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Abstract�A novel adaptive algorithm is derived for sparse
channel identi�cation in the presence of Symmetric �-Stable
(S�S) noise. The algorithm is based on the minimization of a
new cost function, which is the sum of two terms. The �rst
term is the distance between the previous and the current
channel estimate. The distance metric is Riemannian, the same
as in the improved-proportionate normalized least-mean-square
(IPNLMS) algorithm, so that the sparse nature of the �lter
taps is taken into account. The second term depends on an
appropriately de�ned 1-norm of the a posteriori estimation error
and ensures robustness under S�S noise. The resulting algorithm,
the so-called sign-IPNLMS (sIPNLMS), has linear computational
complexity with respect to its �lter coef�cients. The superior per-
formance of the sIPNLMS algorithm over the original IPNLMS,
the recursive least-squares (RLS), and the normalized least-mean-
square (NLMS) is shown by identifying two measured, sparse,
underwater acoustic channels under the presence of recorded
snapping shrimp ambient noise and simulated S�S noise. In
addition, our proposed algorithm shows similar performance with
IPNLMS under Gaussian noise and hence it becomes promising
for either impulsive or non-impulsive noise environments.

I. INTRODUCTION

Wideband underwater acoustic (UWA) channels are charac-
terized by long and time-varying impulse responses for many
link geometries [1]. Moreover, these channels show a sparse
structure, namely, a big fraction of the energy of the channel
impulse response is concentrated in a small fraction of its du-
ration [2],[3]. Employing standard adaptive �lters, such as the
normalized least-mean-square (NLMS) and the recursive least-
squares (RLS) �lter, for channel estimation, poor performance
is observed in two aspects: (a) slow convergence of the �lter
taps to their steady state values since the convergence rate of
the algorithm is proportional to the total channel length [4];
(b) high steady-state misadjustment due to the estimation noise
that inevitably occurs during the adaptation of the low-energy
�lter taps. Since both RLS and NLMS do not exploit the a
priori knowledge of channel sparseness, designing adaptive
algorithms with better performance seems plausible.
In addition to extended time-varying multipath, warm

shallow water channels, such as in Singapore waters, are

severely contaminated by impulsive noise generated by snap-
ping shrimp [5]. The noise source level could be as high as
190 dB re 1�Pa at 1m. Impulsive snapping shrimp noise is
well modeled as a Symmetric �-Stable (S�S) random process.
Since this kind of noise process exhibits an in�nite second
moment, any adaptive �lter that tries to minimize the mean
squared error between the reference signal and its output will
suffer poor performance under large noise disturbances. To the
best of our knowledge, an adaptive algorithm that deals with
both the channel sparsity and the noise impulsiveness does not
exist in the UWA communications literature.
Recently, a class of sparse adaptive algorithms based on

the natural gradient (NG) have shown better convergence and
steady-state misadjustment than RLS over a sparse shallow
water channel [9], [10]. The improved performance is due to
the fact that the NG-based algorithms exploit the Riemannian
structure of the parameter space to adjust the gradient search
direction towards the minimum of the chosen cost function [8].
In this work, a new algorithm is derived by reformulating the
cost function of the improved proportionate NLMS (IPNLMS)
algorithm [6] so that the inherent channel sparsity is exploited
and robustness against impulsive noise is enforced. The cost
function is the sum of two terms: the �rst term is the
Riemannian distance between the previous and the current
channel estimate while the second term depends on the 1-norm
of the a-posteriori estimation error. The resulting algorithm has
linear complexity with respect to the number of the �lter taps.
A computer generated experiment is conducted to com-

pare the performance between the proposed algorithm and
IPNLMS, RLS, and NLMS. Recorded m-sequences over two
short-range shallow water links are used to extract sparse chan-
nel responses. These estimated channel responses are to be
identi�ed under recorded snapping shrimp noise and simulated
S�S noise. The results prove the superior performance of the
new algorithm in terms of initial convergence rate, tracking,
and robustness to noise disturbances.
Notation: Superscripts |, y, and � stand for transpose,

Hermitian transpose, and conjugate, respectively. Column vec-
tors (matrices) are denoted by boldface lowercase (uppercase)
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letters. The 1-norm of the L-tap complex vector x is de�ned
as kxk1 =

PL�1
i=0 jxij and the 2-norm of x is kxk2 =

p
xyx.

Finally, the sign function of a real number t is expressed as:

sgn(t) ,

8<: 1; t > 0
�1; t < 0
0; t = 0

9=; : (1)

II. SNR DEFINITION IN SYMMETRIC �-STABLE NOISE
Snapping shrimp is a major component of ambient noise at

high frequencies (2 kHz - 300 kHz) in warm shallow waters[5].
This kind of noise is highly impulsive and can become a
performance limiting factor for systems that are optimized for
Gaussian noise. Snapping shrimp noise is well modeled by
a S�S distribution. Although there is no closed form for the
S�S probability density function (pdf), it can be described by
its characteristic function [5]

'(!) = e�j!j
�

(2)

where � 2 (0; 2] describes the impulsiveness of the noise
(smaller � leads to more impulsive noise) and  > 0 denotes
the dispersion of the distribution. In Singapore waters, typical
values of � range between 1:6 � 1:9 while the parameter 
depends on the operational bandwidth. When � = 2; the S�S
pdf boils down to the Gaussian pdf and  equals to half the
variance. For � < 2, second or higher moments are in�nite and
therefore, the standard (signal-to-noise ratio) SNR de�nition
cannot be applied.
An SNR de�nition for baseband (complex) signals is rather

involved because the in-phase and quadrature components of
the S�S noise are generally dependent. In passband, however,
an SNR de�nition (in dB) can be readily de�ned as [5]:

SNR� , 10 log10
Ps
22=�

(3)

where Ps is the signal power and 2=� plays the same role
as the variance. When � = 2; Eq. (3) becomes the usual SNR
de�nition in Gaussian noise.

III. ALGORITHM DESCRIPTION
We now tackle the problem of sparse channel identi�cation

under impulsive S�S noise. The baseband received signal y[n]
is expressed by

y[n] =
K�1X
k=0

hk[n]
�x[n� k] + w[n] = h[n]yx[n] + w[n] (4)

where h[n] denotes the K dimensional channel vector at
discrete time n, x[n] stands for the input signal, and w[n]
is a S�S distributed random variable. We also present here
some important de�nitions that will be used for the algorithm
derivation:

e[n] , y[n]� ĥ[n� 1]yx[n] (5)
ĥ[n] , ĥ[n� 1] + r[n] (6)
"[n] , y[n]� ĥ[n]yx[n]

= e[n]� r[n]yx[n] (7)

where ĥ[n] is the estimated impulse response at time n, e[n]
denotes the a priori prediction error of y[n], "[n] stands for the
a posteriori prediction error of y[n], and r[n] is the channel
update vector.
We follow the general algorithmic framework in [7] that

states that an ef�cient adaptive algorithm must exhibit a good
balance between its needs to be conservative (avoid radical
changes of ĥ[n] from one iteration to the other) and corrective
(ensure better channel estimate if the same input and output
were to be observed at two consecutive times). According to
this framework, our algorithm is derived by minimizing the
cost function:

J(n) = r[n]yQ(ĥ[n� 1])r[n] + � j"[n]jp1 ; � > 0; (8)

where each of the terms of J(n) is explained below.
The term r[n]yQ(ĥ[n � 1])r[n] in Eq. (8), which ensures

the conservativeness of the algorithm, is the Riemannian
distance between ĥ[n � 1] and ĥ[n]. The idea of using a
Riemannian distance metric stems from the fact that h[n] is
sparse and hence, the space of h[n] close to the coordinate
axes is highly curved or warped with respect to the Euclidean
space[8]. The Riemannian metric tensor Q

�
ĥ[n]

�
is a K�K

positive de�nite matrix that describes the local curvature of the
parameter space at ĥ[n]. For our purposes, we use the diagonal
matrix of the IPNLMS algorithm [6], which has proven to
be suitable for sparse shallow water channels [9], [10]. The
diagonal entries of Q

�
ĥ[n]

��1
are given by

qk[n] =
1� �
2K

+
(1 + �)

���ĥk[n]���
2
ĥ[n]

1
+ �

; 0 � k � K � 1 (9)

where � is a small constant to avoid division by zero when the
algorithm is initialized and � 2 [�1; 1] is the parameter that
controls the sparseness (larger � is favorable to more sparse
solutions).
The term � j"[n]jp1 in Eq. (8), which promotes the corrective-

ness of the algorithm, uses the 1-norm of the complex number
"[n], de�ned as

j"[n]j1 , jRe f"[n]gj+ jIm f"[n]gj : (10)

The power p 2 (0; �) ensures robust convergence and tracking
performance of the algorithm since any moment of the form
E [j"[n]jp1] ; p � �; becomes in�nite under S�S noise. In
addition, when � ! 1; the optimization problem essentially
becomes the minimization of r[n]yQ(ĥ[n � 1])r[n] subject
to "[n] = 0: Since we expect the noise to be impulsive, �
should be chosen close to zero so that the algorithm focuses
on minimizing the distance between ĥ[n � 1] and ĥ[n] and
therefore, radical channel updates that compromise robustness
are prohibited.
Taking the gradient of J(n) with respect to r[n]�, applying



the chain rule, and setting the resulting vector to zero we have1

Q(ĥ[n� 1])r[n] + �@ j"[n]j
p
1

@ j"[n]j1
@ j"[n]j1
@"[n]

@"[n]

@r[n]�
= 0: (11)

Using the following identities:

@ j"[n]jp1
@ j"[n]j1

= p j"[n]jp�11 (12)

@ j"[n]j1
@"[n]

=
1

2
csgn("[n])� (13)

@"[n]

@r[n]�
= �x[n] (14)

we �nally obtain

ĥ[n] = ĥ[n� 1] + ~� j"[n]jp�11 csgn("[n])�Q(ĥ[n� 1])�1x[n];
(15)

where ~� = � � p=2 and

csgn("[n]) , sgn(Re f"[n]g) + j � sgn(Im f"[n]g): (16)

Eq. (16) is essentially a functional form of the sign of a com-
plex number and thus, the name csgn(�). Note that Eq. (13)
is impractical to implement because "[n] is not known at
time step n but, rather, needs be determined. In steady-state,
however, it is plausible to assume that ĥ[n] is very close
to ĥ[n � 1] and so, e[n] ' "[n]: Hence, the sign-IPNLMS
(sIPNLMS) algorithm is deduced as:

ĥ[n] = ĥ[n� 1] + ~� je[n]jp�11 csgn(e[n])�Q(ĥ[n� 1])�1x[n]
(17)

where the entries of Q(ĥ[n� 1])�1 are given by Eq. (9). The
algorithm is initialized with hk[0] = 0; 0 � k � K � 1:
Note that the sIPNLMS has O(K) complexity, which is

highly desirable for hardware implementation. The main bur-
den comes from computing

ĥ[n]
1
andQ(ĥ[n�1])�1x[n] at

each iteration. For complex data,
ĥ[n]

1
requires 4K �oating

point operations while Q(ĥ[n � 1])�1x[n] requires 4K � 2
�oating point operations.

IV. PERFORMANCE RESULTS

In this section, the sIPNLMS algorithm is compared
with two widely used stochastic gradient descent algorithms
(NLMS and RLS) and one NG-based algorithm (IPNLMS)
by using a computer generated experiment. The experiment
considers the identi�cation of two sparse time-varying chan-
nels h[n] in the presence of snapping shrimp ambient noise
and simulated S�S noise. We stress that the channels are not
simulated but are measured from different �eld experiments.
Hence, the complexities one would encounter in a real ex-
periment are not neglected. As a performance measure, the

1The concept of the gradient of a cost function with respect to complex
variables is discussed in Appendix B of [4].

Fig. 1. Snapshots of the estimated baseband channel impusle response. The
L0-IPNLMS algorithm [10] was employed for adaptive channel estimation.
The horizontal axis represents delay, the vertical axis represents absolute time
and the colorbar represents the amplitude. (a) SPACE08 experiment. The
snapshots are computed at a rate of 6510.4 Hz. (b) FAF05 experiment. The
snapshots are computed at a rate of 6250 Hz.

normalized misadjustment (in dB),

20 log10

0@
h[n]� bh[n]

2

kh[n]k2

1A ; (18)

is employed.
The channel impulse response of Fig. 1(a) was obtained

during the Surface Processes and Acoustic Communications
Experiment (SPACE08) off the coast of Martha's Vineyard in
northeast America in October 26th, 2008. Both the transmitter
and the receiver were mounted on rigid tripods and were



TABLE I
CHOSEN PARAMETERS OF ALL ALGORITHMS

SPACE08 FAF05

NLMS � = 0:4; � = 10 � = 0:6; � = 10

RLS � = 0:996; � = 100 � = 0:997; � = 100

IPNLMS � = 0:3; � = 0 � = 0:2; � = 0:5

� = 0:067 � = 0:011

sIPNLMS � = 0:2; � = 0; p = 1:5 � = 7; � = 0:5; p = 1:5

located 4m and 3:25m, respectively, above the sea �oor.
The sea depth was 15m and the horizontal range of the
link was 60m. The transmitted signal was a 6510:4 bps-rate,
BPSK modulated m-sequence with 12:5 kHz carrier frequency.
Note that the impulse response has a sparse structure and is
highly time-varying due to sound scattering off the moving
sea surface. For this link, the channel delay spread is 8:6ms
corresponding to a total channel length of 112 taps, when the
received signal is sampled at 2 samples/bit.
The channel impulse response of Fig. 1(b) was obtained

during the Focused Acoustic Fields (FAF05) experiment off
the coast of Pianosa, Italy in July 22nd, 2005. The transmitter
was attached on the hull of the research vessel Leonardo, 4:5m
below the sea level. The receiver was mounted on a moving
autonomous undersea vehicle (AUV). The range of the link
was approximately 700m and the ocean depth at the receiver
side was 85m. The transmitted signal was a 6250 bps-rate,
QPSK modulated m-sequence with 12 kHz carrier frequency.
Note again that the estimated impulse response is highly time-
varying due to the motion of the AUV and exhibits a long
delay spread of 36ms. When the received signal is sampled
at 2 samples/symbol, the corresponding channel length is 454
taps.
In our simulations, a BPSK modulated m-sequence2 is

applied to the each of the above channels, and hence the output
signal is expressed as a linear time-varying convolution sum.
Then, each channel output is added to a noise series, initially
recorded in warm shallow waters in Singapore at 500 kHz.
Prior to adding the noise to the output, the noise is bandpass
�ltered for � and  estimation and then shifted to baseband,
downsampled to the symbol rate of the corresponding channel,
and scaled such that the average SNR� is 7 dB. Since the
channels have similar carrier frequencies and symbol rates, the
S�S parameters � and  are approximately the same for both
channels. Speci�cally, after running a Kolmogorov-Smirnov
goodness of �t test, � and 1=� are found to be 1:84 and
9:004� 10�4 Pa, respectively.
Choosing the right algorithm parameters is not a straight-

forward procedure but rather, channel dependent. Moreover,
the system requirements of fast initial convergence rate, small

2We chose not to pulse shape the m-sequence because the convergence rate
and the misadjustment of RLS and NLMS depend on the condition number of
the input covariance matrix. The higher the condition number, the poorer the
performance. Since the m-sequence exhibits an almost white autocorrelation
function, a well-conditioned input covariance matrix is guaranteed.

Fig. 2. Results for the SPACE08 channel: (a) Normalized misadjustment for
all algorithms; (b) amplitude of the corresponding baseband ambient noise.

steady-state misadjustment, fast tracking of channel changes,
and robustness to noise disturbances are competing to each
other for any adaptive algorithm. To ensure a fair comparison
between sIPNLMS and IPNLMS (both have O(K) com-
plexity), we chose the parameters � and � such that both
algorithms show the same initial convergence rate for each
channel. The parameters of NLMS and RLS were chosen for
best steady-state performance. Table I summarizes the chosen
algorithm parameters used to generate the results below. The
parameters � and � denote the step-size and the forgetting
factor of the NLMS and RLS, respectively [4]. The parameter
� is the respective regularization constant for NLMS, RLS,
and IPNLMS.
Fig. 2(a) shows the normalized misadjustment of each

algorithm based on the impulse response of Fig. 1(a) and
the noise series of Fig. 2(b). Clearly, IPNLMS and sIPNLMS
outperform RLS and NLMS in terms of both convergence
and tracking. For instance, both IPNLMS and sIPNLMS need
45ms to converge to �9:7 dB, about 3:2 dB and 4:2 dB



Fig. 3. Results for the FAF05 channel: (a) Normalized misadjustment for
all algorithms; (b) amplitude of the corresponding baseband ambient noise.

better than RLS and NLMS, respectively. Moreover, sIPNLMS
demonstrates better tracking performance under impulsive
noise than the rest of the algorithms. Speci�cally, at 0:39 s;
the received signal is distorted by a loud snap, as seen in
Fig. 2(b). At that time also, the channel impulse response
shows a signi�cant change due to a strong surface re�ected
multipath component arriving 4ms after the direct arrival.
Note that the sIPNLMS demonstrates about 3:4 dB, 3:1 dB;
and 3:6 dB better misadjustment than IPNLMS, NLMS, and
RLS, respectively.
In Fig. 3(a), we now use the impulse response of Fig. 1(b)

and the noise series of Fig. 3(b) to compare all the algorithms.
IPNLMS and sIPNLMS still outperform RLS and NLMS in
terms of both convergence and tracking. For instance, after
tracking the channel for 0:8 s, both IPNLMS and sIPNLMS
show �10:8 dB misadjustment, about 5:9 dB and 6:5 dB bet-
ter than RLS and NLMS, respectively. Furthermore, sIPNLMS
is still more robust under impulsive noise than all other algo-

rithms. For instance, when a loud snap occurs at about 0:39 s;
sIPNLMS shows about 3:6 dB, 6:4 dB; and 8:8 dB better
misadjustment than IPNLMS, NLMS, and RLS, respectively.
The above results provide insight into the mechanism of the

new algorithm but they are generated by using a single noise
realization. Since we did not have enough noise recordings
to average out the corresponding misadjustments, we used
simulated noise for the following results. Figs. 4(a) and (b)
show the algorithm performances for SPACE08 and FAF05,
respectively, when the simulated passband noise is S�S with
� = 1:65. The S�S noise simulator can be found in [11].
The simulated noise went through exactly the same processing
as the recorded noise above so that SNR� remains 7 dB.
Clearly, sIPNLMS outperforms the rest of the algorithms in
terms of both initial convergence rate and tracking validating
the use of the 1-norm of the a posterior error. Figs. 5(a) and
(b) illustrate the algorithm performances for SPACE08 and
FAF05, respectively, when the simulated baseband noise is
a circular symmetric Gaussian random process. The SNR is
chosen 7 dB for consistency with the previous results. Clearly,
both sIPNLMS and IPNLMS outperform NLMS and RLS,
e.g., in Fig. 5(b), RLS and NLMS show between �4 dB and
�5 dB worse tracking performance than the sparse algorithms.
This result con�rms that RLS and NLMS are not suitable
for sparse UWA channel estimation. In addition, note that
sIPNLMS and IPNLMS have similar performances for both
channels rendering sIPNLMS suitable for either impulsive or
non-impulsive noise environments.

V. CONCLUSION
A new algorithm, the sIPNLMS, was proposed for sparse

channel estimation under S�S noise. The algorithm was de-
rived by minimization of a cost function, which is the sum of
two terms: the �rst term is the Riemannian distance between
the previous and the current channel estimate and the second
term is the p-th power (p < �) of the 1-norm of the a-
posteriori estimation error. The use of the Riemannian distance
modi�es the gradient search direction for faster adaptation
while the 1-norm of the a-posteriori estimation error ensures
robustness to noise impulsiveness. A comparison between
sIPNLMS and IPNLMS, RLS, and NLMS was carried out
by estimating two measured sparse underwater acoustic links
under recorded snapping shrimp ambient noise and simulated
S�S noise. These results con�rmed the superior performance
of sIPNLMS algorithm to all other algorithms. In addition,
simulation results using white Gaussian noise showed that
sIPNLMS and IPNLMS had similar performances rendering
sIPNLMS a promising algorithm for either impulsive or non-
impulsive noise channels.
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Fig. 4. Normalized misadjustment for all algorithms averaged out over 200 SaS noise realizations: (a) SPACE08 channel; (b) FAF05 channel.

Fig. 5. Normalized misadjustment for all algorithms averaged out over 200 Gaussian noise realizations: (a) SPACE08 channel; (b) FAF05 channel.
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