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Abstract—Modeling the spatial variation of resources is nec-
essary because it gives an estimate of what to expect during their
exploration and exploitation. We focus on the spatial modeling
of polymetallic nodules found in the deep sea regions of the
Clarion-Clipperton zone in the Pacific. The data from this region
available in the open domain is sparse, which warrants modeling
techniques that can efficiently use the data to yield reasonable
estimates. Additionally, it is necessary to quantify the confidence
level of the model’s predictions to aid a user in interpreting
them. The confidence level can be captured in the form of
an uncertainty map that accompanies the prediction map. We
present an approach for modeling of copper percentage variation
in nodules found across the Clarion-Clipperton zone. We also
describe how the prediction uncertainty given the input features
can be estimated.

Keywords—polymetallic nodules, Clarion Clipperton zone, arti-
ficial neural network, uncertainty

I. INTRODUCTION

Oceans are natural hunting grounds for resources as land-
based sources near depletion. Nowhere is this more evident
than the resurging interest in polymetallic nodules (PMN) [1].
PMN are metal concretions formed at several kilometers of
depth on the ocean floor. They consist primarily of manganese,
iron, nickel, copper (Cu) and cobalt, and also other valuable
metal components [2]. Exploration of the Clarion-Clipperton
zone (CCZ) in the northeast Pacific region has revealed a
significant untapped metal resource potential in the form of
PMN deposits [2], [3].

The CCZ is a large area spanning several million square
kilometers [4]. However, the PMN deposits in CCZ are not
well mapped or quantified yet. In order to plan exploration
and exploitation efficiently in such a large area, we need
a guiding model of the spatial variation of these resources.
This model should be able to estimate variations of nodule
resource parameters by utilizing our understanding of the
nodule formation process and the limited available distribution
data from explorations.

Spatial modeling has been undertaken by several authors
previously [5], [6]. In 2003, the International Seabed Authority
(ISA) convened a workshop to discuss the modeling of PMN
deposits in CCZ, and the discussed bio-geo-chemical mech-
anisms and models were summarized in an ISA report [4].
It is hard to make exact quantifications of nodule parameters
based on these mechanisms because of the vast complexity and
interconnectedness of processes leading to nodule formation.
What we require is a model that can bridge the observed

variations in the acquired data to the known mechanisms via
a data-driven approach. From this perspective, artificial neural
networks (ANNs) are ideal tools for modeling of PMNss as they
are effective in characterizing unknown underlying variations
encountered in data [7]. However, only a few have attempted to
tap the power of ANNs for modeling PMNs [4], [8]. In [9], we
focused on how to bridge the gap between the known theory
and available data on nodules via smart ANN based modeling
techniques, with discussion on details that allow a reader to
replicate the modeling process. The model predictions were
benchmarked against those obtained by ISA [4] and shown to
be comparable in accuracy.

While ANNSs are capable of yielding predictions by learn-
ing patterns in the data, characterizing the confidence level
of their predictions is a crucial requirement from a modeler’s
point-of-view. This information can guide a model-user on how
to interpret the model predictions and what aspects of a model
to trust. For example, if an ANN is used to predict nodule
parameters in a region where

1) data was never gathered before, and
2) the environmental factors are significantly different
from what the ANN has been trained with,

then the model-user should be flagged that this is uncharted
territory for the model.

Another application of uncertainty is as a guide for future
data-gathering missions. In our work on PMN exploration, we
have been investigating optimal path-planning of exploratory
missions to maximize the amount of information obtained from
it [10]. An explorer would want to plan missions to explore
areas where we are uncertain of the ground realities. This
allows us to collect crucial data necessary to improve the
model reliability. To do this, we need an uncertainty map of
our spatial model predictions.

We present a methodology of ANN-based spatial modeling
of the Cu percentage (Cu %) in nodules using the limited
data available in the open domain. Furthermore, we describe
the estimation of the model’s uncertainty using the dropouts
approach. The paper is organized as follows. In section 2,
we briefly discuss the formation of nodules, the factors that
contribute to this which are used as features in our modeling,
and the nodule parameters modeled. In section 3, we discuss
the ANN approach to modeling. In section 4, we discuss
the characterization of the uncertainty of the predictions. In
section 5, we present results of the modeling and uncertainty
estimation, and in section 6 we conclude the paper.



II. PMN FORMATION AND FEATURES USED IN MODELING

PMN are formed by accretion of metals in deep-sea re-
gions. The sources for these metals in the waters of the CCZ
are primarily terrigenous such as river run-off from the west
coast of America (WCA), and volcanogenic metal content
injected from sources such as those found along the east Pacific
rise (EPR) [4]. The metal particles are ingested by plankton
in the photic zone and sink to the bottom as fecal pellets. At
the ocean bottom, nodules are formed around a nucleus by
entry of these metals through a combination of diagenetic and
hydrogenetic processes [11]. Nodule formation at a location is
also affected by its depth in relation to the carbon compensa-
tion depth, local topography and sedimentation rate [12]-[14].
Local topography and sedimentation rate are key parameters
determining small-scale variations in nodule parameters [4],
[15].

Based on this understanding, the features selected by us
for modeling of nodules are:

1) Distances from EPR and WCA: These indicate the dis-
tances of the location being considered from the hypothesized
terrigenous and the volcanogenic sources of the metals. The
metals from these sources may undergo some dilution due
to spreading as we move away from the sources [4]. We
model this spreading as impacting the nodule parameters in
a monotonic way. In order to do this, we follow the approach
in our previous work [9] and force our ANN to learn a
dependence of the form ci.tf ., where ¢; is a constant, p; is
an exponent and ¢; is the minimum distance from the source
considered. The subscript 7 can take value of 1 indicating
distance from the WCA, and a value of 2 indicating the
distance from the EPR. In contrast to [9], we split the effect
of WCA and EPR as they contribute different metals which
may impact nodule formation differently.

2) Net primary productivity: Net primary productivity
(NPP) is defined as the flux rate of carbon in plankton due to
biological processes [16]. It is an indicator of the photosynthe-
sis activity at the sea surface that contributes metals for nodule
formation. The NPP features used in our model were extracted
from data computed using a carbon based productivity model
[16].

3) Bathymetry and topography: Previous attempts to model
the effects of topography followed the approach of classifying
topographic features into categories like abyssal seamounts,
ridges and plains. However, this approach relies on classifi-
cations hand-picked by the modeler, and does not quantify
the variation in topography. Thus, the performance is heavily
reliant on the effectiveness of the manual classification. Instead
of this approach, in our modeling we quantify the topographic
variation in terms of a set of numerical quantities [9]. These
include the depth and the directional depth gradients at each
point. The gradient information can help us distinguish the
local topography at a location, and modeling dependencies
learnt based on these quantities can be interpreted in terms
of topographic variations.

The gradients are computed in the following way. Assume
that the bathymetric map is available as a function of latitude
and longitude as d(a,b), where a denotes the latitude and
b denotes the longitude. Also, denote the horizontal distance
between two points at lat-long coordinates (a1, b1) and (az, ba)

as H(aq,b1,a2,b2). For any point with lat-long (a,b), we
compute

e  First-order depth gradient in eastward direction
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where € is the lat-long resolution around the point (a, b) chosen
for gradient computation. The depth gradients are computed
based on bathymetric data obtained from the CCZ region.

4) Sediment type: A limited amount of low-resolution data
on sediment-type in CCZ is available on some online repos-
itories. The information from these sources is combined and
interpolated for use in regions where this data is unavailable.
Using the data available, we characterize the sediment-type in
terms of fractions of terrigenous material with little biolog-
ical content, pelagic clay, siliceous sediment and calcareous
sediment. For each location, the fractions from these four
categories of content are denoted by S;, Sp, Ss and S,
respectively. We assume that the sediment at any place can
be fully characterized by these four types of content. Hence
Ss+S5:+5,+S.=1.

III. MODELING TECHNIQUE
A. Approach

An ANN is a machine-learning framework based on a
network of computational units called neurons which are
interconnected by links with multiplying weights [7]. Based
on available data, the networks weights can be assigned
appropriate values in order to dedicate the network to achieve
tasks such as learning, classification and clustering on the
data. This process is called training. An ANN is able to take
into account several input features which may have complex
interconnected effects on the predicted outputs. This makes the
ANN ideal for our application. The neurons in an ANN can
be organized as layers. These may include an input layer to
which the input features are supplied, hidden layers, and an
output layer which provides the predicted outputs.

B. ANN architecture and meta-parameters

We use an ANN architecture called a feedforward network
which has been extensively employed for pattern recognition
tasks in the past. Our ANN contains one input layer, two
hidden layers and one output layer. The number of neurons in
the first and second hidden layers is 500 and 100 respectively.



TABLE 1.

SOURCES OF DATA ON FEATURES OBTAINED FROM OPEN-DOMAIN

Feature Sources

Bathymetry

General bathymetric grid of the ocean [17], [18], Online databases at NCEI [19]

Sediment-type and Cu%

Online databases at NCEI [19], primarily the Seadas database, consisting of: The NOAA and MMS Marine Minerals
Bibliography, Archive of Core and Site/Hole Data and Photographs from the Ocean Drilling Program (ODP), NOAA/NOS
and USCGS Seabed Descriptions from Hydrographic Surveys, Index to Marine and Lacustrine Geological Samples (IMLGS),
Archive of Core and Site/Hole Data and Photographs from the Integrated Ocean Drilling Program (IODP), Archive of Core
and Site/Hole Data and Photographs from the Deep Sea Drilling Project (DSDP) and ISA Central Data Repository [20]

NPP (mg C/m?/day) Oregon State University [21]

During training of the weights, we minimize the mean square
error between the predicted output of the ANN and the ex-
pected output, as the cost function. As the nonlinear activation
function, we use the rectified linear unit which is shown in the
literature to improve ANN generalization performance. The
ANN weights are ¢2 regularized. We use a learning rate that
varies exponentially from 5 x 107* to 1 x 10~° over the
progression of the training epochs.

In order to improve the generalization performance of
our model using the few data points we have, we expand
our dataset by adding synthetic data that represents our prior
knowledge of the nodule-forming mechanisms. We generate
synthetic data based on the assumption that the relation be-
tween the nodule parameters and topography is independent
of the direction considered (eastwards/northwards). In other
words, the variation learnt by the network with respect to the
eastward depth gradients Al(a,b,¢) and A2(a,b,¢), should
be the same as that learnt for the northward depth gradients
A}(a,b,€) and A2 (a, b, €) respectively. We encourage the net-
work to learn direction-independent variations by generating
additional data from the existing training data by swapping
the eastward and northward gradients. This doubles the size
of the training dataset and allows the network to generalize
topographic variations in a direction-independent way.

To obtain an unbiased estimate of the test performance of
the modeling algorithms, we randomly divide the available data
into training, validation and test datasets in the ratio 70:15:15.
The final model is selected as the one that maximizes the
validation performance, which is quantified in terms of regres-
sion coefficient on the validation data. The test performance
is then calculated as the regression coefficient of the output of
this selected model. Since the test points are randomly chosen
from all data available for the CCZ, the test performance is
indicative of the capability of the ANN to model large-scale
variation of the nodule parameters over the CCZ.

C. Parameter modeled and data collection

Cu % is defined as percentage of Cu by weight in nodules
found at a location. Modeling this parameter helps determine
the feasibility of extraction of this metal after nodule har-
vesting at a site. Cu is one of the metals in nodule deposits
considered to be of economic interest [3]. We model the Cu %
conditional on the presence of nodules at a location, referred
to as conditional Cu %.

We collected data for modeling from online public sources.
The data includes bathymetry, sediment-type, NPP and per-
centage content of Cu. The sources for this data are shown in
table I. We obtained 572 data points for Cu %.

IV. UNCERTAINTY

So how can we characterize the uncertainty of our predic-
tions? Assume we are given a set of locations with known
measured values of nodule parameters to within measure-
ment precision. The uncertainty arises when the network is
predicting parameters at some new location with a set of
input features that the ANN has not encountered earlier. The
uncertainty of the prediction should be higher when the new
set of input features describes a configuration which is further
away from the features at known training and validation points.
This sort of characterization of uncertainty can be done by
visualizing the ANN as a stochastic system which follows a
distribution over functions. What we require is an estimate of
this distribution that describes our trained ANN. The statistics
of that distribution would then quantify the uncertainty of our
network.

Some earlier work in the literature showed that an ANN
trained using the method of dropouts along with weights
regularization, is actually a good estimator of the best possible
predictive function based on the given data [22]. Recent work
on this by Gal and Ghahramani shows that by using dropouts
as a Monte Carlo sampler of the underlying distribution
describing our ANN, one can estimate the statistics of the
predicted outputs [23]. Dropouts have been well-known in
the ANN community for some time as a tool for improving
generalization performance. Hence, this approach to estimating
the uncertainty of the ANN predictions is simple to use. Since
the framework and understanding for incorporating dropouts
into ANNSs already exists, it is only a matter of reworking this
to obtain the uncertainty estimates.

Denote the input feature vector to the ANN as x and the
nodule parameter prediction as y. Denote the best possible
predictive function of nodule parameter based on the given
training data as f(x), and its distribution conditional on the
inputs as g5 (y|x). Our ANN parameterized by weights w that
are trained using dropouts, is a good estimator of this function
and is denoted as f,,(x) [23]. Then, the first and second order
statistics of the prediction y = f(x) can be estimated as [23]

E = lim —Z oo (X¢) (5)

T—oo T

ar (%) Y]
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Eqs i) (V'] =

where E[.] denotes the expectation operator, the subscript ¢
denotes Monte Carlo sampling of the weights w and input x
via dropouts, and 7' denotes the number of dropout runs. 7
is a precision hyper-parameter which can be computed from



TABLE II. MODELING PERFORMANCE FOR CONDITIONAL CU %
USING COMBINATIONS OF DIFFERENT FEATURES AND TECHNIQUES.
COLUMNS: A = NPP, B = TOPOGRAPHY, C = SEDIMENT-TYPE, D =¢1, E
=to, F = SYNTHETIC DATA,G = REGULARIZATION

A [ B | C|D]|E/|F | G| Regression
coefficient
ViV 0.369
ViIivi]Vv 0.372
VIiVvI|iVv]Vv 0.376
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Fig. 1. Modeled variation of conditional Cu % with topographic features.
The variation is plotted against (a) Al = AL + Aé and A2 = A2 + AZ,
(b) NPP and (c) depth.

the prior length-scale [, weight regularization parameter A,
dropouts weight retention probability p and number of sample
points N as [23]
pl
T = .
2N
The variance of the prediction can then be estimated as

vary, (10 8] = Eq, ix) [12] — (Bosiup [0)°- (®)

The variance of the prediction y under the distribution ¢y (y|x)
is in essence a measure of its uncertainty. Thus, the above
approach gives us a framework to estimate the uncertainty of
our ANN'’s prediction.

)

V. RESULTS

We investigate the performance of the regression-based
modeling in terms of the average test regression coefficient R,
calculated by averaging over four training runs. We investigate
the performance improvement obtained by including each of
the features mentioned in section II by considering different
model configurations using successively larger feature sets, and
studying their modeling performances.

The performance of modeling Cu % conditional on nodule
presence is summarized in table II. Each row in the table
represents a training scenario performed with a certain set
of features or modeling techniques such as synthetic data
or regularization. The features/techniques used are indicated

by tick-marks in their respective columns. The corresponding
test performance is indicated on the right-most column. This
interpretation applies to all the tables shown henceforth.

We see that using all the features described in section I im-
proves the modeling performance to some degree. Combining
all the input features without using synthetic training data or
regularization, yields R = 0.391. When we add synthetic data
to incorporate directional symmetry, and regularize the weights
with an /5 norm, the performance improves by an additional
4.9% to R = 0.41. This is better than the performance of
R = 0.39 we obtained for the same dataset using the Delaunay
triangulation method [24].

In Fig. 1, we briefly study the variations of conditional
Cu % learnt by the network with respect to the features we
use in the modeling. The model output is averaged over three
training runs with high validation performance. Apart from
the features against which the variation is plotted, the values
of all other features are set to be their averages over the
entire collected dataset unless otherwise mentioned. Figure 1
shows that the Cu % is modeled by the ANN as varying
non-monotonically with the NPP. The highest predicted Cu %
occurs at around NPP = 470 mgC/m?/day. This dependence
is similar to the non-monotonic one observed by other models
[4]. This variation can be explained by the balance between in-
creasing supply of metals due to increase in NPP, and dilution
of metals due to excess biogenous sedimentation. The ANN
models that the Cu % increases with depth, suggesting that
Cu is found in deeper regions. The variation with topography
shows that Cu % is higher in regions with low first-order
gradients. These observations indicate that abyssal plains are
more favorable to Cu formation. This is consistent with the
geological model of entry of Cu into nodules via diagenetic
processes, which dominates in regions such as abyssal plains
and valleys where sedimentation rates are low.

We generate a prediction map of the conditional Cu %
in nodules over the CCZ area using the ANN model trained
with all the features. This map is plotted in Fig. 2 (a). In this
map and all the maps presented henceforth, the Clarion and
Clipperton fractures are represented as two dashed black lines.
The trend of the variation predicted by us is somewhat similar
to those observed across the entire CCZ described in the ISA
report [4]. Some of these predicted features include the band
of high Cu % around (11°N, 120°W) and the region (11°N,
125 to 130°W), with a dip around 123°W and 135°W. There
is also a region of higher Cu % located at (7.5°N, 154°W) in
both maps. Both maps predict that the northern edge of CCZ
has much lower Cu %. One difference between the maps is
that while our model predicts a band of high Cu % at 140°W
spanning from 7°N to 10°N, ISA observes it to be in a smaller
region around (8°N, 140°W). Note that ISA does not predict
the distribution of Cu % in regions to the east of 119°W.

In Fig. 2 (b), we plot the uncertainty given the inputs,
of our prediction map of conditional Cu % over CCZ. The
uncertainty is expressed as variance of the estimate. The map
in Fig. 2 (b) shows slightly higher uncertainty in some of the
western regions. The reason for the uncertainty fluctuations
can be partly understood by observing the location of the data
points used by us for training, in Fig. 3. We see that some of the
regions with high uncertainty such as the northwest region and
the patch around (14°N, 119°W) had very few training data
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points. The uncertainty map indicates that the features found
in these regions are unfamiliar, so the prediction is achieved
through some form of extrapolation. The lower uncertainty
at regions like (13°N, 130°W) and (17°N, 115°W) could be
because the features in these regions are familiar to the ANN
in some way, having been observed at other locations. Thus
the ANN is able to make more confident predictions in these
regions despite having fewer data points.

In order to better understand the uncertainty variation, we
focus on a small portion of the prediction map at a latitude
6.5°N, and spanning from longitudes 149°W to 143°W. Note
that there are two training data points at (6.1°N,149°W) and
(7°N, 143°W), but none in between these two. We plot the
observed probability densities of the predictions of our Cu %

prediction model, computed from 5000 dropout runs. Figure 4
shows the probability densities plotted against the longitude.
This plot is representative of the distribution of the ANN’s
output prediction in this region conditional on the inputs, in
between the two training data points. It can be seen that from
147°W to 145.7°W, the densities exhibit fluctuations, larger
modes than surrounding longitudes, and are wider. This shows
the fluctuations in the prediction output that reflect higher
uncertainty. For other points along this longitude range, there
are a few data points slightly to the north of 7°N which could
be helping lower the uncertainty of predictions.



VI. CONCLUSION

We have outlined how ANN can be used for spatial
modeling of Cu % in nodules using the limited data available
in the open domain. We believe this work is amongst the first
to cover the modeling of this nodule parameter with detailed
aspects such as network architecture, meta-parameters used,
feature engineering and learning approach. We validated our
results by comparing our predictions against those by ISA. The
functional patterns learnt by our model match those described
by bio-geo-chemical models described in the literature. While
the regression performance may not be sufficient to obtain an
accurate resource quantification, we believe it can be used for a
good initial estimate of the trends we may observe in the CCZ.
Hopefully, these can be improved upon with incorporation of
more data and use of more efficient modeling techniques such
as deep learning methods.

Furthermore, we also described an approach to estimate
the model’s uncertainty using the dropouts technique. The
uncertainty map method flags areas where there is lack of
information in terms of features or data points. This uncertainty
map is a valuable addendum to the prediction map itself,
helping one evaluate the usefulness of the prediction, and
utilizing it in further analysis.
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