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Abstract—Several underwater acoustic channels exhibit impul-
sive ambient noise. As a consequence, communication receivers
implemented on the basis of the Gaussian noise assumption may
yield poor performance even at moderate signal-to-noise ratios
(SNRs). This paper presents a new channel-estimate-based deci-
sion feedback equalizer (CEB–DFE) that deals with high platform
mobility, exploits any sparse multipath structure, and maintains
robustness under impulsive noise. The key component of this DFE
is a linear-complexity sparse channel estimator, which has the
ability to detect and reject impulses based on two noise models:
contaminated Gaussian and symmetric alpha stable . By
processing phase-shift keying (PSK) signals from three mobile
shallow-water acoustic links, the gain of the proposed receiver
over existing equalizers is demonstrated.

Index Terms—Affine projection sign algorithm (APSA), Doppler
compensation, improved-proportionate normalized least mean
squares (IPNLMS), interpolation, motion synchronization, nor-
malized least mean squares (NLMS), outliers, recursive least
squares (RLS), resampling, sparse equalization.

I. INTRODUCTION

U NDERWATER acoustic channels are severely bandlim-
ited due to low-frequency ship noise and absorption

of high-frequency energy. In addition, any transmitted sound
signal undergoes both time and frequency spreading [1]. For
instance, medium range (1–10 km) acoustic links are typically
confined to less than 40 kHz of bandwidth and experience
multipath delay spreads that can easily exceed 60 ms.
The bandwidth limitation renders coherent modulation, i.e.,

systems that allocate several bits of information per hertz of
occupied bandwidth, more attractive than incoherent modula-
tion. To cope with the multipath-induced intersymbol interfer-
ence (ISI), numerous coherent systems rely on adaptive decision
feedback equalizers (DFEs) showing excellent performance in
various seas [2]–[4].
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DFEs can be divided into two classes. The first class adjusts
its filter coefficients based on the channel impulse response,
which in turn is estimated from the received signal. The second
class adjusts its filter coefficients directly from the received
signal. In fast varying channels such as shallow waters where
multiple reflections from the moving sea surface are significant,
channel-estimate-based DFEs (CEB–DFEs) optimize their
coefficients faster than direct adaptation DFEs (DA–DFEs) and
consequently show better performance [5]. Additional gains
are possible if any available knowledge about the channel
structure can be incorporated into the channel estimator. For
instance, exploiting channel sparseness (i.e., a big fraction of
the energy of the channel impulse response is concentrated
in a small fraction of its duration) leads not only to better
channel estimation accuracy but also to reduction of receiver
computational complexity since only the significant channel
coefficients can be retained in the equalization process [7].
Although CEB–DFEs have been thoroughly tested in un-

derwater acoustic channels, by and large, if not all, the results
are related to the assumption that the noise probability density
function (pdf) is Gaussian. However, a number of underwater
acoustic environments have impulsive noise sources, such as
ice cracking [8] and snapping shrimp noise [9], [10]. For such
environments, minimum mean squared error (MMSE) adaptive
equalizers may suffer severe performance degradation and so
robust equalizers become an attractive solution. Robust equal-
ization is a mature subject in wireless radio channels and may
be useful as a starting point. For example, robust equalizers for
the Middleton class-A noise model [11]–[14] and the
noise model [15]–[18] have been introduced.
In this paper, a novel CEB–DFE receiver that can cope with

impulsive noise is presented. Robust performance is achieved
via the channel estimator, which is able to identify and suppress
noise impulses. Based on our recent work in [19], we employ
two channel estimation algorithms: the improved-proportionate
M-estimate affine projection algorithm (IPMAPA) and the im-
proved-proportionate p-norm affine projection algorithm (IPp-
NAPA). Both algorithms are robust under impulsive noise, ex-
ploit sparse multipath, and require linear computational com-
plexity with respect to the channel parameters. In addition, the
receiver can cope with nonconstant platform motion without the
need of periodically inserting training data for synchronization.
The performance of the proposed receiver is tested in three mo-
bile shallow-water links by processing phase-shift keying (PSK)
signals. Our results firmly conclude that the performance of
the CEB–DFE is improved by using IPMAPA/IPpNAPA rather
than traditional channel estimators.
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Fig. 1. Block diagram of the proposed receiver structure. The red dashed arrows indicate that both Doppler and equalization adaptation stop at time when
an impulse is detected at time .

The remainder of the paper is organized as follows. Sec-
tion II presents the transmitter, and Section III details the de-
sign of the new CEB–DFE, including the algorithms IPMAPA
and IPpNAPA. Section IV discusses the experimental layout
and presents the demodulation results. Section V concludes the
paper.
Notation: Superscripts , , and stand for transpose, Her-

mitian transpose, and conjugate, respectively. Column vectors
(matrices) are denoted by boldface lowercase (uppercase) let-
ters. Let and . The -norm of is defined as

. Let . The -norm
of is defined as . The complex gra-
dient of a scalar function with respect to is denoted as

and is defined in [20]

II. TRANSMITTER

Our goal is to achieve high rate communications relying on
coherent modulation. To this end, the transmitter uses linear
and memoryless modulation methods based on -ary constel-
lations [21]. The information-bearing symbol stream is pulse
shaped via a raised cosine (RC) filter with symbol interval
and rolloff factor . The baseband signal is given by

(1)

where represents the information-bearing sequence of
-ary symbols, and is the RC response. The signal is

modulated onto a carrier and transmitted through the ocean.
The occupied frequency range is .
Remark 1: Note that error-correction coding could improve

system performance, however, it would impede understanding
of how efficiently the receiver mitigates the ISI. For this reason,
channel coding is omitted in this work.

III. RECEIVER

From the communications perspective, time-varying multi-
path propagation dominates the characterization of any under-
water acoustic link. Thus, the UWA channel is typically mod-
eled as a linear time-varying system, which is described by the
(lowpass equivalent) input delay-spread function . The
variable corresponds to the time variations of the impulse re-
sponse due to physical processes (e.g., moving surface waves,
tides, currents, and internal waves) while the variable repre-
sents the channel multipath delay for a fixed value of . The

lowpass equivalent (baseband) output is related to the input
via the formula [6]

(2)

Equation (2) may also be interpreted as a system with impulse
response at time when an impulse is applied at time

. Here models the additive impulsive ambient and
thermal noise, which is independent from .
Transmitter–receiver motion induces a different time scale at

the received signal. Since the signal bandwidth is usually com-
parable to the center frequency, time scaling is not well repre-
sented by just a Doppler shift. Hence, the baseband received
signal (with respect to the center frequency ) is expressed as

(3)

where stands for the (time-varying) dilation/compression
factor and is the arrival time of the beginning edge of the
signal. From noise perspective, platform motion is immaterial
because the noise bandwidth is much larger than the signal
bandwidth for all practical purposes.
The proposed CEB–DFE receiver can be seen in Fig. 1. The

processing line of the received signal includes three stages: mo-
tion compensation, adaptive channel estimation, and decision
feedback equalization.

A. Adaptive Resampling

The standard method for motion synchronization is to com-
pute the time difference between two known pulse (e.g., chirp)
transmissions [22]. If there is a deviation from the expected
time difference, it is directly translated into a simple scaling
factor. This method may be well suited for constant velocity
platforms, however, it is not efficient for rapid platform accel-
eration (e.g., autonomous underwater vehicles). Furthermore, it
suffers an overhead, i.e., a significant amount of time is not de-
voted for communications. Motion compensation via adaptive
resampling [23], [24] offers the possibility to transmit very long
communication signals with no extra overhead for synchroniza-
tion. Here, the novelty is that adaptive resampling is performed
in conjunction with adaptive channel estimation at the symbol
rate. As a result, fast platform motion is decoupled from slow
environmental fluctuations leading to improved channel esti-
mates.
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Let us denote the baseband signal sampled
at four samples/symbol. Motion-induced time scaling is com-
pensated by resampling the signal via linear interpolation. The
output of the linear interpolator, denoted as , is downsam-
pled to two samples per symbol and is given by

(4)

(5)

(6)

(7)

where is the decided
symbol when the DFE operates in decision-directed mode [or

when the DFE operates in training mode], is
the soft output of the equalizer, is the phase error measure-
ment of the transmitted symbol , is the one-tap linear
interpolator , is a first-order phase-locked loop
(PLL) tracking parameter, and is the carrier-phase estimate

. Typical values for range between
depending on the platform speed. We have noticed that once a
value is chosen, it can remain fixed for the entire duration of the
signal regardless the motion fluctuation.

B. Robust Adaptive Channel Estimation

After motion compensation, the received signal (at time )
can be expressed in a vector form as

(8)

where

...

...

(9)

and

...

...

(10)

are the samples of the transmitted signal and the channel im-
pulse response (including transmit and receive filters), respec-
tively. denotes the noise. Parameters and denote,
respectively, the causal and acausal taps with respect to the
channel tap . Note that assumes values based on
either known (past and future) symbols (training mode) or de-
cided (past) symbols (decision-directed mode). The goal here is

to reliably estimate in the presence of impulsive noise. Let
us call this estimate as .
In impulsive noise environments, it is well known that
-norm-based channel estimation algorithms are not appro-

priate even in moderate signal-to-noise ratios (SNRs). Recently,
the authors have introduced a framework that systematically
generates sparse robust adaptive algorithms [19]. For the pur-
poses of this work, we use two algorithms from that framework:
the IPMAPA and the IPpNAPA. Both algorithms are generated
by minimizing the following cost function:

(11)

(12)
(13)

where is a scalar loss function whose purpose is to down-
weight noise impulses [IPMAPA and IPpNAPA depend on the
choice of ], is the posterior error considered over a
window of length symbol intervals (typically de-
pending on channel coherence time), is a regulariza-
tion parameter, and is Hermitian positive–definite matrix
whose entries depend on . The term
denotes the Riemannian distance between and
and its purpose is to exploit channel sparseness [19]. By setting

(algebra and definitions are described in Ap-
pendix A), IPMAPA/IPpNAPA can be summarized by the fol-
lowing equations:

(14)
(15)
(16)

where is the matrix of input samples, is
a diagonal matrix of size , and is a diagonal ma-
trix of size . Initialization starts with . As already
mentioned, the choice of the loss function and subsequently the
matrix will generate either IPpNAPA or IPMAPA.
1) The IPpNAPA: The key assumption is that the passband

noise is modeled by the pdf. The distribution, denoted
as , is defined by means of its characteristic function

. The characteristic exponent con-
trols the heaviness of the pdf tails and the scale parameter
controls the spread of the pdf around zero.When , the
pdf boils down to the Gaussian pdf . Parameters and
can be estimated from the ambient noise using fractile-based

estimators [26].
In many practical situations, the real and imaginary parts of

the baseband (complex) noise follow the same but
are generally dependent. The scale parameter is equal to ,
being a constant that depends on the passband-to-baseband

filtering [27]. In addition, it is known that distributions lack
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moments of order , but all moments of order do
exist [28]. This motivates the usage of the -norm,
as a loss function. As a result, the diagonal elements

of the matrix are given by [19]

(17)
The threshold parameters and are responsible for detecting
and downweighting impulses in the intervals and re-
jecting any impulse stronger than . These thresholds are
proportional to but their exact value depends on the received
SNR. In contrast, the choice is fairly robust [19].
2) The IPMAPA: The key assumption is that the noise

(18)

is modeled as complex Gaussian noise, but “contaminated” with
impulses (or outliers). Using an M-estimator function is the
typical approach to achieve robustness against impulses, how-
ever, redescendingM-estimators is a more effective solution be-
cause they can differentiate between gross and moderate im-
pulses. A typical redescending M-estimator is Hampel’s loss
function [25]. Based on this function, the diagonal elements

of matrix are given by [19]

(19)

The threshold parameters , , and are responsible for de-
tecting and downweighting impulses in the intervals and

and rejecting any impulse with amplitude greater than .
These thresholds are computed based on the assumption that the
impulse-free signal is Rayleigh distributed with scale
parameter (or mode) .We choose the thresholds as: ,

, and [19]. A robust recursive estimate of
(denoted as ) can be obtained through the prior error signal

and the median operator [25] as
follows:

(20)

(21)
(22)
(23)

(24)

(25)

where is the observation window of the error signal,
and denote, respectively, the estimated variance of the
real and imaginary part of , is a finite
sample correction factor, and is a forgetting factor. Note that

operations are required for the computation
of . Furthermore, always contains signal-dependent
noise from channel estimation errors and thus, parameter
should be chosen to be smaller than the channel coherence time.

C. Decision Feedback Equalization
Let and denote, respectively, the causal and acausal

taps of the linear equalizer and let

...

...

(26)

be the vector of received samples that corresponds to the th
symbol interval. The received signal can be written as

(27)

where

...

...

(28)

and

. . .
...

...
...

...
...

...
. . .

(29)
is the convolution
matrix. Let us now partition into causal and acausal parts
as follows:

(30)

where includes the rows of that correspond to the
causal input signal

... (31)

and includes the rows of that correspond to the
acausal input signal

... (32)
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Fig. 2. (a) Experimental setup. (b) Map of sea of Selat Pauh with the transmitter/receiver GPS coordinates.

Fig. 3. (a) Recorded ambient noise series. The hydrophone output is voltage (proportional to acoustic pressure). (b) Amplitude probability plots showing that the
distribution is a better fit than the Gaussian distribution. fit parameters: and .

The ISI-free signal at the input of the linear equalizer can be
constructed as follows:

(33)

The soft estimate of the transmitted symbol is obtained by

(34)

where denotes the equalizer filter. Adaptation of
at every data symbol arrival is achieved via the exponentially
weighted recursive least squares (RLS) algorithm [29]

(35)
(36)

(37)

where is a regularization parameter and is the exponen-
tial weighting factor. The RLS computational complexity is

, however, as indicated in [7] and verified in
our experimental results, can be designed shorter than
the total delay spread of the channel and still deliver good
performance.
Remark 2: This DFE implementation is robustified via the

channel estimator. If a strong impulse occurs at time , it means
that the prior error signal with high probability is larger
than (for IPpNAPA) or (for IPMAPA). In such and only
event, the receiver modifies (6) to and (35) to

. This robustification strategy is sufficient to
deal with a small fraction of impulses in the data as the experi-
mental results confirm.

IV. SEA EXPERIMENT AND RESULTS
The proposed receiver was tested in experimental data

obtained in a shallow-water environment. To assess the re-
ceiver performance based on the IPMAPA and the IPpNAPA,
we use linear complexity algorithms from the adaptive filter
literature. These are: improved-proportionate normalized least
mean squares (IPNLMS) [30], normalized least mean squares
(NLMS) [29], and affine projection sign algorithm (APSA)
[31]. We stress that IPNLMS is a sparse-aware algorithm (all
sparse adaptive filters used in this paper employ the same
matrix; see Appendix A), but not robust under impulsive noise.
The NLMS algorithm is neither sparse aware nor robust in the
presence of impulses. The APSA uses the -norm of the error
signal and therefore is robust under impulsive noise, but cannot
exploit channel sparseness.

A. Experimental Layout
The experiment was conducted in the sea of Selat Pauh, Sin-

gapore, on October 23, 2013. The projector (transmitter) was
deployed off a vessel and submerged about 3 m below the sea
surface. The received signals were recorded at a different vessel
3 m below the sea surface. The sea depth was about 15–20 m
and the sound-speed profile was isovelocity (1540 m/s). The sea
surface was calm but often the links encountered ship wakes.
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Fig. 4. (a)–(c) Channel impulse responses for links 125350, 130304, and 160250. For all impulse responses, the -axis shows multipath delay, the -axis shows
absolute time, and the -axis shows the channel amplitude in decibel scale. (d)–(f) Channel energy versus time for links 125350, 130304, and 160250.

Fig. 2(a) illustrates the experimental layout. Two signal for-
mats are considered, i.e., 4- and 8-PSK signals modulated by
a pseudonoise sequence. The baud rate was 3000 symbols/s,
the carrier frequency was 17 kHz, and the rolloff factor of the
RC pulse was 0.7 resulting in a bandwidth of 14 450–19 550
Hz. Several transmissions at different ranges and vessel veloc-
ities were repeated. In this paper, we report results based on
two ranges: 1.2 km (files 125350 and 130304) and 2.9 km (file
160250). The links 125350 and 130304 have almost the same
range (note that the vessels were slightly drifting due to sea cur-
rents), yet link 125350 was utilized 10 min before link 130304.

Fig. 2(b) shows the transmit/receive positions. The sampling
rate at the receiver was 250 kHz. Before we present the demod-
ulation results, it is instructive to gain insight into the ambient
noise and channel characteristics.

B. Ambient Noise
Here, we present an ambient noise data set (14 450–19 550

Hz) recorded during the experiment. Fig. 3(a) clearly shows
that the noise series includes instantaneous (impulse-like) sharp
sounds. The source of these impulses is due to snapping shrimp
[9]. Studies have shown that the distribution efficiently
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Fig. 5. (a) Motion-induced Doppler shift as function of time for link 160250. (b) Channel response of link 160250 without motion compensation. (c) Spectrogram
of the beginning edge of the received signal (link 130304). The amplitude is in decibels.

TABLE I
FIXED PARAMETERS IN ALL ACOUSTIC LINKS

models snapping shrimp dominated ambient noise [9], [10]. Fig.
3(b) verifies this result by plotting the fit along with the
Gaussian and the empirical fit of the noise samples of Fig. 3(a).

C. Channel Characterization

Fig. 4(a)–(c) shows the time evolution of the amplitude of
the baseband impulse response of all links. Wideband Doppler
distortion due to motion is compensated. The channel estimates
are generated by using the IPNLMS receiver in training mode.
Due to high received SNR, these channel estimates are very re-
liable since the receiver can achieve error-free communications.
Also note that a reduced filter size equalizer that does not span
the total delay spread of the channel is used. Table I summa-
rizes the receiver parameters for each link. To gain further in-
sight into how fast each link fluctuates, Fig. 4(d)–(f) shows the
time-varying energy of each link by computing .
Several important features can be observed from these re-

sponses. The first is that channels 130304 and 160250 exhibit
very sparse and long multipath spread as compared to channel
125350. For further validation, Fig. 5(c) shows the spectrogram
of the beginning edge of the received signal for the 130304 link.
A chirp pulse (0.2 s) and its delayed replica due to multipath
can be clearly seen. A similar spectrogram can be obtained for

channel 160250 (omitted for brevity). It is yet unclear the origin
of the distant reflector for channels 130304 and 160250. We be-
lieve this reflector is either an island or a reef close to the area
of operations [see Fig. 2(b)].
The second feature is the channel short-time variability due

to constructive/destructive multipath interference. Fig. 4(d) in-
dicates that the energy of channel 125350 fluctuates about 2 dB
over a period of 3.5 s. The mean Doppler shift (not shown for
brevity) due to drifting oscillates between 8 Hz. Fig. 4(e)
shows that the energy of channel 130304 fluctuates about 7 dB
over a period of 3.2 s. The mean Doppler shift oscillates in a
similar fashion as in channel 125350. Note the rapid 5-dB en-
ergy increase at 0.9 s. This large fluctuation is challenging to
be tracked by adaptive receivers. For instance, it makes a stan-
dard DA–DFE running on RLS to fail regardless the high SNR.
Fig. 4(f) illustrates that the energy of channel 160250 fluctuates
about 6 dB over a period of 2.5 s. The energy lows observed at
1.2 and 1.8 s are due to a prominent Lloyd’s Mirror effect [32].
Fig. 5(a) shows the time-varying Doppler shift of the received

signal for the channel 160250. The positive Doppler validates
that the transmitter was propelling toward the receiver at a speed
of about 2 kn. Fig. 5(b) illustrates the effect of motion on the
channel response when it is left uncompensated. The plot fo-
cuses on the multipath arrivals close to 0 ms for visualization
purposes. Clearly, the channel response varies very rapidly and
eventually makes the DFE to fail.

D. Demodulation Results

The performancemetric is the symbol error probability (SER)
as a function of the received SNR. Since the data were originally
acquired in very high SNR, the following plots are computed by
scaling and adding extra ambient noise to the original data. At
every SNR, the SER is computed after averaging 15 indepen-
dent ambient noise recordings. Hence, the reported plots illus-
trate the average performance of each receiver given the link
realization. We emphasize that only the first 900 transmitted
symbols were used as a training set for the channel estimator
and the RLS equalizer. The fixed receiver parameters for all
links are listed in Table I. However, the choice for some channel
estimation parameters is not straightforward as it depends on
the channel coherence time and received SNR. To ensure a fair
comparison between all algorithms, their respective parameters
are optimized among some representative values such that the
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Fig. 6. SER versus SNR for all algorithms: (a) channel 125350, (b) channel 130304, and (c) channel 160250.

lowest SER is obtained for a given received SNR. We consider
the following parameters and their representative values:
• for NLMS, IPNLMS, IPMAPA,
IPpNAPA;

• for IPMAPA;
• , for IPpNAPA;
• for APSA [31].
Note that the IPMAPA and the IPpNAPA are optimized, re-

spectively, over 15 and 45 different combinations. Given that
both algorithms obtain linear computational complexity, opti-
mization based on an exhaustive search of all combinations
during the training period is possible. After the training period,
the optimized parameters remain fixed for the rest of the signal
duration.
Fig. 6(a)–(c) shows the SER performance of all algorithms for

the links 125350, 130304, and 160250, respectively.We observe
the following.
• At relative low SNRs, the proposed algorithms outperform
all other algorithms in all links. At higher SNRs, noise
impulsiveness is not the main challenge and so the sparse
algorithms deliver similar performances.

• For the 8-PSK links (125350 and 130304), the proposed
algorithms require more than 20-dB SNR to deliver good
performance. For the 4-PSK link (160250), however, the
proposed algorithms require 5 dB less power to deliver
a similar performance. This 5-dB difference is explained
by noting that 4-PSK constellations are less sensitive to
motion-induced Doppler and impulsive noise than 8-PSK
constellations.

• With respect to IPNLMS, the proposed algorithms demon-
strate 2-dB power savings for a SER of 10 for the link
125350. Moreover, IPMAPA shows an advantage of 1 dB
at SER 10 for the link 130304. On the other hand, the
proposed algorithms show no power gain at SER 10
for channel 160250. This can be explained by noting that
link 125350 does not suffer from deep fades, link 130304
suffers from minor fades, while link 160250 suffers two

deep fades at 1.2 and 1.8 s [see Fig. 4(e)]. Hence, it seems
that in the absence of strong fading, more gain is achieved
with the proposed methods.

• The commonly used NLMS and APSA can deliver good
performance only for link 125350. Unfortunately, both al-
gorithms fail in the other two (extended-multipath) links
due to their inability to exploit channel sparseness.

• Since the ambient noise is well modeled as , one
would expect IPpNAPA to deliver better performance than
IPMAPA. However, our plots show that the algorithms
have similar performance. These results are consistent
with our findings in [19] because when is larger than
about 1.5, then the performance of IPMAPA is close to
IPpNAPA.

V. CONCLUSION
A new channel-estimate-based decision feedback equalizer

receiver for underwater acoustic communications was pre-
sented. By using data from three shallow-water links, the pro-
posed receiver managed to: 1) tolerate high transmitter/receiver
mobility; 2) adapt to rapid channel fluctuations by exploiting
channel sparseness; and 3) achieve robustness under impul-
sive noise. This result was demonstrated by testing different
channel estimation algorithms and comparing the respective
SER performances. The algorithms tested were IPMAPA [19],
IPpNAPA [19], IPNLMS [30], NLMS [29], and APSA [31].
The best performance was achieved by IPMAPA/IPpNAPA
as these algorithms are designed to suppress impulsive noise
while exploiting channel sparseness.

APPENDIX A
DERIVATION OF (14)

Let us define

(38)
(39)
(40)
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where and are the a posteriori and a priori error at
symbol time , respectively, and denotes the channel up-
date vector. Note that we can express in terms of and

as

(41)

Via the loss function , , we also define

(42)

(43)

We now compute , where is given by (11).
Computing each term individually, we write

(44)

(45)

(46)

(47)

(48)

where

(49)

is the matrix of input samples

. . . (50)

is an diagonal matrix and

(51)

is the prior error vector. We also have

(52)

Setting and combining terms, we write

From the above equation, we note that depends on ,
which is unknown at time . At steady state, however, we can
assume that and so we evaluate accordingly.
Solving for via the matrix inversion lemma [29], we have

(53)

where

(54)
(55)

Using a step size parameter , we manage to manipu-
late the change of the tap values from one iteration to the next.
Finally, the channel update equation is deduced as follows:

(56)

A. The Matrix
As already mentioned above, the purpose of the

matrix is to exploit channel sparseness. A good choice for
is the diagonal matrix of [30]. Effectively, assigns a variable
step size parameter to each channel filter tap. This parameter
is a function of the tap’s previously estimated magnitude. As a
result, active filter taps (i.e., taps with significant values) con-
verge fast, which makes the overall algorithm to have fast con-
vergence in sparse channels. We stress that no prior knowledge
of the significant tap position is required. The diagonal elements

of are given by [19], [30]

(57)

where denotes a small positive constant to avoid division by
zero during initialization of the algorithm. Parameter controls
the sparseness of the solution. Typically, one needs to consider
four values: (diffuse channel), (low sparse-
ness), (sparse), and (very sparse). Once is
chosen, parameter is given by [30]

where is chosen as in the NLMS algorithm [29]. Note
that the channel update equation (56) requires com-
putational complexity because is diagonal and
for typical underwater acoustic channels.
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