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Abstract—The intersymbol interference (ISI) caused by mul-
tipath propagation becomes the major challenge for designing
efficient equalization methods for underwater acoustic communi-
cations. Even at moderate bit-rates, the computational complexity
of adaptive equalizers is high enough to challenge their real-
time implementation. Hence, reducing their complexity by either
low-complexity algorithms or efficient receiver structures is of
paramount importance. In this work, we revisit the idea of joint
subband equalization [9] and propose new receivers with reduced
computational complexity that can cope with variable platform
mobility within a signal packet, track rapid multipath fluctu-
ations and maintain robustness under impulsive noise environ-
ments. The proposed subband equalizers are successfully tested
in two experimental shallow water links by detecting quadrature
phase-shift keying (QPSK) signals. In addition, results based on
their performance-complexity tradeoffs are reported.

I. INTRODUCTION

The achievable data rate of underwater acoustic communica-
tion systems over horizontal links is severely affected by signal
distortions due to long multipath propagation. Especially for
single-carrier phase-coherent systems, mitigating the inter-
symbol interference (ISI) caused by multipath, is the major
challenge of a system designer. Optimal ISI-compensation
techniques, such as maximum likelihood sequence detection,
are computational intensive and often not practical in most
real-life applications. A sub-optimal, but, practical approach
is a receiver that uses an adaptive equalizer [1],[2] or a multi-
sensor adaptive equalizer with spatial diversity combining [3].
These types of receivers have been successfully tested in
various shallow and deep water seas and have become the
underlying technology of commercially available acoustic
modems. Reducing the computational complexity of these
systems is an active research topic because the spatiotemporal
filters that typically operate on the received data require about
a hundred of coefficients even at few kilobits per second
(kbps).
The task of reducing computational complexity can be

tackled either by designing more efficient signal processing al-
gorithms or more efficient receiver structures or a combination
of both. Linear complexity adaptive algorithms, such as the
least mean squares (LMS) [4], are typically preferred for chip
implementation. Motivated by this fact, the authors recently
introduced algorithmic frameworks for designing linear com-
plexity channel estimation algorithms that exploit the sparse
multipath profile [5],[6]. An example of a low-complexity
equalizer structure has been presented in [7]. This structure

manages to significantly reduce the number of channels in a
multi-sensor equalizer by employing a spatial pre-combiner in
the front-end of the receiver. An extension of the work in [7]
has been proposed in [8], where a pre-combiner was coupled
with a linear complexity sparse channel estimation algorithm.
Channel sparseness was exploited to determine the significant
coefficients of the adaptive equalizer, thus reducing its size.
Since the number of receiver parameters grows linearly with

the signal bandwidth, a direct way to reduce complexity in
single-input single-output systems is to split the bandwidth
into contiguous subbands and transmit the same data across
different subbands [9]. Treating each subband as a sepa-
rate "channel" and using a multichannel equalizer, explicit
frequency diversity is exploited, and thus, link reliability is
improved. A notable characteristic of this system is that it
can compensate only for constant transmitter/receiver motion,
which may not be adequate if there is accelerating motion
during reception of the transmitted signal.
Another motivation for subband processing is based on the

fact that higher subbands are expected to have more sparse
multipath arrivals as well as shorter multipath spreads than
lower subbands. This can be explained due to frequency
dependent absorption: higher frequencies undergo higher at-
tenuation. Consequently, employing different channel estima-
tion algorithms for different subbands is appealing because
the performance-complexity tradeoff can be addressed more
efficiently. In addition, when the ambient noise is impulsive,
such as ice cracking [10] and snapping shrimp noise [11], [12],
subband signal processing limits the distorting effect of the
impulse.
Capitalizing on the improved-proportionate M-estimate

affine projection algorithm (IPMAPA) [6], novel channel-
estimate-based decision feedback equalizer (DFE) structures
of different complexities are proposed. These receivers cope
with time-varying motion during transmission, exploit differ-
ent sparse multipath profiles of different subbands and achieve
robustness under impulsive noise. Two links from a recent
underwater experiment in Singapore Sea are used to compare
the proposed receivers in terms of their symbol-error-rates
(SERs) as a function of the received signal-to-noise ratio
(SNR).
Notation: Superscripts (·) , (·)†, and (·)∗ stand for trans-

pose, Hermitian transpose, and conjugate, respectively. Col-
umn vectors (matrices) are denoted by boldface lowercase
(uppercase) letters. Let z ∈ C and p ≥ 1. The Lp norm of z



is defined as |z|p (|Re{z}|p + | Im{z}|p)1/p. Let z ∈ CN .
The Lp norm of z is defined as zp (

�N−1
i=0 |zi|pp)1/p.

II. SYSTEM MODEL AND ARCHITECTURE

A. Transmitter architecture
The transmit system is shown in Fig. 1(a). The information-

bearing symbol stream {dn} is generated from linear and
memoryless modulation methods such as phase-shift keying
(PSK). {dn} is pulse shaped and modulated into subband m.
The raised cosine (RC) filter with signaling interval T and
roll-off factor α is used for pulse shaping. The transmitted
waveform x(t) is given by

u(t) =
�
n

dn g(t− nT ) (1)

x(t) = Re

��M

m=1
u(t)ej2πfmt

	
, (2)

where g(t) is the RC impulse response and fm denotes the
center frequency of the mth subband. Moreover, the mth

subband occupies the frequency range fm ± (1+a)/(2T ) and
the total operational bandwidth is the sum of the corresponding
subbands with no guard bands in between. Note that the fast
spectral roll-off of the RC filter renders inter-subband inter-
ference negligible for typical autonomous platform velocities.

B. Channel model
Each received subband signal is shifted to baseband, low-

pass filtered and coarsely synchronized with a known chirp
signal. With respect to the center frequency fm, the baseband
equivalent output rm(t) is related to the input u(t) via the
formula [2]

ym(t) =

� +∞

−∞
h∗m(τ , t)u(t− τ)dτ + wm(t), (3)

where hm(τ , t) and wm(t) denote, respectively, the input
delay-spread function and the ambient impulsive noise. Let
us assume that there is non-constant motion either by the
source or the receiver platform. Since each subband signal is
considered to be wideband, the received signal is time-scaled
and carrier-phase-shifted as follows

rm(t) = ym (t+Δmt-τm) ej2πfm (Δmt−τm) + wm(t). (4)

Δm stands for the (time-varying) expansion or compression
factor between the transmit and receive signal and τm is the
arrival time of the beginning edge of the signal.

C. Receiver architecture
As our goal is to achieve high-rate communications, the

symbol interval T is designed to be smaller than the multipath
spread of the channel and so inter-symbol interference (ISI) is
expected to occur in each subband. Considering each subband
as a distinct "channel", a multi-channel DFE is proposed in
Fig. 1(b). To recover the transmitted symbol dn, there are
three processing stages: adaptive resampling, robust channel
estimation and decision feedback equalization.

1) Adaptive resampling: Let us assume that rm(t) is sam-
pled at four samples/symbol, i.e., rm(n�) rm(n

�T/4).
To compensate for the wideband distortion due to platform
motion, rm(n�) is resampled to 2 samples/symbol with the aid
of a linear interpolator. The novelty here with respect to [13] is
that adaptive resampling is coupled with channel estimation as
indicated below. The output of the linear interpolator, ym(n),
is given by

ym(n) = (In,mrm(n
�)+(In,m-1)rm(n�+1)) e−jφn,m (5)

φn,m = φn−1,m + 2π(In,m − 1)fmT/2 (6)
In,m = In−1,m +Kpθn−1,m (7)

θn,m = Im
�
pn−1,m �d∗n−1� (8)

where n�={1,3,5,...}, n={1,2,...}, φn,m is the carrier-phase
estimate, In,m is the one-tap linear interpolator, �dn denotes
the decision of dn when the DFE operates in decision-directed
mode or the correct symbol in training mode, pn,m is the
output of themth feedforward equalizer during the nth symbol
interval and Kp is a phase tracking parameter. The parameters
φn,m and In,m are updated at the symbol rate with initial
values φ0,m=0 and I0,m=1.
It is worth noting that the linear interpolator compensates

for the mean Doppler of the received signal, yet, there might
be significant residual Doppler spread because of strong time-
varying multipath. This may be experienced, for example,
in horizontal links with small range-to-depth ratios. Hence,
successful receiver performance depends on the ability of the
adaptive equalizer to tolerate any residual Doppler spread.
2) Robust channel estimation: After compensating for the

mean Doppler distortion, the received signal in (3) sampled at
time instant nT is expressed as

ym(n) = hm(n)
†u(n) + wm(n), (9)

where

u(n)=

⎡⎢⎢⎢⎢⎢⎢⎣
u(nT − (Nc + 1)T/2)

...
u(nT )
...

u(nT +NaT/2)

⎤⎥⎥⎥⎥⎥⎥⎦ (10)

and

hm(n)=

⎡⎢⎢⎢⎢⎢⎢⎣
hm(nT, (Nc − 1)T/2)

...
hm(nT, 0)

...
hm(nT,−NaT/2)

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

are the samples of the input signal and the mth baseband
impulse response (including transmit and receive filters), re-
spectively. The parameters Nc and Na denote, respectively, the
causal and acausal taps (coefficients) of the channel impulse
response with respect to the arrival hm(nT, 0). Notice that
Nc and Na may get smaller values for higher subbands due



Fig. 1. (a) Block diagram of transmitter. (b) Block diagram of the subband equalizer receiver.

to frequency-dependent absorption of acoustic energy, thus
reducing receiver complexity.
In impulsive noise environments, it is widely known

that L2 norm-based algorithms suffer severe performance
degradation. Recently, the authors have introduced the
improved-proportionate M-estimate affine projection algorithm
(IPMAPA) [6], a linear complexity algorithm that exploits
sparse multipath profiles while being robust against impulsive
interference. Let ĥ be the channel estimate of h, the IPMAPA
channel update equations are (subscript m is dropped for
simplicity):

ĥ(n) = ĥ(n− 1) + μA(n)B(n)e(n)∗, (12)
e(n)∗ = y̌(n)∗ −U(n)†ĥ(n− 1), (13)

y̌(n) =

⎡⎢⎣ ym(nT )
...

ym((n− L+ 1)T )

⎤⎥⎦ (14)

A(n) = G(n− 1)U(n), (15)

B(n) =
�
U(n)†A(n) + δQ(n)−1

�−1
, (16)

δ =
(1− β)δ�

2(Nc +Na)
, (17)

where L (typically L<5) is a parameter that improves conver-
gence for correlated inputs, μ ∈ (0, 1] is a fixed step-size pa-
rameter that dictates overall convergence, U(n)=[u(n)u(n−
1) . . .u(n − L + 1)] is the (Nc + Na) × L matrix of
input samples, G(n) is a diagonal matrix with elements

{g(ĥi(n))}Nc+Na−1
i=0 (promotes sparse solutions), β ∈ [−1, 1)

is a sparseness parameter, e(n) stands for the L×1 prior error
signal, Q(n) is a diagonal matrix with elements {q(e(n −
i))}L−1i=0 (promotes robustness under impulsive noise) and
δ�=10Ps (Ps being the transmitted signal power) is a reg-
ularization parameter. Initialization of the algorithm starts
with ĥ(0)=0. Note that the channel update equations require
O(Nc + Na) computational complexity because G(n) is di-
agonal and Nc + Na � L for typical underwater acoustic
channels. We now explain the role of the matrices G and Q.

a) The G matrix: The purpose of the G matrix is to
assign a variable step size parameter to each filter tap [14].
This parameter is a function of the tap’s previously estimated
magnitude. As a result, active filter taps (i.e., taps with
significant values) converge fast, which makes the overall
algorithm to have fast convergence in sparse channels. We
stress that no prior knowledge of the significant tap position is
required. The diagonal elements {g(ĥi(n))}Nc+Na−1

i=0 ofG(n)
are given by

g(ĥi(n)) =
1− β

2(Nc +Na)
+
(1 + β)

���ĥi(n)���
1

2
���ĥ(n)���

1
+ ε

, (18)

where ε denotes a small positive constant to avoid division by
zero during initialization of the algorithm. The parameter β
is a key design parameter because it controls the sparseness
of the solution. For example, β=−0.5 is a typical choice for
low sparsity and β=0.5 is a typical choice for high sparsity.



When β=−1, G(n) becomes a scaled identity matrix and
sparse solutions are not promoted anymore. In addition, β may
take different values for different subbands since the multipath
arrivals are frequency dependent.

b) The Q matrix: The purpose of the Q matrix is to
downweight noise impulses based on their amplitudes. As
a consequence, the estimated channel ĥ stays close to the
true solution h under the effect of an impulse. The key
assumption here is that the ambient noise, wm(n), is modeled
as complex Gaussian noise, but "contaminated" with impulses
(or outliers). It is well recognized that redescending M-
estimators can offer protection against complete breakdown
in performance due to gross outliers while efficiently treating
moderate outliers [15]. Elaborating on the Hampel’s three-part
redescending M-estimate function [16], the diagonal elements
{q(e(n− i))}L−1i=0 of Q(n) are given by

q(e)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ξ

|e|2

ξ
|e|2 − Γ

Δ− Γ

1

|e|2
0

, 0 ≤ |e|2 < ξ

, ξ ≤ |e|2 < Δ

,Δ < |e|2 < Γ

,Γ < |e|2

. (19)

The threshold parameters ξ, Δ and Γ are responsible for
detecting impulses according to their magnitudes. In addition,
these thresholds are adapted continuously so that time-varying
second order statistics of the noise are incorporated into the
algorithm.
Let σ2(n) stand for the variance of the underlying Rayleigh

distribution of |wm(n)|. Using the median operator, a robust
recursive estimate σ̂2(n) of σ2(n) is computed as follows:

σ̂2(n) = 0.5(σ2r(n) + σ2i (n)), (20)
σ̂2r(n) = λσσ̂

2
r(n-1) + c(1-λσ)med(Re{ē(n)}), (21)

σ̂2i (n) = λσσ̂
2
i (n-1) + c(1-λσ)med( Im{ē(n)}), (22)

c = 1.483

�
1 +

5

Nw − 1
�
, (23)

where ē(n)=[e(n) . . . e(n − Nw + 1)] is the observation
window of the prior error signal, σ̂2r(n) and σ̂2i (n) denote,
respectively, the variance of the real and imaginary part of
the underlying Gaussian noise, c is a finite sample correction
factor and λσ is a forgetting factor. λσ=0.99 is a typical value.
Then, the threshold parameters are chosen by the following
expressions:

ξ = 2.45σ̂(n) (i.e., Pr {|e|2 < ξ} = 0.95), (24)
Δ = 2.72σ̂(n) (i.e., Pr {|e|2 < Δ} = 0.975), (25)
Γ = 3.03σ̂(n) (i.e., Pr {|e|2 < Γ} = 0.99). (26)

Note that O(Nw log2(Nw)) operations are required for the
computation of σ̂2(n). Furthermore, ē(n) always contains
signal-dependent noise from channel estimation errors and
thus, the parameter Nw should be chosen close to the channel
coherence time.

3) Decision feedback equalization: Let Lc and La denote,
respectively, the causal and acausal taps of the feedforward
equalizer and let

ym(n) =

⎡⎢⎢⎢⎢⎢⎢⎣
ym(nT − (Lc + 1)T/2)

...
ym(nT )
...

ym(nT + LaT/2)

⎤⎥⎥⎥⎥⎥⎥⎦ (27)

be the vector of received samples that corresponds to the nth
symbol interval. The following expression holds:

ym(n) = Hm(n)
†ū(n) +wm(n), (28)

where

ū(n) =

⎡⎢⎢⎢⎢⎢⎢⎣
u(nT − (Nc + Lc − 2)T/2)

...
u(nT )
...

u(nT + (Na + La)T/2)

⎤⎥⎥⎥⎥⎥⎥⎦ , (29)

wm(n) is the noise vector and Hm(n) is the channel matrix
with the j-th column composed of hm(n−Lc+j). Before any
detection, the causal ISI from ym(n) is removed by using the
previous robust channel estimates and symbol decisions. To
this end, Hm(n) is partitioned into causal and acausal parts,
namely, Hm(n)

†=[Hc(n)
†Hac(n)

†], where Hc(n) includes
the rows of Hm(n) that correspond to the causal input signal
ūc(n)=[u(nT − (Nc + Lc − 2)T/2 . . . u((n − 1)T )] and
Hac(n) includes the rows of Hm(n) that correspond to the
acausal input signal ūac(n)=[u(nT − T/2)...u(nT + (Na +
La)T/2)] . The ISI-free signal at the input of the feedforward
equalizer is constructed as:

ȳm(n) = ym(n)− Ĥc(n)
†ūc(n). (30)

The soft estimate of the transmitted symbol dn is obtained by
adding the outputs of all feedforward equalizers, i.e.,

�dn =
�M

m=1
pn,m (31)

pn,m = x†m(n)ȳm(n) (32)

where xm(n) is the impulse response of the feedforward
equalizer during the nth symbol interval.
Since all subbands carry the same symbols, the filters xm(n)

can be updated either jointly or in parallel based on minimizing
the mean square of the error signal ε(n)=�dn− �dn. A recursive
approach with fast adaptation to channel fluctuations is based
on the RLS algorithm [4]. For joint adaptation, the input vector
of the RLS algorithm is [ȳ1(n) . . . ȳM (n) ] and so the
computational complexity becomes O

�
(MLc +MLa)

2
�
. For

the remainder of this paper, we call this receiver as R1. For
parallel adaptation, the RLS algorithm is invoked M times
for each input ȳm(n) and so the computational complexity
becomes O

�
M(Lc + La)

2
�
. We call this receiver as R2. Since



joint optimization is always better than parallel optimization,
R2 performance is always upper bounded by R1 performance
provided that the employed RLS algorithm is numerically
robust [17].
Note that robustification of the DFE receiver is achieved via

the channel estimator. If a strong impulse occurs at time n, it
means that the prior error signal em(n) is larger than Γ with
high probability. In such and only event, the receiver performs
two modifications: In+1,m=In,m and xm(n+1)=xm(n). This
robustification strategy is sufficient to deal with a small
fraction of impulses in the data.

D. Pre-combiner

Further reduction of the computational complexity is possi-
ble by pre-combining the M subbands into a smaller number,
K, before any Doppler compensation. The pre-combiner is an
M × K matrix of weights, which are adaptively configured
through minimizing the common error signal ε(n). The nov-
elty here with respect to [8] is that different subbands rather
than different spatial channels are pre-combined in a way
such that frequency diversity is not heavily compromised. In
addition, adaptive resampling rather than (narrowband) carrier-
phase compensation is performed after the pre-combiner.
The pre-combiner receiver structure is shown in Fig. 2. Let

C(n) denote the pre-combiner matrix, the output of the pre-
combiner (sampled at 4 samples/symbol) is given by�M

m=1
c∗k,m(n)rm(n

�), k = 1...K. (33)

The weights ck,m are adapted based on the MSE of ε(n).
Since the number of weights is relatively small (MK), the
pre-combiner weights are determined recursively via the RLS
algorithm. The RLS update equation is

c(n) = c(n− 1) + RLS (ε(n), s(n)) (34)

V(n) =

⎡⎢⎣ r1(nT -(Lc+1)T2 ) . . . r1(nT -La
T
2 )

...
rM (nT -(Lc+1)T2 ) . . . rM (nT -La

T
2 )

⎤⎥⎦(35)
s(n) =

⎡⎢⎣ V(n)x∗1(n)e
−jφn,1

...
V(n)x∗K(n)e

−jφn,K

⎤⎥⎦ , (36)

where c is the column vectorization of matrix C, V is the
M × (Lc + La) data matrix (sampled at 2 samples/symbol)
and s(n) is the MK × 1 input vector. Initialization of the
algorithm starts as follows: at the beginning of the adaptation
the entries of C are kept fixed to zero except for ck,m=1,
m=k, k=1...K for a pre-determined period of 3(Lc + La)
symbol intervals. At the end of the pre-determined period,
the equalizers have converged to some meaningful solutions
and the pre-combiner starts its adaptation. Similarly to R1,
when the K feedforward filters are jointly adapted, we call
this receiver as R3. Alternatively, when the K feedforward
filters are adapted in parallel, we call this receiver as R4.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We now report on the performance of the proposed receivers
R1, R2, R3 and R4 by using field data. The experiment took
place in the sea of Selat Pauh, Singapore, on October 21st
and 23rd, 2013. The projector was deployed off a vessel,
submerged about 3m below the sea surface. The receiver was a
horizontal uniformly-spaced linear array, which was deployed
off a second vessel and submerged about 3m below the sea
surface. The sea depth along the link varied about 15-20m
and the sound speed profile was isovelocity (1540m/ s). Here,
we use data from one sensor of the array. It is important to
note that the projector was rigidly attached on a pole structure
and as the transmit vessel was propelling the pole was facing
rapid motion-induced vibrations.
The transmitted signal used three subbands: 14.4-16.1 kHz

(subband A), 16.1-17.8 kHz (subband B) and 17.8-19.5 kHz
(subband C). All subbands carried 4-PSK signals at rate of
1000 symbols/ s. Hence, the total bit rate of the link was
2 kbps. Several transmissions at different ranges and vessel
velocities were repeated. Here, we examine two ranges: 1 km
(file 163012) and 3.1 km (file 150606). Before we present the
demodulation results, it is instructive to gain insight into the
ambient noise and channel characteristics.
Fig. 3(a) clearly shows that the ambient noise series (14.4-

19.5 kHz) includes instantaneous (impulse-like) sharp sounds.
The source of these impulses is due to snapping shrimp.
Studies have shown that the Symmetric alpha-Stable (SαS)
distribution efficiently models snapping shrimp dominated am-
bient noise [11], [12]. Fig. 3(b) verifies this result by plotting
the SαS fit along with the Gaussian and the empirical fit of
the noise samples of Fig. 3(a). In addition, a Kolmogorov-
Smirnov goodness-of-fit test is applied at a 1% significance
level. The hypothesis that the noise is Gaussian distributed is
rejected while the hypothesis that the noise is SαS distributed
is accepted.
Fig. 4(a) and (b) show, respectively, the time evolution of the

amplitude of the subband responses of the links 163012 and
150606. As expected, the sparseness of the multipath profile
is different for each subband. The time-varying Doppler is
decoupled from these responses and is illustrated in Fig. 4(c)
and (d). Common resampling of each subband (single time-
scale factor estimate) was sufficient for demodulating the data.
The subband with the highest SNR was used for time-scale
factor estimation. The positive Doppler of 163012 indicates
that the transmit vessel was propelling towards the receiver at
a varying speed of about 1.5-2.5m/ s. The negative Doppler of
150606, on the other hand, indicates that the transmit vessel
was propelling away from the receiver at a varying speed of
about 1.5-4.5m/ s. These results are generated by using the R1
receiver in training mode, i.e., the post-cursor ISI is estimated
and cancelled based on correct symbol decisions. Due to the
high SNR, these channel estimates are very reliable since the
receiver can achieve error-free communications.
The receiver performance metric is the symbol error proba-

bility (SER) as a function of the received SNR. Since the data



Fig. 2. (a) Block diagram of the MxK pre-combiner receiver.

Fig. 3. (a) Recorded ambient noise series. (b) Amplitude probability plots showing that the SαS distribution is a better fit than the Gaussian distribution.
SαS fit parameters: α=1.67 and δ=0.00044.

was originally acquired in very high SNR, the following plots
are computed by scaling and adding extra ambient noise to
the original data. At every SNR, the SER is computed after
averaging 10 independent ambient noise realizations. Note that
the first 900 transmitted symbols were used as a training set
for the channel estimator and the RLS equalizer. To ensure a
fair comparison between all receivers, the channel estimation
parameters μ and Nw are optimized such that the lowest
SER is obtained for a given received SNR. The rest of the
parameters are shown in Table I.

Fig. 4(e) and (f) show the performance curves for the links
163012 and 150606, respectively. Receivers R3 and R4 use a
3×2 subband pre-combiner each. It is clear that the receiver
R1 consistently outperforms all other receivers since it exploits
frequency diversity in an optimal manner. The R2 receiver has
about 1-1.5 dB power loss with respect to R1 for all SER. The
R3 receiver has about 3 dB power loss with respect to R1 for
the 163012 channel. Although R4 failed to work in channel
163012 (cannot cope with the time-varying ISI), it managed to
demodulate the data for the 150606 channel with a power loss
of 1.5 dB with respect to R1. In addition, Table I summarizes
the algorithmic complexities as a function of the constituent
filter lengths. Note, for example, that R4 require significantly

less computational power than R1.

IV. CONCLUSION

We have presented four low-complexity adaptive DFEs that
operate across M parallel subbands. The proposed receivers
have successfully managed to: (a) tolerate variable transmit-
ter/receiver mobility (1.5-4.5m/ s) within one signal packet,
(b) adapt to rapid multipath fluctuations by exploiting different
channel sparseness per subband, and (c) achieve robustness
under impulsive noise. The key component of all receivers is
the combination of adaptive resampling, sparse robust channel
estimation and multichannel equalization.
These receivers require different processing complexities

based on how frequency diversity is harvested. Receiver R1
performs joint equalization of all employed subbands while
R2 uses M parallel equalizers. Receivers R3 and R4 fur-
ther decrease the computational complexity of R1 and R2,
respectively, by employing an M × K (K < M ) subband
pre-combiner. The performance-complexity tradeoffs of these
receivers have been demonstrated by processing 4-PSK mod-
ulated signals from two shallow water links showing excellent
results.



Fig. 4. (a) and (b) show channel impulse responses for channel 163012 and 150606, respectively. For all impulse responses, the x-axis shows multipath delay,
the y-axis shows absolute time and the z-axis shows the channel amplitude in linear scale. (c) and (d) show mean Doppler shift vs. time for channel 163012
and 150606, respectively. (e) and (f) show SER vs. SNR for all algorithms for channel 163012 and 150606, respectively.



TABLE I
RECEIVER COMPLEXITIES FOR ALL LINKS

Link 163012 (1 km)

# of transmitted symbols = 18930 (packet duration=18.9 s)

receiver R1 R2 R3

L, β, Kp 1, −0.5, 8 · 10−5
Nc +Na, Lc + La 25, 9

IPMAPA complexity O (3(Nc +Na)) O (3(Nc +Na)) O (2(Nc +Na))

RLS complexity O 9(Lc + La)2 O 3(Lc + La)2 O 4(Lc + La)2

Link 150606 (3.1 km)

# of transmitted symbols = 23940 (packet duration=23.1 s)

receiver R1 R2 R4

L, β, Kp 1, −0.5, 8 · 10−5
Nc +Na, Lc + La 21, 9

IPMAPA complexity O (3(Nc +Na)) O (3(Nc +Na)) O (2(Nc +Na))

RLS complexity O 9(Lc + La)2 O 3(Lc + La)2 O 2(Lc + La)2
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