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Abstract—Predicting the performance of an underwater acous-
tic network (UAN) is a challenging task due to the spatio-
temporal variability of the links and its complicated dependence
on multiple factors. We present a machine-learning model based
on logistic regression (LogR) to capture the spatio-temporal
variation in the performance of a UAN. The model captures the
effect of environmental factors such as wind speed, tide, current
velocity etc., and modem-specific factors, on the performance
of the UAN, which can be quantified by the packet success
rate (PSR). As the PSR is a complicated non-linear function
of environmental/modem-specific factors, developing a forward
model in this regard is a difficult task, motivating our data-
driven model. Our results indicate that LogR can quantify UAN
performance with fair accuracy.

Index Terms—underwater acoustics, communication network,
variability, logistic regression, environmental factors

I. INTRODUCTION

Underwater acoustic networks (UANs) comprise of several
nodes communicating acoustically with each other via com-
munication links. UANs have garnered interest due to their
potential for use in applications such as large-scale monitoring
[1]. Experiments using UANs are expensive and not easy to
conduct. Thus, in order to evaluate communication protocols
and assess capabilities of systems being developed, researchers
often resort to simulations based on models of the UAN.
Some simulators used for this purpose can be found in the
literature [2], [3].

An underwater acoustic channel is severely band-limited,
offers significant delay spread and is time-varying [4]. The
spatio-temporal variability of the underwater acoustic channel
and its effect on UAN performance have been studied pre-
viously [5]–[7]. Analysis of data collected from experiments
in Singapore waters in 2012 showed that link performance
was affected by underwater currents which caused vibrations
of the modems [6]. In [7], the authors studied the short-
term and long-term variability of the multipath arrivals in an
acoustic channel using experimental data, and suggested that
the short-term variability of multipath arrivals can be modeled
as Gaussian or Rician distributed. In [5], the performance in
terms of packet success rate (PSR) was modeled as a non-
independent Bernoulli random process and a Markov model
was used to estimate model parameters.

The variability of acoustic channels causes individual link
performances in a UAN to vary significantly [5]. There is a
multitude of interconnected factors such as local environmen-
tal conditions and communication equipment-related factors

Fig. 1. Layout of the MISSION 2013 experiment

that can affect UAN performance. Some of these factors may
not be fully understood or quantifiable. Thus, it is difficult to
model and predict the UAN’s performance as it formulates
into a complicated non-linear forward model. In this scenario,
machine-learning techniques are ideal tools to model the
underlying dependencies of the UAN performance on various
factors, in a data-driven fashion [8]. We can also incorporate
our existing understanding of the factors that affect UANs into
the training of this model.

We use a data-driven approach to model the performance
variability of UANs based on fluctuations in environmental
conditions and communication equipment-related factors. We
employ logistic regression (LogR) to model the performance
in terms of PSR [9]. Experimental data acquired by us at
the MISSION 2013 experiment [7] is used for the modeling.
Furthermore, we interpret the physical implications of the
modeled variations. This paper is organized as follows: In
Section II, we provide details on the experiment whose data is
used in training and testing our LogR model. This is followed
by a discussion on the features utilized in our model in Section
III. Details of the modeling procedure are discussed in Section
IV. Section V discusses the results of our modeling and our
conclusions are presented in Section VI .

II. THE MISSION 2013 EXPERIMENT

MISSION 2013 was a UAN experiment conducted by the
Acoustic Research Laboratory of the National University of
Singapore [6]. It was conducted at Selat Pauh in Singapore
waters in 2013. The UAN consisted of seven nodes (numbered
21, 22, 27, 28, 29, 31 and 34) [6]. The UAN geometry is



TABLE I
LEGEND OF PACKET OUTCOME STATES

Encoding Outcome

R Packet successfully received and decoded

X Packet successfully received but decoding failed

U Packet was not received

V Packet was overheard (successfully received and decoded)

D Packet was dropped

highlighted in Fig. 1, showing the locations of these nodes.
Node 21 was mounted six meters below a barge. All remaining
nodes consisted of an anchor, an underwater modem, batteries
and an acoustic release buoy. When dropped, the anchor sinks
to the seabed, while the modem-battery-buoy assembly floats
several meters from the bottom. Three acoustic Doppler cur-
rent profilers (ADPs) were deployed to measure the prevailing
current profile and monitor tide changes. The ADPs are labeled
as ADP1, ADP2 and ADP3, and their locations during the
experiment are shown in Fig. 1. Additionally, a weather station
was deployed in the vicinity of node 21.

In the experiment, packets were sent and received between
multiple modems in a half-duplex manner and the outcome of
each received packet was classified into five states denoted
as R, X, U, V, D. These are summarized in Table I. We
consider the performance of the UAN in terms of success
in decoding a received packet. The Rs and Vs constitute
successful packet decodings (denoted as 1) whereas Xs and
Us constitute unsuccessful decodings (denoted as 0). The Ds
are not considered in our dataset as they are not unbiased
indicators of bad link quality. This is because packet drops
could have occurred not only due to bad link quality, but also
because the receiver node under consideration was scheduled
to transmit at the same time. The timeseries of the packet
outcomes is generated from the transmission logs of the
experiment. We use the data collected over the 3-day period
of the experiment in training and testing the LogR model.

III. FEATURE SELECTION AND PREPROCESSING

A. Environmental factors measured

The environmental factors measured at the experiment were:

• Current - Measured by three ADPs in centimeters per
second (cm/s) at a sampling interval of 5 minutes.

• Wind - Measured by the weather station in meters per
second (m/s) once every 15 seconds.

• Tide - Measured in meters (m) via a pressure sensor on
each ADP.

• Range - Range between the transmitter and receiver,
measured in kilometers (km).

• Depth - Depth at which each node was located, measured
in meters.

TABLE II
FEATURES FOR THE MODEL

Feature class Features

Along-current AC1, AC2, AC3

Cross-current CC1, CC2, CC3

Wind AW, CW

Tide Tide

Range Range between transmitter and receiver

Depth Receiver depth, transmitter depth

Modem-specific Transmitter and receiver ID one-hot labels

B. Preprocessing and insight behind features

The current velocities measured at each ADP are resolved
into two components: one in the direction of each link and
the other perpendicular to it. We term these as along-current
(ACx) and cross-current (CCx), respectively, where x refers
to the ADP being used. The reason for doing so stems from
the fact that each component contributes to a different effect
on the transmitting/receiving modems. The AC component
moves nodes along the direction of the link, thus introducing
time-varying multipath. On the other hand, CC can lead to
performance loss by introducing vortex induced vibrations of
the modems.

Similarly, the wind speeds measured by the weather station
are also resolved into along-wind (AW) and cross-wind (CW)
components. Wind can affect the communication links by
introducing ambient noise. The AW and CW components
can also affect the PSR of a UAN via different mechanisms.
More precisely, AW leads to surface-reflected rays undergoing
magnification (due to focusing of rays by the water surface)
or attenuation. On the other hand, we expect that CW can
scatter surface-reflected rays away from the link direction,
thus adversely affecting UAN performance. We also note that
tide can essentially change the multipath structure of the link,
which may lead to better or worse performance.

The depth of each node is included as an input feature as
it allows us to capture some multipath-related performance
variations. Similarly, the range between a transmitter and
receiver captures some of the multipath-related variation and
also characterizes geometric spreading loss incurred by sound
traveling through the medium.

The identity of each transmitter and receiver is encoded as a
feature in our learning model. This captures link performance
variations that arise due to modem-specific factors such as
hardware. Though the modems are labeled with numerical IDs,
we cannot use these as features as we want node identities to
be treated as categorical variables and not numerical quantities.
Thus, we encode the IDs by employing one-hot labels [10]. As
seven modems were deployed in the experiment, this results
in 14 one-hot labels.

In summary, the environmental features employed in our
model are ACx, CCx (x ∈ {1, 2, 3}), AW, CW, tide, modem



(a) AC1

(b) CC1

Fig. 2. Packet outcomes for link 21 to 22 and current measurements.

(a) AW

(b) CW

Fig. 3. Packet outcomes for link 21 to 22 and wind measurements.

Fig. 4. Packet outcomes for link 21 to 22 and tide measurements.

depths, range between transmitter-receiver pairs and the ID of
each transmitter and receiver modem as a one-hot label. The
features used in the model are summarized in Table II.

C. Observations

To visualize the experimental data, we plot the current
variations recorded by ADP1 and packet outcomes for link
21 to 22 in Fig. 2. The current profile is resolved into AC and
CC components in Figs. 2 (a) & 2 (b), respectively. Moreover,
we also plot the wind measurements and tide profiles in
Figs. 3 & 4, respectively. These again are accompanied with
packet outcomes for link 21 to 22. The wind measurements
are divided into AW and CW components with respect to link
21 to 22 in Figs. 3 (a) & 3 (b). Blue dots in Figs. 2 - 4 refer to
packet outcome in terms of 1s and 0s (to be read against the
primary y-axis). The orange line shows the feature (to be read
against secondary y-axis). Link 21 to 22 was a 1.6 km long
surface to seabed link. From visual inspection, it is not easy
to draw straightforward correlations between PSR performance
and the features. However, we note that packet successes and
failures seem to occur in bursts and are temporally correlated.

IV. PSR MODELING

The objective of our work is to model the PSR by learning
the dependence of packet outcomes on the environmental
factors. The packet outcome may be 1 or 0, indicating success
or failure in decoding the transmitted packet, respectively.
Treating this as a binary classification problem, we employ
a LogR network to model the packet outcome. LogR belongs
to a class of linear models that models the probability of the
target belonging to a particular category given an observation
[9]. In this model, the probabilities describing the possible out-
comes of a single trial are modeled using the logistic function.
Training of a binary class `2-penalized LogR network using
N training data points involves the following cost function
minimization

arg min
w,c

1
2w

Tw + λ
∑N

i=1 log(exp(−yi(xT
i w + c)) + 1)

where w refers to the vector of (real) weights used in the
network, λ is the inverse of the regularization parameter, yi
is the ith target label, xi refers to the input feature vector



Fig. 5. Model training pipeline

corresponding to the ith observation, and c is the bias [9].
Our dataset consists of 39,942 transmitted packets between
all link pairs, of which 60% belong to class 1 and 40% to
class 0.

A. Performance metric

The performance metric used to gauge the model is the
Matthews correlation coefficient (MCC) which is a balanced
measure that is not affected by biased datasets [11]. The MCC
is measure of the quality of binary classification which takes
into account true and false positives and negatives, and can
be used even if the classes are of very different sizes. It is,
in essence, a correlation coefficient value between -1 and +1.
A coefficient of +1 represents a perfect prediction, 0 an unin-
formed random prediction and -1 an inverse prediction [12].
The MCC is evaluated by

MCC =
TPTN − FPFN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP is the count of true positives, TN is the count of
true negatives, FP is the count of false positives and FN is the
count of false negatives.

B. Modeling technique and hyperparameters

The LogR network was trained based on the performance
metric detailed above, using the pipeline described in Fig. 5.
Each of the steps in the pipeline is explained below:

• Data splitting - The data from each link is divided into
70% for training, 15% for validation and 15% for testing.

• Standardization - The data was standardized, which
means that it was shifted such that each of its features has
a distribution with a zero mean and a standard deviation
of one. This ensures that the input data does not saturate
the logistic nonlinearity of the neurons in the input layer,
but rather keeps it in the active linear range.

• Polynomial expansion - We expand the initial feature
space by additionally using polynomial powers of the
features. This allows us to model more nonlinear and non-
monotonic dependencies on the features [13]. We observe
that though the features summarized in subsection III-B
(which are essentially degree-1) were able to capture the
variability in PSR performance based on the environmen-
tal features, better predictions can be made on enhancing
the space to degree-2 and degree-3 features. All features
are expanded to polynomial orders except for the one-hot
labels, because the latter consists of ones and zeros and
cannot provide any additional information to the LogR
network on expansion.

Fig. 6. Variation of MCC score of output predicted by LogR network using
validation set, with threshold value.

Our model uses a LogR network with one hidden layer.
We use `2-regularization during training to prevent any single
neuron weight becoming too large [14]. This ensures the
network learns smooth variations with respect to features and
does not over-fit the small random fluctuations in the data.
We adopt the grid search cross-validation technique to fix the
model’s hyperparameters such as the regularization strength.

The LogR network ends with a softmax output layer that
yields a soft-value prediction which can be treated as a
probability. This probability is then thresholded to give a hard
decision on the predicted outcome (1 or 0). The threshold
at which the decision boundary is set is a hyperparameter
which is selected based on the validation set. The threshold is
set to a value that yields the best MCC on validation data.
Figure 6 shows one instance of the variation of the MCC
of outputs predicted using the validation set when different
thresholds are used. The prediction is done using a LogR
network with a degree-3 feature space. In Fig. 6, we see that
the maximum MCC is obtained at a threshold of 0.42 for the
example considered. In general, we observed that the threshold
values selected via the validation set were in the range of 0.4-
0.6.

V. RESULTS

In this section, we gauge the performance of the trained
LogR network and study its learnt dependencies.

A. Test performance

The performance of our LogR network models using dif-
ferent combinations of features is shown in Table III. The
performance refers to the MCC obtained with the held-out
test dataset. We note that the model using wind, current, tide
and range features can yield an MCC of upto 0.50. With the
addition of receiver depth, the MCC increases to 0.57. Adding
one-hot labels, range and transmitter depth, increases the MCC
by 12.5% over this network, thus indicating that these features
provide information which aids in modeling. With polynomial
expansion of the feature space, the MCC improves from 0.64
to 0.73, an enhancement of 14.2%. We did not expand the



TABLE III
LOGR NETWORK PERFORMANCE COMPARISON WITH TEST DATA.

Features/modeling technique used Test MCC

Wind, current, tide and range between transmitter
and receiver 0.50

Wind, current, tide, range and receiver depth 0.57

Wind, current, tide, range, receiver depth and
one-hot labels for transmitter and receiver 0.64

Wind, current, tide, receiver and transmitter depth,
one-hot labels for transmitter and receiver (degree 1) 0.64

Wind, current, tide, receiver and transmitter depth,
one-hot labels for transmitter and receiver (degree 2) 0.69

Wind, current, tide, receiver and transmitter depth,
one-hot labels for transmitter and receiver (degree-3) 0.73

Fig. 7. PSR variation with range.

feature space to polynomial orders beyond degree-3 as the
ratio of the number of data points to number of features was
too low and could result in over-fitting.

B. Modeled variation and insights

We now examine the relationships that the trained model has
learnt between the predicted outcome and individual features.
We do this by making predictions using the trained LogR
network on a prediction dataset where only one feature is
varied within a relevant range and all other features are kept at
their median values. The predictions are based on the degree-3
feature space.

1) Variation with range: The dependence of performance
on range learnt by the LogR model is shown in Fig. 7. The
model shows a non-monotonic variation. At large ranges the
model predicts that the UAN performs poorly, which is due
to geometric spreading of sound waves from the transmitter
that leads to low SNR at the receiver. The model also shows a
degradation in performance at shorter ranges which could be
due to the higher delay spread exhibited by raypath arrivals at
short ranges which can degrade communication performance.

(a) Link 21 to 22.

(b) Link 21 to 29.

(c) Link 21 to 34.

Fig. 8. PSR variation with tide for 3 different links.

An interplay of the contrasting effects of delay spread at
short range and low SNR at large range could lead to the
existence of an intermediate ‘optimal range’ of communication
performance. The LogR network seems to be capturing this in
its non-monotonic variation. It is also possible that the network
was over-fitting due to data points from some short-range links
that performed poorly due to other factors, like link 27 to 29,
link 22 to 31 and link 28 to 31.

2) Variation with tide: Figure 8 shows the variation in
performance of three links with variation in tide as learnt



Fig. 9. Predicted PSR for link 21 to 22 against ADP2.

by the model. The model indicates that an increase in tide
increases the PSR. This is especially noticeable for link 21 to
34. On examining the bathymetry of this link, we found that
the direct path between the nodes was blocked by a reef at
low tide. An increase in tide provided a way for the packets
to overcome the reef and reach the receiver, leading to an
increase in the PSR [7].

3) PSR variation with current and wind: Figures 9 & 10
show the variations learnt by the network for link 21 to 22
with respect to along/cross components of currents measured
at ADPs 2 and 3, respectively, which were closest to the link.
The heat map displays values between 0 to 1 indicating the
predicted softmax probability output.

In general, the learnt variation indicates that the perfor-
mance of the link decreases when the CC increases. As
highlighted in subsection III-B, this decrease could be because
an increase in CC leads to vortex-induced vibrations of the
modem. These vibrations lead to Doppler distortion in the
transmitted signals, thus resulting in a performance drop. The
performance drop could also be attributed to CCs moving
scatterers such as bubbles into the path of the link which
would otherwise be stable. Figures 9 & 10 also indicate that
the performance dependence on ACx is not consistent for
measurements from the two ADPs.

Figure 11 highlights the performance variation with wind
learnt by the model. It indicates that the performance of the
link improves for large AW. This could be because the AW led
to a change in the surface reflected rays which improved link
quality. The decreasing variation with CW is likely because
cross-winds lead to wave patterns perpendicular to the link
direction which scatter the acoustic energy in directions away
from the link.

C. Short-term PSR variability predictions

The PSR predicted by the LogR model for each transmitter-
receiver pair is shown as a colour-coded table in Fig. 12,
after setting all the environmental features and depths at their
median values. We compare this against the median PSR
computed from the groundtruth data, shown as a color-coded

Fig. 10. Predicted PSR for link 21 to 22 against ADP3.

Fig. 11. Predicted PSR for link 21 to 22 against wind.

table in Fig. 13. Note that the LogR network captures the
trends in the median link performance with fair accuracy. It
indicates that certain links and modems, such as modem 27,
performed very poorly on an average. We corroborated this
with experimental logs and found that modem 27 faced hard-
ware issues during the experiment. Thus, the one-hot labels
are able to capture some of the modem and link-specific
information in the modeling.

In Figs. 14 & 15, we plot the short-term average PSR for
two different links from the ground-truth data. The average is
taken over a window of 6 minutes so that it would be larger
than the ADP’s sampling rate of 5 minutes. We compare the
ground-truth against the predicted softmax probability outputs
of the LogR model, which are an indicator of the PSR. We
observe that the predictions from the network are almost in line
with the ground-truth data. The variations in PSR are captured
well by the LogR model.

VI. CONCLUSION

We have developed a LogR model that can predict, with
some consistency, the UAN performance given some infor-
mation on prevailing environmental conditions. The model



Fig. 12. Predicted PSR for each transmitter-receiver pair.

Fig. 13. Median ground-truth PSR for each transmitter-receiver pair.

was able to learn the dependence of performance on the
environmental factors, from the data. It also captured the
short-term variability of the UAN performance with fair ac-
curacy. The variations learnt by the model with respect to
the environmental factors seemed to corroborate with known
physical phenomena. However, more exploration needs to
be undertaken to understand the learnt variations better. Our
predictive model enables us to simulate, predict and plan more
effectively for future UAN deployments.
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