of comparative medians has been tested using the

Mann-Whitney-Wilcoxon test.

In some instances, analysis of a particular simulated experiment is also

undertaken to give a clearer understanding of both the collective behaviour and

the agent behaviour. Such analysis is done through examining the trajectory

of the centroid of the team, trajectory of a random agent, team expanse and

number of agent breakaways.
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Chapter 4

Static Temporal Sampling based Multi-Agent Source

Localization

The material in this chapter is an extended version of the author’s

previously published work [75].

4.1 Background

Recently, a distributed source localization algorithm was proposed [75]

which invokes collective behaviour in a small multi-agent system. The social

behaviours were based on the passive sensing, as defined in Chapter 2 and

the individualistic behaviour assumed a temporal sampling constraint on an

agent for sensing the gradient. The primary focus of the author’s preliminary

work was to highlight the practical issues of implementing conventional social

behaviour models which require explicit inter-agent communication. Though

it was shown that the proposed source localization algorithm works at par with

its explicit communication based counterparts, the study did not validate the

robustness of the collective behaviour against different noise sources.

In this chapter, the proposed algorithm is named as Bio-inspired Control

Algorithm for Small Teams (Bio-CAST). The algorithm is composed of one

individualistic and two social behaviours. The individualistic model is

inspired by the biased random-walk of a bacterium, Escherichia coli, performing

chemotaxis [77] which helps us investigate the role of uncertainty in an agent’s
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decision making, both at the individualistic and the collective level. This is in

contrast to the earlier version proposed in [75] where the uncertainty in agent’s

decision making was discounted. The performance of the collective behaviour

is validated for the arrival time of the last agent (as defined in Section 3.1) which

also contrasts with the less conservative arrival scenario of [75]. Extensive

optimization of the agent behaviours is carried out on a range of initialization

distances, team sizes and neighbourhood radii. The optimized algorithm

is estimated by an analytical model. Simulated experiments validate the

resulting collective behaviour against agent’s sensor and actuator noise, strong

multipath interference in gradient sensing due to environment variability, noise

in passive neighbour sensing, initialization distance sensitivity and agent loss.

Investigation of team’s trajectories and expanse reveal that a cooperative team’s

expanse is well regulated during the simulated experiments and no agents

break away from the team. Proof-of-concept real-robot experiment validates the

optimized Bio-CAST against realistic noise patterns in sensors and actuators of

the robots.

4.2 Bio-CAST

In this section, the component behaviours of Bio-CAST are introduced

starting with Target Drive (TD), a self-sufficient individualistic behaviour

which helps an agent localize a source with or without the social information.

Then the social behaviours are introduced, i.e., Collision Avoidance (CA) and

Group Cohesion (GC). This section concludes with the general behavioural

structure of Bio-CAST.
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4.2.1 Individualistic Behaviour: Target Drive

Some bacteria, being very small, cannot sense the gradient via instantaneous

spatial comparisons of their chemoreceptors and instead use temporal sensing

[73]. Also, a bacterium swims in a straight path interrupted by abrupt random

turns at constant intervals [74, p. 225]. Increasing concentrations would result

in decreased frequency of abrupt turns and decreasing concentrations would

result in increased frequency. If a bacterium detects increasing concentrations

then it swims relatively straight and takes random turns otherwise [77].

On a similar note, we assume that an agent, n, estimates the average acoustic

intensity, In(t), at position, xn(t), every T seconds. The unit heading vector of

the agent, dictated by TD is updated at each sample as

dTDn(t + T) =


dWn(t) if În(t + T) ≥ În(t)

RΘc(t+T)dWn(t) otherwise

(4.1)

where dWn(t) is the unit directional vector of the agent, În(t) is the estimated

mean acoustic intensity, RΘc is the counter clockwise rotation matrix for the

angle Θc ∼ N (θc, σθc) which is a Gaussian random variable with mean θc, and

standard deviation σθc .

Effectively, if the focal agent, after taking a sample, estimates that it is going

in the direction of increasing sound levels, it keeps its direction otherwise it

takes a random corrective turn.

4.2.2 Group Cohesion

GC assumes that an agent can detect the majority of its neighbours in its left

or right half within some local neighbourhood of radius, rGC, called attraction
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Figure 4.1. (a) The neighbourhood of an AUV with respective unit vectors dictated
by TD and GC. (b) An AUV n detects an AUV m in its closest proximity within the
repulsion neighbourhood and takes the evasive action by turning towards the opposite
half. The uncertainty zone is highlighted with red where an AUV cannot resolve a
threat to be either in its left or right half.

radius. As shown in Fig. 4.1(a), GC calculates the unit heading vector of the nth

agent as

dGCn(t + T) =



RφdWn(t) if more neighbours on left

R−φ dWn(t) if more neighbours on right

dWn(t) otherwise

(4.2)

where Rφ, R−φ are the counter clockwise and the clockwise rotation matrices for

an angle of φ = 90°.

Effectively, GC dictates a left turn to the focal agent if the number of

neighbours to its left are more than the number of neighbours on its right and

vice versa. In case of the numbers being equal in both the left and the right half,

it keeps the agent’s heading unchanged.
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4.2.3 Collision Avoidance

CA operates at the highest priority. As the sampling time, T, for TD and

GC is generally in tens of seconds, CA has a relatively much smaller sampling

time, TCA. In case an agent n detects a neighbour within its repulsion zone of

radius, rCA ≤ rGC, it starts an evasive action and ignores any other behaviours

such as going towards the goal or towards the neighbours. The focal agent turns

away from the nearest neighbour with a turning rate that is proportional to how

close the nearest neighbour is. The turning rate as a function of the estimated

distance, r̂n,m(t), between the focal agent, n, and the nearest neighbour, m, is

given as

θ̇CAn(t + TCA) =


sgn(m)αθ̇max if rmin < r̂n,m(t) ≤ rCA

sgn(m)θ̇max if r̂n,m(t) ≤ rmin

(4.3)

where

sgn(m) =



+1 if m is in right half

−1 if m is in left half

X otherwise

(4.4)

and α =

(
rCA − r̂n,m(t)

rCA − rmin

)
, positive turning rates being counter clockwise and

vice versa, rmin is the minimum distance (see Section3.2 for details) where the

turning rate is maximum and X is a bernoulli random variable that takes on

values ±1 with probability 0.5. Randomness in (4.4) caters for an agent finding

the nearest neighbour within the uncertainty zone, shown in red in Fig. 4.1(b).

Then the focal agent, n, assumes heading according to the following direction

41



CHAPTER 4. STATIC TEMPORAL SAMPLING BASED MULTI-AGENT SOURCE LOCALIZATION

vector

dCAn(t + TCA) =
∆dCAn(t + TCA) + dn(t)
‖∆dCAn(t + TCA) + dn(t)‖

(4.5)

where dn(t) = 1∠θn(t) is the instantaneous unit direction vector of an agent

n and ∆dCAn(t + TCA) = 1∠{TCA · θ̇CAn(t + Tn)} is the desired change in the

instantaneous unit direction vector dictated by CA module.

4.2.4 Resultant Bio-CAST

Now, we can write the desired direction of the focal agent n, commanded

by Bio-CAST as

dBCn(t) =


dCAn(t) if r̂n,m(t) ≤ rCA

dWn(t) otherwise

(4.6)

where

dWn(t) = ηdTDn(t) + (1− η)dGCn(t) (4.7)

and η ∈ [0.5, 1] is the source-bias coefficient where any values of η < 0.5 result

in unsuccessful source localization. Note that higher values of η mean less team

cohesion and vice versa. Also note that (4.6) is only the desired heading dictated

by Bio-CAST whereas the transition from the nth agent’s current angle, θn to

θBCn = ∠dBCn follows the non-holonomic constraints as specified in Section 3.2.

The overall block diagram of the Bio-CAST is given in Fig. 4.2.

4.3 Optimization Results

The optimization process assumes the experimental setup and GA settings

as stipulated in Section 3.2. For the constant parameters, refer to the settings

given in Table 3.1. Behavioural parameters, i.e., the sampling time T, source

bias coefficient η, correction-angle θc and its associated SD σθc are optimized,
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Figure 4.2. Block diagram of BioCAST.

for a range of team sizes, initialization distances and attraction radii as given in

Table 3.1. The optimized vector, w∗ = [T∗, η∗, θ∗c , σ∗θc
] is defined as a function of

the initialization distance, attraction radius and team size as

w∗(r0, rGC, N) = [T∗(r0, rGC, N), η∗(r0, rGC, N), θ∗c (r0, rGC, N), σ∗θc
(r0, rGC, N)]

(4.8)

The bounds for the optimization parameters are given in Table 4.1. The range

of η has been truncated because less than 50 % of its weight results in a failure

to localize the source. In Section 4.3.1, the attraction radius, rGC has been

set to infinity which ensures strong connectivity of the team [132] and hence

maximum cooperation. In Section 4.3.2, the attraction radius has been limited to

finite values and the subsequent effect on the optimization results is compared.

The noise level, σ in the agent’s received intensity levels has been set to 1 dB.

To compare the relative benefit of using a cooperative strategy against an

individualistic one, relative efficiency can be calculated as

ρrel(r0, rGC, N) =
Mean arrival time for w∗(r0, 0, N)

Mean arrival time for w∗(r0, rGC, N)
(4.9)
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Table 4.1. Explored values of the parameters during the optimization process

Parameter Bounds
T [1, 300] (s)
η [0.5, 1]
θc [0◦, 180◦]
σθc [0◦, 90◦]

where w∗(r0, 0, N) is the optimized individualistic vector and ρ ≥ 1. Let

U = {(r0, rGC, N) ∈ R+ ×R+ ×Z+} be a universal set of parameter values,

then we have a cooperative set C = {(r0, rGC, N) ∈ U | ρrel(r0, rGC, N) > 1}

and an individualistic set, C ′ = U \ C.

4.3.1 Arrival Time Optimization and Initialization Distance

The solid lines in Fig. 4.3 represent w∗(r0, ∞, N) and the dashed lines

represent constrained optimization for the individualistic case, w∗(r0, 0, N)

where η is set to 1.00. For all the initialization distances considered,

w∗(r0, ∞, N) represents a cooperative team as is evident by the relative

efficiency curves in Fig. 4.3(a) and η∗ < 1 in Fig. 4.3(b). In general, there is

a consistent increase in the relative efficiency in N for initialization distances

greater than or equal to 600 m. However, the curves slowly flatten out as N

increases. For the initialization of 200 m, peak relative efficiency occurs for

N = 9 and thereafter there is a slow decline. To explain this, we need to

consider increasing N as both a source of cooperation and interference [133].

As N increases, the cooperative team thrives on more number of samples and

hence its holistic decision making improves. However, since a cooperative

team travels cohesively as shown by η∗ in Fig. 4.3(b) (also see discussion in

Section 4.4.2 on cooperative team’s trajectories and expanse), interference due

to CA also increases in N. The interference due to CA is significantly more in

a cooperative team than an individualistic team since agents moving together
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Figure 4.3. Optimization results for varying initialization distances (see legend at the
bottom where I denotes an individualistic team and C denotes a cooperative team):
(a) Relative efficiency as a function of team size where pink dashed-line represents
performance of an optimized individualistic team. (b) Source bias coefficient, η with
all the individualistic η are set to 1.00. (c) Correction angle, θc. (d) Sampling time, T.

would require more evasive actions on average as compared to agents moving

independently. As the initialization distances decrease, the SNR improves

and also the agent’s gradient estimates. Hence, the relative advantage of a

cooperative team and an individualistic team is not much and declines quickly

as interference increases with the team size.

The optimized source bias values in Fig. 4.3(b) show an interesting

relationship between two optimized cohesion levels, i.e., η∗ ≈ 0.70 and η∗ ≈

0.60, and the initialization distances. For a larger initialization distance, i.e., a

degraded SNR, the team utilizes more cohesion to make up for agent’s poor

gradient estimates. It is also interesting to note that the initialization distance

of 600 m is nicely placed at the boundary of the two conditions and it switches
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between the two cohesion levels without showing any discontinuity in relative

efficiency in Fig. 4.3(a).

Also, we have to see the optimized correction angle θ∗c in the same context.

There are two optimized levels, i.e., one in the range of 123° to 134° and the

other at 180° in Fig. 4.3(c), which directly relate to the two optimized cohesion

levels in Fig. 4.3(b). A team with less cohesion enjoys a smaller correction

angle whereas a team with higher cohesion levels enjoys a larger correction

angle. This is further substantiated by the behaviour of the individualistic

teams where θ∗c in Fig. 4.3(c) is nearly the same as for the cooperative teams

with less cohesion.

Comparing η∗ in Fig. 4.3(b) and θ∗c in Fig. 4.3(c), we can also conclude

that very small cooperative teams (N < 5) do not use very high cohesion

levels and their associated correction-angle behaviours are also identical to

the individualistic teams. We can see in Fig. 4.3(b) and Fig. 4.3(c) for all

initialization distances that the optimized steady response in N is reached when

the team size is in the range of 4 to 6 agents. Same is true for the optimized

sampling times in Fig. 4.3(d), especially exaggerated for the initialization

distances of 1000 m and 1400 m. The optimized sampling times show nearly

identical behaviour for both the cooperative and the individualistic teams as

they remain nearly constant in N and increase in r0.

The behaviour of the optimized variance, σ∗θc
drops to very low values, i.e.,

≤ 3° for N > 5 which is comparable to the assumed compass noise of 1° and

it does not show any correlation in N as shown in the optimization results for

varying initialization distances in Fig. 4.4. For the individualistic case, however,

the optimized variance increases with increasing initialization distances and

maintains a certain level in N.
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Figure 4.4. Optimized uncertainty in decision making for varying initialization
distances (see legend at the bottom).

4.3.2 Arrival Time Optimization and Limited Attraction Neighbourhood

In Fig. 4.5, the optimization results are presented for the initialization

distance of 1000 m for limited attraction radii, i.e., in the range of 0 m to 600 m.

For a more general inference of the results, interested reader is referred to

Fig. B.1 through Fig. B.5 for optimization results of initialization distances in

the range of 600 m to 1400 m with a step size of 200 m.

Since the attraction radius was set to infinity for optimization in Fig. 4.3, it

is important to see how different limited attraction radii behave. It can be seen

in Fig 4.5(a) that an attraction radius of 600 m performs as well as infinity and

it also follows nearly the same parameter values in N as shown in Fig 4.5(b),

Fig 4.5(c) and 4.5(d). If we consider initialization distances in the range of

800 m to 1400 m in Appendix B.1, an attraction radius that behaves as well as

infinity remained in the range of 57 % to 62.5 % of the initialization distance

(see Fig. B.1(a) through Fig. B.4(a)). Also, the relative efficiency increases

consistently in initialization distance and the relative increase between an
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Figure 4.5. Optimization results for initialization distance, r0 of 1000 m and varying
attraction neighbourhood radii, rGC (see legend at the bottom): (a) Arrival time
performance as a function of team size N. (b) Source bias coefficient, η. (c) Correction
angle, θc. (d) Sampling time, T.

initialization distance of 600 m and an initialization distance of 1400 m is about

15 %.

As we reduce the attraction radius, the relative efficiency starts degrading

in Fig 4.5(a) until the attraction radius is about 10 % of the initialization distance

where the performance is only marginally better than the individualistic team.

It is not only the performance that becomes similar but also the optimized

correction angles and the optimized sampling times as shown in Fig. 4.5(c)

and Fig. 4.5(d) respectively. Such an attraction radius, which results in a

cooperative team (since η∗ ≈ 0.80 in Fig 4.5(b)) being marginally better than

an individualistic team, can be considered as a break-even attraction radius.

In fact, attraction radius of 100 m shows identical characteristics in terms
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of relative performance and optimized parameters for all the initialization

distances considered in the range of 600 m to 1400 m in Appendix B.1.

In Fig 4.5(b), we can see that there are two distinct optimal cohesion

windows for the cooperative teams, i.e., around 0.80 and around 0.60. Only

the cooperative teams that have optimal cohesion levels in the latter window

show significant performance improvement over the individualistic teams.

These more cohesive teams also show distinctly different behaviours, i.e.,

correction angles and sampling times, than the individualistic or less cohesive

teams. Hence, it is of interest to identify which conditions on team sizes

and attraction radii for a specific initialization distance are required to invoke

collective behaviour in a team. In other words, it is of interest to identify a set

C? ⊂ C which results in highly cohesive and significantly better performing

cooperative teams than the individualistic ones.

To identify the more cohesive subset, let us consider the example of the

attraction radius being 200 m, i.e., 20 % of the initialization distance in Fig. 4.5.

We can see in Fig. 4.5(b) that a switch from the less cohesive window to a

more cohesive window happens at N = 10. If we consider initialization

distances in the range of 800 m to 1400 m in Appendix B.1 for the same attraction

radius of 200 m, we see a particular trend. As the ratio of the attraction radius

to the initialization distance decreases, it takes a larger team size to invoke

collective behaviour. For example, N = 16 for an initialization distance of

1400 m, N = 14 for 1200 m and N = 8 for 800 m in Fig. B.1(c), Fig. B.2(c) and

Fig. B.4(c) respectively. Another trend is that a larger initialization distance

requires a lower ratio of the attraction radius to the initialization distance

to invoke collective behaviour for a specific team size. For example, let us

consider a team size of 6 agents and look for the ratios that invoke collective
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behaviour in different initialization distances. In Fig. 4.5(b), we can see that for

an initialization distance of 1000 m, a ratio of 0.30 invokes collective behaviour.

However, this ratio is reduced to 0.25 for an initialization distance of 1200 m

and to 0.21 for an initialization distance of 1400 m in Fig. B.2(c) and Fig. B.1(c)

respectively.

Now let us consider the behaviour of the optimized parameters within

C?. As far as η∗ in Fig. 4.5(b) is concerned, it remains nearly constant in N

for a specific attraction radius. However, η∗ varies slightly as a function of

attraction radius in the range of 0.55 to 0.60. The mean η∗ decreases from

0.59 to 0.56 as the ratio of the attraction radius to the initialization decreases.

Same inference is true for the optimal correction angle in Fig. 4.5(c) and the

optimal sampling times in Fig. 4.5(d) where they remain nearly constant in N

for a specific attraction radius, however, their mean optimal values decrease

as attraction radii decrease. This pattern is generic as it also holds for other

initialization distances in Appendix B.1.

The behaviour of the optimized variance, σ∗θc
shows the same behaviour

for limited neighbourhood radii as was discussed in the preceding subsection

where the attraction radius was set to infinity. Since σ∗θc
plays an integral

part in the original bacterium model [77] and also in many bio-inspired

robotic implementations [67, 71], it was included in TD to validate the role of

uncertainty in collective decision making. This addition is in contrast to the

earlier version of TD in [75]. Given σ∗θc
has an effect on agent’s heading every

T seconds, its optimized behaviour in Fig. B.1(e) through Fig. B.5(e) does not

seem significant when compared with the compass error of 1° which is being

added every 1 s. This is further substantiated by statistical analysis of arrival

time performance for a cooperative team with different initialization distances,
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Figure 4.6. Arrival time performance for initialization distance, r0 of 1000 m and
varying uncertainty in correction angle, σθc : (a) Cooperative team with rGC = 600 m.
(b) Individualistic team.
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Figure 4.7. The arrival time performance shown for initialization distance, r0 of 1400 m
and varying uncertainty in correction angle, σθc : (a) Cooperative team with rGC =
600 m. (b) Individualistic team.

i.e., for 1000 m in Fig. 4.6(a) and 1400 m in Fig. 4.7(a) where controlled variability

in σθc shows identical performance.

Hence, there is no evidence from the optimization data or the statistical

analysis that uncertainty in collective decision making plays a beneficial

role. However, for the individualistic teams, it was shown in the preceding

section that as initialization distance increases, the teams seem to benefit from

increased uncertainty in decision making. That has been further substantiated

in Fig. 4.6(b) and Fig. 4.7(b) for the case of r0 = 1000 m and r0 = 1400 m

respectively.
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4.3.3 Estimated Optimized Bio-CAST

Based on the discussion in Section 4.3.1 and Section 4.3.2, we can write a

general analytical model for the estimated optimized behavioural vector for

Bio-CAST. Let us take advantage of almost constant behaviour of the optimized

parameters in team size while the attraction radius was set to infinity in

Section 4.3.1. The trend of decreasing optimized parameter values as the

attraction radius was decreased in Section 4.3.2 is approximated by a general

analytical model. Finally, an example is presented for the estimated optimized

Bio-CAST for initialization distance of 1000 m as a special case.

4.3.3.1 Estimation for Infinite Attraction Radius

As indicated in Section 4.3.1, the optimized values of the source bias

coefficient and the optimized correction angle remain nearly constant in team

sizes N ≥ 5 and also in the initialization distance. Hence we can exploit the

specified range of the team size to write a simple estimate of the optimized

behaviours in terms of their respective means, η̄∗ and θ̄∗c . Also, for a specific

initialization distance, the optimized sampling times also remain constant in

team size, however, show a significant change as the initialization distance

varies. Hence for N ≥ 5, we can drop the dependence of ŵ∗ on N and rewrite

(4.8) for attraction radius set to infinity as

ŵ∗(r0, ∞) = [T̂∗(r0, ∞), η̄∗(r0, ∞), θ̄∗c (r0, ∞), 0◦] (4.10)

where T̂∗(r0, ∞) = ar2
0 + br0 + c, a = −2.77× 10−5 s m−2, b = 0.12 s m−1,

c = 12.55 s, Root Mean Square Error (RMSE) = 2.50 s, is the estimate for the
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Figure 4.8. Estimating optimized sampling time for infinite attraction radius as a
function of initialization distance.

average optimized sampling times, T̄∗(r0, ∞) calculated for N in the range of 5

to 20 agents for each r0 in the range of 100 m to 2000 m in Fig. 4.8.

4.3.3.2 Estimation for Limited Attraction Radius

We can write a general form for the estimated optimized behavioural vector

considering the optimization trends for limited attraction radii with respect to

the infinite attraction radius as given in Section 4.3.2. For N ≥ 5, the estimated

optimized vector can be written as

ŵ∗(r0, rGC) =


ŵ∗(r0, ∞) � β(r0, rGC) if (r0, rGC, N) ∈ C?

ŵ∗(r0, 0) otherwise

(4.11)

where � is the Hadamard product of two vectors, ŵ∗(r0, 0) is the optimized

individualistic vector, β(r0, rGC) = [βT(r0, rGC), βη(r0, rGC), βθ(r0, rGC), 1]

compensates the decrease in the optimized correction angles and the optimized

sampling times as rGC is reduced from infinity.
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4.3.3.3 Example: Estimation for a Specific Initialization Distance & Limited

Attraction Radius

As a special case, let us consider the optimized parameters for an

initialization distance of 1000 m when the attraction radius is limited as

discussed in Section 4.3.2. First, let us write (4.10) following the discussion in

Section 4.3.1 for infinite attraction radius as

ŵ∗(1000, ∞) = [105 s, 0.59, 180◦, 0◦] (4.12)

Now let us find β(1000, rGC) in (4.11) which models the variability of the

optimal parameter values as a function of the attraction radius. We can estimate

η∗(1000, rGC) as

η̂∗(1000, rGC) = η̄∗(1000, ∞) · βη(1000, rGC) (4.13)

and since it remained nearly constant both in N and rGC, βη(1000, rGC) is set to

1.

Also, each θ∗c (1000, rGC) remained nearly constant in N in Fig. 4.5(c) and

hence we can estimate it by its mean, θ̄∗c (1000, rGC) in Fig. 4.9(a). However,

θ∗c (1000, rGC) varied significantly with rGC and to model that variability, the

mean optimized points are plotted against rGC in Fig. 4.9(b) and estimate

θ̄∗c (1000, rGC) as

θ̂∗c (1000, rGC) = θ̄∗c (1000, ∞) · βθ(1000, rGC) (4.14)
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where βθ(1000, rGC) = aθrGC + bθ , θ̂∗c (1000, ∞) = 180◦, aθ = 3.8× 10−4 m−1,

bθ = 0.77, RMSE = 1.04°. Similarly, each T∗(1000, rGC) in Fig. 4.5(d) is modeled

by its mean, T̄∗(1000, rGC) in Fig. 4.9(c). Then T̄∗(1000, rGC) is plotted against

rGC in Fig. 4.9(d) and is estimated as

T̂∗(1000, rGC) = T̄∗(1000, ∞) · βT(1000, rGC) (4.15)

where βT(1000, rGC) = aTr2
GC + bTrGC + cT, T̄∗(1000, ∞) = 105 s, cT = 0.40,

aT = −1.27× 10−6 m−2, bT = 1.7× 10−3 m−1, RMSE = 0.82 s. Equation (4.14)

and (4.15) model the decrease in the optimized correction angles and the

optimized sampling times as attraction radius is decreased from infinity.

Now, we can write (4.11) for the initialization distance of 1000 m as

ŵ∗(1000, rGC) =


ŵ∗(1000, ∞) � β(1000, rGC) if (1000, rGC, N) ∈ C?

ŵ∗(1000, 0) otherwise

(4.16)

where ŵ∗(1000, 0) = w̄∗(1000, 0) = [96 s, 1.00, 134◦, 0◦] (see estimation in

Fig. 4.9(a) and Fig. 4.9(c)).

4.4 Robustness Analysis

In this section, robustness of the collective behaviour resulting from

Bio-CAST is validated against various noise sources. For simulated

experiments robustness is analyzed via arrival time statistics, team trajectories

and team expanse. Team expanse, e, is defined as the average distance of all the

agents from the team’s centroid, i.e.,

e =
1
N

N

∑
i
‖xc(t)− xi(t)‖ (4.17)
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Figure 4.9. Estimating optimized parameters as function of the attraction radius: (a)
Estimated optimized correction angle. (b) Estimated optimized sampling time.

where xc(t) = 1
N ∑N

i xi(t) is the team centroid at time t. Keeping in mind, the

problem statement in Section 3.1, it is of interest to see if the expanse remains

bounded. We assume an initialization distance of 1000 m with teams having

different attraction radii. We use the cooperative or individualistic Bio-CAST

following (4.16).

4.4.1 Arrival Time Performance

The arrival time performance for σ = 1 dB and σ = 6 dB has been

shown in Fig. 4.10(a) and Fig. 4.10(b) respectively. As mentioned in the

optimization discussion in Section 4.3.2, rGC = 500 m performs as good as

infinity throughout N and for both cases of σ, not only in the sense of the

median but also the variance (uncertainty) of the arrival time distribution. The
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Figure 4.10. Comparative arrival performance for: (a) σ = 1 dB. (b) σ = 6 dB.

only exception where rGC = 500 m performs slightly worse than the infinity

case is N = 5 and σ = 6 dB in Fig. 4.10(b).

It is interesting to note that the uncertainty in arrivals keeps on decreasing in

N for the cooperative teams in Fig. 4.10(a) and Fig. 4.10(b). In fact, the median

arrival times also improve significantly for rGC = 300 m in N for σ = 6 dB. This

is in contrast to the case of the individualistic team where not only its median

arrival time significantly degrades in N but also the uncertainty in arrivals.

4.4.2 Trajectories and Expanse

Trajectories of a random agent and team’s centroid have been shown in

Fig. 4.11 for N = 20 with a cooperative team having rGC = 300 m or an

individualistic team.
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Figure 4.11. Trajectory of a random agent and the centroid of the team in varying noise
conditions: (a) Individualistic team for σ = 1 dB. (b) Cooperative team for σ = 1 dB.
(c) Individualistic team for σ = 6 dB. (d) Cooperative team for σ = 6 dB.

For σ = 1 dB, let us compare the individualistic trajectory of a random agent

and team’s centroid versus the cooperative case in Fig. 4.11(a) and Fig. 4.11(b)

respectively. The individualistic trajectory for a random agent in Fig. 4.11(a)

is similar to the one of the swimming bacteria performing chemotaxis [77]

whereas the centroid’s trajectory is jittery but overall directed towards the

source. The cooperative agent’s trajectory is similar to a moth’s casting

behaviour localizing a plume source [134] whereas the centroid travels more

smoothly when compared to the individualistic case. Also, the cooperative

team remains more cohesive as compared to the individualistic team during

the localization process as is evident by the respective expanses in Fig. 4.12(a).

The expanse of the cooperative team is regulated at an average value of half of

the attraction radius, i.e., 150 m till 0.47 h from where it transitions to a much

smaller expanse at an average value of 11.3 m reached at 0.68 h. However, the
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Figure 4.12. (a) Expanse of the team in different noise levels. (b) Expanse of the team
when there is no source signal present.

expanse of the individualistic team shows a peak of 460 m at 0.46 h from where

it starts transiting to the expanse at an average value of 12.3 m reached at 2.40 h.

The cooperative team has two steady states whereas the individualistic team

has only one. The first steady state of the cooperative team occurs at about

120 s after initialization where the cooperative Bio-CAST regulates the expanse

of the team during the search process. The transition from the first steady

state to a much lower steady state occurs after the first agent converges and

continues until all the agents converge. Since the team travels cohesively, the

time difference in the first and the last arrival is only 0.21 h. On the other hand,

the peak expanse in the individualistic case may or may not signify a first arrival

since the arrivals are independent of each other.
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For the case of σ = 6 dB, the trajectory of a random agent and the centroid

for the individualistic team and the cooperative team are shown in Fig. 4.11(c)

and Fig. 4.11(d) respectively. Qualitatively, the motion patterns remain the

same as were for σ = 1 dB. The jitter in the individualistic centroid is well

pronounced when compared to the case of σ = 1 dB in Fig. 4.11(a). The

cooperative centroid shows jittery behaviour in the start (lower SNR region)

and becomes smoother as it moves closer to the source. The cooperative team

remained cohesive and its expanse was regulated at the same average value

of half the attraction radius in Fig. 4.12(a) as was the case for σ = 1 dB. This

substantiates the effectiveness of the cooperative Bio-CAST in regulating the

team expanse in extremely noisy conditions. The expanse of the individualistic

team grew immensely for the case of σ = 6 dB where it peaks around 775 m.

4.4.3 Absence of Source

It is of interest to see how a cooperative team behaves in case the source

signal disappears for some time. The primary concern in such a case is agents

breaking away from the team. Figure 6.9(a) and Fig. 6.9(b) show the trajectories

of all the agents in such a case during a 12 h interval for the individualistic

team and the cooperative team respectively. The individualistic team’s expanse

gradually increases as shown in Fig. 4.12(b) where offshoots of agents breaking

away from the team can be seen in Fig. 6.9(a). The cooperative team is regulated

at the same expanse value as was the case in Fig. 4.11(a) when a source signal is

present.
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Figure 4.13. Trajectories of all the agents over a time interval of 12 h when there is no
source signal present: (a) Individualistic team. (b) Cooperative team.

4.4.4 Neighbour-majority Detection Sensitivity

Since the cooperative Bio-CAST relies on agent’s ability to detect the

neighbour majority in right or left half, it is important to see if Bio-CAST

is robust against detection noise. Given the neighbour detection can be

implemented via different sensing mechanisms, we do not assume a specific

distribution function as the noise model for the two sensors. Instead, we

assume that an agent can make the correct decision between two available

options with probability, p and the wrong decision with probability, 1− p. For

example p = 0.9 means that an agent detects the correct half (right or left)

having the majority of the neighbours 90 % of the instances on average.

The arrival time performance for σ = 1 dB is shown in Fig. 4.18(a).

Attraction radius, rGC = 500 m handles the detection noise better than

rGC = 300 m for all p considered. Also, for both attraction radii, the

performance improves with increasing team size for p = 1.00 and p = 0.90.

However for p = 0.70, there is a subtle degradation in performance as team

size increases.Similarly for σ = 6 dB in Fig. 4.18(b), for p = 1.00 and p = 0.90,

performance improves with the increasing team size. However, for p = 0.70

there is a subtle degradation for rGC = 500 m but catastrophic for rGC = 300 m.
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Figure 4.14. Comparative arrival time performance for noiseless and noisy passive
sensing of the neighbour-majority: (a) σ = 1 dB. (b) σ = 6 dB.

We can say that below a certain threshold for p, performance starts

degrading instead of becoming better as team size increases. Also, the

magnitude of the improvement or the degradation is a function of the attraction

radii. A larger attraction radius, i.e., more samples of uncertain estimates, is

better than a smaller attraction radius.
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4.4.5 Initialization Distance Sensitivity

In real world applications, initialization distance may or may not be a

controllable parameter. Hence it is important to see if the optimized parameter

values for a specific initialization distance scales well with uncertainty in

initialization distance. In Fig. 4.15, for rGC = 300 m, we show results for effect

on performance for optimized parameter values for an initialization distance of

1000 m along with 40 % increase and decrease. It can be seen that the optimized

collective behaviour scales well with change in the initialization distance for

both σ = 1 dB and σ = 6 dB and the performance becomes better as the team

size grows.

4.4.6 Agent Loss

Given the extensive discussion on invariability of the optimized parameter

values in team size in Section 4.3, the robustness of the algorithm against

agent loss is implicit in the analysis carried out for different team sizes in

the preceding subsections. For example, let us take the example of the

arrival time performance in Fig. 4.10. As discussed in Section 4.4.1, the

performance remained consistent in the range of 10 to 20 agents. However,

as the team size reduces to N = 5, there is a significant relative degradation in

performance. For team sizes N < 5, since the optimized parameters’ behaviour

is different than the estimated optimized model in (4.16) and comparatively

more individualistic, the algorithm’s performance may substantially degrade

if an agent loss happens for a small team, e.g., N = 5. To investigate this,

let us compare the cooperative team’s performance following (4.16) for N = 5

against the individualistic team’s performance as team size is reduced from 5
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Figure 4.15. Comparative arrival time performance for increasing initialization
distances with optimized solution for 1000 m: (a) σ = 1 dB. (b) σ = 6 dB.

agents to 1 agent. As expected, there is a gradual performance degradation for

the cooperative team until N = 3 where its performance is almost identical to

the individualistic team in Fig. 4.16. However, the performance degradation

is not catastrophic and the cooperative team optimized for N = 5 handles the

smaller teams gracefully.
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Figure 4.16. The arrival time performance shown for initialization distance, r0 of 1000 m
and σ = 1 dB for a cooperative team with rGC = 300 m and an individualistic team.

4.4.7 Real-robot Analysis

The state of the art in using real-robot experiments in multi-agent or swarm

robotics has been effectively discussed in [16, p. 14] along with the classification

of such experiments into two types, i.e., proof-of-concept experiments and

extensive experiments. Proof-of-concept real-robot experiment was conducted

to validate the robustness of the collective behaviour against realistic noise

patterns in sensors and actuators of the robots. Trial involving 4 Swarmbots

operating as surface vehicles (Fig. 3.1), was conducted in Pandan Reservoir,

Singapore, in light to gentle breeze conditions (Beaufort number 2 to 3). Global

Positioning System (GPS) (accuracy of less than or equal to ±10 m) was used as

a virtual sensor to simulate the spatial acoustic intensity, following the source

model in Section 3.2.1 and σ = 1 dB. A WiFi network was used to simulate

the passive sensing of an agent’s local-neighbourhood. Empirical results in

Pandan Reservoir suggest a communication range of less than 50 m between
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Figure 4.17. Trajectories of 4 Swarmbots initialized 200 m away from the source.

a Swarmbot and the WiFi router. The starting zone, having a radius of 10 m,

was centered around (1°19′7.68′′N, 103°44′15.72′′E) as shown in Fig. 4.17 and

was approximately 200 m away from the success zone, having a radius of 10 m,

centered around (1°19′6.24′′N, 103°44′21.84′′E).

The team was initialized 200 m away from the source. The control

parameters were first optimized for the given conditions and the optimized

parameters, i.e., T∗ = 20 s, η∗ = 0.70, θ∗c = 134◦ and σ∗θc
= 0◦ were downloaded

into Swarmbots. The trajectories for the four Swarmbots are shown in Fig. 4.17.

The qualitative similarity in trajectories can be seen when we compare this

result with the case of Fig. 4.11(b) and Fig. 4.11(f). The trajectories remained

directed towards the source as was the case for the simulations. The last arrival

time was 0.186 h (within simulated missions’ 25th percentile: 0.16 h and 75th

percentile: 0.23 h) and the individual arrival times of each Swarmbot were 0.186,

0.113, 0.153 and 0.1784 h.
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4.4.8 Passive Sensing vs. Explicit Communication

Passive sensing based social behaviours using neighbour-majority

information lose a lot of information when compared to the lossless

explicit communication based social behaviours using precise inter-agent

position information (see Section 2.2). We compare the localization

performance of passive sensing based Bio-CAST against an optimized explicit

communication based counterpart using centroid based social behaviours (see

Section 2.2.2). The reason for choosing the centroid based social behaviours

over the unit-vector based social behaviours is their marginally superior

performance [75].

The comparative arrival time performance for σ = 1 dB is shown in

Fig. 4.18(a). For attraction radius, rGC = 500 m, the performance difference

between passive sensing and explicit communication is not so significant.

However, for rGC = 300 m, the explicit communication based counterpart is

significantly better for all team sizes considered. Interestingly, for σ = 6 dB

and for attraction radius, rGC = 500 m in Fig. 4.18(b), passive sensing works

marginally better than explicit communication for N > 5. However, for

rGC = 300 m, the explicit communication based counterpart is significantly

better for all team sizes considered as was the case for σ = 1 dB.

Given the significant information loss due to passive sensing and the cost of

implementing explicit communication underwater, the marginal performance

degradation in case of the optimized case of σ = 1 dB is an intuitive and a

satisfactory outcome. However, it is interesting to note that when the optimized

solution is validated against a higher noise level such as σ = 6 dB, the passive
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Figure 4.18. Comparative arrival time performance for passive sensing (PS) vs. explicit
communication (EC) based social behaviours: (a) σ = 1 dB. (b) σ = 6 dB.

sensing strategy shows more robustness than the explicit communication based

strategy.

4.5 Conclusion

A distributed source localization algorithm was presented by the name of

Bio-inspired Control Algorithm for Small Teams (Bio-CAST). The algorithm
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uses passive sensing to invoke collective behaviour in a team where each

agent is assumed to have only one sensor for gradient sensing. There are one

individualistic and two social behaviours that constitute Bio-CAST. Inspired

by the biased random-walk of a bacterium performing chemotaxis, uncertainty

was introduced in an agent’s decision making in the individualistic model

of [75]. The aim was to investigate the role of uncertainty in decision making

both at the individualistic and the collective level. Based on the extensive

optimization that was carried out on a range of team sizes, initialization

distances and attraction radii, no evidence supported that uncertainty in

decision making played a beneficial role at the collective level. It was only the

individualistic teams that benefitted marginally from uncertainty in decision

making for larger initialization distances.

The optimization results also showed that the optimized behaviours of

cohesive teams which invoke collective behaviour remain nearly constant in

team size. This helped develop a simple model for the optimized Bio-CAST

which captures variation in the optimized behaviours as a function of the

initialization distance and the attraction radius. Attraction radius, a key

parameter for the long-range attraction social behaviour, is critical for invoking

collective behaviour in a team. Physical world limits the range of a sensor

and hence attraction radius cannot have an arbitrarily large value. The

optimization data helped us identify the finite ratio of the attraction radius to

the initialization distance that boosts maximum localization performance for

the cooperative team. The break-even attraction radius or the minimum ratio

of the attraction radius to the initialization distance was also identified where

the localization performance of a cooperative team becomes nearly identical to

the individualistic team. It was shown that as the attraction radius decreases
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from the maximum value to the break-even point, a larger team is required to

invoke collective behaviour.

Simulated experiments in a realistic underwater source localization

scenario validated the collective behaviour against various ambient conditions,

e.g., strong multipath interference in gradient sensing due to environment

variability, noise in neighbour-majority detection, loss of agents and loss of the

source signal. Statistical analysis of the arrival time in these ambient conditions

showed that the cooperative team is more robust as its size and attraction

radius increases. The analysis also showed that the uncertainty in arrival

time decreases both in team size and attraction radius; an important aspect of

swarm engineering where a multi-agent system is expected to complete the

desired task reliably and on time [135]. Investigation of team’s trajectories

and expanse reveal that a cooperative team’s cohesion is well regulated

during the simulated experiments and no agents break away from the team.

Furthermore, proof-of-concept real-robot experiment validates the optimized

Bio-CAST against realistic noise patterns in sensors and actuators of the robots.

The localization performance of the passive sensing based Bio-CAST

was also compared against an optimized explicit communication based

counterpart using centroid based social behaviours. Considering the significant

information loss due to passive sensing and the cost of implementing explicit

communication underwater, passive sensing strategy results in only a marginal

performance degradation as compared to the explicit communication strategy

for the optimized case of σ = 1 dB. However, it is interesting to note that

when the optimized solution is validated against a higher noise level such

as σ = 6 dB, the passive sensing strategy is more robust than the explicit

communication strategy.
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Chapter 5

Adaptive Temporal Sampling based Multi-Agent Source

Localization

The material in this chapter is an extended version of the author’s

previously published work [76].

5.1 Background

In [76], an adaptive temporal sampling strategy was proposed where

sampling time is a function of sensed intensity values, referred to as Intensity

based Adaptation (IbA) in this thesis. IbA improved the performance of

Bio-CAST in [75] which was originally based on Static temporal Sampling (SS).

In [76], IbA was assumed to be an arbitrary non-linear function of the sensed

intensity values. The performance of Bio-CAST against common noise sources

was not validated and only a team size of 10 agents was considered. In this

thesis, these gaps are addressed where IbA along with other behaviours of

an agent are optimized across a range of team sizes, initialization distances

and neighbourhood radii. An optimized shape for the sampling function is

identified which emerges from the optimization data. Analytical model is

developed as an estimate of the agent’s optimized behavioural parameters for

the updated IbA. The resulting collective behaviour from the analytical model

is validated against varying noise sources in a realistic source localization

scenario. It is revealed in the robustness analysis that IbA is sensitive to high
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ambient noise such as strong constructive or destructive multipath interference

due to environment variability.

To address the noise sensitivity of IbA, Connectivity based Adaptation

(CbA) is introduced which varies the optimized adaptive sampling times

of IbA based on an agent’s estimate of number of its neighbours within a

local neighbourhood. Effectively, CbA regulates the expanse of the team by

eliminating the number of agents breaking away from the team as a mechanism

for robust behaviour. The combined strategy which is denoted as IbA+CbA

shows remarkable robustness against strong multipath interference as well as

outperforms SS or IbA in all the other test scenarios considered in this chapter.

Note that all the comparisons in this thesis consider optimized strategies.

5.2 Optimization Setup

The optimization process assumes the experimental setup and GA settings

as stipulated in Section 3.2. For the constant parameters, refer to the settings

given in Table 3.1. We optimize the behavioural parameters of the localization

algorithm, i.e., source bias coefficient η, mean of the correction-angle θc, its

associated SD σθc and the static sampling time T or the associated coefficients

of the adaptive sampling time strategy (aτ, bτ, cτ, βτ, see Section 5.3) for a range

of team sizes, initialization distances and attraction radii as given in Table 3.1.

The bounds for the optimization parameters are given in Table 5.1. The range

of η has been truncated because less than 50 % of its weight results in a failure

to localize the source. The noise level, σ, in the agent’s received intensity levels

has been set to 1 dB.
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5.3 Intensity based Adaptation

Intensity based Adaptation (IbA) is the adaptive temporal sampling

approach that updates the synchronous Static Sampling (SS) approach given

in (4.1) and (4.2) for TD and GC modules as a function of the sensed intensity

values. IbA replaces the constant sampling time T with an adaptive sampling

time, τn := ti+1 − ti for an nth agent, where ith sample is taken at time, ti, and

(i + 1)th sample is taken at time, ti + τn. In [76], the adaptive sampling time was

chosen as a Negative Sigmoid (NS) function of the received mean intensity as

τn =
aτ

1 + exp{cτ( În(ti)− bτ)}
+ Tmin (5.1)

where Tmin is the minimum sampling time and aτ + Tmin is the maximum

sampling time, cτ, bτ ∈ R+ are parameters which respectively determine the

rate-of-transition and the mean value of În around which the transition starts

and ends. Let us refer to (5.1) as IbA-NS.

Intuition behind using an adaptive temporal sampling approach is based on

the relationship between the initialization distance and size of the success zone.

The radius of the success zone, rs, is generally very small as compared to r0.

Starting hundreds of meters away from the source, an agent thrives on larger

T to improve its Decision Accuracy (DA), i.e., the probability of detecting the

correct gradient in presence of noise. However as large a T would be, it will

be as difficult to enter inside a success zone with a small radius. This can be

seen in Fig. 5.1(a) where the optimized sampling times of SS get saturated after

the initialization distance is increased beyond a certain limit whereas IbA-NS is

not affected by the relationship of the initialization distance and the size of the

success zone. It also means that the static approach will suffer from significantly
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Figure 5.1. (a) Comparison between the maximum optimized sampling times for an
adaptive temporal sampling strategy (IbA) versus a static temporal sampling strategy
(SS). (b), (c), (d) : Optimization data for the parameters of IbA-NS as defined in (5.1) for
varying initialization distances.

deteriorated DA as initialization distances increase further than the saturation

point. The choice of a negative-sigmoid function in [76] was only arbitrary,

however, in this chapter, the optimization data is used to find the optimized

shape which comes out to be an exponential function.

5.3.1 Optimized Shape for IbA

Let us define the optimized behavioural vector as w∗ = [τ∗n , η∗, θ∗c , σ∗θc
]

where we investigate w∗(r0, rGC, N), i.e., the optimized behaviours as a function

of the initialization distance, attraction radius and team size respectively. The

explored values of the parameters during the optimization process are given in

Table 5.1.
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First, let us set the attraction radius to infinity to ensure team connectivity

and find τ∗n (r0, ∞, N) in (5.1) for varying initialization distances and team sizes.

It is shown in Fig. 5.1(b) through Fig. 5.1(d) that the optimized parameters

are nearly constant in team size, however vary significantly in initialization

distance. Given the constant behaviour in N, we can plot in Fig. 5.2(a) the

average response, τ̄∗n (r0, ∞) = ∑N τ∗n (r0, ∞, N) for each initialization distance.

The blue hexagrams in Fig. 5.2(a) depict the optimized sampling times for the

intensity values at these initialization distances. The fall-offs of all the negative

sigmoid curves are nearly identical. The shape of these fall-offs is also similar

to the shape of the fall-off of the blue hexagrams suggesting an optimal shape

which can be estimated by an exponential function as

fexp( În) = a′τ exp
(
b′τ În

)
(5.2)

which is shown as red dashed line in Fig. 5.2(a) and Fig. 5.2(b) where a′τ, b′τ ∈

R+ (see Table 5.2 for parameter values). Let us modify (5.1) as

τn = βτ

[
a′τ exp

(
b′τ În(ti)

)]
+ Tmin (5.3)

and redefine the optimized behavioural vector as w∗ = [β∗τ, η∗, θ∗c , σ∗θc
] where

(5.3) can be used to calculate τn and investigate the optimized adaptive

sampling coefficient, β∗τ ∈ R+, as a function of initialization distance, attraction

radius and team size. For comparative purposes, let us refer to (5.3) as IbA-EXP.

5.3.2 IbA-EXP Optimization for Infinite Attraction Radius

The relative performances of IbA-EXP versus IbA-NS along with the

respective optimized behaviours are compared in Fig. 5.3. Relative efficiency
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Figure 5.2. (a) Estimating the optimized shape from the optimization data of IbA-NS.
(b) Comparison of optimized IbA-EXP and IbA-NS.

is defined as

ρX,Y =
Mean arrival time for w∗Y
Mean arrival time for w∗X

(5.4)

where w∗X is the optimized behavioural vector for strategy X, ρ > 1 if strategy

X is more efficient than the strategy Y and vice versa. In Fig. 5.3(a), the

relative efficiencies are shown where X is IbA-EXP and Y is IbA-NS. The relative

efficiency of IbA-EXP increases over IbA-NS in team size as well as initialization

distance.
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Table 5.1. Explored values of the parameters during the optimization process

Param. Description Bounds

η source bias coefficient [0.5, 1]

θc Mean of the correction angle [0◦, 180◦]

σθc SD of the correction angle [0◦, 90◦]

T Static Sampling Time [1, 600] (s)

aτ Coefficient of Negative-Sigmoid Function [1, 600] (s)

bτ Coefficient of Negative-Sigmoid Function [0, 180] (dB)

cτ Coefficient of Negative-Sigmoid Function [0, 5]

βτ Coefficient of Exponential Function [0, 2]
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Figure 5.3. IbA-EXP Optimization for infinite attraction radius and varying
initialization distances: (a) Relative efficiency of IbA-EXP vs. IbA-NS. (b) Source bias
coefficient. (c) Mean correction angle. (d) Adaptive sampling coefficient.

The behaviour of the optimized parameters, i.e., η∗ and θ∗c , as a function of

team size and initialization distance for IbA-EXP are shown in Fig. 5.3(b) and
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Table 5.2. Parameter and Root Mean Square Error (RMSE) values for respective
equations

Eq. Parameter Values RMSE

(5.2) a′τ = 3.625× 106, b′τ = −0.086 7.55 s

(5.5) aη = −0.09736, bη = 0.2889, cη = 0.858,
Ns(∞) = 16

0.007

(5.6) θcmax = 180 °, θcmin = 130 °, cθ = 1.10, Ns(∞) =
16

3.48°

(5.7) β̂∗τ(r0, 0, 1) = 1.15, aβ = 8.959× 10−9, bβ = 2.23,
cβ = 0.98, a′β = 0.0146, b′β = 1

0.002

(5.8) a(rGC) = 4.524× 105r−2.384
GC + 0.9078, b(rGC) =

83.44r−0.9028
GC − 0.2331

0.022

(5.12) β̂∗τ(r0, 0, 1) = 1.15, β̂∗τmax
= 1.53 0.042

Fig. 5.3(c) respectively where they show identical behaviour in team size for

different initialization distances. Optimal source bias values decrease in N, i.e.,

the team cohesion increases in team size. Also, there is a switching to higher

cohesion values at about N = 16 which correlates with the switching in the

optimized mean correction angles from 130° to 180°. This switching behaviour

and the underlying correlation between the optimized source bias values and

the mean correction angles is consistent with the SS approach in [75]. The

optimized behaviour of the source bias and the mean correction angle can be

estimated as

η̂∗(r0, rGC, N) =



1.00, for N = 1

aη Nbη + cη , for 2 ≤ N < Ns(rGC)

0.57, for N ≥ Ns(rGC)

(5.5)
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θ̂∗c (r0, rGC, N) =


90◦, for N = 1

θcmax − θcmin

1 + f (N)
+ θcmin , for 2 ≤ N ≤ 20

(5.6)

where function, f (N) = exp [−cθ{N − Ns(rGC)}], and the estimates have been

shown as solid red lines in Fig. 5.3(b) and Fig. 5.3(c) with red diamonds as a

reference for the average response over considered initialization distances (see

Table 5.2 for parameter values). The attraction radius, rGC is not substituted

with ∞ in (5.5) and (5.6) because these equations hold in general for limited

attraction radius as well, as shown in the following subsection.

The adaptive sampling coefficient, β∗τ, varies both in team size and

initialization distance and can be estimated by the product of two separable

functions as follows

β̂∗τ(r0, ∞, N) =


β̂∗τ(r0, 0, 1), for N = 1

β̂∗τ(r0, 0, 1)h(r0)g(N), for 2 ≤ N ≤ 20

(5.7)

where h(r0) = aβr
bβ

0 + cβ and g(N) = a′βN + b′β (see Table 5.2 for

parameter values). The optimization data with the respective estimates for

the normalized adaptive sampling coefficient, i.e., β̂∗τ(r0, ∞, N)/β̂∗τ(r0, 0, 1),

is given in Fig. 5.3(d). Note that the optimized response for a single

individual, β̂∗τ(r0, 0, 1), remains invariant in initialization distance. Hence, it

is the interaction between the agents that increases the optimized maximum

sampling times both in r0 and N. It is known that the cooperation in a

team grows either linearly, sub-linearly or super-linearly in team size [133]

and that may be related to the the linear increase of sampling times in team
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size. However, since we are assuming an infinite attraction radius and hence a

guaranteed team connectivity, this behaviour changes significantly for limited

attraction radius as discussed in the following subsection.

For reference, the optimized IbA-EXP and optimized IbA-NS for

τ̂∗n (3000, ∞, 20) are shown in Fig. 5.2(b) where it can be seen that the fall-off

for both the curves is very similar, however, since the exponential function

does not flatten-off at higher values like the negative sigmoid, the maximum

optimized sampling times for IbA-EXP are much larger than for the case of

IbA-NS; resulting in IbA-EXP being a more efficient strategy.

5.3.3 Optimization Results for Limited Attraction Radius

Let us express the attraction radii as ratios of the initialization distance and

show the optimization results in Fig. 5.4. Though estimates are developed for

the optimized behaviours considering an initialization distance of 1000 m, it is

shown at the end of this subsection that these estimations hold in general.

The relative efficiencies where X is IbA-EXP and Y is the optimized

individualistic IbA-EXP (η set to 1.00 during optimization) for varying

attraction radii are plotted in Fig. 5.4(a). The relative efficiency increases both

in team size and rGC ≥ 0.3r0. As the attraction radius falls below 30 % of the

initialization distance, there are only marginal returns compared to using an

individualistic team. We can correlate this with the optimized behaviours of

source bias values in Fig. 5.4(b). For rGC ≥ 0.3r0, the optimized cohesion values

are decreasing in N, i.e., higher team cohesion as team size increases and the

trend is nearly identical to the case of attraction radius set to infinity. However,

the team cohesion decreases with team size if we consider rGC ≤ 0.2r0, i.e., more

individualism is preferred in such cases.

80



5.3. INTENSITY BASED ADAPTATION

0 5 10 15 20
N

1

1.2

1.4

ρ
X
,
Y

(a)

0 5 10 15 20
N

0.5

0.6

0.7

0.8

0.9

1

η
∗

(b)

0 5 10 15 20
N

60

100

140

180

θ
∗ c
(d
eg
)

(c)

0 5 10 15 20
N

0.8

1

1.2

1.4
1.5

n
or
m
al
iz
ed

β
∗ τ

(d)

0 5 10 15 20
N

1

1.2

1.4

ρ
re
l

IND 0.10r0 0.20r0 0.30r0 0.40r0 0.50r0 0.60r0 ∞

Figure 5.4. IbA-EXP Optimization for limited attraction radius as a function of
initialization distance, r0 = 1000 m (see legend at the bottom of the figure for values of
the considered attraction radii, IND means an individualistic team, i.e., η = 1, rGC = 0):
(a) Relative efficiency of IbA-EXP vs. IbA-NS. (b) Source bias coefficient. (c) Mean
correction angle. (d) Adaptive sampling coefficient.

The only difference between the optimized source bias values for the limited

attraction radius in the range of 30 % to 60 % of the initialization distance and

the infinite attraction radius is the switching team size where Ns(∞) is 15

agents. This correlates with the optimized mean correction angle values in

Fig. 5.4(c). However, for the considered range of attraction radius, Ns(rGC) is

greater than the maximum team size considered in this chapter. For example

for rGC = 0.6, Ns is 24 agents and it keeps on increasing as we decrease the

attraction radius. We can estimate the optimized source bias coefficient and

the mean correction angle for limited attraction radius using (5.5) and (5.6)

respectively.
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The adaptive sampling coefficient, β∗τ, varies both in team size and attraction

radius. It is interesting to note that as the attraction radius decreases from

infinity, the optimized sampling times decrease until rGC is 0.3r0 and then

there is an abrupt increase where the optimized sampling times approach the

individualistic case. It is also worth noting that even with the infinite attraction

radius, the cooperative teams thrive on smaller sampling times than the

individualistic teams. As large a sampling time would be, an agent would risk

breaking away from the team and hence as the attraction radius decreases, the

associated risk increases. This explains why teams with decreasing attraction

radii have smaller sampling times to help keep the team cohesive. We can

estimate this behaviour for attraction radius, rGC > 0.30r0, as

β̂∗τ(r0, rGC , N) =


β̂∗τ(r0, ∞, N), for N = 1

f (rGC)β̂∗τ(r0, ∞, N), for 2 ≤ N ≤ 20

(5.8)

where the function, f (rGC) = a(rGC)N−b(rGC) (see Table 5.2 for parameter

values) and the estimation curves are shown in Fig. 5.5(a).

So far we have assumed an initialization distance of 1000 m as a special

case for estimating the optimized behaviours. However, it was shown in

the preceding subsection that all the behavioural parameters are insensitive

to initialization distance other than the adaptive sampling coefficient, βτ (see

Fig. 5.3(d)). Hence to make sure that the worked out estimations are valid

for other initialization distances, let us apply (5.8) to initialization distances of

600 m and 1400 m in Fig. 5.6(a) and Fig. 5.6(b) to show its generality.

The behaviour of the optimized variance, σ∗θc
is shown in Fig. 5.5(b) for an

initialization distance of 1000 m. It shows the same behaviour from infinite
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Figure 5.5. (a) Estimation of optimized adaptive sampling coefficient. (b) Behaviour of
optimized SD of correction angle.

to zero attraction radius, i.e., there is no correlation with the team size or the

attraction radius. Optimization results for initialization distances of 600 m and

1400 m show similar results. The average values across N is less than 2° for

all instances of attraction radius or initialization distance which is comparable

to the heading sensor noise. Given σ∗θc
has an effect on agent’s heading every

τn seconds, its optimized behaviour does not seem significant when compared

with the compass error of 1° which is being added every 1 s. Hence we can
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Figure 5.6. Estimation (shown in solid lines) for optimized values (see legend below) of
normalized adaptive sampling coefficient: (a) For initialization distance of 600 m and
r0 ≥ 0.3r0. (b) For initialization distance of 1400 m and r0 ≥ 0.3r0.

estimate the optimized response as

σ̂∗θc
(r0, rGC , N) = 0 (5.9)

For a range of initialization distances, attraction radii and team sizes, the

estimated optimized behaviours were formulated for the cooperative teams

(rGC > 0.3r0) in this subsection. The source bias coefficient, η̂∗, mean correction
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angle, θ̂∗c , adaptive sampling coefficient, β̂∗τ, and the SD correction angle, σ̂∗θc
, are

defined by (5.5), (5.6), (5.8) and (5.9) respectively.

5.3.4 Estimated Optimized Behaviour for Individualistic Teams

Since the attraction radii less than 0.30r0 do not give significant advantage

over the individualistic case, we can estimate them as an individualistic

case. Following the discussion on the optimized data in the preceding

subsections, we can write the following estimated optimized behaviours for

the individualistic teams or for r0 < 0.3r0 as follows (see Table 5.2 for parameter

values)

η̂∗(r0, 0, N) = 1.00 (5.10)

θ̂∗c (r0, 0, N) =


90◦, for 1 ≤ N ≤ 2

130◦, for 2 < N ≤ 20

(5.11)

β̂∗τ(r0, 0, N) =


β̂∗τ(r0, 0, 1), for N = 1

β̂∗τmax
, for 2 ≤ N ≤ 20

(5.12)

σ̂∗θc
(r0, 0, N) = 0 (5.13)

5.3.5 Robustness Analysis

The performance of the collective behaviour resulting from the estimated

optimized algorithm is validated for the cooperative and individualistic teams

against σ = 1 dB and σ = 2 dB in Fig. 5.7(a) and Fig. 5.7(b) respectively. The

cooperative teams have an attraction radius of rGC = 0.3r0 and rGC = 0.6r0 and

the initialization distance has been set to 1000 m. The arrival time performance

is shown using box-plots following the details given in Section 3.2.3.
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Figure 5.7. Arrival time performance for IbA vs. SS arrival time performance for
limited attraction radii, rGC = 0.3r0 and rGC = 0.6r0 and noise levels: (a) σ = 1 dB.
(b) σ = 2 dB.

For σ = 1 dB, the case for which the optimization of the algorithm was

carried out, IbA outperforms SS in all the scenarios in terms of median arrival

times. However, when we double the noise, IbA still outperforms SS for larger

neighbourhood of rGC = 0.6r0 and for the individualistic team but the median

arrival times become nearly similar for rGC = 0.3r0. Considering the temporal

sampling strategies, it comes as no surprise that IbA is more susceptible to

environment noise than SS. More environment noise will contribute to much

larger or smaller sampling times than the optimized ones where the larger

sampling times may result in agents breaking away from the team. To see

this, the team expanse (see Section 4.4 and (4.17) for definition) is plotted in
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Figure 5.8. Team expanse: (a) For σ = 1 dB. (b) For σ = 2 dB.

Fig. 5.8(a) and Fig. 5.8(b) for σ = 1 dB and σ = 2 dB respectively. We can see

that the team expanse for SS is well regulated for both the attraction radii and

the noise scenarios. However, IbA is very sensitive to ambient noise for both

the attraction radii resulting in a much larger team expanse for σ = 2 dB as

compared to σ = 1 dB.

5.4 Connectivity based Adaptation

For improving the performance of the cooperative teams in noisy

environments, Connectivity based Adaptation (CbA) is introduced in this
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section. CbA updates IbA based on an agent’s estimation of the number of

its neighbours within the attraction radius. The adaptive sampling time τn of

IbA is replaced by the CbA regulated sampling time as

τ′n =


τn

(
1

1+exp{−(N̂GCn (t)−Nc)}

)
if N̂GCn(t) > 0

τn otherwise

(5.14)

where N̂GCn(t) is the estimated number of neighbours of agent n within rGC

at time t, Nc is the critical number of neighbours, the sigmoid function is CbA

which updates the IbA’s adaptive sampling time, τn, following the definition

as given earlier in Section 5.3 where the next sample for TD and GC modules,

i + 1, is taken at time, t = ti + τ′n.

Effectively, CbA decreases the originally calculated sampling time by IbA in

case an agent’s number of neighbours fall around the critical number of agents.

This is to increase the decision-making frequency to improve the connectivity of

the team, i.e., to reduce or ideally eliminate the number of agents breaking away

from the team. As large the sampling time, the better an agent’s DA and hence

the more an agent travels before making another decision. However, there is no

check in the meanwhile which would stop an agent from potentially breaking

away from the team. If we consider the current heading of an agent, dWn(t),

such that it is travelling in the direction of a potential breakaway, increasing

the frequency of updating (4.7) as the number of neighbours drop biases the

agent towards the team. To guarantee this behaviour, we can set θc = 0 while

(5.14) takes effect. However, in this chapter, the optimized behaviour is kept

unchanged and it is shown that CbA eliminates the number of breakaways for
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varying degrees of noise levels and hence addressing the sensitivity issues of

IbA towards the ambient noise.

5.4.1 Optimization Results

The critical team size, Nc, is optimized following the estimated optimized

Bio-CAST for IbA as discussed in Section 5.3. The optimization is carried out

for varying team sizes, ambient noise levels and a limited attraction radius of

rGC = 0.3r0. No evidence was found for CbA being useful for team sizes, N ≤ 6

agents. However, for N = 8, N∗c was in a range of 4.6 to 5.1 and for N ≥ 10

agents it varied within a range of 6.5 to 7.5 without any correlation with team

size. We can estimate N̂∗c = 7 for N ≥ 10 agents for the following analysis.

5.4.2 Robustness Analysis

First, let us see what effect CbA has on IbA for σ = 1 dB, the noise level

for which IbA was originally optimized. Limited attraction radius in the range

of 30 % to 60 % of initialization distance is considered. Let us denote (5.14) as

IbA+CbA and compare it with IbA in Fig. 5.9(a). It can be seen that IbA+CbA

maintains the same median arrival times as of IbA but also marginally reduces

the variance of the arrival time distribution.

As for σ = 6 dB which corresponds to strong constructive and destructive

interference due to environment variability, IbA’s performance is much

degraded due to its sensitivity to noise. However, CbA adds remarkable

robustness to the multi-agent system as shown in Fig. 5.9(b).

It has been highlighted earlier in Section 5.3.5 that SS is a more robust

strategy than IbA for high ambient noise levels. Hence, let us compare

performance of IbA+CbA against SS in Fig. 5.10(a) and Fig. 5.10(b) for σ = 2 dB
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Figure 5.9. CbA compensated IbA (IbA+CbA) vs. IbA arrival time performance for
limited attraction radii, rGC = 0.3r0 and rGC = 0.6r0 and noise levels: (a) σ = 1 dB. (b)
σ = 6 dB.

and σ = 6 dB respectively. IbA+CbA outperforms SS for both the noise levels

and attraction radii. Importantly, IbA+CbA shows performance at par with SS

for half the attraction radius if we compare the case of rGC = 0.3r0 for IbA+CbA

versus rGC = 0.6r0 in Fig. 5.10(a) and Fig. 5.10(b). Also, the median arrival times

and the variance of the arrival time distribution improves for IbA+CbA as team

size increases in Fig. 5.10(a) and Fig. 5.10(b).
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5.4.2.1 Team Expanse

It was shown in Fig. 5.8(a) and Fig. 5.8(b) that as noise increases, the

expanse of the team also increases substantially due to increasing sampling

times. However, with CbA updating IbA, it is no more the case as shown in

Fig. 5.11(a) and Fig. 5.11(b) for noise levels σ = 2 dB and σ = 6 dB respectively.

We can see that the expanse is well regulated at nearly the same levels for

each attraction radius even when the noise is increased three times. Also,

the mean expanse levels maintained by the multi-agent system increase with

increase in the attraction radius. In other words, CbA maximizes the benefit of

IbA’s adaptive temporal sampling for a given attraction radius while ensuring

a cohesive team.

5.4.2.2 Agent breakaways

Finally, Fig. 5.12(a) and Fig. 5.12(b) show the number of breakaway agents

for σ = 2 dB and σ = 6 dB respectively for a team size of 20 agents with

rGC = 0.3r0. We can see that IbA+CbA eliminates the number of breakaway

agents in both the scenarios whereas IbA suffers from increasing number of

agents breaking away from the team as the noise increases.

5.4.2.3 Initialization Distance Sensitivity

As far as the problem statement discussed in this paper is concerned,

the initialization distance can be controlled within a tight uncertainty range.

However, it is desired that the optimized solution for a specific distance scales

well for a wide range of distances. We conduct sensitivity analysis for an

optimized solution for r0 = 1000 m and rGC = 0.3r0 for a change of ±400 m

in Fig. 5.13(a) and Fig. 5.13(b) for σ = 1 dB and σ = 6 dB respectively. We can
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Figure 5.10. CbA compensated IbA (IbA+CbA) vs. SS arrival time performance for
limited attraction radii, rGC = 0.3r0 and rGC = 0.6r0 and noise levels: (a) σ = 2 dB. (b)
σ = 6 dB.

see that the optimized solution for both the IbA and IbA+CbA scales well with

the change in distance.

5.4.2.4 Neighbour-majority Detection Sensitivity

Since the localization algorithm relies on agent’s ability to detect the

neighbour majority in right or left half, it is important to see if IbA+CbA

approach is robust against detection noise. Given the neighbour detection
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Figure 5.11. Expanse for CbA compensated IbA (IbA+CbA) during a localization
mission for N = 20, varying attraction radii, rGC = 0.3r0 and rGC = 0.6r0 and noise
levels: (a) σ = 2 dB. (b) σ = 6 dB.

can be implemented via different sensing mechanisms, we do not assume a

specific distribution function as the noise model for the two sensors. Instead,

we assume that an agent can make the correct decision between two available

options with probability, p and the wrong decision with probability, 1− p. For

example p = 0.9 means that an agent detects the correct half (right or left)

having the majority of the neighbours 90 % of the instances on average.

The arrival time performance for σ = 1 dB and σ = 6 dB is shown in

Fig. 5.14(a) and Fig. 5.14(b) respectively. Attraction radius, rGC = 0.6r0 handles

the detection noise better than rGC = 0.3r0 for all p considered which means

93



CHAPTER 5. ADAPTIVE TEMPORAL SAMPLING BASED MULTI-AGENT SOURCE LOCALIZATION

0 1000 2000 3000 4000 5000
time (sec)

0

1

2

3

4

n
u
m
b
er

of
lo
n
e
ag
en
ts IbA, 0.3r0

IbA+CbA, 0.3r0

(a)

0 5000 10000 15000
time (sec)

0

5

10

15

n
u
m
b
er

of
lo
n
e
ag
en
ts IbA, 0.3r0

IbA+CbA, 0.3r0

(b)

Figure 5.12. Number of agents breaking away from a team during a localization
mission for N = 20, rGC = 0.3r0 and noise levels: (a) σ = 2 dB. (b) σ = 6 dB.

that a larger attraction radius, i.e., more samples of uncertain estimates, is better

than a smaller attraction radius. In fact, rGC = 0.6r0 for p = 0.80 performs better

than rGC = 0.3r0 for p = 0.90. Overall, there was no catastrophic degradation in

performance of the collective behaviour as detection accuracy was degraded for

both cases of ambient noise. The only significant degradation in terms of arrival

time variance is for the case of p = 0.80 and rGC = 0.3r0 for both σ = 1 dB and

σ = 6 dB.
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Figure 5.13. Initialization distance sensitivity analysis for optimized solution for r0 =
1000 m and rGC = 0.3r0 and noise levels: (a) σ = 1 dB. (b) σ = 6 dB.

5.4.3 Passive Sensing vs. Explicit Communication

Now let us investigate the effect of the information loss in case of the passive

sensing strategy on the localization performance when compared to the lossless

explicit communication based counterpart. We compare the localization

performance of passive sensing based IbA+CbA against an optimized explicit

communication based counterpart using centroid based social behaviours (see

Section 2.2.2).
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Figure 5.14. Neighbour majority detection sensitivity analysis for IbA+CbA with
varying attraction radii as a function of r0 and detection probability p where r0 =
1000 m and noise levels: (a) σ = 1 dB. (b) σ = 6 dB.

The comparative arrival time performance for σ = 2 dB and σ = 6 dB is

shown in Fig. 5.15(a) and Fig. 5.15(b) respectively. For both the attraction radii

considered, i.e., rGC = {0.3r0, 0.6r0}, the explicit communication based strategy

is only marginally better than the passive sensing based implementation. Given

the significant loss of information in the proposed passive sensing strategy

and the cost of implementing an explicit communication network, the marginal

performance difference is both an intuitive and a satisfactory result.
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Figure 5.15. Passive Sensing (PS) versus Explicit Communication (EC) implementation
of IbA+CbA, r0 = 1000 m and noise levels: (a) σ = 2 dB. (b) σ = 6 dB.

5.5 Conclusion

A robust adaptive temporal sampling approach was presented for a

distributed multi-agent source localization algorithm. The algorithm is

composed of simple individualistic and social behaviours. The individualistic

behaviour is a biased random walk inspired from a bacterium performing

chemotaxis. It assumes a single sensor per agent and hence requires it to

conduct temporal sampling for gradient sensing. The social behaviours are

97



CHAPTER 5. ADAPTIVE TEMPORAL SAMPLING BASED MULTI-AGENT SOURCE LOCALIZATION

based on the long-range attraction and the short-range repulsion behaviours.

Cooperation between agents is based on passive sensing and the algorithm has

the potential to invoke collective behaviour in a small multi-agent system.

The proposed adaptive temporal sampling approach has two components,

i.e., IbA and CbA. IbA varies the sampling times based on agent’s sensed

source-intensity levels while CbA varies the sampling times based on agent’s

sensed number of neighbours within a local neighbourhood. It was shown that

IbA enhances the performance of a multi-agent system in terms of its mean and

median arrival times as compared to a static sampling strategy. However, it

was also shown that IbA is sensitive to the ambient noise and the multi-agent

system’s performance degrades as the ambient noise increases. Based on

IbA, Bio-CAST was optimized using an evolutionary algorithm for varying

initialization distances, attraction radii and team sizes. An analytical model was

developed as an estimate for the optimized behaviours. The resulting collective

behaviour was validated against an agent’s sensor and actuator noise along

with strong multipath interference in gradient sensing due to environment

variability.

It was shown that the performance degradation in IbA due to ambient

noise is a result of increasing number of agents breaking away from the team

as the noise increased, i.e., not a well-regulated team expanse. CbA was

introduced which reduces IbA’s sampling times as a function of an agent’s

number of neighbours within the attraction radius. Being a very simple

strategy, CbA shows remarkable improvement in robustness of the collective

behaviour. It was shown that CbA-regulated IbA results in significantly

improved performance for varying noise levels in terms of mean, median and

variance of the arrival time distribution when compared to the static sampling
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approach or the unregulated IbA. It was also shown that CbA results in a well

regulated team expanse where number of agent breakaways were eliminated in

the simulated source localization missions.
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Chapter 6

Adaptive Behaviours in Multi-Agent Source Localization

6.1 Background

In this chapter, the role of adaptive group cohesion in a multi-agent

source localization problem is investigated. A distributed source localization

algorithm is presented which does not require a self-sufficient individualistic

behaviour to localize a source. Source localization is achieved as an emergent

property through agent’s local interactions with its neighbours and the

environment. Given absence of a self-sufficient individualistic behaviour, CbA

is crucial in controlling agent loss. Even a single agent breakaway would

mean an increasing team expanse in time. A two phase optimization strategy

is introduced which is simpler than the previous optimization strategies

of Chapter 4 and Chapter 5. In the first phase, IbA and the adaptive

cohesion behaviour are optimized for infinite attraction radius and in the

second phase CbA is optimized to minimize agent breakaways for limited

neighbourhoods. The optimized behaviours are estimated with an analytical

model and the resulting collective behaviour is validated against strong

multi-path interference and other common noise sources. The statistical

analysis of the arrival time distributions shows robustness of the collective

behaviour in high ambient noise. The proposed strategy has been compared

against an emergent speed variation based localization scheme as well as

Bio-CAST with CbA compensated IbA.

100



6.2. ADAPTIVE COHESION BASED LOCALIZATION ALGORITHM

6.2 Adaptive Cohesion based Localization Algorithm

The proposed algorithm, Adaptive Cohesion based Localization Algorithm

(ACLA), only draws the GC and CA modules from Bio-CAST (see Chapter 4)

and discounts the TD module. Hence, there is no self-sufficient individualistic

model to help a lone agent localize the source. The constituent behaviours of

ACLA are as follows:

6.2.1 Group Cohesion (GC)

GC in ACLA is the same as for Bio-CAST as defined in Section 4.2.2 and

hence the unit direction vector, dGCn(t), is calculated following (4.2). To

summarize, GC dictates a left 90° turn to the focal agent if the number of

neighbours to its left are more than the number of neighbours on its right and

vice versa. In case of the numbers being equal in both the left and the right half,

it keeps the agent’s heading unchanged.

6.2.2 Collision Avoidance (CA)

CA in ACLA is the same as for Bio-CAST as defined in Section 4.2.3 and

hence the unit direction vector, dCAn(t), is calculated following (4.5). Effectively,

if an agent detects a neighbour within its repulsion zone, it starts an evasive

action and ignores any other behaviours such as going towards the goal or

towards the neighbours. The focal agent turns away from the nearest neighbour

with a turning rate that is proportional to how close the nearest neighbour is.

6.2.3 Adaptive Cohesion

The adaptive cohesion behaviour defines ACLA where an agent varies its

group cohesion based on the sensed source-intensity values. Let us write the
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desired direction of the focal agent n, commanded by ACLA as

dACn(t) =


dCAn(t) if r̂n,m(t) ≤ rCA

dWn(t) otherwise

(6.1)

where

dWn(t) = η(t)dWn(t− τn) + (1− η(t))dGCn(t), (6.2)

η(t) = αI∆ În(t) +
1
2

, (6.3)

such that 0 ≤ η ≤ 1, αI ∈ R+ is the adaptive cohesion coefficient and

∆ În(t) = În(t)− În(t− τn). Equation (6.3) varies the source bias coefficient

around the nominal value of 0.5 where values, η > 0.5 bias an agent more

towards its previously calculated heading and values, η < 0.5 bias an agent

more towards the majority of the neighbours. If an agent estimates that it

is heading in the direction of decreasing intensity levels, it biases itself more

towards its neighbours. On the contrary if an agent estimates it is heading in

the direction of increasing intensity levels, it keeps its heading and biases itself

less towards its neighbours. In (6.2), individualistic behaviour can be seen as

an agent simply keeping its previous heading and hence is not a self-sufficient

behaviour to localize the source. Once an agent loses contact with any other

agents, it will continue to travel in a straight path. Also note that (6.1) is only the

desired heading dictated by ACLA whereas the transition from the nth agent’s

current angle, θn to θACn = ∠dACn follows the non-holonomic constraints as

specified in Section 3.2.
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6.2.4 Temporal Sampling

For ACLA, we use IbA (see Section 5.3.3) as the adaptive temporal sampling

approach given its superior performance over the static sampling approach of

Chapter 4.

Given the reasons in the preceding subsection pertaining to the

individualistic model being not self-sufficient, it is imperative to have CbA

regulated IbA (see Section 5.4). For CbA regulation, (5.14) is used.

6.3 Optimization Results

The optimization process assumes the experimental setup and GA settings

as stipulated in Section 3.2. The optimization process for ACLA is composed

of two phases. First we optimize the algorithm’s two key parameters for

infinite attraction radius, i.e., adaptive cohesion coefficient, αI and the adaptive

sampling coefficient, βτ. In the second phase, we optimize the critical number

of agents, Nc, for limited attraction radii and show that we can achieve

performance at par with the infinite attraction radius beyond a certain finite

attraction radius. This optimization scheme is simpler and more intuitive than

the earlier schemes in Chapter 4 and Chapter 5 which optimized the whole

set of behavioural parameters for each limited attraction radius. The explored

values of the parameters during the optimization process are given in Table 6.1.

For the constant parameters, refer to the settings given in Table 3.1.

6.3.1 Optimization for Infinite Attraction Radius

For the infinite attraction radius and varying initialization distances in

the range of 600 m to 1400 m, the results for the optimized αI and βτ are
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Table 6.1. Explored values of the parameters during the optimization process

Param. Description Bounds

αI Adaptive cohesion coefficient [0, 2]

βτ Adaptive sampling coefficient [0, 2]

Nc Critical number of neighbours [0, 20]

shown in Fig. 6.1(a) and Fig. 6.1(b) respectively. It can be seen that the

values of α∗I are nearly identical for the considered initialization distances

in Fig. 6.1(a). The average behaviour of α∗I over the initialization distances,

ᾱI(N) = 1
3 ∑r0

α∗I (r0, N), is shown as a red-dashed line in Fig. 6.1(a) which we

approximate as

α̂∗I (N) = aαNbα + cα (6.4)

as shown in Fig. 6.2(a) and the values of the parameters are given in Table 6.2.

The values of β∗τ vary significantly in initialization distance consistent with

the case in Chapter 5. We choose to approximate β∗τ by its average response

over the team sizes in the range of 2 to 20 agents, β̄τ(r0) = 0.1 ∑N β∗τ(r0, N),

shown as dashed lines in Fig. 6.1(b), as

β̂∗τ(r0) = aβr
bβ

0 + cβ (6.5)

as shown in Fig. 6.2(b) and the values of the parameters are given in Table 6.2.

6.3.2 Optimization for Limited Attraction Radius

Now, let us optimize the critical number of agents, Nc, for limited attraction

radii. Objective is to see if we can achieve performance for a certain limited

attraction radius at par with the infinite attraction radius just by controlling
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Table 6.2. Parameter and Root Mean Square Error (RMSE) values for respective
equations

Eq. Parameter Values RMSE

(6.4) aα = 1.661, bα = −1.935, cα = 0.3588 0.003

(6.5) aβ = 2.247× 10−5, bβ = 1.175, cβ = 0.7379 2.66× 10−5

(6.6) aN = 0.716 0.5957
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Figure 6.1. Optimization results for infinite attraction radius and varying initialization
distances and team sizes (a) Optimized αI where the red dashed-line shows the average
response over the considered initialization distances. (b) Optimized βτ where the
dashed lines for each initialization distance are the average response over the team
sizes in the range of 2 to 20 agents.
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Figure 6.2. For infinite attraction radius, estimates for: (a) ᾱ∗I . (b) β̄∗τ .

the sampling times through CbA. This would mean that we do not need to

optimize the other two parameters, i.e., the adaptive cohesion coefficient and

the adaptive sampling coefficient, separately for each limited attraction radius

as was the case in the optimization process of Chapter 4 and Chapter 5.

The optimized critical number of agents as a function of team size is shown

in Fig. 6.3(a) along with the optimized mean arrival times in Fig. 6.3(b) for

limited attraction radii in the range of 10 % to 60 % of the initialization distance.

It can be seen that for limited attraction radii, more than or equal to 30 % of the
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attraction radius, the arrival performance is almost identical with the infinite

attraction radius for team sizes of N = 8 and above.

As far as the optimization data for the critical number of agents is concerned

in Fig. 6.3(a), it increases almost linearly in N for team sizes less than or equal

to 16 agents for all the attraction radii. However, as the attraction radii increase,

e.g., rGC = 0.6r0, the N∗c becomes saturated beyond a certain team size. Also,

note that larger the number of Nc, the more conservative the CbA regulation as

shown in Fig. 6.4. For attraction radii greater than or equal to rGC = 0.3r0 where

the performance is almost identical, we can see that the most conservative curve

is for rGC = 0.3r0 and hence we may assume that as a general estimate for all the

attraction radii given the choice does not significantly degrade the performance

of other attraction radii.

The estimate for the optimized critical number of neighbours can be written

simply as a linear function in N as follows

N̂∗c (N) = aN N (6.6)

and is shown as a solid line in Fig. 6.5(a) and the value of the parameter is given

in Table 6.2. The associated mean arrival times have been shown in Fig. 6.5(b)

where we can see that the choice of N̂∗c has worked well for all the limited

attraction radii except rGC = 0.1r0 if we compare the results of Fig. 6.5(b) with

the results of Fig. 6.3(b).

6.4 Robustness Analysis

In this section, the robustness of the resulting collective behaviour from the

estimated models of the optimized ACLA is validated against noise levels of
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Figure 6.3. Optimization for limited attraction radius (see legend at the bottom): (a)
Optimized critical number of agents. (b) Mean arrival times.

σ = 1 dB and σ = 6 dB. Also, the performance of the collective behaviour

is validated against initialization distance sensitivity, loss of source signal and

neighbour detection noise. The arrival time performance is either shown by

using box-plots following the details given in Section 3.2.3 or by analyzing the

team expanse of a single localization mission. An agent breakaway is directly

related to the team expanse. In ACLA, if an agent breaks away from the team,
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Figure 6.4. Optimized CbA regulation for a team size of 10 agents and various limited
attraction radii in the range of 0.3r0 to 0.6r0.

it will travel in a straight line and hence the the team expanse will continue to

increase without bound.

6.4.1 Multipath Interference

The box-plots for ACLA’s arrival time performance are shown in Fig. 6.6(a)

and Fig. 6.6(b) for noise levels of 1 dB and 6 dB respectively. It can be seen

that for both the plots, the variance as well as the median of the arrival time

distributions improves as N is increased. Also the difference between the

arrival time distribution of infinite attraction radius and rGC = 0.6r0 reduces

as the team size increases and for N > 12, arrival time distributions are almost

identical for both the noise levels of 1 dB and 6 dB.

The number of failed missions in a total number of 5× 104 missions is

equivalent to the number of events in which one or more agent breakaways

occurred. The plots for failure rate are given in Fig. 6.7(a) for different attraction

radii. It can be seen that for N∗c , the failure rate has been less than 0.5 % for

rGC ≥ 0.6r0 for the entire range of team sizes and for rGC = 0.3r0, for N > 6

agents. However, for N∗c , it is also seen that the failure rate starts increasing
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Figure 6.5. (a) Estimate for critical number of agents in limited attraction radii where
solid line is the estimate for the data points. (b) Mean arrival times for the estimated
model (see legend at the bottom for different attraction radii in the range of 0.1r0 to
0.6r0).

as the number of agents increase. There are two points that need to be noted.

First, the optimization process has a single objective function, i.e., the mean

arrival time. Second, more conservative CbA regulation, i.e., Nc > N∗c , may

result in a lower failure rate but at the same time affect the mean arrival time

performance. To substantiate this, we increase the critical number of agents

such that Nc = 1.2N∗c and show in Fig. 6.7(a) that the failure rate goes to zero for

rGC = 0.3r0 as N increases beyond 10 agents. However, it is shown in Fig. 6.7(b)
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Figure 6.6. Arrival time performance for varying attraction radii (see legend) and
varying levels of ambient noise for the analytical model estimated for the optimized
ACLA: (a) σ = 1 dB. (b) σ = 6 dB.

that a more conservative strategy has a slightly degraded mean arrival time.

The phenomenon highlights the need of a carefully thought multi-objective

optimization setup which penalises the fitness of an individual in case there

are any failures.

6.4.2 Initialization Distance Sensitivity

As far as the problem statement discussed in this paper is concerned,

the initialization distance can be controlled within a tight uncertainty range.
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Figure 6.7. (a) Failure rate for varying attraction radii with optimal CbA and a more
conservative CbA, i.e., 1.2 times the optimal N∗c . (b) Mean arrival time comparison for
rGC = 0.3r0 with optimal N∗c against rGC = 0.3r0 with 1.2N∗c .

However, it is desired that the optimized solution for a specific distance scales

well for a wide range of distances. We conduct sensitivity analysis for an

optimized solution for r0 = 1000 m and rGC = 0.6r0 for a change of ±400 m

in Fig. 6.8(a) and Fig. 6.8(b) for σ = 1 dB and σ = 6 dB respectively. We can see

that the optimized solution scales well with the change in distance for all the

team sizes.
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Figure 6.8. Initialization distance sensitivity analysis for optimized solution for r0 =
1000 m and rGC = 0.6r0 and noise levels: (a) σ = 1 dB. (b) σ = 6 dB.

6.4.3 Loss of Source Signal

It is of interest to see how a cooperative team behaves in case the source

signal disappears for some time. The primary concern in such a case is agents

breaking away from the team. We conduct the analysis for a single localization

mission for σ = 1 dB and σ = 6 dB. Figure 6.9 shows that the team expanse for

the case of loss of source signal during a 2.8 h interval remains well regulated at

approximately 300 m for N = 20 agents, r0 = 1000 m and rGC = 0.6r0. We also
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Figure 6.9. Comparative team expanse for source signal vs. loss of source signal for
r0 = 1000 m and rGC = 0.6r0.

explicitly checked for the number of agent breakaways during the mission and

found no agent breakaways for all the four scenarios considered.

6.4.4 Neighbour Detection Noise

Since the proposed algorithm depends on the passive neighbourhood

sensing, we conduct comparative analysis for performance degradation in case

of different noise levels. Since we have two sensors, one on the right and one

on the left, we corrupt the number of neighbours estimation on both sides

by an additive Gaussian noise with zero mean and variance, σNGC = {1, 2}.

The output of the estimated neighbours is then truncated to the nearest integer

value.

The arrival time performance for σ = 1 dB and σ = 6 dB is shown in

Fig. 6.10(a) and Fig. 6.10(b) respectively for r0 = 1000 m and rGC = 0.6r0. It can

be seen that the relative degradation in performance with respect to a noiseless

neighbourhood detection decreases as the team size increases.
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Figure 6.10. Neighbour detection noise analysis for optimized solution for r0 = 1000 m
and rGC = 0.6r0 and noise levels: (a) σ = 1 dB. (b) σ = 6 dB.

6.4.5 Passive Sensing vs. Explicit Communication

It is also important to compare the performance of passive sensing based

ACLA against an explicit communication based counterpart. The explicit

communication based counterpart is the centroid-based agent interaction

model as discussed in Section 2.2.2 and is assumed to be based on perfect

inter-agent communication.

The comparative arrival time performance for σ = 1 dB and σ = 6 dB is

shown in Fig. 6.11(a) and Fig. 6.11(b) respectively. For σ = 1 dB in Fig. 6.11(a),
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Figure 6.11. Passive Sensing (PS) versus Explicit Communication (EC) implementation
of ACLA with varying attraction radii as a function of initialization distance, r0 =
1000 m and noise levels: (a) σ = 1 dB. (b) σ = 6 dB.

for both the attraction radii considered, i.e., rGC = {0.3r0, 0.6r0}, the explicit

communication based strategy is generally marginally better than the passive

sensing based implementation. The only exception is N = 4 and rGC = 0.6r0

where passive sensing outperforms the explicit communication.

The results for increased noise level, i.e., σ = 6 dB in Fig. 6.11(b) are

somewhat similar to what we saw for the static temporal sampling based
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Bio-CAST in Section 4.4.8. For both the attraction radii and N > 4, the passive

sensing based strategy outperforms the explicit communication based strategy.

6.5 Comparative Analysis

In this section, let us compare the performance of ACLA against two

different source localization strategies in literature. First we investigate

the performance of a similar strategy that achieves source localization as

an emergent property of agent interactions, i.e., without a self-sufficient

individualistic model. Then we compare ACLA against Bio-CAST (as proposed

in Chapter 5) which builds on a self-sufficient individualistic model.

6.5.1 Emergent Source Localization Through Speed Variation

One recent and a very interesting study on a school-of-fish shows

that source localization can be achieved in a cooperative group without

a self-sufficient individualistic behaviour. In this case, the individualistic

behaviour is simply an agent varying its speed as a function of instantaneous

intensity measurements [56]. The authors proposed the variation in an nth

agent’s speed as

sn(t) = smin + I(smax − smin) (6.7)

where smin and smax are the minimum and the maximum speeds respectively

and I is the sensed intensity. A light field was projected from a height of

240 cm on a small constrained search space of 213 × 122 cm2 and a depth of

8 cm. The directional vectors were calculated using the repulsion, attraction and

neighbour alignment behaviours as given in (2.3), (2.4) and (2.5) respectively.
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However, the application of the emergent model on the acoustic source

localization problem, as discussed in Chapter 3, did not result in source

localization for any initialization distance considered in this chapter, i.e.,

r0 ≥ 600 m, within a maximum time window of 8 hrs. A more generic version

of speed variation function was used as follows

sn(t) = smin +
smax − smin

1 + exp{as(I(t)− bs)}
(6.8)

where the slope, as and the center point, bs of the curve’s transition from smax to

smin were optimized via GA. The results remain the same whether the explicit

communication based sensing model (with or without neighbour alignment) or

passive sensing model is used (see Chapter 2 for respective definitions).

The mechanism of the emergent source localization of [56] is such that

the team travels towards the source as a collective when there is a significant

speed gradient across the mass of the team, i.e., agents closer to the source

are significantly slower than the agents further away. Since we initialize the

team in a tight cluster, hundreds of meters away from the source and given the

source follows the inverse square law (see Fig. 3.2), there is not a significant

instantaneous intensity gradient across the team expanse that can result in a

sufficient speed difference.

6.5.2 Speed Variation with a Self-sufficient Individualistic Behaviour

Once we add a self-sufficient source localization behaviour such as TD

based on a bacterium’s random walk (see Chapter 4 for definition), the reported

optimal parameters were such that effective s∗n(t) was always equal to the

maximum speed, smax, for the entire localization experiment, e.g, b∗s > Imax
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for arbitrary a∗s > 1, where Imax = 180 dB at 1 m away from the source (see

Section 3.2.1).

In summary, for the considered problem statement and the associated

experimental setup, we did not find any evidence of speed variation being

helpful in localizing the source with or without a self-sufficient individualistic

model.

6.5.3 Bio-CAST

Let us compare the performance of ACLA against Bio-CAST which has a

self-sufficient individualistic behaviour. The optimized Bio-CAST used here

for comparison is based on CbA regulated IbA sampling strategy as defined

in Chapter 5. In Fig. 6.12(a), the mean arrival times are shown for a noise

level of 1 dB where ACLA is referred to as AC and Bio-CAST as BC in the

legend. For both the cases of limited attraction radii, ACLA performs better

than Bio-CAST for team sizes greater than 8 agents. However, if we increase

the noise to 6 dB for the algorithms optimized for a noise level of 1 dB, we see

that Bio-CAST is more robust to the ambient noise than ACLA. We can also see

that ACLA is still in the process of improving its performance as N increases

within the considered range of 1 to 20 agents while Bio-CAST is able to achieve

its maximum performance at about a team size of 16 agents.

The comparative analysis shows that fusing ACLA and Bio-CAST in a more

generic optimization setup may result in a more robust and a better performing

localization algorithm. The fusion would assume an adaptive turning strategy

(correction angle of TD in case of Bio-CAST) which is a function of team size.

For smaller team sizes, an agent would assume a more bacterium-like response

to the changing intensity levels whereas it may let go off the individualistic
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Figure 6.12. (a) Mean arrival time comparison for ACLA (AC in legend) versus
Bio-CAST (BC in legend) for varying attraction radii and noise levels: (a) σ = 1 dB.
(b) σ = 6 dB.

behaviour completely in a larger team size. It will also be interesting to

investigate how these behaviours evolve once optimized explicitly for a higher

ambient noise scenario.

6.6 Conclusion

In this chapter, a source localization algorithm based on adaptive group

cohesion was presented. The proposed algorithm, called ACLA, achieves

source localization as an emergent property through agent interactions. An
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agent does not have a self-sufficient individualistic behaviour and hence is

incapable of localizing the source on its own.

For optimizing the behaviours of ACLA, a two phase optimization strategy

was introduced which is simpler than the previous optimization strategies of

Chapter 4 and Chapter 5. In the first phase, IbA and the adaptive cohesion

were optimized for infinite attraction radius and in the second phase CbA

was optimized to minimize agent breakaways for limited attraction radii.

It was shown that by only having an optimized CbA, the performance of

finite attraction radii above a certain threshold can be made identical to the

performance of an infinite attraction radius.

The optimized behaviours were then approximated with analytical models

which were validated against sensor and actuator noise, strong multipath

interference due to environment variability, sensitivities in initialization

distance, neighbour detection noise and loss of source signal. The statistical

analysis of the arrival time distributions shows robustness of the collective

behaviour for all the considered scenarios. The localization failure rate was

also studied which shows that by selecting a slightly more conservative CbA, a

more robust collective behaviour can be achieved with a zero failure rate.

The localization performance of the passive sensing based ACLA was also

compared against an optimized explicit communication based counterpart

using centroid based social behaviours. Considering the significant

information loss due to passive sensing and the cost of implementing explicit

communication underwater, passive sensing strategy results in only a marginal

performance degradation as compared to the explicit communication strategy

for the optimized case of σ = 1 dB. However, it is interesting to note that

when the optimized solution is validated against a higher noise level such
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as σ = 6 dB, the passive sensing strategy is more robust than the explicit

communication strategy.

ACLA was further compared against two different source localization

algorithms, one without a self-sufficient individualistic behaviour and one

with a self-sufficient individualistic behaviour. The former strategy is an

emergent localization strategy based on agent’s speed variation as a function

of sensed instantaneous intensity values. It was shown that the optimization

process failed to report any successful localizations for the experimental setup

considered in this thesis. A modified version of a speed variation behaviour

which has a self-sufficient individualistic behaviour was also optimized where

an agent keeping a constant maximum speed throughout the localization

process results in the best solution.

On comparing ACLA with Bio-CAST having a CbA regulated IbA sampling

strategy, it was shown that for low ambient noise levels ACLA performs

significantly better than Bio-CAST. However, for strong multipath interference,

Bio-CAST is more robust than ACLA and performs significantly better. A fusion

of the two algorithms which would result in an adaptive turning behaviour

as a function of team size was also proposed as future work. The fusion

approach may lead to a better performing and a more robust source localization

algorithm.
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Chapter 7

Conclusion & Future Research

7.1 Conclusion

The thesis focussed on development of three collective behaviours

that do not require explicit inter-agent communication for cooperative

multi-agent source localization. Each collective behaviour results from a

source localization algorithm, i.e., a set of agent’s social and individualistic

behaviours. In each case, an individualistic behaviour may or may not be

self-sufficient for the source localization problem. The social behaviours,

i.e., the long-range attraction and the short-range repulsion, assume implicit

inter-agent communication without using the memory of the environment,

simply referred to as passive sensing. The social behaviours conforming to

the passive sensing constraints helped us develop collective behaviours that

are realizable in practice and also show remarkable robustness and scalability.

The individualistic behaviours assume a single sensor per agent to sense the

gradient, i.e., an agent resorts to temporal sampling. In real world source

localization problems where gradients are weak and corrupted with high levels

of ambient noise, temporal sampling constraint keeps the designed collective

behaviours realistic.

A real world underwater source localization problem was used for

designing each of the source localization algorithms. An extensive optimization

process encompassing a range of team sizes, initialization distances and
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attraction radii was used to optimize the social and individualistic behaviours.

The optimized behaviours as a function of team size, initialization distance and

attraction radius were approximated with analytical models. These analytical

models represent a hybrid of behaviour-based design and automatic design [16]

where a general behavioural structure was already set in place prior to the

optimization process.

The first collective behaviour was based on a source localization algorithm

called Bio-CAST with a static temporal sampling approach. Bio-CAST

is composed of a self-sufficient individualistic behaviour, inspired by the

temporal sampling of a bacterium to sense the gradient, in addition to the

two social behaviours of long-range attraction and short-range repulsion. The

second collective behaviour was based on Bio-CAST with an adaptive temporal

sampling approach. The adaptive temporal sampling approach was composed

of two components, i.e., IbA and CbA. IbA varies the sampling times as

a function of the sensed intensity values and hence becomes vulnerable to

significant performance degradation in environments with very high noise

levels. It was shown that IbA-only approach works significantly better than

a static temporal sampling approach for low ambient noise levels, however,

it loses its advantage over the static temporal sampling approach if the noise

is further increased. CbA regulates IbA based on the sensed number of

neighbours within the attraction radius of an agent. It was shown that CbA

regulation results in remarkable improvement of IbA in high ambient noise

scenarios. It was also substantiated that the performance degradation in an

IbA-only strategy is linked with the number of agent breakaways from the team

and a poorly regulated team expanse. CbA resolves the issue by eliminating the

number of agent breakaways and keeping a well regulated team expanse.
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The final collective behaviour was based on a source localization algorithm

that does not require a self-sufficient individualistic behaviour for source

localization. The proposed algorithm, called ACLA, achieves source

localization as an emergent property through agent’s social behaviours. ACLA

assumed an adaptive temporal sampling approach similar to the case of

Bio-CAST where CbA regulated IbA is used. The optimization procedure used

for ACLA is divided into two phases. In the first phase, IbA and the adaptive

cohesion were optimized for infinite attraction radius and in the second phase

CbA was optimized to minimize agent breakaways for limited attraction radii.

The optimization approach for ACLA is simpler than the earlier optimization

procedures for Bio-CAST where optimizations with infinite attraction radius

or with limited attraction radius involved all the behavioural parameters.

It was shown that by only having an optimized CbA, the performance for

finite attraction radii above a certain threshold can be made identical to the

performance for an infinite attraction radius. The statistical analysis of the

arrival time distributions shows robustness of the collective behaviour in high

ambient noise. The localization failure rate was also studied which shows

that by selecting a slightly more conservative CbA, a more robust collective

behaviour can be achieved with a zero failure rate.

7.2 Future Research

Given the current state of the art in swarm robotics, there are no known

examples of robotic swarms solving a real-world problem [16]. It is hoped that

the proposed source localization algorithms can bridge that gap. Currently, at

Acoustic Research Lab (ARL), we are developing a team of robotic swans for

monitoring water quality in natural or artificial water bodies [136]. We believe

125



CHAPTER 7. CONCLUSION & FUTURE RESEARCH

that the proposed strategies, having the ability to invoke a robust and a scalable

collective behaviour, can result in a persistent search and track multi-agent

system.

The extensive optimization of agent’s behavioural parameters over a range

of team sizes, initialization distances and attraction radii has resulted in

valuable insights pertaining to the relationship between them. It will be

interesting to see how optimized behavioural parameters vary as a function

of the ambient noise level which for now was held constant at a level

of 1 dB. Also, both for Bio-CAST with adaptive temporal sampling and

ACLA, the relationships between the team size and some of the behavioural

parameters were expressed as power laws. This is similar to the case of

many swarm robotics implementations where efficiency of task completion

due to cooperation also behaves similarly with the team size [133]. It will

be interesting to investigate this phenomenon further to see if there exists

an underlying relationship between the optimized behavioural parameters,

resultant localization efficiency and the team size.

So far, the effect of adding informed individuals [23, 137] has not been

investigated for the proposed source localization strategies. It will be

interesting to investigate the minimum number of informed agents that can

maximize the localization efficiency. Also, it will be interesting to see if there

is any change in the optimized agent behaviours in response to the addition of

informed individuals.

Finally, there is a need for investigating adaptive behaviours further.

For example, while comparing ACLA with Bio-CAST, a fusion of the two

algorithms was proposed as the future work which requires an adaptive
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turning behaviour as a function of team size. The fusion approach may lead

to a better performing and a more robust source localization algorithm.
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Appendix A

Implementation Details

A.1 Sound Propagation Model

Let us adopt a simple incoherent model for sound propagation taking into

account the transmission losses due to geometric spreading and absorption in a

medium [138]. The received level, RL, in dB re 1 µPa, of an acoustic source with

sound level, SL, at a distance, R (meters), away from the source is given by

RL = SL− TLg − TLa (A.1)

where TLg = 10αg log10R, αg ∈ [1, 2] is the transmission loss due to geometric

spreading and TLa = αaR, αa ∈ R+ is the transmission loss due to absorption

in the medium (seawater) and hence (A.1) can be written as

RL = SL− 10αg log10R− αaR (A.2)

Appropriate value of the coefficient αg sets the geometric spreading to either

as cylindrical (α = 1) or spherical (α = 2) where cylindrical being more

appropriate for shallow waters and spherical for deep waters. The absorption

coefficient in seawater, αa (dB m−1), can be estimated by a modified version

of Thorp’s model [125] as given in [138] for frequencies less than 40 kHz. The

absorption coefficient is given as a function of acoustic frequency, f (kHz), as
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αa = 1.094 × 10−3 (3 × 10−3 +
0.1f2

1 + f2 +
40f2

4100 + f2 + 2.75 × 10−4f2) (A.3)

Now, let us assume that PnRL(t) is the root mean square pressure for RL

sensed by the nth agent at time t, then considering the ambient noise level

characterized by NL in dB re 1 µPa, the total received pressure Pn(t) can be

written as

Pn(t) =
√

P2
nRL

(t) + P2
nNL

(t) (A.4)

where PnNL(t) is the root mean square ambient noise for NL sensed by the nth

agent at time t. For simulation purposes, we can estimate received intensity

In(t) (dB) as

În(t) ∼ N (In(t), σ) (A.5)

where In(t) = 20 log Pn(t) and the value of measurement uncertainty, σ, can be

selected according to the assumed noise levels (see discussion in Section 3.2.1).

A.2 Evolutionary Optimization

Let us formulate a numerical optimization problem as

Minimize ϕ(w), w = [ω1, . . . , ωq] ∈ Rq (A.6)

where ϕ : Rq → R and ϕ(w) is the objective function, i.e., the mean arrival

time of a team of N agents over K number of trials and ωi, i ∈ {1, . . . , q} is

the control parameter and has bounds li ≤ ωi ≤ ui. For a high-dimensional,

nonseparable and nonlinear problem without any guarantees of convexity, a

GA is an appropriate choice as an optimization strategy [139]– [127]. A GA
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also scales well if one wants to investigate multi-objective optimization for

Bio-CAST [141].

The GA is initialized randomly with a population, P (0) = {w(0)
1 , . . . , w(0)

M },

of M ∈ Z+ individuals as shown in Fig. A.1(a). Fitness, ϕ(w(0)
i ), i ∈ {1, . . . , M},

of each individual is evaluated by running Bio-CAST, K times to achieve a

certain level of statistical consistency as discussed in Section A.3. Fig. A.1(b)

shows the flow diagram for the GA, where after fitness evaluation of the initial

population, P (0), a parent population, P (p) = {w(p)
1 , . . . , w(p)

M }, is generated

based on a Deterministic Binary Tournament [142].

A sample of two parents is randomly drawn from the parent population,

P (p), with replacement to generate two corresponding offsprings until we have

the offspring population, P (o) = {w(o)
1 , . . . , w(o)

M }. The offsprings are generated

using extended intermediate recombination [143].

The offspring population, P (o) = {w(o)
1 , . . . , w(o)

M }, then undergoes

Normally distributed mutation [144] to generate mutated offspring population,

P ′(o) = {w′(o)1 , . . . , w′(o)M }, with mutation probability, pm(λ), which varies as a

function of generation number, λ ∈ Z+. Mutation probability is kept constant

at some maximum value, pmmax , for some λs initial generations after which it

decays exponentially with rate, τ, until the final generation, λmax.

Afterwards, the fitness, ϕ(w′(o)i ), i ∈ {1, . . . , M} is evaluated and then P ′(o)

and P (p) undergo Elitist selection to generate the final population P (f) [145].

The final population, P (f), which is essentially P ′(o) after the elitist selection, is

either fed to the Binary Tournament Selection block if λ < λmax or else reported

as the final optimized solution.

It is to be noted that the effectiveness of the GA was tested empirically and

the GA parameters such as pmmax = 0.4, λs = 150, τ = 0.1, and λmax = 400
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Figure A.1. (a) A single individual of the GA population runs Bio-CAST multiple times
to calculate the mean arrival time. (b) The flow diagram of the GA.

were chosen to ensure repeatability of reporting the same fitness with the same

optimized control parameters over multiple optimization runs.

A.3 Consistency Analysis for Number of Simulation Runs

As the performance metrics are set as mean arrival times, it is best to

have an informed choice of how many simulation runs (referred to as K in

Appendix 3.2.2) would result in a statistically consistent performance metric for

the entire population of the optimization algorithm. To perform the consistency

analysis, let us compare Q distributions, each of which is a distribution of K

runs of the Bio-CAST simulation with identical parameters, where K needs to

be large enough so that all the Q distributions are nearly identical. However, K
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cannot be set arbitrarily large as increasing K, increases the computation load

of the GA.

To select an appropriate K, the Vargha-Delaney’s A-measurement test [130]

is used which is a generalization of the CL method [146], originally developed

to measure the difference between two populations in terms of the probability

that a score sampled at random from one of the populations is greater than

a score sampled at random from the other population. The A-measurement

can be directly applied to any discrete or continuous variable that is at least

ordinally scaled. It can be used to check for generalized stochastic equality,

specifically called Pairwise Stochastic Equality which will serve as a basis for

establishing statistical consistence for a particular K. The Pairwise Stochastic

Equality states that any two populations (distributions) i and j are statistically

equal when

Aij = 0.5, for all (i, j) pairs (A.7)

Similar to [147], let us compare the first distribution out of Q = 48

distributions with all the remaining 47 distributions and plot the response in

Fig. A.2. The regions shown in the Fig. A.2 are according to the guidelines

for interpreting Aij in [130], where small effect within the range of 0.44 to 0.56

means that the two populations are nearly similar whereas scores above 0.71 or

below 0.29 would mean significantly different distributions. It is clear from the

figure that a larger K keeps the scores within the small-effect range and hence

K is selected such that

arg max
1≤j≤48

|Aij − 0.5| ≤ 0.06, ∀i ∈ {1, . . . , 48}, i 6= j (A.8)
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Figure A.2. (a) Vargha-Delaney’s A-test for pair-wise stochastic equality of first
simulation set with other 47 sets. (b) Maximum A-test for pair-wise stochastic equality
for K = 512.

Aij in (A.8) are effectively the A-scores that show maximum deviation from the

ideal score of 0.5 for any ith set with respect to all the other j sets. These scores

are shown as the maximum A-scores in Fig. A.2 for each distribution set. For

the optimization process in the thesis, let us choose K = 1024, twice the number

of runs for which all the maximum A-scores are within the small-effect region.
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Supplementary Figures

B.1 Optimization Data for Varying Initialization Distances
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Figure B.1. Optimization results for initialization distance, r0 of 1400 m and varying
attraction neighbourhood radii, rGC (see legend at the bottom): (a) Relative efficiency.
(b) Arrival time performance as a function of team size N. (c) Source bias coefficient, η.
(d) Correction angle, θc. (e) Angle variance, σθc . (f) Sampling time, T.
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Figure B.2. Optimization results for initialization distance, r0 of 1200 m and varying
attraction neighbourhood radii, rGC (see legend at the bottom): (a) Relative efficiency.
(b) Arrival time performance as a function of team size N. (c) Source bias coefficient, η.
(d) Correction angle, θc. (e) Angle variance, σθc . (f) Sampling time, T.
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Figure B.3. Optimization results for initialization distance, r0 of 1000 m and varying
attraction neighbourhood radii, rGC (see legend at the bottom): (a) Relative efficiency.
(b) Arrival time performance as a function of team size N. (c) Source bias coefficient, η.
(d) Correction angle, θc. (e) Angle variance, σθc . (f) Sampling time, T.
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Figure B.4. Optimization results for initialization distance, r0 of 800 m and varying
attraction neighbourhood radii, rGC (see legend at the bottom): (a) Relative efficiency.
(b) Arrival time performance as a function of team size N. (c) Source bias coefficient, η.
(d) Correction angle, θc. (e) Angle variance, σθc . (f) Sampling time, T.
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B.1. OPTIMIZATION DATA FOR VARYING INITIALIZATION DISTANCES
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Figure B.5. Optimization results for initialization distance, r0 of 600 m and varying
attraction neighbourhood radii, rGC (see legend at the bottom): (a) Relative efficiency.
(b) Arrival time performance as a function of team size N. (c) Source bias coefficient, η.
(d) Correction angle, θc. (e) Angle variance, σθc . (f) Sampling time, T.
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