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Adaptive Sparse Channel Estimation under
Symmetric alpha-Stable Noise
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Abstract—We tackle the problem of channel estimation in
environments that exhibit both sparse, time-varying impulse re-
sponses and impulsive noise with Symmetric alpha-Stable (SαS)
statistics. Two novel frameworks are proposed for designing
online adaptive algorithms that exploit channel sparseness and
achieve robust performance against impulses. The first frame-
work generates recursive least-squares (RLS)-type algorithms
based on a differentiable cost function that combines robust non-
linear methods with sparse-promoting L0 norm regularization.
The second framework employs the natural gradient (NG) and
incorporates non-linear methods for the channel prediction error
as well as the L0 norm of the channel taps. From these frame-
works, we derive linear and quadratic complexity algorithms.
The improved performance of the proposed RLS-type and NG-
type algorithms relative to conventional robust algorithms, such
as the recursive least M-estimate (RLM) algorithm and the
recursive least p-norm (RLP) algorithm, is validated by using
extensive computer simulations as well as signal analysis from
an underwater acoustic communications experiment. In addition,
we discovered that RLM is not robust under specific SαS noise
conditions, contrary to the claim in [34]. Finally, our results also
demonstrate the clear superiority of the NG-type algorithms over
their RLS-type counterparts.

Index Terms—Robust system identification, outlier rejection,
robust statistics, M-estimate algorithm.

I. INTRODUCTION

SPARSE channels are typically encountered in wireless
links such as digital TV [1], acoustic echo [2], and un-

derwater acoustic [3]. They are called sparse since most of
the energy of the impulse response is concentrated in a
small fraction of its duration. Exploiting sparseness in channel
estimation by using adaptive filters has gained considerable
interest since the late 1990s [4-6]. It is well known that
improved estimation performance in terms of steady-state
misadjustment and channel tracking can be achieved by using
sparse prior information. In addition, a receiver that explicitly
adapts to a sparse channel can attain reduced complexity if
only the significant channel coefficients are retained.

Proportionate-type algorithms, i.e., algorithms that update
each channel coefficient in proportion to its estimated mag-
nitude were among the first paradigms to use sparse prior
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information [2]. Popular examples are the improved propor-
tionate NLMS (IPNLMS) [7] algorithm and the improved
proportionate affine projection algorithm (IPAPA) [8]. The first
algorithm that used a sparseness-promoting Lp norm (p ∈
(0, 1]) within its cost function was the pNLMS [9]. Based on
the expectation-maximization (EM) algorithm, a sparse RLS,
termed as sparse RLS (SPARLS), was studied in [10]. An L1

norm-regularized RLS based on the least-absolute shrinkage
and selection operator (Lasso) approach was proposed in [11].
On a different track, Slavakis et al [12] proposed a sparse
online algorithm using projections on closed convex sets
and Murakami et al [13] introduced an Adaptive Proximal
Forward-Backward Splitting (APFBS) scheme. Recently, the
authors introduced an algorithmic framework that leveraged
on natural gradient (NG) adaptation combined with L0 norm
regularization [14].

The above papers, among many others, assume that the
observation noise is Gaussian and so using the L2 norm of
the channel prediction error (i.e., the difference between the
observed signal and the filter output) in the cost function is
optimal. However, a number of man-made and physical noise
processes depart from the Gaussian assumption due to their
impulsive nature. Examples are: multiple access interference
in radio channels [15], double talk in acoustic echo cancella-
tion [16], biological noise [17] or ice cracking [18] in various
underwater acoustic channels. Such environments require the
use of robust adaptive filters since L2 norm-based algorithms
suffer severe performance degradation.

Studies that propose sparse channel estimation in the pres-
ence of impulsive noise are scarce. Vega et al proposed a
variable step-size IPNLMS algorithm [19]. Subsequently, an
improved proportionate affine projection sign algorithm (RIP-
APSA) based on the L1 norm of the error signal was intro-
duced by [20]. Yamamoto et al [21] robustified the APFBS
scheme by employing a Huber loss function [22]. A notable
issue with the aforementioned algorithms is that they were
tested in impulsive noise that obeys a Gaussian-mixture
density function. Gaussian-mixture models and the related
Middleton class A model are often used to model impulsive
noise environments (e.g., man-made impulse noise against a
Gaussian noise background) [23]. Although these models lend
themselves to computer simulations, they are not suitable for
modeling many natural noise sources (e.g., snapping shrimp
noise in warm shallow waters [17]). Another drawback of the
Gaussian-mixture distribution is that its tail decays exponen-
tially while empirical evidence manifests that algebraic decay
of heavy-tailed noise processes often occurs in communica-
tions as well as in various fields of engineering, physics, and
economics [24].

The family of alpha-stable distributions provides an accu-
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rate model for heavy-tailed noise [25]. The significance and
validity of alpha-stable models is justified by the stability
property and the Generalized Central Limit Theorem (GCLT).
In this work, we deal with the family of Symmetric alpha-
Stable (SαS) distributions due to its ability to model many
impulsive noise processes in communications channels, and,
in fact, includes the Gaussian density as a special case.

For signal processing applications, the pivotal property of
SαS random processes is their infinite second and higher order
moments. As shown in [25], the minimum dispersion criterion
is an appropriate measure of optimality since minimizing
the error signal dispersion, the average estimation error is
simultaneously minimized. In addition, minimizing the error
dispersion is equivalent to minimizing the fractional lower
order moment (FLOM) of the estimation error. Variants of
LMS and RLS algorithms based on FLOMs were proposed
in the stable signal processing community. Characteristic ex-
amples are the least mean p-norm (LMP) [25], the recursive
least p-norm (RLP) [26], and recursive least mean p-norm
(RLMP) [27]. It is worth stressing that both LMP and RLP
are tailored to real-valued (passband) channels. Recently, the
authors introduced an algorithmic framework for complex-
valued (baseband) channels [28]. That paper serves as a brief
precursor to this work.

Our main contribution is the development of two new
algorithmic frameworks that systematically generate sparse
adaptive filters robust against SαS noise. The first framework
generates RLS-type algorithms. This framework uses an ob-
jective function with two parts: a data fidelity component that
is robust against outliers and a L0 norm regularization com-
ponent. The second framework leverages on natural gradient
(NG) adaptation by using a sparse-aware Riemannian distance.
In addition, this framework incorporates robust non-linear
methods for the channel prediction error and the L0 norm of
the channel taps. Better flexibility in terms of computational
complexity than the RLS-type framework is shown. New lin-
ear and quadratic complexity algorithms are derived. Finally,
all proposed algorithms are tested by identifying experimental
sparse underwater acoustic channels in simulated and real-
life noise with SαS properties. Their improved performance
relative to conventional robust algorithms is demonstrated.
Contrary to Chan and Zou [34], we show that the recursive
least M-estimate (RLM) algorithm is not robust under specific
noise regimes. Furthermore, our analysis manifests the superi-
ority of the NG-type framework over its RLS-type counterpart.

The remainder of this paper is organized as follows: Section
II describes the system model. The RLS-type and the NG-type
frameworks are presented, respectively, in Sections III and IV.
Simulation and experimental results are reported in Section V.
Finally, the paper is concluded in Section VI.

II. NOTATION AND SYSTEM MODEL

A. Notation

Superscripts T, †, and ∗ stand for transpose, Hermitian
transpose, and conjugate, respectively. Column vectors (ma-
trices) are denoted by boldface lowercase (uppercase) let-
ters. The N × N identity matrix is denoted as IN . Let
z ∈ C and p ≥ 1. The Lp norm of z is defined as
|z|p � (|Re{z}|p + | Im{z}|p)1/p. The sign function of z
is defined as csgn(z) � sgn(Re{z}) + j·sgn(Im{z}), where

sgn(·) stands for the sign function of a real scalar. Let z ∈ C
N .

The sign function of z is given by the column vector csgn(z)
with elements csgn(zi), i=0, . . . , N − 1. The Lp norm of z

is defined as ‖z‖p � (
∑N−1

i=0 |zi|pp)1/p. The L0 norm of z,
denoted as ‖z‖0, equals the number of the non-zero entries of
z. The complex gradient of a scalar function f(z) with respect
to z is denoted as ∇zf(z) and is defined in [29].

B. System model

We employ the baseband representation of the channel,
transmitted/received signals, and additive noise process. Let
us consider an impulse response, which is described by
the unknown K-tap vector h[n]=[h0[n]h1[n] . . . hK−1[n]]

T at
discrete time n. In addition, we assume that h[n] is slowly
time-varying and sparse, namely, most of the coefficients are
close to zero and only few of them are large. The received
signal is expressed as

y[n] = h[n]†u[n] + w[n], (1)

where u[n]=[u[n] u[n − 1] . . . u[n − K + 1]]T contains the
K most recent samples of the transmitted signal, and w[n]
denotes the noise. The passband noise samples are assumed
independent and identically distributed (i.i.d.) following the
Symmetric alpha-Stable (SαS) distribution with characteristic
function ϕ(ω)=e−γ|ω|α . The characteristic exponent α ∈ (0, 2]
describes the impulsiveness of the noise (smaller α leads to
more frequent occurrence of impulses) and the dispersion
γ>0 controls the spread of the distribution around its location
parameter (which is zero for our purposes). When α=2,
the SαS probability density function (pdf) boils down to
the Gaussian pdf and γ is equal to half the variance. For
mathematical and practical reasons (it is rare to find SαS noise
with α<1 in practical systems), we restrict our work to the
class of SαS distributions where α ∈ (1, 2] [25]. The objective
of this paper is to perform recursive estimation of h[n] with
limited complexity and memory given sequential observations
{y[i],u[i]}ni=1.

In digital communications, performance analysis is often
reported against the signal-to-noise ratio (SNR) per informa-
tion symbol, denoted as Es/N0, where Es is the energy of
the information symbol and N0 is the power spectral density
(PSD) of the noise. Since the concept of the PSD cannot be
applied in SαS noise, we must resort to a different SNR
measure. An SNR measure for baseband signals is rather
involved because the in-phase and quadrature components
of the SαS noise are generally dependent [30]. In passband,
however, the parameters α and γ can be easily estimated and
so an SNR definition can be readily defined as

Es/N0 (dB) � 10 log10
NsPs

2γ2/α
, (2)

where Ns is the ratio of the symbol interval over the sample
interval, Ps is the received signal power, and γ2/α plays the
same role as the variance. When α=2, equation (2) becomes
the usual Es/N0 definition in Gaussian noise.

III. RLS-TYPE FRAMEWORK

The RLS algorithm is one of the most important adaptive
filter algorithms due to its fast convergence rate in non-
stationary environments, insensitivity to the eigenvalue spread
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of the input correlation matrix, and modular structure that
offers fast implementations (e.g., lattice structure). Hence,
it is desirable to have RLS-type algorithms that are robust
in SαS noise and exploit channel sparseness for improved
performance.

Let us express the a posterior and prior error as ē[i]=y[i]−
ĥ[n]†u[i] and e[i]=y[i] − ĥ[n − 1]†u[i], respectively, where
i ≤ n and ĥ[n] stands for the estimate of h[n]. Elaborating
on the robust filtering approach [31], we consider a real, non-
negative valued loss function, denoted as f(ē), whose purpose
is to down weight large errors due to impulses. We also define
the complex score function ψ(ē)=∂f(ē)/∂ē and the complex
weight function q(ē)=ψ(ē)/ē∗.The proposed cost function is
written as:

J [n] =

n∑
i=0

λn−if (ē[i]) + ζ
∥∥∥ĥ[n]∥∥∥

0
, (3)

where λ ∈ (0, 1) is the forgetting factor and ζ ≥ 0 is a

regularization parameter. The regularizing term
∥∥∥ĥ[n]∥∥∥

0
helps

to further accelerate the convergence of the inactive (close to
zero) filter taps. It is obvious that if different functions f(ē)
and L0 norm proxies are employed, different algorithms will
be generated. Specific examples of f(ē) are given below. For
the remainder of this paper, the L0 norm is approximated by
the differentiable function1

∥∥∥ĥ[n]∥∥∥
0
�

K−1∑
k=0

1− e−η|ĥk[n]|
1 , η > 0, (4)

which is a complex extension of the real L0 norm used in [32].
The parameter ε=1/η defines the interval [−ε, ε] such that

all Re
{
ĥk[n]

}
and Im

{
ĥk[n]

}
that fall within that interval

are attracted towards the zero value. Note that equation (3)
is not a convex cost function, however, if η is close to 10
and ζ is chosen sufficiently small the algorithm converges to
meaningful solutions, as indicated in [32].

The RLS-type algorithm is derived in Appendix A by setting
∇ĥ[n]∗J [n]=0. The following equations summarize the result:

e[n] = y[n]− ĥ[n− 1]†u[n], (5)

k[n] =
q(e[n])Φ[n− 1]−1u[n]

λ+ q(e[n])u[n]†Φ[n− 1]−1u[n]
, (6)

Φ[n]−1 = λ−1
(
Φ[n− 1]−1 − k[n]u[n]†Φ[n− 1]−1

)
, (7)

νk[n] = e−η|ĥk[n]|
1 csgn

(
ĥk[n]

)
, k = 0, . . . ,K − 1, (8)

ĥ[n] = ĥ[n− 1] + k[n]e[n]∗+
λ− 1

λ

ζη

2

(
IK − k[n]u[n]†

)
Φ[n− 1]−1ν[n− 1]. (9)

The algorithm is initialized for ĥ[0]=0 and Φ[0]−1=κ−1IK ,
κ being a small positive real number. It is worthy to note
that if f(ē[i])=ē[i]ē[i]∗ is employed in (3), then q(e[n])=1
and so (5)-(9) will be called the L0-RLS algorithm hereafter.
The L0-RLS algorithm requires O(K2) algebraic operations
per datum. If in addition ζ=0, then the resulting algorithm
becomes the standard RLS [33].

1Strictly speaking the function is not differentiable along the real and
imaginary axis but this is not a problem in practice since we allow the channel
taps to be arbitrarily close to these axes.

A. The L0-RLM algorithm

The work in [34] introduces the recursive least M-estimate
(RLM) algorithm, a real-valued adaptive algorithm based on
Hampel’s three-part redescending M-estimate cost function.
The algorithm is designed to cope with contaminated Gaussian
noise, namely, the observed noise consists of two components:
a Gaussian component and an impulsive interference compo-
nent. In addition, the authors claim that RLM is robust under
SαS noise, however, no performance results were reported
towards that front. We check the validity of this claim in
Section V.

Our aim is to improve RLM to yield lower misadjustment
in sparse channels. To this end, we modify Hampel’s three-
part redescending M-estimate function so that it conforms with
the chosen complex gradient operator [29]. Dropping the time
index for notational convenience, the loss function has the
form

f(ē) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ēē∗

2ξ |ē|2 − ξ2

ξ(T+Δ)-ξ2+ξ
(|ē|2 -T )2

Δ-T
ξ(T +Δ)− ξ2

, 0 ≤ |ē|2<ξ
, ξ ≤ |ē|2<Δ
,Δ < |ē|2<T
, T < |ē|2

, (10)

where the threshold parameters ξ,Δ,and T are used for outlier
suppression. The score and weight function are computed as

ψ(ē) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ē∗
ξ

|ē|2
ē∗

ξ
|ē|2 − T

Δ− T

ē∗

|ē|2
0

, 0 ≤ |ē|2 < ξ

, ξ ≤ |ē|2 < Δ

,Δ < |ē|2 < T

, T < |ē|2

(11)

and

q(ē) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ξ

|ē|2

ξ
|ē|2 − T

Δ− T

1

|ē|2
0

, 0 ≤ |ē|2 < ξ

, ξ ≤ |ē|2 < Δ

,Δ < |ē|2 < T

, T < |ē|2

, (12)

respectively.
We now describe a way to continuously estimate the

threshold parameters ξ,Δ,and T under the assumption of
contaminated Gaussian noise. We stress that our system model
in (1) has no background Gaussian noise. Based on [34],
a robust estimation of the variance of the real part of the
baseband noise is computed by using the median operator as
follows:

σ2
r [n] = λσσ

2
r [n− 1] + c(1− λσ)med(a[n]), (13)

where λσ is a forgetting factor, a[n]=[e2r[n] . . . e
2
r[n −

Nw + 1]]T is the real part of the prior error signal,
and c=1.483(1 + 5/(Nw − 1)) is a finite sample cor-
rection factor that ensures consistent estimates. The vari-
ance of the imaginary part of the baseband noise,
σ2
i [n], is computed similarly. Using the Rayleigh dis-

tribution for |e[n]|2 with parameter σ2[n]=0.5(σ2
r [n] +
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σ2
i [n]), the threshold parameters are chosen by the fol-

lowing expressions: ξ=2.45σ[n] (i.e., Pr{|e[n]|2 < ξ}=0.95),
Δ=2.72σ[n] (i.e., Pr{|e[n]|2 < Δ}=0.975), and T=3.03σ[n]
(i.e., Pr{|e[n]|2 < T }=0.99). The algorithm described by (12)
and (5)-(9) will be called L0-RLM hereafter. The channel
update of the L0-RLM requires O(Nw log2(Nw)) additional
operations for the computation of σ2[n] as compared to L0-
RLS. Finally, note that if ζ=0, then L0-RLM reduces to the
complex form of RLM.

B. The L0-RLSA

As discussed above, the parameters ξ,Δ, T of the L0-RLM
are based on the steady-state error signal. Consequently, the
algorithm performance may be compromised when large chan-
nel fluctuations or large impulses occur during its convergence
period. Note that the performance results in [34] are based on
the condition that no impulses occur during the convergence
period of RLM. Clearly, that is not the case for the channels
considered here.

Here, we propose a loss function f(ē) that does not depend
on any threshold parameters and is resilient to large impulses
through the merits of the L1 norm, that is, f(ē[i])=|ē[i]|1. The
score function is computed as

ψ(ē[i]) = 0.5(csgn(ē[i]))∗ (14)

and the weight function in (6) becomes

q(e[n]) = 0.5(csgn(e[n])/e[n])∗. (15)

The algorithm described by (15) and (5)-(9) will be called the
L0-RLSA (L0 norm-recursive least sign algorithm) hereafter.

C. The L0-RLP algorithm

The work in [26] introduces the RLP algorithm, a real-
valued adaptive algorithm that exhibits robust performance
in SαS noise. The RLP is established on the important
observation that the mean square error (MSE) is not a valid
optimality criterion since SαS distributions lack moments of
order p ≥ α. However, all moments of order p<α do exist and
so the minimum dispersion error is mathematically meaningful
as an optimality criterion. This fact motivates the usage of
the Lp norm (p ∈ [1, α)) of the a posterior error in the cost
function.

Here, we enhance RLP so that it yields lower misadjustment
in sparse channels. Inspired by the structure of the RLM loss
function, we use a mixture of L2 and Lp norms as follows:

f(ē) �

⎧⎨
⎩

ēē∗

|ē|pp
|Δ|p

, 0 ≤ |ē|2 < ξ
, ξ ≤ |ē|2 < Δ
,Δ ≤ |ē|2

, (16)

where the threshold parameters ξ, Δ are proportional to the
dispersion γ of the observed passband SαS noise. The score
and weight function are computed as

ψ(ē) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ē∗

p

2
[|Re{ē}|p−1 sgn(Re{ē})

−j |Im{ē}|p−1
sgn(Im{ē})]

0

, 0 ≤ |ē|2<ξ

, ξ ≤ |ē|2<Δ

,Δ ≤ |ē|2
(17)

and

q(ē) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

p

2ē∗
[|Re{ē}|p−1

sgn(Re{ē})
−j |Im{ē}|p−1

sgn(Im{ē})]

0

, 0 ≤ |ē|2<ξ

, ξ ≤ |ē|2<Δ

,Δ ≤ |ē|2

,

(18)

respectively. The algorithm described by (5)-(9) and (18) will
be called L0-RLP hereafter. The L0-RLP requires O(K2)
algebraic operations per datum. If in addition ζ=0, then the
L0-RLP reduces to the complex form of RLP.

IV. FRAMEWORK BASED ON THE NATURAL GRADIENT

Below, we propose two algorithmic frameworks that lever-
age on natural gradient (NG) adaptation. Before we embark
on our discussion, it is instructive to define the a priori error
vector,

e[n]∗ = [e[n]∗ e[n− 1]∗ . . . e[n− L+ 1]∗]T

= y[n]∗ −U[n]†ĥ[n− 1], (19)

and a posteriori error vector,

ē[n]∗ = [ē[n]∗ ē[n− 1]∗ . . . ē[n− L+ 1]∗]T

= y[n]∗ −U[n]†ĥ[n], (20)

where U[n]=[u[n]u[n−1] . . .u[n−L+1]] is the K×L matrix
of input samples and y[n]=[y[n] y[n − 1] . . . y[n − L + 1]]T

contains the L most recent output samples. Let us also denote
the channel update vector as

r[n] = ĥ[n]− ĥ[n− 1]. (21)

Then, the a-posteriori error vector be also be written as:

ē[n]∗ = e[n]∗ −U[n]†r[n], (22)

where (22) follows from substituting (21) into (20).

A. Background

The general framework for online linear prediction algo-
rithms proposed by Kivinen and Warmuth [4] is the stepping
stone for the cost functions proposed in this section. This
framework suggests that an efficient online algorithm must
exhibit a balance between its requirements to be conservative
(i.e., a radical change from ĥ[n−1] to ĥ[n] should be avoided)
and corrective (i.e., better channel prediction must occur if the
same input and output were to be observed at two consecutive
times). Usually, the correctiveness and conservativeness are on
opposite ends, thus an efficient cost function (to be minimized
with respect to ĥ[n]) could be written as

J [n] = f(ē[n]) + δ D(ĥ[n], ĥ[n− 1]), (23)

where f(ē[n]) is a scalar loss function and D(ĥ[n], ĥ[n− 1])
denotes the scalar distance function between ĥ[n] and ĥ[n−1].
The distance function may not be a metric. For instance,
the Kullback-Leibler (KL) divergence is used as D in [4].
The magnitude of the positive parameter δ keeps the relative
balance between correctiveness, induced by the loss function,
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and conservativeness, induced by the distance function. In
addition, this framework lends itself to incorporating addi-
tional properties for ĥ[n]. For example, if the filter energy is
constrained to be equal to X, then this constraint is introduced
via a new Lagrangian multiplier ζ, as follows:

J [n] = f(ē[n]) + δ D(ĥ[n], ĥ[n− 1])

+ζ

(∥∥∥ĥ[n]∥∥∥2
2
−X

)
. (24)

This framework is the basis for many adaptive algorithms;
cf [19], [37], [28].

B. Quadratic complexity framework

Using the above algorithmic framework, the merits of both
robust methods and sparseness constraints can be integrated
into a single objective function as:

J [n] =

n∑
i=n−L+1

f (ē[i]) + δ r[n]†P[n− 1]r[n]

+ ζ
∥∥∥ĥ[n]∥∥∥

0
. (25)

The loss function f (ē[i]) ensures robustness against outliers,
δ, ζ ≥0 are regularization parameters and L is the length
of the observation window. The choice of L is upper-limited
(usually L ≤10) by the time-variation of the channel as well
as the hardware memory/complexity requirements. The matrix
P[n] is Hermitian and positive definite whose entries depend
on ĥ[n], i.e., P[n] is a K × K Riemannian metric tensor.
Thus, the term r[n]†P[n − 1]r[n] denotes the Riemannian
distance between ĥ[n] and ĥ[n − 1]. The fact that ĥ[n] lies
in a non-isotropic (Riemannian) space is based on the prior
knowledge that h[n] must be close to some axis of CK

since most of the filter taps are near zero. In addition, in
non-isotropic (Riemannian) spaces, it is well known that the
ordinary Euclidean gradient does not represent the steepest
ascent direction of a cost function [36]. Thus, regularizing J [n]
with a Riemannian distance is well motivated. In addition, the
regularizing term

∥∥∥ĥ[n]∥∥∥
0

(approximated by (4)) accelerates
the convergence of the zero-valued coefficients. The parameter
ζ should be tuned close to 10−5 for moderate SNR, as
suggested in [32].

A plausible question is: ”how could one find P for any
sparse channel?”. The study in [35] suggests that the parameter
space of a sparse channel may be visualized as a space having
the following warping: for regions close to the coordinate axes,
distances in any direction orthogonal to those axes should
be larger than the Euclidean distances. A good choice is
P[n]−1=G[n], where G[n] is the proportionate matrix of the
PNLMS algorithm [2]. Given the superiority of IPNLMS [7]
over PNLMS, we choose G[n] to be a diagonal matrix with
elements {gk[n]}K−1

k=0 , which are computed as follows:

�k[n] = (1− β)

∥∥∥ĥ[n]∥∥∥
1

K
+ (1 + β)

∣∣∣ĥk[n]∣∣∣
1
, (26)

gk[n] =
�k[n]∑K−1

k=0 �k[n]
, (27)

where β ∈ [−1, 1]. Substituting (26) in (27), we have

gk[n] =
1− β

2K
+ (1 + β)

∣∣∣ĥk[n]∣∣∣
1

2
∥∥∥ĥ[n]∥∥∥

1
+ ε

, (28)

where ε denotes a small positive constant to avoid division
by zero during initialization of the algorithm. Note that if
β=-1, P[n] becomes proportional to the identity matrix, i.e.,
the channel space is Euclidean (the channel is assumed non-
sparse). For very sparse channels, β should be chosen between
0 and 0.5. Furthermore, δ is chosen as [7]

δ = (1 − β)δ′/2K, (29)

where δ′ is the regularization parameter of the normalized
least-mean-square (NLMS) algorithm.

The general type of the algorithm is derived by computing
∇r[n]∗J [n]=0. The algebra is presented in the Appendix B.
The channel update equations are summarized below:

e[n]∗ = y[n]∗ −U[n]†ĥ[n− 1], (30)

A[n] = G[n− 1]U[n], (31)

B[n] =
(
U[n]†A[n] + δQ[n]−1

)−1
, (32)

C[n] = A[n]B[n], (33)

D[n] = G[n− 1]−C[n]A[n]†, (34)

νk[n] = e−η|ĥk[n]|
1 csgn

(
ĥk[n]

)
, k = 0, . . . ,K − 1, (35)

ĥ[n] = ĥ[n− 1] + μC[n]e[n]∗ − μζη

2δ
D[n]ν[n− 1], (36)

where μ ∈ (0, 1] is the step-size parameter. Since G[n] is
diagonal and L � K , the required number of algebraic
operations is O(K2). Initialization of the algorithm starts with
ĥ[0]=0.

In light of the above framework, new and existing algo-
rithms are derived as follows:

• if f(ē)=ēē∗, then Q[n]=IL and (30)-(36) describe the
L0-IPAPA [14]. If in addition β=-1 and ζ=0, then the
L0-IPAPA reduces to the affine projection algorithm
(APA) [33],

• if q(ē) is given by (12), (30)-(36) will be called L0-
IPMAPA (L0 norm-improved-proportionate M-estimate
affine projection algorithm) hereafter. If in addition ζ=0,
then the L0-IPMAPA reduces to IPMAPA (note O(K)
computational complexity),

• if q(ē) is given by (18), (30)-(36) will be called
L0-IPpNAPA (L0 norm-improved-proportionate p-norm
affine projection algorithm) hereafter. If in addition ζ=0,
then the L0-IPpNAPA reduces to IPpNAPA (note O(K)
computational complexity).

C. Linear complexity framework

The O(K2) complexity of L0-IPMAPA and L0-IPpNAPA
may become objectionable from a hardware perspective when
long filters are required. Such is the case in acoustic echo
or broadband underwater acoustic channels. Towards reducing
the computational complexity, we propose the following cost
function:

J [n] =

n∑
i=n−L+1

f (ē[i]) (37)

subject to r[n]†P[n− 1]r[n] ≤ μ2. (38)
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Using Lagrange multipliers, the modified cost function be-
comes

J [n] =

n∑
i=n−L+1

f (ē[i]) + δ
(
r[n]†G−1[n− 1]r[n]− μ2

)
(39)

where δ here is the Lagrange multiplier.
Setting ∇r[n]∗J [n]=0, we have

−
n∑

i=n−L+1

ψ(ē[i])u[i] + δG−1[n− 1]r[n] = 0. (40)

Note that it is tedious to solve for r[n] using (40) since
{ψ(ē[i])}ni=n−L+1 depends on ĥ[n]. We circumvent this issue
by assuming ē[i] � e[i], i=n − L + 1, . . . , n, at steady-state.
Then, r[n] is expressed as:

r[n] =
1

δ
G[n− 1]U[n]ψ[n], (41)

where ψ[n]=[ψ(e[n]) . . . ψ(e[n − L + 1])]T. To obtain the
Lagrange multiplier δ, we substitute (41) into (38). Hence,
we have

δ =
1

μ

√
‖x̄[n]‖22, (42)

x̄[n] = G[n− 1]1/2U[n]ψ[n], (43)

where G[n]1/2 denotes the Cholesky decomposition of G[n].
Recall that G[n] is diagonal and so G[n]1/2 is equal to the
square root of the entries of G[n]. Hence, the channel update
equation is given by the formula

ĥ[n] = ĥ[n− 1] + μ
G[n− 1]1/2x̄[n]√

κ+ ‖x̄[n]‖22
, (44)

where μ>0 and κ is a small positive constant used to avoid
possible division by zero during initialization of the algorithm.
Since L � K , it is straightforward to see that (44) requires
O(K) operations per datum. Also note the following:

• if ψ(e[i]) is given by (11), then (44) will be called
NGMAPA (natural gradient-based M-estimate affine pro-
jection algorithm) hereafter,

• if ψ(e[i]) is given by (17), then (44) will be called NG-
pNAPA (natural gradient-based p-norm affine projection
algorithm) hereafter,

• if ψ(e[i]) is given by (14), then (44) will be called
NGAPSA (natural gradient-based affine projection sign
algorithm) hereafter. If β=-1, then the NGAPSA reduces
to the complex form of the APSA [37]. If L=1, then
the NGAPSA reduces to the NGSA (natural gradient sign
algorithm).

V. PERFORMANCE UNDER SαS NOISE

A theoretical analysis of the proposed frameworks is ex-
ceptionally difficult because SαS distributions do not possess
second order moments. In this section, the effectiveness of all
algorithms derived by the two frameworks is tested by run-
ning numerical simulations as well as analyzing experimental
data. Impulse responses obtained from broadband underwater
acoustic communications channels are used to support our
findings.

Fig. 1. The time-varying channel used in simulations. The x-axis shows
multipath delay, the y-axis shows absolute time and the z-axis shows the
channel amplitude in linear scale.

A. Simulation results

The time-varying channel to be estimated is shown in
Figure 1. This channel corresponds to a wideband underwater
acoustic link that was measured during the Focused Acoustic
Fields (FAF) experiment. Each channel snapshot was esti-
mated at rate of 6250Hz. Figure 1 is generated by keeping
each channel snapshot fixed for 8ms. For further details
about the FAF experimental setup, the interested reader is
directed to [14]. The channel to be identified is clearly sparse
and the filter length required to capture the entire impulse
response is 371 taps. The simulated input signal is inde-
pendent white complex Gaussian noise with unit power and
the output is generated according to (1). The simulated SαS
noise is generated in passband using [38] and then is shifted
to baseband using the lowpass filter of the FAF experiment.
Four types of noise series are considered, i.e., 1) high rate of
impulses in low SNR (α =1.2, Es/N0=15 dB), 2) high rate
of impulses in high SNR (α =1.2, Es/N0=25 dB), 3) low rate
of impulses in low SNR (α =1.65, Es/N0=15 dB), and 4)
low rate of impulses in high SNR (α =1.65, Es/N0=25 dB).
The performance measure is the normalized misadjustment (in
dB), 20 log10(||h[n]−ĥ[n]||2/||h[n]||2), and is computed after
averaging 100 independent runs.

The parameters of all algorithms are chosen as follows:

• λ=0.995 for all RLS-type filters,
• λσ=0.99 for all M-estimate filters,
• η=10 for all filters with L0 norm,
• β=0.5, L=4 for all NG-type filters,
• μ=0.1, δ′=10, ζ=5 · 10−4 for L0-IPpNAPA, IPpNAPA,

L0-IPMAPA and IPMAPA,
• ζ=0.5 for all RLS-type filters with L0 norm;
• μ=0.25, ξ=2γ, Δ=100γ for NGpNAPA and NGMAPA;
• p=α-0.15 2, ξ=2γ for L0-RLP, RLP, L0-IPpNAPA, and

NGpNAPA.

In Figures 2(a)-(d), we have plotted the curves of all RLS-
type algorithms for different values of α and Es/N0. The
following observations are in order:

2p must be as close to α as possible but not equal to α. In practice, α is
estimated so one should be conservative on the choice of p.
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Fig. 2. Learning curves of RLS-type algorithms for different α and Es/N0; RLM: (a) Nw=12, (b) Nw=12, (c) Nw=40, (d) Nw=40. RLP/L0-RLP: (a)
Δ=10γ, (b) Δ=40γ, (c) Δ=6γ, (d) Δ=100γ.

Fig. 3. Learning curves for different α and Es/N0. L0-IPMAPA: (a) Nw=12, (b) Nw=12, (c) Nw=12, (d) Nw=40. L0-IPpNAPA: (a) Δ=10γ, (b) Δ=40γ,
(c) Δ=10γ, (d) Δ=100γ.
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Fig. 4. Learning curves of APSA, NGSA, NGAPSA, NGMAPA, and NGpNAPA for different α and Es/N0

Fig. 5. Learning curves of L0-RLP, NGpNAPA, and L0-IPpNAPA for different α and Es/N0.
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• L0-RLP is consistently robust and exhibits the lowest
misadjustment for α=1.2 regardless the Es/N0.

• In spite of the SNR, L0-RLM cannot cope with impulsive
noise for α=1.2. RLM [34] shows similar behavior (not
shown for brevity). On the other hand, L0-RLM shows
similar misadjustment with L0-RLP and L0-RLSA for
α=1.65. These results are contrary to the general claim
that RLM is robust in SαS noise.

• The L0-RLSA is consistently robust but exhibits slower
convergence rate than L0-RLP for α=1.2. Note though
that L0-RLSA is easier to use than L0-RLM or L0-RLP
since it depends on fewer parameters.

• The sparseness effect of the L0 norm improves RLP [26]
for all pairs of α and Es/N0. Similar results hold for
RLM and RLSA and are omitted for brevity.

• As expected, L0-RLS is not robust against impulsive
noise (its misadjustment is greater than 0 dB for α=1.2
and is not shown for visualization purposes).

Figures 3(a) through (d) present a comparison of the mis-
adjustment of all algorithms derived from (30)-(36). We make
the following observations:

• L0-IPpNAPA is consistently robust and exhibits the low-
est misadjustment for α=1.2 regardless the Es/N0.

• In spite of the SNR, L0-IPMAPA cannot cope with
impulsive noise for α=1.2. However, it shows similar
performance with L0-IPpNAPA for α=1.65.

• The sparseness effect of the L0 norm is validated since
L0-IPpNAPA is consistently superior over both IPpNAPA
and IPMAPA.

• L0-IPAPA [14] fails for α=1.2, it has poor performance
for α=1.65 and Es/N0=15 dB, but it shows simi-
lar performance with L0-IPpNAPA when α=1.65 and
Es/N0=25 dB.

All linear complexity algorithms stemming from (44) are
compared in Figures 4(a)-(d). Note the following:

• The NGpNAPA consistently achieves the best conver-
gence rate all pairs of α and Es/N0.

• NGpNAPA, NGMAPA and NGAPSA consistently
demonstrate similar channel tracking.

• Regarding the effect of the observation window L ,
the NGSA shows consistently slower convergence speed
among all other sparse algorithms, however, the algorithm
exhibits the best tracking for Es/N0=15 dB regardless the
choice of α. This result is justified by noting that the error
term in the cost function becomes smaller (recall NGSA
uses L=1) in steady state and so NGSA becomes more
robust (conservative) against impulses.

• The sparseness of all proposed algorithms is confirmed
since the non-sparse (but robust) APSA [37] exhibits poor
performance for all pairs of α and Es/N0.

In Figures 5(a)-(d), we compare the best algorithms from
each framework. In particular, L0-RLP is compared with L0-
IPpNAPA and NGpNAPA. In light of the results presented,
we observe that:

• The NG-type algorithms outperform L0-RLP.
• Although L0-IPpNAPA uses a smaller step-size μ than

NGpNAPA, it shows faster convergence for α=1.2. Fur-
thermore, L0-IPpNAPA exhibits up to 2dB better tracking
than NGpNAPA when α=1.6 despite the SNR.

B. Experimental results

The dataset analyzed here was recorded during the ROMA-
NIS 2010 experiment in the area of Selat Pauh in Singapore
waters. The transmitter was mounted on a rigid tripod 2.5m
above the seabed. The receiver was a 1.3m diameter, 2-
dimensional circular array consisted of 508 acoustic sen-
sors [40]. Here, we analyze data from one sensor of the array.
The average water depth was about 15m and the transmitter-
receiver range was about 80m. The transmitted signal was
a 104 bits/s-rate, BPSK-modulated, pseudo-random data. The
PN-sequence was pulse-shaped by a square-root cosine filter
with roll-off factor 0.25 and truncation length ± 5 symbol
intervals. The resulting waveform was modulated onto a
30 kHz carrier frequency.

A notable feature of this channel is its very high SNR due
to the very short range. To test our algorithms in a realis-
tic scenario, on-site recorded ambient noise is appropriately
scaled and added to the passband received signal so that
Es/N0=15 dB. Prior to adding extra noise to the received
signal, the noise series is bandpass filtered for estimating the
SαS parameters α (based on [41]) and γ (based on [42]). In
particular, we find that α=1.44 and γ=715.28. Figure 6(a)
illustrates the received passband signal after noise addition and
Figure 6(b) validates that the ambient noise is SαS distributed.

Prior to channel estimation, the received signal is shifted to
baseband, low-pass filtered, and downsampled to 1 sample/bit.
Since the channel is unknown, the misadjustment cannot be
applied here. Consequently, the mean absolute error (MAE),
defined as

MAE[n] =
1

n

n∑
i=1

|y[i]− ĥ[i− 1]†u[i]|1

=
1

n

n∑
i=1

∣∣∣∣(h[i]− ĥ[i− 1]
)†

u[i] + w[n]

∣∣∣∣
1

(45)

is utilized as a performance metric. Note that when the channel
estimate is very close to the true channel, the MAE converges
to the first order moment E {|w[n]|1}. The dB scale of the
MAE is defined as 20 log10(MAE). It is important to stress
that we do not change the parameter values used in simulations
except for Δ=10γ (L0-RLP and L0-IPpNAPA) and Nw=12
(L0-RLM and L0-IPMAPA).

The time evolution of the estimated channel amplitude is
shown in Figure 7. For a sampling rate of 1 sample/bit, the
required length of the adaptive filter is 206 taps. Clearly, the
acoustic channel has a sparse multipath structure and any
amplitude fluctuations are attributed to environmental changes
since both the transmitter and the receiver are stationary.

In light of the results shown in Figure 8(a), we observe that
L0-RLP shows the best convergence rate but similar channel
tracking with L0-RLSA. In addition, L0-RLP outperforms
RLP [26] validating the sparseness effect of the L0 norm.
L0-RLM achieves inferior performance against L0-RLP and
L0-RLSA. These results are in close agreement with the
simulation results shown in Figure 2(a).

Figure 8(b) shows the MAE performances of all algorithms
derived by (30)-(36). L0-IPpNAPA presents better conver-
gence rate but same tracking as L0-IPMAPA. As expected,
L0-IPAPA shows higher MAE than its robust counterparts. It
is reassuring to note that these results are in agreement with
those shown in Figure 3(c).
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Fig. 6. (a) received passband signal for Es/N0=15dB; (b) goodness of fit of passband ambient noise series to SαS distribution.

Fig. 7. Snapshots of the ROMANIS channel. The x-axis shows multipath
delay, the y-axis shows absolute time and the z-axis shows the channel
amplitude in linear scale. The snapshots are generated at the bit rate.

Figure 8(c) compares all linear complexity algorithms gen-
erated by (44). Clearly, the NGpNAPA exhibits the best perfor-
mance. The NGSA shows the largest MAE among all sparse
algorithms. As expected, the sparse-indifferent APSA [37]
shows the worst behavior. Observe that these experimental
results are in close agreement with the simulation results
shown in Figure 4(c).

Figure 8(d) combines the results from Figures 8(a)-(c)
and compares L0-RLP with L0-IPpNAPA and NGpNAPA.
The NG-type algorithms outperform L0-RLP validating the
superiority of the NG-type framework. The L0-IPpNAPA
achieves faster convergence than NGpNAPA. On the other
hand, NGpNAPA demonstrates slightly better channel track-
ing. Again, note that these results are in close agreement with
the simulation results shown in Figure 5(a).

VI. DISCUSSION AND CONCLUSIONS

We investigated two frameworks for developing complex-
valued sparse robust adaptive filters. Although the focus of
this paper was on sparse channel estimation in the presence
of SαS noise, the proposed algorithms can be applied in any
field where noisy samples are obtained from a sparse linear
time-varying system.

The first framework was inspired by the RLS algorithm
and proposed a cost function that coupled robust methods for
outlier suppression with a L0 norm penalty. Three new O(K2)

algorithms were generated: the L0-RLM, the L0-RLP, and the
L0-RLSA. Both computer simulations and experimental data
analysis verified that these algorithms improve the traditional
robust algorithms RLM [34] and RLP [26]. We also found that
L0-RLP and L0-RLSA were consistently robust regardless of
noise parameter α while L0-RLM/RLM lost robustness when
α was close to one. Our results contradict the claim in [34]
that RLM is generally robust in SαS noise.

The second framework took advantage of the non-isotropic
(Riemannian) space of the channel and generated robust
algorithms based on NG adaptation. Two O(K2) algorithms,
i.e., the L0-IPMAPA and the L0-IPpNAPA were introduced.
Our data analysis revealed that the L0-IPpNAPA was robust
despite the choice of α but the L0-IPMAPA (like L0-RLM)
lost robustness when α was close to one. In addition, three
O(K) algorithms were introduced, i.e., the NGMAPA, the
NGpNAPA and the NGAPSA. These algorithms demonstrated
firmly robust performance for all SαS noise regimes and
exhibited comparable channel tracking with their O(K2)
counterparts. This result is very promising from a hardware
implementation point of view since one could start with an
O(K2) algorithm to achieve fast convergence followed by an
O(K) algorithm for fast tracking.

Elaborating on the loss function f(ē), our results demon-
strated that a mixture of L2 and Lp norms is more efficient in
terms of convergence rate than the L1 norm or the Hampel’s
M-estimate function.

Finally, our results demonstrated the clear superiority of the
NG-framework over the RLS-framework in sparse channels.
This is due to the fact that the NG-type filters use the
Riemannian distance to modify the gradient search direction
for faster adaptation. It would be intriguing to incorporate a
Riemannian distance in the RLS-type framework to test its
algorithmic performance. We leave this challenge as a future
research direction.

APPENDIX A
DERIVATION OF (5)-(9)

Computing ∇ĥ[n]∗J [n], where J [n] is given by (3), we
have:

∇ĥ[n]∗J [n] = ∇ĥ[n]∗

(
n∑

i=0

λn−if(ē[i])

)

+∇h[n]∗
(
ζ
∥∥∥ĥ[n]∥∥∥

0

)
. (46)
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Fig. 8. Learning curves of proposed algorithms based on experimental data.

Computing each of the above terms individually, we have

∇ĥ[n]∗

(
n∑

i=0

λn−if(ē[i])

)

=

n∑
i=0

λn−i ∂f(ē[i])

∂ē[i]

∂ē[i]

∂ĥ[n]∗
(47)

= −
n∑

i=0

λn−iψ(ē[i])u[i] = −
n∑

i=0

λn−iq(ē[i])ē[i]∗u[i] (48)

= −
n∑

i=0

λn−iq(ē[i])
(
y[i]∗ − u[i]†ĥ[n]

)
u[i] (49)

= −
n∑

i=0

λn−iq(ē[i])y[i]∗u[i]

+

n∑
i=0

λn−iq(ē[i])
(
u[i]u[i]†

)
ĥ[n] (50)

where (47) holds due to the chosen gradient operator [29]. The
gradient of

∥∥∥ĥ[n]∥∥∥
0

with respect to hk[n]∗, k = 0, . . . ,K−1,

is equal to

∇hk[n]∗
(
ζ
∥∥∥ĥ[n]∥∥∥

0

)
=
ζη

2
e−η|ĥk[n]|

1 csgn
(
ĥk[n]

)
. (51)

We now define the vector ν[n] with entries

νk[n] = e−η|ĥk[n]|
1 csgn

(
ĥk[n]

)
, k = 0, . . . ,K − 1. (52)

Computing ∇ĥ[n]∗J [n]=0 and after some algebra we have

n∑
i=0

λn−iq(ē[i])
(
u[i]u[i]†

)
ĥ[n]

=

n∑
i=0

λn−iq(ē[i])y[i]∗u[i]− ζη

2
ν[n]. (53)

From the above equation, it is not straightforward to find ĥ[n]
since knowledge of ē[i] implies knowledge of ĥ[n]. However,
at steady-state, it is plausible to assume that ē[n] � e[n].
Following [34], [26], we define the weighted complex auto-
correlation matrix, Φ[n], and the weighted complex cross-
correlation vector, p[n], as:

Φ[n] =
n∑

i=0

λn−iq(e[i])
(
u[i]u[i]†

)
= λΦ[n− 1] + q(e[n])

(
u[n]u[n]†

)
, (54)

p[n] =

n∑
i=0

λn−iq(e[i])y[i]∗u[i]

= λp[n− 1] + q(e[n])y[n]∗u[n], (55)

respectively. Hence, (53) can be written as

Φ[n]ĥ[n] = p[n]− ζη

2
ν[n] (56)

and so

ĥ[n] = Φ[n]−1

(
p[n]− ζη

2
ν[n]

)
. (57)
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To find a recursive solution similar to RLS, we need to find
a recursion for

t[n] = p[n]− ζη

2
ν[n] = p[n]− ν̃[n] (58)

before invoking the matrix inversion lemma to compute
Φ[n]−1. Elaborating as in [39], we note that

t[n] =

λp[n− 1] + q(e[n])y[n]∗u[n]− ν̃[n]

+ λν̃[n− 1]− λν̃[n− 1] (59)

� λ (p[n− 1]− ν̃[n− 1]) + q(e[n])y[n]∗u[n]
+ (λ− 1)ν̃[n− 1] (60)

= λt[n− 1]

+ q (e[n]) y[n]∗u[n] + (λ− 1)ν̃[n− 1] (61)

where (61) is obtained by assuming ν̃[n−1] � ν̃[n]. Applying
the matrix inversion lemma to compute Φ[n]−1, we have that

Φ[n]−1 = λ−1
(
Φ[n− 1]−1 − k[n]u[n]†Φ[n− 1]−1

)
, (62)

where k[n] is given by

k[n] =
q(e[n])Φ[n− 1]−1u[n]

λ+ q(e[n])u[n]†Φ[n− 1]−1u[n]
. (63)

Hence, the update for ĥ[n] becomes

ĥ[n] = ĥ[n− 1] + k[n]e[n]∗+
λ− 1

λ

ζη

2

(
IK − k[n]u[n]†

)
Φ[n− 1]−1ν[n− 1]. (64)

APPENDIX B
DERIVATION OF (30)-(36)

Computing ∇r[n]∗J [n], where J [n] is given by (25), we
have:

∇r[n]∗J [n] = ∇r[n]∗

(
n∑

i=n−L+1

f(ē[i])

)

+∇r[n]∗
(
δr[n]†P[n− 1]r[n]

)
+∇r[n]∗

(
ζ
∥∥∥ĥ[n]∥∥∥

0

)
. (65)

Computing each of the above terms individually, we have

∇r[n]∗

(
n∑

i=n−L+1

f(ē[i])

)

= −
n∑

i=n−L+1

ψ(ē[i])u[i] = −
n∑

i=n−L+1

q(ē[i])ē[i]∗u[i] (66)

= −
n∑

i=n−L+1

q(ē[i])(e[i]∗ − u[i]†r[n])u[i] (67)

= −
n∑

i=n−L+1

q(ē[i])e[i]∗u[i]+

n∑
i=n−L+1

q(ē[i])
(
u[i]u[i]†

)
r[n] (68)

= −U[n]Q[n]e[n]∗ +U[n]Q[n]U[n]†r[n], (69)

where Q[n] is an L × L diagonal matrix with elements
q(ē[n]), ..., q(ē[n− L+ 1]). We also have

∇r[n]∗
(
δr[n]†P[n− 1]r[n]

)
= δP[n− 1]r[n]. (70)

The gradient of
∥∥∥ĥ[n]∥∥∥

0
with respect to rk[n]

∗, k =

0, . . . ,K − 1, is equal to ν[n] from (52).
Setting ∇r[n]∗J [n]=0 and combining terms we have the

following vector equation:(
δP[n− 1] +U[n]Q[n]U[n]†

)
r[n] +

ζη

2
ν[n] =

U[n]Q[n]e[n]∗. (71)

From the above equation, we note that it is tedious to solve
for r[n] since ν[n] depends on ĥ[n] in a non-linear fashion. At
steady-state, however, it is plausible to assume that ē[n] � e[n]
and thus, ν[n] � ν[n−1]. Using this assumption, we can solve
for r[n] by using the matrix inversion lemma [33]. Thus, we
have:

r[n] = C[n]e[n]∗ − ζη

2δ
D[n]ν[n− 1], (72)

where

A[n] = P[n− 1]−1U[n] = G[n− 1]U[n] (73)

B[n] =
(
U[n]†A[n] + δQ[n]−1

)−1
(74)

C[n] = A[n]B[n] (75)

D[n] = G[n− 1]−C[n]A[n]† (76)

Furthermore, to exercise control over the change of the tap
values from one iteration to the next, we introduce a step size
parameter, μ ∈ (0, 1]. Thus, the channel update equation is
deduced as follows:

ĥ[n] = ĥ[n− 1] + μC[n]e[n]∗ − μζη

2δ
D[n]ν[n− 1]. (77)
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