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Abstract - We examine the use of Singular Spectrum efficiently in classification ofhumpback whale song [2]. The
Analysis (SSA) technique as an alternative technique to using ASC algorithm was designed to perform the automated
standard wavelet shrinkage schemes for the purpose of de- detection and extraction ofthe four different types of signals,
noising mixtures of tonals, transients and Gaussian noise. Gaussian (spectrally smooth noise), tonals, transients and
Wavelet schemes require a calculation of a threshold to time-frequency transients [3]. Each stage of extraction relied
determine which components are taken to be signal and noise. If on the DJE.
the noise component is Gaussian, then threshold can be
determined by using an appropriate estimator. However, in the While the ASC algorithm is successful at decomposing a
presence of strong tonal content the Gaussian threshold signal into spectrally smooth noise, tonals, transients and
estimators do not give optimal performance. One method is to time-frequency transients, it is found necessary to provide a
iteratively shift the threshold until some performance criterion bias to threshold value calculated by the DJE where the noise
has been maximized. However this frequently leads to over de-
noising this time series. Since the wavelet basis is chosen to best iS non-Gaussian. The bias iS set manually by a process of
represent the signal of interest, over de-noising can cause trial anderror
artifacts to appear similar to the signal of interest. In most This paper explores the technique of singular spectrum
applications this can not be tolerated. analysis as a tool for de-noising acoustic signals. We show

SSA has advantages in that the basis of decomposition is that SSA can successfully decompose a time series into many
derived from the time series itself. So-called Empirical
Orthogonal Functions (EOFs) are derived from a lag matrix compronentsewh chcat brtoupetogethralse tsen
created from the time series. Singular Value Decomposition satisptiroet such as Ktoimsetrm a
(SVD) is then used to decompose a time series into a number of and spectrally smooth noise time-series.
time series components.

In the case of signal separation or de-noising the time series
components can be combined by using their statistical II. SINGULAR SPECTRUM ANALYSIS
properties. We examine the use of higher order statistics, to Singular Spectrum Analysis (SSA) is a Singular Value
group components into tonals, transient, and Gaussian noise. By Decomposition (SVD) based procedure that decomposes a
using the properties of the kurtosis for these three types of time series into a number of times series components. The
signal, the grouping of components can be done in a more
formal manner, than the thresholding technique found in procedureuses Empirical Orthogonal Functions (BOF) as the
wavelet schemes. basis of representation. SSA has seen application in financial

The technique is demonstrated on test data consisting of and applied physics to detect trends in data [4].
dolphin clicks in the presence of tonal and Gaussian noise. Briefly the structure of the SSA algorithm is this: A
Results are also shown for real data of a dolphin click series lagged trajectory matrix is formed from the times series to be
while echo- locating on a target. It is critical for future work decomposed. The number of lags determines the number of
that after de-noising, the shape of the dolphin clicks is components the time series will be decomposed into. An
preserved, and the recorded reflections from the target are SVD is taken of the trajectory matrix; the resulting
adequately de-noised, without introducing artifacts which could . .

r u i
be mistaken for reflections. We discuss the results of the SSA eigentl arerecons edintot i p
and evaluate its potential for de-noising applications. diagonal averagig (Hankelisation).

Let fk for k = O,1,...,N - I be a time series of length N,
I. INTRODUCTION and L be an integer corresponding to the maximum number

Wavelet packet shrinkage has been one of the main of lags where 1 <L <N.
methods to de-noise signals. Threshold estimators are used to
determine a threshold below which coefficients of the
wavelet packet decomposition are reduced (Soft threshold) or
removed (Hard threshold). The assumption is that the noise
component is not well represented in the wavelet basis, and
constitutes the smaller coefficients. Threshold estimators
like Donoho-Johnson estimator (DIE) [1] has been shown to
be the optimum threshold estimator when the noise
component is Gaussian. This approach has been used
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We set K = N - L - 1 and define the L-lagged trajectory f1j H(X1) for i = 1,2,...L (6)
(Hankel) matrix to be

Jo fi f2 * t fK-l From (4)
f f2 f3 ..fK L LL

X- f2 f3 fK. (1) fk=H(X) XH(Xl)=Xf (7)

fL-1 fL fL+l ... fN-1 Thus f represents L time series components whose sum is
equal to the original time series.

The singular value decomposition (SVD) is taken of the Normally a process called grouping is carried out in the
trajectory matrix; it is a decomposition ofX in the form eigentriple domain prior to Hankelisation. Grouping is

L normally done by considering the singular values ( ). In
x=1 ~ u1 v7 (2) de-noising applications components with large singular

values are taken to be signal, and rest noise. This approach
where Ui and Vi are the left and right eigenvectors presents two problems:

respectively, and * are singular values arranged in 1) The need to define a threshold to decide what is
taken to be large singular values.

decreasing order of magnitudes. 2) If there is more than one signal present,
The left eigenvector are the orthogonal basis functions and the signal of interest may not have the largest
are generally referred to as the Empirical Orthogonal singular value.
Functions (EOF). They are referred to as empirical since they Hence we consider grouping by using the kurtosis of each
are derived from the data itself, as opposed to Fourier basis
or wavelet basis. fk The kurtosis of a random variable is given by
Let Xi ,,J§ (3) Ekx-9u~Let Xi =WiUiFi7 (3) ~~~~~~~kurtosis(x) = [x 8 (8)
such that from (2) Ck4

L where dtd and C is the mean and standard deviation of x

x= 1 (4) respectively and E[ ] is the expectation operator.

Then each X forms an 'eigentriple' which is converted into A Gaussian distribution has a kurtosis of 3. Heavy-tailed
i distribution has kurtosis of more than 3 and is termed

a new time series of length N by a process of diagonal leptokurtic. Platykurtic describes a distribution with thinner
averaging (Hankelisation). Let I (Xi ) be the Hankelisation tails and kurtosis less than 3. Tonals are defined as a signal
operator which by a process of diagonal averaging inverts localized in frequency. It can be shown that tonals such as

the sine wave of constant amplitude and frequency has a
each eigentriple backintoatimeseries fk. kurtosis of 1.5, thus have platykurtic distribution. By

The Hankelisation operation I ( )on matrix I size L by definition Gaussian noise will have kurtosis equal to 3.
Transients are broadband time-localized signals that will

K, is defined by have a leptokurtic distribution.
1 k+1 In practice, it is necessary to state a confidence interval

k I Yt11M,k-+2 for 0 < k < L -1, around 3, within which components are regarded to be+lm=l spectrally smooth noise, not strictly Gaussian. Components
-)-vy for L -1. k <K with kurtosis below the lower bound of this interval are

L L ,k-m+2 regarded to be tonals. Component with kurtosis above the
1 N-K+1 upper bound of this interval are regarded to be transients.
l-k E2YM,k-m+2 for K < k < N. Standard error for kurtosis is defined as [5]
N -km=k-K+2 2

(5) s.e = N (9)

Thus a 9500 confidence interval can be defined with lowerThus the Hankelisation operator iS applied to each budgvnb
eigentriple, Xi, resulting in
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click. In order to quantify the signal to noise ratio it is
Lb==3-1.96 N (10) expressed in standard terms of the energy of the signal

\IN divided by the energy of the noise. However since the signal
and upper bound given by is of a transient nature the energy of the transient it is

dependent on the length of the times series used to measure

H =3 + 1.96
2 the energy. Thus it must be noted that signal to noise ratio is

h- @ N (11) stated for the time series length of 2048 samples. The other
measure of signal energy to noise energy adopted in this

The kurtosis of the each component is measured paper is the signal peak to noise ratio. The ratio of the

K kurtosis') (12) maximum absolute value the transient divided by the energyK1 urosls~Vki/(2 and noise.
Components are then grouped into For the example time series shown in Fig. 1, the signal
Tonals: to noise ratio was -19.67 dB and signal peak to noise ratio of

9dB. The power spectrum of the click and the click plus
Tk =X7kT for KT < Lb (13) noise is shown in Fig. 2.

Noisy Signal with Dolphin click

Spectrally smooth noise:

Gk=XkTfor L KT H (14)
E

and Transients 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

Close up of Dolphin click
Trk XE fk for Hb < KT (15) 2,

The clear advantage is that no threshold as such is needed 0
and signals with different statistical properties can be
separated. However the number of components from the _2
decomposition has to be sufficient such that they can be 540 550 560 570 580 590 6006m0 620 630 640
grouped together adequately. Increasing the number of Samples

components will increase the efficiency at which the three
components will be separated. Since this is a SVD based Fig. 1. Noisytime series
technique the computation requirements are high. As the Power Spectrum of noisey time series

0length of the time-series (N) and number of components (L) ___Original Click
increase the computation time and memory requirements -10 ------- - - -- ------ -- Click plus noise
increase. On a typical personal computer N= 4096 and L =80 -202
are reasonable.

III. METHOD OF TESTING _ s50 ---- ' --- --
E

Test data was extracted from data collected of an
echolocating dolphin. The data was sampled at 500 kHz. The __70
objective of the recordings was to capture the echolocation

8---

clicks that a dolphin sent while interrogating an object placed
behind a translucent screen. Each recording consisted of a -

10-second long data, which also included noise from the -100
equipment, radio and various dolphin sounds besides the Frequency [Hz] 2.5
echolocation clicks. The objective is to de-noise the data
with the minimum of distortion to the clicks. Noise samples Fig. 2. Power spectrum of noisy time series
were taken from the beginning of the file and where there
was no echolocating activity. An echolocation click can be
described as a broadband transient with frequency range The data was de-noised using the algorithm shown above
between 0.25 and 220 kHz, and sound pressure levels range with N= 2048 and L =80. The separated signals are shown in
from 150 to 230 dB re: 1 piPa peak to peak [6]. Fig. 3. The kurtosis of each component is shown; they

As an example a time series is synthesized containing correctly fall within expected bounds.
the summation of a section of noise, and an echolocation
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7 Tonal Componant: Measured Kurtosis 1.5008 2) Related to mean square error, the ratio of the input to

output energy, which should be unity i.e. the algorithm
;>m ~~~~~~~~~~~~~converses energy.

E 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

- SpectralSmooth Noise Componant: Measured Kurtosis=92.978 s i k=Tfo
0.1 ,E | ,i N 17)
0o 0101"_ (T + Gk + Trk

._-1-, k=1
X-0.1 - -200 400 600 800 1000 1200 1400 1600 1800 2000

Samples
de-d c .Transient Componanti Measured Kurtosis 90.1395

calculated as 0.987.,The3)A separability index. The following ratio is defined as
Comarsonofinsrtd cic an d-nise cickCoreltin =0.874 TCmeasure of separabiltyr

< - 200 400 600 800 1000 1200 1400 1600 1800 2000 (k+Gk + Trk)
s = k=1 (18)

Fig. 3. Separated components Click+ GSk+ Trk s

Fig. 4 shows a comparison between the original and the k=1

de-noised click. Correlation coefficient between them is
calculated as 0.987. The numerator is equal to the denominator if the components

0.6~ ~ ~ 0 Insetedlic S i <1 .I hr roecreainbtencmoet

0A For the example shown, mse =1 031 ,E, =1, and
0.2-=. -CXWXgS1 = 0.99 . This shows that energy is conserved, and the

-m 02L \ / \ \ / \ / 0 separation is very good.0-0.2- l From Fig. 3 and Fig. 4, it can be seen that either side of
-0.4 the click the time series should be zero. However in the de-
-0.6 noised version, there is a small amplitude signal present.
-08L jSince the energy has been conserved overall, the small

amplitude signal must belong in a different component,
550 560 570 580 590 600 610 620 630 hence the separability index S = 0.99.

Samples

Further tests were conducted for different signal to noise
Fig. 4. Comparison of original and de-noised click ratios, i.e. the amplitude of the click was varied. Fig. 5 shows

Prior to separation the signal to noise ratio between the signal to noise ratio of the input time series against
inserted click and the noise was -19.68 dB and peak noise correlation coefficient between the original click and the de-
ratio was 9dB. After de-noising the signal to noise ratio noised click. On the same figure the separability index is
between the de-noised click (transient component) and the shown. The graph shows that as the input signal to noise
noise (sum of the tonal and spectrally smooth noise ratio decreases the correlation value also decreases. The
component) was found to be -19.67 dB and peak noise ratio separability index remains constant at just less than one;
of 9. 1 dB. The overall signal to noise ratio gain was these seem to indicate the separability for the range of input
calculated to be 32dB. signal to noise ratio tested does not depend on the signal to

In order to further quantify the performance of the SSA noise ratio.
algorithm, three quantities are measured
1) The mean square error between the input time series and
the summation of the output components, which of course
should be as small as possible i.e. equation (7) holds.

mse = 2E (fk (Tk +Gk+Trk)) (16)
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Performance as a function Signal to Noise ratio1 o Tonal Componant: Measured Kurtosis = 1.5782
I X0.0

0.99 - - - - >

0.98 _ _ _ _ _ _ _ _ _ _ _ -0.2
I / 9 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.97 - - - - - -- - Samples X106
/ I I I I a Spectral Smooth Noise Componant: Measured Kurtosis =3.5411

0.9 I__ I_ I_m__

0.94 -l l. 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.94 - - - Samle x 10III I I ~~~~~~~~~~~~~~~~~~~~~~~<Samplesxi

0.93 o I I I I Transient Componant: Measured Kurtosis = 213.8168

0.92 - - 0.2
I l lCorrelation coeffient between 0

0.91 - click and denoised click
0 22 3 3 4

Separability Index
0.9 cC ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0.511.522.53 3.5 4 4.5 5

-40 -35 -30 -25 -20 -15 -10 Samples6
Input time series SNR [dB] x

Fig. 5. Performance evaluation as a function of signal to Fig. 7. Separated components after de-noising
noise ratio

Noisy echolocation click train

0.25Ll- r
IV. CLICK TRAIN DE-NOISING 02L

In order to de-noise longer sections of data, the data was 0.15
split into windows of length N= 0000, each window of data 0.1
is de-noised individually. The algorithm was run on a 32 0osX
processor Beowulf cluster.

G) 0

Fig. 6 shows a graph of an example of a 10-second long
dolphin echolocation click train. It reveals a noisy
environment where only the peaks of the largest echolocation
clicks can been seen. Fig. 7. shows the components after de-

0

noising with the SSA technique. Another example of dolphin -0.25click train before de-noising is shown in Fig. 8. This consists -0.25
of a 4-second duration extracted from the original 10-second 0 0.5 1 1.5 2
data, in which the click intensity is much higher than the rest Samples x 106
of the time series. It represents the moment when the dolphin Fig. 8. Noisy echolocation click train
is intensively interrogating the object behind the translucent
screen and is also the section which is useful for analytical De-noised echolocation clicktrain
purposes. The de-noised click data, as shown in Fig. 9, 0.25
reveals many more clicks before and after the main burst. 0.2

Noisy echolocation click train 0.15 L

-0.4:

0.10

0.3-

5 0.05

0.2 a 0

0_(..05
0.1 E

a0

5 .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0.15
E .0.1 ..

.0.2 .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0.2~ -

0 2 4 6 8 0 12 14 16 18 20
Samples x 10,5

.0.3

Fig. 9. De-noised echolocation click train



CONCLUSION

In this paper, higher order statistics were examined and
utilized to separate the time series components generated by
the SSA technique. This is explored as an alternative to
grouping components by their singular values. Grouping by
Kurtosis can successfully separate Tonals, Transients, and
Gaussian noise.

SSA has proven to be able to de-noise dolphin clicks
successfully in the presence of tonals and gaussian noise,
compared to wavelet shrinkage schemes that involve
threshold estimators which are optimal for Gaussian noise.
Given a time series with extreme low signal to noise ratio,
SSA is capable of extracting the dolphin clicks from the
noise components with minimum or no energy loss.
Correlation values on test data show the accuracy to which
the SSA technique can de-noise a test signal.
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