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Abstract— First principles physics models are generally used 
in system identification of Autonomous Underwater Vehicles 
(AUVs). These models, through different parameters, capture the 
effects of hydrodynamics, inertial weight and other important 
characteristics. Due to the large number of parameters, which can 
number to hundreds, it is difficult to estimate such models. 
Moreover, AUV capabilities like thrust vectoring increases the 
non-linearity of the model. We suggest solving the problem of 
modelling AUVs with the help of a rectifier activated multilayer 
perceptron, making use of their motion data and control inputs. 
We also provide details on the optimisation of our model and 
compare its performance with that of a standard system 
identification technique. Although the rectifier neural network's 
performance was tested for a typical streamlined AUV with a 
Voith-Schneider thruster, the model presented here is general and 
can be easily extended to other systems. 

Keywords—AUV modelling; neural network; vector thruster; 
voith-schneider; system identification 

I.  INTRODUCTION 
An important aspect of designing a controller for any robotic 

system is to develop an accurate dynamics model of it. 
Traditional approaches in modelling AUVs are based on physics 
models derived using first principles. Generally, the dynamics 
of an AUV are described using six degrees of freedom and their 
respective differential equations of motion [5]. These equations 
have parameters that represent the nonlinear components of 
AUV dynamics. However, in practice, it is quite difficult to 
estimate these parameters and therefore, certain assumptions are 
made to linearise this model for easier estimation [9]. These 
linearised models are actually the simplified equations of inter-
dependent state variables, which are computed using regression 
analysis of AUV motion data. However, due to linearisation, 
these models usually fail to predict the dynamics accurately 
during complex manoeuvres. Moreover, AUV designs which 
have different propulsion mechanisms or have significantly 
different body structure as compared to industrial AUVs like 
Iver, Gavia and Remus cannot use the linear physics model 
defined in [5, 9]. Therefore, for such systems, the linearised 
model needs to be estimated again and tuned to compensate for 
the change in dynamics. One way of modelling these systems is 
to use a linear representation of the AUV’s state variables and 
control inputs, also known as output equation of a state-space 
model. In comparison to the traditional approach, this is an 
easier method for estimating unknown dynamics as it utilizes the 

motion data directly without requiring detailed analysis of the 
AUV’s physics model.  

Other than the physics-based approach and the state-space 
model, some other approximation-based techniques have also 
been used in the past for learning the dynamics model [2, 16, 20, 
23]. In particular, the feedforward neural networks have the 
capability of approximating any continuous function [8] and 
therefore, they are good candidates for such applications. 
Inspired by this, a linearly parameterised neural network was 
used to estimate dynamics of a surface vessel [21]. However, the 
neural network presented in [21] has no hidden neurons and its 
input features are directly connected to its output layer. It is 
shown in [18] that if a complex mapping exists between the input 
and output units, a large hidden layer is required in between to 
estimate the mapping perfectly. Therefore, in order to develop 
an efficient dynamics model and predict complex manoeuvres 
accurately, a multilayer perceptron (MLP) type of neural 
network appears to be a promising solution. 

An MLP is a fully-connected feedforward neural network 
used for function approximation. In an MLP, most of its neurons 
have a nonlinear activation function, the standard choices of 
which are signum, sigmoidal or hyperbolic tangent. Reference 
[10], along with [15], showed that the use of rectifiers as 
activation functions in different neural networks improved their 
discriminative performance. Following this approach, in [6] the 
performance of different activation functions was compared, and 
the results demonstrated that rectifier neurons were better at 
finding minima during training for classification tasks, as well 
as for contextual analysis. These promising results led to recent 
advancements in the area of Deep Learning. Rectifier neural 
networks have demonstrated state-of-the-art performance in 
natural language processing [14], image understanding [11] and 
speech processing [13, 22]. Motivated by these results, rectifier 
neural networks were also used to learn the dynamics model of 
a helicopter [17]. In [17], a rectifier neural network coupled with 
a quadratic function of the helicopter's state variables, accurately 
predicted its acceleration during complex manoeuvres. 

We propose a rectifier activated MLP to approximate an 
AUV's dynamics. In addition, we also describe the techniques 
required for optimising our MLP's learning process. We discuss 
about a state-space model of our AUV in Section II. For the 
purpose of experimentation, we chose a cylindrical-shape AUV 
as it is hydro-dynamically efficient, and because it is a standard 
design used in many industrial AUVs. Our AUV was also 
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equipped with a thrust vectoring module described in Section II. 
In Section III, we introduce our MLP network and provide a 
possible interpretation of why our model works. The 
optimisation process, details about our experiments and 
performance comparison of our models are given in Section IV.  
Finally, Section V summarises the overall performance of our 
model. 

II. LINEARISED MODEL OF AUV WITH VECTOR THRUSTER 

A. Voith-Schneider Propeller as Vector Thruster 
Typical design of an AUV consists of a cylindrical hull with 

a horizontal thruster and four protruding control fins. The 
integrated motion of these four fins control the AUV’s roll, 
pitch, yaw and depth. However, as the motion is dependent on 
the control surfaces around the AUV, this design has limited 
maneuverability. For example, such AUVs under nominal 
speeds generally have large turning radii. In addition, the 
protruding fins increase the AUV’s drag and are mechanically 
the weakest part of its body. An alternative to this fin design is 
the vector thrusters.  

In sea vessels like ships or ferries, complex maneuvering 
such as on-the-spot turning is made possible by the use of Voith-
Schneider (V-S) propulsion mechanism [24]. In general, this 
propulsion system consists of a cycloidal rotor that provides 
thrust in the direction perpendicular to its rotation axis. This 
thruster mechanism can be used to control the AUV’s yaw and 
pitch, replacing the function of the fins. In order to substitute the 
function efficiently, we align the rotation axis of the V-S 
propeller to coincide with the AUV’s roll axis. Furthermore, this 
thruster is positioned close to the AUV’s tail to replicate the 
effect of the four fins (Fig. 1.a). This design makes the vehicle’s 
motion independent of control surfaces and adds capabilities like 

thrust vectoring and on-the-spot turning. However, by adding 
this thruster module, the non-linear behavior of the AUV 
increases and the system dynamics becomes more complex. 

B. State-Space Equation Model 
Generally, the dynamics of an AUV is described using six 

degrees of freedom differential equations of motion [5]. The 
model equations are defined in two different coordinate frames: 
earth-fixed or North-East-Down (NED) frame and body-fixed 
frame. Six velocity components, v = [u,	v,	w,	p,	q,	r] T  (surge, 
sway, heave, roll, pitch, yaw) are used to define dynamics in the 
body-fixed frame, while η = [ηr, ηe] = [x, y, z, ϕ, θ, ψ]T defines 
Euler angles (ηe = ϕ, θ, ψ) and distance (ηr	=	x,	y,	z) between 
NED and body-fixed frame in NED coordinate system. The 
notation used in this paper is in accordance with SNAME [19]. 
These two vectors are related through Euler Angle 
transformation: 

η = Jv   (1) 

The nonlinear vehicle dynamics of any robotic system 
operating in fluids can be expressed in a compact form as [5]: 

Mv + C v v + D v v + g η 	= B v u         (2) 

where M  represents the total inertia, C(v),  the coriolis and 
centripetal forces, D(v),  the hydrodynamic damping, g(η),  the 
vector of restoring forces and moments, B(v), the control matrix 
and u, which accounts for all the control inputs to the system. 
However, it is not practical to use (2) for estimating the 
dynamics of an AUV as each component of the equation is 
highly nonlinear and difficult to estimate via field experiments. 
For details on this, interested readers are recommended to 
review literature in [5]. Therefore, an alternative solution is to 
separate the model into non-interacting or lightly interacting 
subsystems. The widely accepted solution is to divide the model 
into the following three categories: speed subsystem, steering 
subsystem and diving subsystem [9]. However, in cases where 
pitch and yaw dynamics are coupled, for example in thrust 
vectoring setups, it is not feasible to divide the AUV into these 
subsystems. Therefore, for such AUV designs, the output 
equation of a state-space representation can be used to obtain a 
simplified dynamics model. This model can be represented as: 

f	=	Axv,ηe
	+	Bu   (3) 

where f is a system parameter that is being modelled and xv,ηe
 is 

the vector containing the AUV’s state variables. The state-space 
equation model is capable of capturing all possible linear 
dependencies on state variables and control inputs. Interestingly, 
the three subsystems mentioned in [9] can also be represented 
using (3). For example, the yaw acceleration in steering 
subsystem is dependent on yaw rate and rudder input. Therefore, 
in such cases, all the array elements of matrices A and B not 
corresponding to yaw rate and rudder input will be zero. This 
implies that the matrices	A and B contain elements that have 
physical significance like components of hydrodynamic added 
mass or the effects of stern input. Therefore, even though a 
linearised physics model is not derived for our AUV, it can be 
concluded that the state-space representation is very similar to a 
linear physics model and it can be considered as a good baseline 
for performance comparison. 

 
(a) 

 

 
(b) 

Fig. 1. (a) Sketch showing the alignment of V-S thruster with respect to AUV 
and the possible thrust directions. (b) Fabricated and assembled V-S propeller 
being tested in a tank. 
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In a state-space equation system, the coefficient matrices A 
and B define the accuracy of the model and generally, they are 
estimated using simple least square analysis on input data. As 
the state-space model is a linear approximation of the AUV’s 
dynamics rather than a theoretical derivation, its accuracy will 
depend mostly on the quality of motion data. If the data used to 
estimate the coefficient matrices do not capture sufficient 
dynamics, it will be difficult to obtain an accurate dynamics 
model. Therefore, the state-space equation model offers a good 
linear representation of the AUV but it does not guarantee an 
accurate dynamics model as it lacks non-linear dependency and 
is also affected by the quality of motion data. 

III. MULTILAYER PERCEPTRON AS FUNCTION APPROXIMATORS 
A multilayer perceptron is a feedforward artificial neural 

network that maps the input data onto a set of relevant outputs 
and is known for its function approximation capability. The 
conventional architecture of an MLP is a fully connected 
network with three layers: an input layer having all the input 
features, a hidden layer activated by an activation function and 
an output layer giving the final result. We have adopted the same 
network architecture for our model. The output fneural  of our 
MLP can be expressed as follows: 

fneural = whidden × φ winput × yv,ηe,u + binput  +  bhidden   (4) 

where whidden  and bhidden  are the weights and biases for the 
hidden layer, winput  and  binput  are the weights and biases for 
input layer, φ(·) is the activation function and yv,ηe,u is the input 
feature vector containing the AUV's state variables and control 
input. 

MLPs have the capability of universal function 
approximation because of the nonlinear transformation, φ(·), in 
their hidden layer. This transformation of the scaled and shifted 
input features can either activate or deactivate each hidden unit. 
Therefore, some of the hidden units get activated for certain 
regions of the input data and learn their representation in the 
final output. This results in projecting the entire input dataset 
into a space where it becomes linearly separable with respect to 
each hidden unit. Therefore, the estimated output is obtained 
using only the hidden units activated by a particular input. We  

believe that such characteristics would be very powerful in 
learning an accurate dynamics model for AUVs. For example, 
we know that in a linear physics model, yaw acceleration is 

dependent on yaw velocity and rudder deflection [9]. However, 
this representation is a simplified version of (2), which shows 
that yaw acceleration is dependent on other state variables as 
well. Therefore, we opted to design an MLP to estimate the 
dynamics model as it is capable of learning such underlying 
representations through the nonlinear transformations.  

The activation function, φ(·), is one of the key features of a 
neural network. The standard options for an activation function 
of MLP are sigmoid and tanh. However, recent advancements in 
Deep Learning have been driven by the use of rectifiers as 
activation function for neural networks. A simple rectifier 
activation function, φ · , can be represented as: 

φ · 	= max(0, ·)          (5) 

An important characteristic of such activation function is that 
its output is proportional to its input for all positive input values, 
and zero for all negative input values. This gives rectifiers a 
much larger active region than the tanh function. Also, such 
activation function helps in efficient gradient propagation during 
training, and does not suffer from the vanishing gradient 
problem [7]. 

IV. EXPERIMENTS 

A. AUV’s Motion Data 
In order to test the performance of our network against the 

baseline model, we collected the motion data using our modular 
AUV called STARFISH (See Fig. 2). It has a thruster for 
horizontal propulsion and a V-S propeller for thrust vectoring. 
The horizontal propulsion and V-S propeller together control the 
yaw, pitch and depth of STARFISH. In order to suppress its roll 
dynamics, STARFISH has an internal rolling compensator 
mechanism [4]. For data collection, it was taken to a reservoir 
and commanded to execute a compact set of manoeuvres, which 
included 360 °  on-the-spot turning. This was done under 
different thrust values to excite the AUV’s dynamics and a total 
of 12 minutes of motion data was recorded. This data has 13 
features: orientation ( ϕ, θ,	ψ ), linear and angular velocities 
(u,v,w,p,q,r), servo positions of V-S propeller’s control rod (δs1, 
δs2 ), V-S propeller’s rotational rpm ( nV-S ) and horizontal 
thruster's rpm (n). As some of the sensor units had low sampling 
frequency, the data was interpolated to obtain a sampling rate of 
10 Hz (fs) using a cubic polynomial fit on each subset of 10 
adjacent points. Sensor units having sampling frequency greater 
than (fs) were down sampled to achieve a fixed sampling rate 
across the entire dataset.  

The total dataset consists of 7,314 data points out of which  
4,994 data points (ntraining) were randomly selected for training, 
1,070 (nval) for validation and an equal number of data points for 
testing (ntest	=	nval).  

B. Optimisation 
The coefficient matrices of our baseline state-space model 

were obtained using regression analysis. This analysis was done 
on the training dataset and Levenberg-Marquardt algorithm was 
used for its optimisation. For each regression, a system 
parameter was selected and it was put as the output variable f in 
(3). After this, the least square analysis was performed and the 
best fit coefficients were obtained. This step was repeated to  Fig. 2. STARFISH AUV with V-S propeller module. 
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obtain coefficient matrices for system parameters commonly 
used in controller design. Usually, the output variable f  is a 
system parameter that cannot be directly measured using any 
sensor but has an important role in the design of a controller for 
AUVs. 

Our MLP model has a single hidden layer and a rectifier as 
an activation function. It used Gradient Descent (GD) optimiser  
to minimise the residual sum of squares (RSS) between the 
model's prediction fneural and the observed dynamics. We also 
used RSS as a metric to determine MLP's performance on the 
validation and test set. In addition, the optimiser used a decaying 
learning rate 𝛼, given by the following equation: 

α	=	α0e-kn    (6) 

where, 𝛼' is the initial learning rate and n is the current iteration 
number. Also, all the input features yv,ηe,u were scaled between 
0 and 1 to maintain consistency across all the features for the 
entire dataset. For effective termination of training process, the 
idea of using patience interval is discussed in [3]. This parameter 
is basically the number of iterations to go further in training 
before stopping it and look for a better performance. In our 
training, whenever a low RSS value is recorded, the number of 
iterations is extended by adding this parameter. 

Other than number of iterations, the initialisation of variables 
is an important consideration in optimising neural networks. The 
standard method for this step is to initialise weights and biases 
randomly from a zero-mean Gaussian distribution [12]. With 
small learning rate 𝛼 and random initialisation, it is possible for 
the training performance to get stuck at a local minima. On the 
other hand, a higher learning rate may result in completely 
missing the global optima. Therefore, to solve this problem we 
used a two-phase initialisation process. In the first phase, the 
weights and biases are initialised using a zero-mean Gaussian 
and trained with a relatively average learning rate α01. The α01 
value is obtained from some preliminary tests on the training 
dataset and takes a value between very low and very high 
learning rate relevant to training dataset. The training process is 
allowed to run using the decaying learning rate given by (6) until 
it is terminated by exceeding the patience interval. Before 
entering into the second phase, the weights and biases 
corresponding to the best performance during the initial training 
are restored. This restoration is required because the first phase 
termination happens only when the network is not able to 
perform beter within the patience interval and therefore, the last 
iteration’s weights and biases do not correspond to the best 
performance or the lowest RSS score. At the beginning of the 
second phase, the weights and biases are initialised using 
restored values. After this second initialisation, the training is 
performed again using a decaying learning rate with its initial 

value α02 lower than the previous learning rate α01. This type of 
two-phase learning process ensures that the initial weights and 
biases come close enough to a global minima and then critical 
updates are made during the second run to find the best 
performance. For the implementation of our network, we have 
used Google's open source library, TensorFlow [1], for 
numerical computations. 

C. Performance 
We trained the baseline model and our rectifier network 

using the training set and used RSS as a performance metric. For 
our MLP models, we used 2,500 hidden units (N) and a mini-
batch size of 1,000 samples for training. The learning rate α01 
was set to 1×10-4 and α02 to 1×10-6 with the constant k as 0.96 
(See Section IV.B). These learning rate values were decided 

TABLE I.  RESIDUAL SUM OF SQUARES FOR ACCELERATION PARAMETERS 

S. No. 
RSS Score on Normalized Test Dataset 

System parameter MLP State Space 

1. Yaw Acceleration 4.2 19.2 

2. Pitch Acceleration 5.2 11.0 

3. Roll Acceleration 1.8 6.5 
 

 

 

 

 

 

 

 
Fig. 3: Performance comparison of our MLP network with a state-space model 
in predicting normalized pitch, roll and yaw dynamics on test dataset. Except 
for the acceleration values, all other parameters were present as input features 
for both the models and therefore, their values were easy to predict. 
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after some initial experimental runs using the training dataset. 
The patience interval was set to 10,000 iterations. The rectifier 
MLP model has 13 input features as mentioned in Section IV-A. 
Both the state-space and MLP models, are trained to predict the 
system parameter one time-step ahead. In real time, this one 
time-step ahead prediction is equivalent to estimating the value 
0.2s ahead of the current timestamp. The test dataset 
performance for both the models is presented in Fig. 3 and Table 
1 gives the details about the RSS value for those system 
parameters which were not present as input state variables. 

As can be clearly observed from Fig. 3, our MLP network 
and state-space model gave promising performance in predicting 
orientation and angular velocities. However, MLPs significantly 
outperformed state-space models in predicting acceleration state 
variables. Intriguingly, these are also the parameters which were 
not present as input features to our models. Therefore, no prior 
information was available about their current state when both 
models were trying to predict the variable’s future value. This 
difference in performance is strong evidence that MLPs are 
capable of learning the underlying non-linear dynamics whereas, 
state-space models are only able to provide rough estimates. On 
further inspection using Table 1, the performance of both models 
can be compared using RSS value obtained from the test dataset. 
This again demonstrates that the MLP model learned a better 
representation of acceleration variables as compared to the state-
space model. Therefore, it can be concluded from these results 
that state-space models can only perform well if sufficient 
information about their output variable is already present as a 
state input. However, the MLP model is able to predict unknown 
as well as known dynamics accurately and therefore, can be 
considered ideal for modelling complex AUV dynamics. 

V. SUMMARY 
In this work, we defined a rectifier activated MLP network 

for learning AUV dynamics. We also developed a linear 
dynamics system using the state-space equation and used it as a 
baseline model. These models were tested for predicting system 
parameters for an AUV with a vector thruster. From our results, 
it can be easily observed that MLP’s performance is either better 
or at least as good as our baseline model’s. Interestingly, the 
baseline model gives a decent performance only when the output 
variable is present as a state input. Whereas, the MLP model 
accurately predicts all the system parameters irrespective of their 
presence as an input feature. Therefore, the MLP model is shown 
to be a better choice over a linear dynamics model, and capable 
of modelling complex AUV dynamics. Lastly, we also discussed 
briefly the methods for optimising our model’s learning process.   
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