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Abstract: The cost and logistics to deploy experimental underwater acoustic networks 
remains high and is beyond the reach of many researchers. Even researchers who can 
perform at-sea experiments, they often have limited time and control over the natural 
environment. Consequently, there is an imperative need to develop accurate underwater 
acoustic channel models to test network performance in simulation. Although 
sophisticated physics-based channel models have been developed, these models are 
computationally infeasible for large-scale (space, time, and frequency) simulations. In 
addition, they are less realistic than stochastic replay methods since not all physics is 
included in the channel model as well as complete knowledge about the environment is 
often unavailable. In this paper, we propose a computationally efficient stochastic model 
for replaying mobile underwater acoustic communication channels. The simulator 
includes non-stationary effects resulting from non-constant platform motion. In addition, 
environmental temporal fluctuations are captured via locally stationary autoregressive 
(AR) processes. The accuracy of the model is validated based on at-sea measurements.   

Keywords: Stochastic replay, channel simulation, adaptive channel estimation, adaptive 
resampling, motion-induced Doppler compensation. 
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1. INTRODUCTION 

 
Underwater acoustic communications is the core enabling technology for developing 

distributed sensor networks for monitoring the maritime environment. To allow 
interoperability between sensors from different vendors, communication standards for 
modulation, coding and medium access protocols must be designed. Candidate standards 
should be examined based on their performance on various underwater acoustic 
environments. However, the cost to conduct extensive sea experiments remains high and 
is beyond the reach of many researchers. Hence, it is plausible to assess candidate 
standards via reliable computer simulations, which in turn require accurate channel 
models.  

At frequencies of interest (> 5 kHz), ray theory provides the foundation of underwater 
sound propagation. An approximate prediction of the channel impulse response is 
computed from a ray tracing software by exploiting any available information about the 
physical environment, namely, link geometry, ocean bathymetry, seabed acoustic 
properties, sea state, to name a few [1]-[3]. Yet, an accurate channel prediction is 
nontrivial since complete knowledge of the environment as well as positions and 
velocities of the network nodes are often unavailable. For this reason, compound models 
for which coarse multipath delays are computed from ray tracing and multipath gains are 
modeled as stochastic processes are proposed in the literature ([4] and references therein). 
The plethora of the proposed statistical models, however, imply that there is no consensus 
as to which model is more appropriate for simulating underwater acoustic channels. 

A more realistic way to simulate underwater acoustic channels is based on stochastic 
replay methods [5], [6]. According to these methods, time-varying impulse responses with 
identical statistical properties as the at-sea measured impulse response are generated in a 
computationally efficient manner. The accuracy of the channel estimation depends on the 
probe signal, the employed estimation algorithm and the environmental conditions. Any 
replay method faces two limitations. Firstly, the simulated impulse response must lie 
within the frequency band and time duration of the probe signal. Secondly, environmental 
parameters (e.g., sea state, sound speed profile, etc.) cannot be changed during 
simulations. 

This work proposes a computationally efficiency stochastic replay method for 
simulating mobile underwater acoustic communications channels. A multipath channel is 
modeled as a tapped-delay line with taps being realizations of various stochastic processes 
with certain power spectral densities. A key issue is to provide the simulator with reliable 
channel estimates in the presence of non-constant motion. That is achieved by employing 
a novel receiver structure that performs Doppler resampling, channel estimation and 
decision feedback equalization in a closed-loop fashion.  Treating slow fading as 
deterministic and focusing on fast fading, we use locally stationary autoregressive (AR) 
processes to capture temporal correlations of each channel tap. The validity of the 
proposed model is demonstrated for three different signal bandwidths using data from a 
mobile shallow-water experiment. 

2. EXPERIMENTAL PROCEDURE 

The experiment took place in the sea of Selat Pauh, Singapore, on October 21st and 
23rd, 2013. Two vessels were used as two nodes of a mobile point-to-point link. One 
vessel carried the transmitter (projector) and the other the receiver (hydrophone). Both the 
transmitter and the receiver were submerged about 3 m below the sea surface. The sea 
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depth along the link varied about 15-20 m and the sound speed profile was isovelocity 
(1540 m/s). The sea state was calm but ship wakes were often encountered during the 
course of the experiment. 

The multipath acoustic channel is mathematically modeled as a linear time-varying 
filter with tap spacing equal to the reciprocal of the channel bandwidth. The important 
issue is to capture the time scale of variation of individual filter taps. To achieve this, the 
channel response must be estimated at a rate greater than twice the channel Doppler 
spread. The channel probing signal was a continuous transmission of uncorrelated 
quadrature phase-shift keying (QPSK) symbols at a rate of 1000 symbols/s. The QPSK 
symbols were pulse-shaped via a raised cosine filter (roll-off factor 0.7) and then 
multiplexed in frequency occupying three subbands: 14.4-16.1 kHz (subband A), 16.1-
17.8 kHz (subband B) and 17.8-19.5 kHz (subband C). This signal structure allowed us to 
obtain channel estimates at every millisecond, which is sufficient for most practical 
scenarios. In addition, the signal subband structure makes possible to check the model 
variation in frequency domain. 

The received signal that occupies the three aforementioned subbands can be seen in 
Figure 1(a). Each subband is shifted to baseband, low-pass filtered and coarsely 
synchronised with a known chirp pulse. The proposed receiver structure (as seen in Figure 
1(b)) detects the QPSK data by dividing the demodulation process into three major 
subsections: (a) motion compensation via adaptive resampling; (b) inter-symbol 
interference (ISI) mitigation based on channel estimation; (c) adaptive linear equalization. 

To compensate for any time dispersion/compression due to motion, the sampling rate 
of the incoming baseband signal is adjusted during each symbol interval by using linear 
interpolation [7]. The interpolation factor is computed from the extracted phase rotation of 
the QPSK symbol received at the previous symbol interval. Next, the resulting signal is 
used to produce an estimate of the channel impulse response based on the improved-
proportionate normalized least mean square (IPNLMS) algorithm [8]. Combining past 
channel estimates with past transmitted symbols, an estimate of the post-cursor 
intersymbol interference (ISI) is subtracted from the received signal. Then, the ISI-free 
signal is equalized by a linear filter producing a soft estimate of the transmitted QPSK 
symbol. The difference between the soft estimate and the actual transmitted QPSK symbol 
is used to optimise the feedforward filter through the exponentially-weighted recursive 
least-squares (RLS) algorithm. Note that the novelty in our approach is that the proposed 
receiver performs symbol-by-symbol adaptive resampling with symbol-by-symbol 
adaptive channel estimation in a closed-loop fashion. Consequently, fast platform motion 
is decoupled from slow environmental fluctuations leading to better channel estimates. In 
addition, the channel impulse response can be estimated for arbitrary long periods without 
any interruption for explicit synchronization. 

Figure 2(a) illustrates the transmit/receive positions based on GPS recordings. The 
range of the link was about 2.7 km. Figure 2(b) shows the mean Doppler shift that each 
subband experiences due to platform motion. The positive Doppler indicates that the 
transmit vessel was propelling towards the receiver at a varying speed of about 0.5-1.5 
m/s. In addition, the wavy pattern of fluctuation is indicative of surface waves-induced 
motion. Figure 2(c) shows the time evolution of the amplitude of the channel impulse 
response. As expected, the responses are different for different subbands. This is 
explained by noting that different subbands undergo different frequency fading and 
Doppler spread. The filter tap at the 0 ms delay corresponds to the strongest signal arrival. 
Due to the limited signal bandwidth as well as the link geometry, the tap temporal 
correlation is dictated by the interference of the direct path and the first surface bounce. 
Moreover, transmitter motion gives rise to a prominent Lloyd’s Mirror Effect [9] and 
therefore this tap value rapidly fluctuates in time. 
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Figure 1: (a) Spectrogram of the received signal. The amplitude scale is in dB. (b) The 
receiver block diagram. 

 
Figure 2  (a) Transmitter and receiver locations. (b) Time evolution of the mean Doppler 
frequency shift for each sub-band. (c) Snapshots of the amplitude of the baseband impulse 
response for different subbands. The snapshots are taken every millisecond. The colorbar 

in linear scale. 
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3. MODELING PROCEDURE 
 

To implement a stochastic replay simulator for an underwater acoustic channel 
response, we are interested in a statistical characterization of each channel filter tap. Here, 
we derive a statistical model for the 0-ms tap of the channel response that corresponds to 
subband A (see Figure 2(a)). The same procedure can be followed for any of other channel 
tap as well as for different subbands (omitted for brevity). We also stress that ambient 
noise simulation is not addressed in this paper. 

Let ℎ(݊) denote the tap value at discrete time ݊.  Figure 3(a) (black dashed line) shows 
its amplitude variation. Deriving a statistical model for ℎ(݊) is tedious because variation 
at different time scales is observed. That is the case for most underwater acoustic 
communication channels [4]-[6]. One can typically divide the tap’s temporal variability 
into two types: (a) slow fading, due to the link geometry and slow environmental 
fluctuations (seasonal changes in temperature profile, tidal changes, internal waves, to 
name a few); (b) fast fading, due to multipath constructive and destructive interference, 
scattering off rough surfaces and Doppler effects. Following this line of thought, we start 
our stochastic model by decomposing ℎ(݊) into its time-varying mean (local average) and 
a residual (noise-like) signal. By using an averaging window of 100 ms (i.e., 100 signal 
samples since the baud rate is 1000 symbols/s), we have 

 ℎ(݊) = ℎത(݊) +  (1)                                                               (݊)ݎ
 
where ℎത(݊) stands for the time-varying mean and ݎ(݊) denotes the residual signal. The 
amplitude of the slow fading signal can be seen in Figure 3(a) (green line). This signal is 
treated as deterministic in our model. The amplitude of the fast fading signal can be seen 
in Figure 3(a) (red dashed line). Typically, ݎ(݊) is considered as a wide sense stationary 
(WSS) process [4]-[5], yet, this may not be accurate for mobile channels where abrupt 
changes may occur. Our approach here is to model ݎ(݊) as a WSS process only within the 
100 ms averaging interval. This is well justified based on the following numbers. Let us 
assume that the platform motion is 1 m/s, then the change in the link geometry during 100 
ms is about 10 cm (order of one wavelength at 17 kHz), which is typically less than the 
expected ocean spatial variability. Splitting the total measurement interval into 100-ms 
non-overlapping sub-intervals, we can write 
(݊)ݎ  = ෍ ,݊)ݎ ݉)ெ௠ୀଵ                                                             (2) 

 
where ݎ(݊, ݉) is an AR process. For every ݉௧௛ sub-interval, ݉=1… ܯ, the AR process 
can be expressed as ݎ(݊, ݉) = ෍ ܽ(݅, ݊)ݎ(݉ − 1, ݉)௄௜ୀଵ + ,݊)ݓ ݉)               (3) 

 
where ܽ(݅, ݉) are the (complex-valued) filter parameters and ݓ(݊, ݉) is a zero-mean 
Gaussian noise with variance ߪଶ(݉). The AR model parameters are estimated by solving 
the Yule-Walker equations.  

The validity of the aforementioned AR model can be seen in Figure 3(a). This figure 
illustrates the average power spectral density (PSD) of ݎ(݊) over the entire duration of the 
probe signal (18.5 s). For comparison purposes, the PSD of one realization of the 
simulated process (18.5 s) is also presented. The order of the employed AR filters is 30. 
Note that good agreement between real and simulated ݎ(݊) is observed. A similar result 
(agreement) is shown for the other subbands as well (Figure 3(b) and (c)). 
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The complete stochastic replay simulator first generates each ݎ(݊, ݉) to compose ݎ(݊)  
and then includes ℎത(݊) creating the final tap value. Hence, the simulated channel not only 
is easy to generate but also has the same statistical properties as the measured channel. To 
include platform motion (for each subband), the channel output signal is symbol-by-
symbol resampled according to the estimated Doppler of Figure 2 (b). 

 
Figure 3 (a) Amplitude decomposition of ℎ(݊) into a moving average and a residual 
signal ݎ(݊) for subband A. (Similarly, (c) and (e) correspond to subband B and C, 
respectively) (b) Average power spectral density of the process ݎ(݊) for real and 

simulated data for subband A. (Similarly, (d) and (f) correspond to subband B and C, 
respectively). 

(a) (b)

(c) (d)

(e) (f)

SUBBAND A

SUBBAND B

SUBBAND C
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4. CONCLUSION 

A stochastic model for simulating mobile underwater acoustic channels is presented. 
This model relies upon acquiring reliable channel estimates in the presence of non-
constant motion. This is accomplished by employing a communications receiver that 
performs symbol-by-symbol Doppler compensation and channel estimation in a closed-
loop with a decision feedback equalizer. Having the channel impulse response at hand and 
after removing its slow fading component, the fast fading (noise-like) signal can be treated 
as a locally stationary AR process. Our results validate this claim based on at-sea data 
from a mobile shallow water link. The low computational complexity of this stochastic 
model renders it handy for large scale simulations of underwater acoustic networks. 
Future work will showcase this possibility by comparing the bit error rate performance of 
a receiver in real and simulated data. 
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