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Abstract—To deploy successful underwater networks in the
face of challenges such as low bandwidth, long propagation
delay, half-duplex nature of links, high packet loss and time
variability, we require highly optimized network protocols with
low overhead and significant cross-layer information sharing.
UnetStack is a network stack designed to provide a good balance
between separation of concern, and information sharing. By
replacing a traditional layered stack architecture by an agent-
based architecture, we provide additional flexibility that allows
novel protocols to be easily implemented, deployed and tested.
In discrete-event simulation mode, UnetStack can be used on
desktop/laptop computers or computing clusters to simulate
underwater networks and test protocol performance. In real-
time simulation mode, it can be used to interactively debug
protocol implementations, and test deployment scenarios prior to
an experiment. Once tested, the protocols can simply be copied to
an underwater modem with UnetStack support, and deployed in
the field. The stack implementation has been extensively tested,
not only through carefully calibrated simulations, but also in
several field experiments. We provide an overview of UnetStack
and briefly discuss a few deployments to illustrate some of its
key features.

I. INTRODUCTION

Commonly cited challenges in underwater networks include
low bandwidth, long propagation delay, half-duplex nature of
the links, high packet loss, and time-variability [1]–[3]. To
deploy successful networks in the face of such challenges, it
is important to use highly optimized protocols that are spe-
cially designed for use in such networks. Specifically, cross-
layer information sharing, low-bandwidth design and accurate
transmission/reception timing can be critical in these protocols.
Traditional layered network stacks provide good separation
of concern, but result in sub-optimal protocols. Cross-layer
optimization initiatives address this shortcoming by allowing
direct interaction between layers [4], [5]. In UnetStack, we
take a somewhat different approach. The stack consists of
a collection of software agents that provide well-defined
services. This approach, often referred to as service-oriented
architecture [6], provides good separation of concern while
allowing information to be shared, services to be provided,
and behaviors to be negotiated between different agents. The
resulting network stack is flexible and allows software-defined
underwater networks to be rapidly designed, simulated, tested

and deployed.
The idea of software-in-the-loop underwater network stack

simulation was introduced in [7], and later adopted by several
underwater network simulators [5], [8]. Such network simu-
lators allow the same code to be run in simulation and in
underwater modems. Since this removes the need to port a
protocol code from simulation to a field-deployable modem,
considerable time and effort is saved, and subtle differences
often introduced during the porting phase are avoided. Un-
etStack takes this approach one step further. By supporting
implementation on a portable platform such as a Java virtual
machine (JVM), UnetStack allows the exact same compiled
binary to be used during simulation and later deployed in
underwater modems.

To allow researchers to easily develop test scripts in the
field, and to modify and tune their protocols without the
need to recompile their code, UnetStack supports dynamic
execution of Groovy scripts. Groovy1 is an agile and dy-
namic language for the JVM. It builds upon the strengths of
Java but has additional power features inspired by languages
like Python, Ruby and Smalltalk. This provides a perfect
balance between ease of learning and powerful features for
development of protocols. Groovy supports the development
of domain-specific languages (DSL). UnetStack, in network
simulation mode, uses this support to enable an underwater
network simulation DSL for researchers to describe simulation
scenarios in English-like human-readable form.

UnetStack has been actively developed and extensively used
for simulation and numerous field experiments over the past
3-4 years. A community version of UnetStack is available
online2. Bindings for UnetStack for several popular modems
including the ARL UNET-II modem [9], Subnero modem3,
and Evologics WiSE-edition modem4 are currently available.

Several other underwater network stacks and simulators
have also been developed over the past few years (e.g. [5],
[10]–[12]). Many of these initiatives are based on the ns2
network simulator [13] that is very popular for simulation of

1http://groovy.codehaus.org
2http://www.unetstack.net
3http://www.subnero.com/technology/
4http://www.evologics.de/en/news.html?newsman news id=51
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terrestrial networks. The key advantage of this approach is
that many traditional communication networks researchers are
already familiar with the simulator. While there is extensive
documentation available for a new researcher to learn ns2, the
learning curve is quite steep. Moreover, most of the documen-
tation is written with terrestrial networks in mind. As ns2 is
not originally designed with cross-layer collaboration in mind,
an extension known as miracle [4] is adopted in DESERT [5]
and SUNSET [12] to facilitate cross-layer interaction. Since
ns2 is primarily a discrete-event simulator, both initiatives had
to make significant changes to it to run in real-time mode for
field deployments. Even then, moving a simulated protocol to
field operations requires additional non-trivial steps such as
cross-compilation.

UnetStack approaches the problem differently. Rather than
using an existing discrete-event network simulator as a foun-
dation, we adopt the open-source fjåge lightweight agent
framework5 designed to support discrete-event simulations as
well as real-time operation. To avoid being constrained by
traditional layered network stack architecture, we embrace a
service-oriented agent architecture that has cross-layer (cross-
agent) interaction at its core. This enables us to add function-
ality that is typically not provided by a traditional network
stack (e.g., acoustic ranging, software-defined modem [14])
seamlessly. By choosing JVM technology as a platform, we
ensure portability across operating systems and hardware, for
simulation and for embedded operation during field deploy-
ments. Through the use of Groovy and a custom-designed
DSL, we shorten the learning curve for a new researcher.
While we provide default agents implementing a full set of
underwater networking protocols, we also allow the researcher
to reorganize the stack as needed, and introduce new protocols
and functionality as desired. While we acknowledge that an
existing researcher familiar with ns2 might have to spend a
few days to learn UnetStack, we believe that the effort would
be more than compensated for by a shorter development and
testing cycle, and much greater architectural flexibility of this
approach.

The rest of this paper is organized as follows. In section II,
we provide an overview of the UnetStack architecture. In
section III, we show how UnetStack can be used for network
simulation. We briefly discuss two underwater networking
experiments using UnetStack in section IV. Finally, we present
some concluding remarks in section V.

II. UNETSTACK OVERVIEW

The UnetStack architecture (depicted in Fig. 1) defines
a set of software agents that work together to provide a
complete underwater networking solution. Agents play the role
that layers play in traditional network stacks. However, as
the agents are not organized in any enforced hierarchy, they
are free to interact in any way suitable to meet application
needs. This promotes low-overhead protocols and cross-layer
information sharing. Multiple agents providing similar services

5https://github.com/org-arl/fjage

Fig. 1. The UnetStack architecture. Several agents providing common
underwater network services are shown. The physical driver agent provides
customized bindings for underwater modems and for underwater network
simulation. The stack runs on a Java virtual machine and the fjåge open-
source agent framework.

may coexist in the modem (e.g., drivers for multiple modems,
acoustic and radio links). Each software agent provides some
local services and/or implements network protocols that re-
quire interaction with agents on other network nodes. The
architecture defines the interfaces for commonly needed agents
in terms of the services and capabilities that the agent must or
may provide. The specifications are extensible, allowing agents
to provide additional services that may be used by other agents
implementing cross-layer optimized protocols. Although the
specifications focus on underwater networks, they allow wired
and wireless radio links to be included as part of the network.
A basic set of agents to enable a fully functional underwater
network are included in the downloadable community version
of the UnetStack. Designed for extensibility, UnetStack allows
additional agents for optimized protocols to be rapidly devel-
oped, tested and deployed.

A. The Basics

A UnetStack agent is a self-contained software compo-
nent that provides a well-defined functionality. Agents play
a similar role as layers in traditional network stacks, but are
more flexible in their interactions with other agents. Agents
interact with each other through messages. Typical messages
include requests, responses and notifications. Responses are
always associated with a request, while notifications may be
unsolicited. Agents also support parameters that can be used

https://github.com/org-arl/fjage


to configure or monitor the agent. The parameters can be
set or queried through appropriate messages. Some agents
support multiple indexed parameter sets (e.g., parameters for
various logical communication channels). Messages can not
only be sent to specific agents, but also can be broadcasted on
a topic. All agents subscribing to a topic, receive a message
broadcasted on that topic. Unsolicited notifications usually are
sent on topics associated with an agent, since an agent does
not know a priori which other agent might be interested in that
notification. A collection of requests, responses, notifications
and parameters that together form a cohesive functionality
is known as a service. If an agent provides a service, it
advertises the service by registering it with the ‘directory’.
An agent requiring a specific service can look up providers
in the directory, without having to know a priori the details
of the agent that provides the service. Services may define
capabilities that represent optional functionality that a service
provide may choose to implement. Agents advertise such
capabilities for other agents to query.

The Fjåge framework defines a shell service that allows
a user to interact with the stack via text commands. It also
provides a console shell, a TCP/IP shell and a graphical
shell that provide local and remote access6 to the stack. In
addition to the shell service, UnetStack defines a number of
services that make up a typical underwater network stack. We
provide an overview of the important services7 next. Detailed
specifications are available online8.

B. Datagram Service

Many agents provide the datagram service. This service
defines messages and capabilities for transfer of packets of
data over the network. A DatagramReq message asks the
agent to transmit some data. The agent responds with an
AGREE, REFUSE or FAILURE message. When the datagram
is received at the peer node, the agent on that node sends out a
DatagramNtf on its broadcast topic. Other agents interested
in receiving such messages can subscribe to the topic. The
maximum size of the datagram supported is defined by the
MTU parameter. This parameter may be accessed using the
ParameterReq and the ParameterRsp messages.

The datagram service also defines a number of optional ca-
pabilities. These can be queried using the CapabilityReq
message. On receiving this request, the agent responds with a
CONFIRM, DISCONFIRM or CapabilityListRsp mes-
sage. The optional capabilities include FRAGMENTATION,
RELIABILITY, PROGRESS and CANCELLATION.

If the FRAGMENTATION capability is advertised, the
agent may choose to fragment/reassemble the datagram
in order to support a large MTU. If the RELIABILITY
capability is supported and reliability is requested by setting

6fjåge also supports a distributed deployment where various agents in the
network stack can potentially run on different computing platforms connected
over a local network.

7Other utility services such as state persistence are defined in UnetStack
but not critical to the operation of an underwater network. For conciseness,
we do not cover these services in this paper.

8http://www.unetstack.net/doc/html/agent-ref.html

Capability Description
FRAGMEN-
TATION

Capable of fragmentation/reassembly of
datagrams

RELIABIL-
ITY

Capable of link-level reliability

PROGRESS Capable of reporting progress via
DatagramProgressNtf messages

CANCELLA-
TION

Capable of cancelling queued datagram
transmission

Request Possible Responses Description
Datagram-
Req

AGREE, REFUSE,
FAILURE

Transmit a
datagram

Datagram-
CancelReq

AGREE, REFUSE,
NOT UNDERSTOOD

Cancel a datagram
transmission

Notification Topic Description
Datagram-
Ntf

default Notification of a received
datagram

Data-
gramDeliv-
eryNtf

requester Notification of successful delivery
of reliable datagram

Datagram-
FailureNtf

requester Notification of unsuccessful
delivery of reliable datagram

Datagram-
ProgressNtf

requester /
default

Periodic notifications of datagram
transfer progress

Parameter r/w Description
MTU rw Maximum datagram size in bytes

Fig. 2. A summary of the datagram service.

the reliability attribute of the DatagramReq,
the agent sends out DatagramDeliveryNtf or
DatagramFailureNtf to confirm delivery or failure
of datagram. If the PROGRESS capability is advertised,
the agent sends out DatagramProgressNtf messages
at regular intervals for long datagram transmissions. If the
CANCELLATION capability is supported, a datagram
queued for transmission can be cancelled using the
DatagramCancelReq. If a request is made for a
capability that is not supported, the agent replies with a
NOT_UNDERSTOOD or REFUSE message.

The important messages, capabilities and parameters in the
service are summarized in Figure 2. Additional messages
for parameter access, capability check, etc are commonly
supported by most agents, and are omitted from the summaries
in this paper for brevity.

C. Physical service

The physical service is typically provided by physical layer
agents such as modem drivers and simulated modems. An
agent advertising this service must also provide the datagram
service.

The main messages in this service are the TxFrameReq
and RxFrameNtf – they extend the DatagramReq and
DatagramNtf messages to offer additional physical layer
options. Additional optional capabilities such as TIMED_TX
and TIMESTAMPED_TX allow physical layers to offer accu-
rate control over transmission time. This may be used by other

http://www.unetstack.net/doc/html/agent-ref.html


Capability Description
TIME-
STAMPED TX

Transmissions with timestamp encapsulated
in frame

TIMED TX Transmissions of frames at specified time

Request Possible Responses Description
TxFrame-
Req

AGREE, REFUSE,
FAILURE

Transmit a physical layer
frame

ClearReq AGREE, FAILURE Abort all
transmissions/receptions

Notifica-
tion

Topic Description

RxFrame-
Ntf

default Frame addressed to node arrived

RxFrame-
Ntf

SNOOP Frame addressed to another node
overheard

BadFrame-
Ntf

default Received frame could not be
successfully decoded

Collision-
Ntf

default Frame detected during reception of
another frame

Parameter r/w Description
rxEnable rw True if reception is enabled, false

otherwise
propagation-
Speed

rw Signal propagation speed in m/s

refPower-
Level

ro Reference power level in dB re µPa @ 1m

timestamped-
TxDelay

rw Delay in seconds to transmit timestamped
frames

time ro Current physical layer clock time in µs
busy ro True if modem is busy

transmitting/receiving, false if modem is
idle

Indexed parameters – index: CONTROL (0), DATA (1)
Parameter r/w Description
MTU ro Maximum frame size in bytes
frame-
Duration

ro Frame duration in seconds

powerLevel rw Transmission power level in dB re
reference level

maxPower-
Level

ro Maximum allowable transmission power in
dB re reference level

minPower-
Level

ro Minimum allowable transmission power in
dB re reference level

error-
Detection

rw Number of bytes used for error detection
(CRC/Checksum)

frame-
Length

rw Frame length in bytes

maxFrame-
Length

ro Maximum allowable frame length in bytes

fec rw Forward error correction (FEC) code
fecList ro List of supported FEC codes
dataRate ro Effective data rate in bits/second

Fig. 3. A summary of the physical service.

agents to provide functionality such as time-division multi-
plexing or acoustic ranging. Additional notifications such as
BadFrameNtf and CollisionNtf provide information on
failed receptions. A SNOOP broadcast topic allows interested
agents to ‘snoop’ on packets heard at a node, but destined for

Request Possible
Responses

Description

RangeReq AGREE, FAILURE Request range
measurement

BeaconReq AGREE, FAILURE Request beacon
transmission

Clear-
SyncReq

AGREE, FAILURE Clear synchronization
information

Sync-
InfoReq

SyncInfoRsp,
FAILURE

Get synchronization
information

Notification Topic Description
RangeNtf default Range notification from a peer node
Bad-
RangeNtf

default Invalid range notification from a peer
node

Para-
meter

r/w Description

lifeTime rw Life time or validity for synchronization
information (seconds)

min-
Range

rw Minimum possible range (meters)

max-
Range

rw Maximum possible range (meters)

Fig. 4. A summary of the ranging service.

other nodes.
The physical service defines two logical communication

channels – CONTROL and DATA. The CONTROL channel is
typically a low-rate but robust communication link that is
used for control information and link negotiation. The DATA
channel may be an adaptively tuned high-rate communication
link for large data transfer. Drivers for modems that do not
support such differentiation may simply treat both channels
identically.

The key messages, capabilities and parameters of the phys-
ical service are summarized in Fig. 3.

D. Ranging Service

Agents offering the ranging service provide time synchro-
nization and ranging functionalities between pairs of nodes.
Such agents usually require a physical service provider that
supports the TIMESTAMPED_TX capability.

The ranging service provides support for two-way travel-
time (TWTT) as well as one-way travel-time (OWTT) range
estimation. For OWTT to be used, synchronization information
has to be first obtained between nodes. If this is not available
a priori, it may be obtained through a TWTT exchange. The
lifetime or validity of the synchronization information depends
on the accuracy/drift of the clocks used in the modems.

TWTT ranging is initiated via the RangeReq message, and
eventually leads to a RangeNtf notification on the initiating
node. OWTT ranging is initiated via the BeaconReq mes-
sage, and leads to a RangeNtf notification on all other nodes
that synchronization with the initiating node.

The key messages, capabilities and parameters of the rang-
ing service are summarized in Fig. 4.



E. Link Service

Agents offering the link service provide single-hop commu-
nication. Single-hop here refers to a logical single hop in the
UnetStack network. For example, a link may be provided over
wireless radio network that has multiple physical hops (e.g.,
using UDP/IP). However, as long as the link does not pass
through multiple UnetStack nodes, it is considered a single-
hop link.

All agents supporting this service must provide the datagram
service. Agents offering a reliable link advertise it using the
RELIABILITY capability.

F. Medium Access Control Service

Agents offering the medium access control (MAC) ser-
vice provide some implementation of a MAC protocol.
The basic MAC functionality is accessed by making a
ReservationReq request and waiting for the correspond-
ing ReservationStatusNtf message before using the
channel. Before a request is granted, if the client agent
determines that the channel is no longer required, it may send
a ReservationCancelReq message.

Some MAC protocols involve control frame exchanges
between nodes. Such frames may carry additional data
such as acknowledgments (ACK). This is supported through
the optional RELIABILITY capability, ackPayloadSize
parameter and TxAckReq and TxAckNtf messages. In
some cases, the control frames can carry additional pay-
load data from other agents. This is advertised through the
reservationPayloadSize parameter and accessed us-
ing the payload data in the ReservationReq and the
ReservationAcceptReq messages.

The key messages, capabilities and parameters of the MAC
service are summarized in Fig. 5.

G. Routing and Route Maintenance Services

Agents offering the routing service provide multi-hop com-
munication for datagram messages. These agents accept data-
gram messages and route them to their destination based
on supported underlying routing algorithms. Such algorithms
are often based on routing tables, which may be maintained
by providers of the route maintenance service. All agents
supporting the routing service must support the datagram
service.

Agents offering the route maintenance service generate
route discovery/change notifications to allow routing agents to
maintain routing tables. They also provide the ability to initiate
discovery or trace of a network route. The key messages of
the route maintenance service are summarized in Fig. 6.

H. Transport Service

Agents offering the transport service provide end-to-end
reliability and fragmentation/reassembly for large datagrams.
They may also support connection-oriented services for data
streaming. Agents providing this service typically use the
routing service for multi-hop delivery of data. All agents sup-
porting this service must support the datagram service, along

Capability Description
RELIABILITY Support for ACKs in protocol

Request Possible
Responses

Description

Reservation-
Req

AGREE,
REFUSE

Reserve the channel for a
specified duration

Reservation-
CancelReq

AGREE,
REFUSE

Cancel a pending reservation
request

Reservation-
AcceptReq

AGREE,
REFUSE

Piggyback payload in a
reservation PDU

TxAckReq AGREE,
REFUSE

Transmit acknowledgement
payload

Notification Topic Description
Reservation-
StatusNtf

default Current status of reservation
request

RxAckNtf default Acknowledgement payload
notification

Parameter r/w Description
reservation-
PayloadSize

rw Maximum size of payload (bytes), which
can be piggybacked in a reservation PDU

ackPayload-
Size

rw Maximum size of acknowledgement (bytes),
which can be included in an ACK PDU

Fig. 5. A summary of the medium access control (MAC) service.

Request Possible
Responses

Description

RouteDis-
coveryReq

AGREE,
REFUSE,
FAILURE

Request for route discovery
to specified node

Route-
TraceReq

AGREE,
REFUSE,
FAILURE

Request for trace current
route to specified node

Notification Topic Description
RouteDiscoveryNtf default Notification of route discovery
RouteTraceNtf default Notification with a route trace

Fig. 6. A summary of the route maintenance service.

with the RELIABILITY and FRAGMENTATION capabilities.
It is also recommended that they support the CANCELLATION
and PROGRESS capabilities, since datagrams at this level are
likely to be large.

I. Remote Access Service

Agents offering the remote access service provide control
over remote nodes. This includes querying/setting parameters,
delivering text messages, transferring files and running scripts
remotely. At present, no authentication or security is offered,
but we expect to extend this service to provide both in the
future. The primary messages defined by the remote access
service are summarized in Fig. 7.

J. Node Information Service

An agent offering the node information service manages and
maintains a node’s attributes such as address, location, speed
etc, in systems where such information is available. The agent
often integrate with the host system (e.g., using ROS [15],



Request Possible
Responses

Description

RemoteGet-
ParamReq

AGREE,
FAILURE

Request to get parameter(s)
from a remote node

RemoteSet-
ParamReq

AGREE,
FAILURE

Request to set parameter(s) of
a remote node

Remote-
ScriptReq

AGREE,
FAILURE

Request to execute a script on
a remote node

Remote-
TextReq

AGREE,
FAILURE

Request to send text message
to remote node

Remote-
FilePutReq

AGREE,
FAILURE

Request to transfer file to
remote node

Remote-
FileGetReq

AGREE,
FAILURE

Request to retreive file from
remote node

Notifica-
tion

Topic Description

Remote-
ParamNtf

default Notification of remote get/set
parameter(s)

Remote-
ScriptNtf

default Notification of start of remote script
execution

Remote-
TextNtf

default Notification of text message from remote
node

Remote-
FileNtf

default Notification of completion of file transfer
from remote node

Fig. 7. A summary of the remote access service.

Parame-
ter

r/w Description

address rw Node address (1 byte)
nodeName rw Node name
location rw Node location ([x, y, z] meters)
speed rw Node speed (meters/second)
heading rw Node heading (degrees, 0 is North,

clockwise)
turnRate rw Node turn rate (degrees/second, positive

clockwise)
diveRate rw Node dive rate (meters/second)
mobility rw true if the node is mobile, false if it is static

Fig. 8. A summary of the node information service parameters.

MOOS [16], DSAAV [17], etc) to obtain this information.
The information may be used by agents implementing highly
optimized network protocols. The set of parameters supported
by a node information service agent is shown in Fig. 8.

K. Address Resolution Service

In some small networks, all network nodes have a priori
known addresses. However, in other networks, addresses may
be assigned dynamically and discovered using node names.
The address resolution service defines the messages required
for address allocation and name-to-address resolution. These
messages are shown in Fig. 9.

L. Baseband Service

The baseband service is designed to enable researchers to
access low-level signal transmission and reception capability
of a modem. This not only allows development of software-
defined modems, but also enables numerous other applica-
tions [14]. Agents offering the baseband service are most
commonly modem drivers and modem simulators.

Request Possible Responses Description
Address-
AllocReq

AddressAllocRsp,
FAILURE

Request for address
allocation

AddressRes-
olutionReq

AddressResolu-
tionRsp,
FAILURE

Request for address
resolution for a node

Fig. 9. A summary of the address resolution service.

Capability Description
TIMED BBTX Transmissions of signal at specified time
TIMED BBREC Recording of signal at specified time
Request Possible

Responses
Description

TxBaseband-
SignalReq

AGREE,
REFUSE,
FAILURE

Transmit a frame with a
baseband signal

RecordBase-
bandSignalReq

AGREE,
REFUSE,
FAILURE

Record a baseband
signal

Notification Topic Description
RxBaseband-
SignalNtf

default Frame with baseband signal
recevied/recorded

Parame-
ter

r/w Description

carrier-
Frequency

rw Default carrier frequency for baseband
signals (Hz)

baseband-
Rate

rw Default sampling rate for baseband signals
(Hz)

preamble-
Duration

ro Preamble duration (s)

maxSignal-
Length

ro Maximum baseband signal length (in
samples) for transmission/reception/recording

max-
PreambleID

ro Maximum preamble identifier supported by
the agent

Fig. 10. A summary of the baseband service.

The baseband functionality is accessed through
TxBasebandSignalReq and RecordBaseband-
SignalReq requests, and RxBasebandSignalNtf
notification. Additionally an optional time-triggered
transmission and recording ability may be advertised
using the TIMED_BBTX and TIMED_BBREC capabilities.
The key messages, capabilities and parameters in the service
are summarized in Figure 10.

M. The Default Stack

The community version of the UnetStack available for
download has one or more default implementations for each
of the services. The stack therefore can be used for simulation
and deployment (with additional modem drivers) of a fully
functional underwater network. Since the stack is extendable,
researchers can easily replace the default agents or add new
agents and services. If some of the agents are not required,
they can be disabled to yield a leaner stack for highly resource-
constrained embedded devices.

We briefly describe the agents in the default stack. The
NodeInfo agent provides the node information service by



Service Agents
Node information NodeInfo
Address resolution AddressResolution
Physical HalfDuplexModem (simulator) & several

modem drivers
Baseband HalfDuplexModem (simulator) & several

modem drivers
Ranging Ranging
Link ReliableLink, UdpLink
MAC AlohaACS, Maca
Routing Router
Route maintenance RouteDiscoveryProcotol
Transport SWTransport
Remote access RemoteControl
Shell ConsoleShell, TcpShell, SwingShell
State persistence StateManager

Fig. 11. A summary of the agents in the default stack.

serving as a central repository where the relevant informa-
tion can be deposited. The AddressResolution agent
implements the address resolution service using a simple
hashing mechanism to map names to addresses. Since dynamic
conflict resolution is not provided, this serves well for a small
network but needs to be replaced by a more sophisticated
protocol in larger networks. The Ranging agent provides
OWTT and TWTT ranging as well as time-synchronization
as defined by the ranging service. The ReliableLink
agent offers a link service with fragmentation/reassembly
and link-level reliability. The UdpLink agent uses UDP/IP
to provide a link service over wired or radio links. The
AlohaACS agent is the default MAC service provider. It
implements a carrier-sensing flavor of Aloha with adaptive
backoff based on network load. An alternate Maca agent
can be used as the MAC service provider if desired. This
agent implements the popular MACA protocol with reliability,
early-ACK and multi-ACK options [18]. The Router im-
plements the routing service based on routing tables. These
tables may be statically populated, or dynamically updated on
demand using the route maintenance service provided by the
RouteDiscoveryProtocol agent. The SWTransport
agent offers a transport service using stop-and-wait ARQ-
based end-to-end reliability. The RemoteControl agent
offers the remote access service to allow nodes to be recon-
figured and updated remotely.

The physical service is provided by all modem drivers
and a simulated generic modem (HalfDuplexModem). The
ARL UNET-II modem driver, Subnero modem driver and the
HalfDuplexModem also provide the baseband service.

In addition to these services, the state persistence service
is offered by the StateManager agent. User interactivity
is provided through the shell service implemented by the
local ConsoleShell, remote TcpShell and the graphical
SwingShell agents. Fig. 11 summarizes the available agents
in the default stack.

We expect the protocol offerings in the UnetStack to grow
over time, as more researchers implement, test and contribute
new protocols and agents. We encourage community partici-

1 simulate 1.hour, {
2

3 // define two static nodes
4 node ’Barge’, location: [0, 0, -5.m]
5 node ’Buoy-A’, location: [1.km, 0, -5.m]
6

7 // define one mobile AUV node moving in a circle
8 def auv = node ’AUV’, location: [100.m, 100.m,

-20.m], mobility: true
9 auv.motionModel = [speed: 1.mps, turnRate: 1.dps]

10 auv.startup = {
11 // generate traffic at 1 pkt/s to the barge
12 add new PoissonBehavior(1000, {
13 def phy = agentForService PHYSICAL
14 phy << new DatagramReq(to: host(’Barge’))
15 }
16 }
17

18 } // simulate

Fig. 12. A sample script illustrating the use of the domain-specific language
(DSL) used by the simulator.

pation and contribution (in source or binary form) via the Un-
etStack support forum9. Contributed protocol implementations
can provide a way for comparative benchmarking of protocols
in identical simulation models/scenarios as described in the
next section.

III. NETWORK SIMULATION

The UnetStack network simulator (aka “UnetSim”) simu-
lates an underwater network on a single computer (or a cluster
of computers) in realtime, or as a discrete-event simulation.
UnetSim is easy to install, learn and use, and once an agent is
developed and tested using UnetSim, it can simply be copied
to any UnetStack-compliant modem for field testing.

The scenario to be simulated is described in a Groovy
DSL. A sample simulation script is shown in Fig. 12. While
the English-like DSL provides good readability, the simula-
tion script retains the capability to express complex logic
in Groovy. The script describes the location and motion of
each network node and sets up the network stack at each
node. It also sets up behaviors to generate network traffic
for automated simulation, or enables an interactive shell for
user-driven simulation. If needed, the script may also collect
network performance statistics and display them.

Fig. 13 shows the architecture of the simulator. Multiple
UnetStacks, one for each node being simulated, are simulta-
neously instantiated. They interact with each other through
a simulated physical layer. The behavior of this simulated
physical layer is controlled by a modem model and a channel
model.

A. Modem Models

The default modem model is that of a generic underwater
half-duplex modem with support for CONTROL and DATA
channels, TIMED_TX and TIMESTAMPED_TX capabilities,
and the baseband service. Parameters such as data rate,

9http://www.unetstack.net/support/

http://www.unetstack.net/support/


Fig. 13. The underwater network simulator (UnetSim) architecture.

frame length, carrier frequency, transmit power level, detection
preamble duration, etc for the modem can be customized.

Specific modem models for the ARL UNET-II and the
Subnero modems have also been developed. These provide
a more accurate simulation of the specific modem’s behavior
in terms of timing and functionality.

B. Channel Models

Several channel models are available to meet the needs of
various kinds of simulation studies. To allow researchers to
address their specific needs, the channel model implemen-
tations provide extension hooks. In cases where the needs
differ significantly from the available models, researchers can
provide a custom implementation of the channel model. We
describe the currently available models below:

1) Lossy protocol channel model: This is the simplest of
the channel models. In this model, every modem has fixed
detection range Rd, communication range Rc and interference
range Ri. The power level setting in the modem is ignored.
A transmission can be successfully detected with a fixed
probability pd at any range R ≤ Rd. A detected transmission
can be successfully received with a fixed probability pc at
any range R ≤ Rc. A transmission results in interference
(and potentially a collision) at unintended nodes up to range
R ≤ Ri. Although this model is simple, it is often used as a
first-order approximation for wireless networks.

2) Basic acoustic channel model: This is a physics-based
channel model that provides a good balance between com-
plexity, speed and accuracy. The model is parametrized by
the carrier frequency f , bandwidth, spreading loss factor
α ∈ [1, 2], temperature, salinity, water depth, noise spectral
density, acceptable probability of false detection pfa, Rician or
Rayleigh fading parameters and irreducible packet loss pmin.
Taking a similar approach as [19], the signal-to-interference-

and-noise ratio (SINR) is computed using a transmission loss
of 10α log10R + a(f)R dB at a range R, where a(f) is an
absorption factor from [20, p.10]. The probability of detection
pd is then modeled assuming a matched filter for preamble
detection operating at the specified pfa. Bit errors are simulated
assuming a Rician or Rayleigh fading channel. In addition,
packet errors are also simulated with a probability pmin to
model unforeseen short-term events that cause packet loss.

A more comprehensive time-varying physics-based chan-
nel model based on statistical characterization of underwater
acoustic channels [21] is currently under development.

3) MISSION 2012a channel model: This is an empirical
channel model based on the MISSION 2012 experiment
described in section IV. The probability of detection pd(i, j)
and probability of successful reception pc(i, j) were estimated
from a large number of transmissions on each link (from node
i to node j) in the MISSION 2012 network [22]. The channel
model uses these probabilities to model packet reception on
each link as a Bernoulli random process. Since the probabil-
ities were measured in a specific 5-node network, the model
cannot be applied to arbitrary network geometries. However,
it is extremely useful for testing of network protocols, and for
comparative benchmarking of network protocols in realistic
channel conditions.

4) MISSION 2013a channel model: This is another empir-
ical channel model, based on the MISSION 2013 experiment
described in section IV. This model is similar to the MIS-
SION 2012a model, but for a 7-node network and a different
geometry.

The MISSION 2012a and 2013a models assume that packet
failures on a link are Bernoulli random processes, and inde-
pendent of failures on other links. They also assume that the
link performance does not vary significantly over a short time.
In [23], we show that these assumptions are not always accu-



Fig. 14. Five network nodes deployed in Singapore waters during the
MISSION 2012 experiment.

rate. An empirical channel model (MISSION 2013b) relaxing
these assumptions is currently also under development.

IV. EXPERIMENTS

UnetStack has been tested in several experimental deploy-
ments over the past five years. In this section, we briefly
discuss two of the experiments with nodes deployed over
several days.

A. The MISSION 2012 Experiment

The MISSION 2012 experiment was held in October 2012
in Singapore waters. During the experiment, a UNET network
and a Seaweb network [24] were deployed simultaneously.
UnetStack was only deployed on the 5 UNET nodes (Fig. 14),
and so we focus our discussion only on these nodes. Node P21
was a surface modem deployed from a barge, while the other 4
nodes were bottom-mounted UNET-PANDA nodes (Fig. 15).
The surface modem could be directly accessed from a laptop,
and was used to control the network. The bottom-mounted
nodes were only accessible acoustically. The experiment tested
the physical, baseband, ranging, link, MAC, transport and
remote access functionality of UnetStack.

One of the main objectives of this experiment was to
measure statistical variability of the communication channel.
Over 41,000 transmissions of data frames and channel probe
signals were made by the 5 nodes during the experiment. All
nodes logged baseband received signals for each reception,
enabling post-experiment analysis of channel variability. Some
results from this analysis can be found in [22].

B. The MISSION 2013 Experiment

The MISSION 2013 experiment was held in November
2013 in Singapore waters. The experiment was larger than the
MISSION 2012 experiment, with more UNET and Seaweb
nodes in the water. The experiment included two autonomous
underwater vehicles (AUVs) as mobile UNET nodes (Fig. 16),
and a gateway node running UnetStack to allow data to flow
between the UNET and Seaweb networks. Seven static UNET
nodes were deployed as shown in Fig. 17. Node 21 was a

Fig. 15. A UNET-PANDA network node with an anchor, electronics module
and a recovery buoy. The photograph on the right shows an external battery
pack attached to the Unet-PANDA, ready for deployment.

surface modem deployed from a barge, while all other nodes
were bottom-mounted UNET-PANDA nodes and only accessi-
ble acoustically. While channel variability measurements were
also made during this experiment [23], the experiment was
primarily aimed at testing various application scenarios that
required multi-hop underwater networks. Specific tests were
designed to test each agent in the UnetStack during this
experiment. The routing and route management services in
UnetStack were used to dynamically communicate with the
AUVs as they moved across the network. Time synchroniza-
tion and OWTT ranging was used to localize and track the
AUVs in realtime.

V. CONCLUDING REMARKS

With years of development and testing, and valuable feed-
back from numerous researchers and users, UnetStack has
evolved to become a robust and flexible network stack for
underwater networks. Not only is it well suited for field de-
ployment, but also provides an excellent platform for network
simulation studies. Once protocol implementations are tested
in the UnetStack simulator, they can be deployed to UnetStack-
compatible modems for field deployment without the need for
porting or recompilation. In addition, several utility classes are
built into UnetStack to enable researchers to rapidly translate
their protocol ideas into working implementations.

We urge researchers to contribute reference implementations
of their protocols and channel models on UnetStack in source
or binary form. This will allow other researchers to benchmark
their protocol performance against reference implementations
of published protocols, and in various simulated underwater
channels.



Fig. 16. The STARFISH AUV being deployed as a mobile network node
during the MISSION 2013 experiment.

Fig. 17. Seven static network nodes deployed in Singapore waters during the
MISSION 2013 experiment.
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