
TUNING AN UNDERWATER

COMMUNICATION LINK

SATISH SHANKAR

NATIONAL UNIVERSITY OF SINGAPORE

2013

TUNING AN UNDERWATER

COMMUNICATION LINK

SATISH SHANKAR

B.E.

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2013

DECLARATION

I hereby declare that the thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information which have

been used in the thesis. This thesis has also not been submitted for any degree in

any university previously.

Satish Shankar

26 April 2013

i

ACKNOWLEDGEMENTS

The research described in this thesis was not a solitary e↵ort. Many people

have contributed directly and indirectly, and I am grateful to all of them.

The most significant influence on this thesis is due to my advisor, Prof.

Mandar Chitre. Prof. Mandar’s influence on my life extends even beyond the scope

of this thesis, and has heavily shaped the way i think. His cheerful disposition at

all times, a willingness to always lend a hearing ear, and patient encouragement

over the years have been an incredible gift. For all of these reasons and more, i am

immensely grateful, and extend my heartfelt thanks.

I thank Ahmed Mahmood for the many discussions we had. These discus-

sions helped me in my courses, solidified my understanding, and more importantly,

fuelled my love for signal processing and communications. I also thank my col-

leagues Iulian Topor, Mohan Panayamadam, Rohit Bhatnagar, and Bhavya P.H.

for helping me run experiments and field trials. In particular, Iulian’s e↵orts in de-

bugging modem hardware issues were important in helping me complete the thesis

on time. I also thank the larger Acoustic Research Lab (ARL) community for sup-

porting the research carried out for this thesis and for creating a great environment

to engage in research and development e↵orts.

I thank the many Professors from my undergraduate years for their instruc-

tion. In particular i thank Ms. Micheal Ammal for her support and guidance, which

played an important role in my academic career. I also thank my many friends and

extended family, all of whom have enriched my life and thus contributed indirectly

to this thesis.

Finally i thank my parents and my brother. Their love nourishes and sustains

me. Without them, none of this work would be possible.

ii

Contents

Summary ii

List of Figures iv

Chapter 1 Background 1

1.1 Summary of contributions . 1

1.2 Thesis organization . 1

1.3 Historical overview . 2

1.4 Modern underwater communication modems 3

1.5 Introduction to link tuning . 5

1.6 Motivation . 6

1.7 Features of the link tuner . 7

1.7.1 Data driven link tuning . 7

1.7.2 Exploration vs exploitation 8

1.7.3 Optimizing for average data rate vs maximum data rate . . 9

1.8 Summary . 10

Chapter 2 Literature Review 11

2.1 Adaptive modulation . 11

2.2 Machine learning methods . 12

2.3 Closely related work . 13

i

2.4 Summary . 14

Chapter 3 Problem Formulation and Solution Overview 16

3.1 Problem Formulation . 16

3.2 Multi armed bandit problem . 18

3.3 Architectural overview . 19

Chapter 4 BER Estimation and Scheme Generation 22

4.1 Kalman filter for bandit arm . 23

4.1.1 Model . 24

4.1.2 Filter update equations . 26

4.2 FEC selection logic . 26

4.3 Scheme generator . 28

Chapter 5 Bandit Selection Algorithms 33

5.1 Dynamic programming solution . 33

5.1.1 Link tuning as sequential decision optimization 33

5.1.2 Dynamic programming equations 35

5.2 Softmax Exploration . 36

5.3 ✏-greedy . 36

5.4 Pursuit algorithm . 37

5.5 Upper Confidence Bounds (UCB) 37

5.5.1 UCB1 . 37

5.5.2 UCB1-Tuned . 38

Chapter 6 Results 39

6.1 Test setup . 39

6.2 Simulation results . 40

6.3 Watertank tests . 42

ii

6.4 Test at RSYC . 43

6.5 Summary of results . 46

Chapter 7 Analysis and Interpretation of Results 48

7.1 Evolution and clustering of schemes 53

7.2 Visualizing RSYC trial data . 59

7.3 Summary . 64

Chapter 8 Conclusion 66

8.1 Summary of contributions . 66

8.2 Conclusion . 66

8.3 Further research . 67

Appendices vi

Chapter A Related Publications 1

iii

Summary

The characteristics of an underwater communication channel vary widely, de-

pending on depth, temperature gradients, ambient noise levels, etc. The data rate

performance of an underwater modem also varies with the nature of the channel.

Advancements in computer architecture have lead to the development of underwa-

ter communication modems that implement a diverse array of communication and

signal processing algorithms in software. Software based implementations of com-

munication algorithms give us an opportunity to continuously tune their parameters

at runtime.

This thesis develops a family of algorithms that can continuously tune the

parameters of any modem implementation, aiming to optimize the data rate per-

formance in any given channel. These algorithms tune the parameters for a point-

to-point underwater communication link and aim to maximize the average data

rate. Since a link tuner that can work with any modem implementation is sought,

a data driven approach to tuning is pursued, instead of a physics driven approach.

Hence the link tuner only requires bit error rate information in order to make tuning

decisions.

The exploration vs exploitation dilemma arises as a recurrent theme in this

thesis. At every transmission opportunity, the link tuner can explore new parameter

values in order to make better future decisions. Alternatively, the tuner could

exploit existing knowledge and improve the data rate performance now. Pursuing

a purely exploration or exploitation based strategy leads to poor performance, and

finding a balance is key to achieving high data rates.

The tuner aims to maximize the average data rate, rather than attain the

maximum possible data rate. The time taken to tune the link is included in our

iv

computation of average data rate. This distinction highlights the need to develop

online mechanisms for link tuning, in contrast to running an o✏ine search for the

best performing scheme and storing it. The need for online tuning also evident

by considering the variety of underwater channels: as the channel characteristics

change, modem parameters need to update in order to consistently maintain data

rate performance.

The algorithms developed in the thesis are implemented on the UNET-II

modem. The UNET-II modem is developed by the Acoustic Research Lab (ARL),

and is based on orthogonal frequency division multiplexing. Results from simula-

tion, tank tests and field trials at the Republic of Singapore Yatch Club (RSYC)

demonstrate a significant improvement in average data rate as compared to the

average data rate attained without tuning. Experimental results are augmented

with analysis and visualizations that provide insight into the mechanisms of link

tuning.

v

List of Figures

3.1 Link tuner architecture . 20

4.1 Kalman filter for BER estimation 23

4.2 Nonlinear mapping from BER to state 25

4.3 Code rate vs BER . 27

4.4 Evolution of probability density curves used by scheme generator . 31

6.1 Average data rate in simulation . 40

6.2 Instantaneous data rate observed in simulation 41

6.3 Average data rate in tank . 43

6.4 Average data rate in tank at end of test 44

6.5 RSYC test site . 44

6.6 Average data rate at RSYC . 45

6.7 Average data rate at RSYC at end of test 46

6.8 Instantaneous data rates observed at RSYC 47

7.1 Evolution of number of carriers sampling and selection (simulation) 49

7.2 Evolution of prefix length sampling and selection (simulation) . . . 49

7.3 Link tuning represented as a graph (water tank data, DP algorithm) 51

7.4 Node ID versus the number of times the node was tried (+1) . . . 52

7.5 Ego network centered at node 52 54

vi

7.6 Ego network centered at node 20 55

7.7 Ego network centered at node 9 . 56

7.8 Evolution of the graph in Fig. 7.3 58

7.9 Graph representation of link tuning data (RSYC data, DP algo-

rithm) . 60

7.10 Legend for Figure 7.9: node color, scheme type and percentage oc-

currence of node in graph . 62

7.11 Evolution of number of carriers sampling and selection (RSYC data) 63

7.12 Evolution of prefix length sampling and selection (RSYC data) . . 63

vii

1. Background

1.1 Summary of contributions

1. A family of learning algorithms to tune an underwater communication link

are derived.

2. A data driven approach to link tuning is pursued, leading to the development

of a tuner that works with any modem implementation, and requires only bit

error rate information as input.

3. Results from performance tests in: a) simulation, b) water tank, and c) field

trials demonstrate a significant improvement in average data rates.

4. An extensive analysis and discussion of results is presented in order to provide

insight into the mechanism of link tuning.

1.2 Thesis organization

Chapter 1 begins with a brief historical overview of underwater acoustic commu-

nications followed by an introduction to and the motivation for the link tuning

problem. The key design features of the link tuner are described. The ideas in

this thesis lie in the intersection of the fields of adaptive modulation and machine

learning. The relevant literature from these fields is reviewed in chapter 2. Chapter

1

3 presents a mathematical formulation for the link tuning problem followed by an

architectural overview of the solution. Chapters 4 and 5 describe bit error rate es-

timation, scheme generation and bandit selection algorithms used in the link tuner.

Chapter 6 documents results from performance tests conducted in a) simulation,

b) water tank, and c) field trials. Chapter 7 contains discussions and visualizations

to provide insight into the mechanism of link tuning. Finally we finish with a brief

discussion of further research directions that may lead to the next generation of

link tuners.

1.3 Historical overview

Underwater acoustic communication (UAC) is a key enabling technology for a vari-

ety of applications, such as autonomous underwater vehicles, collection of scientific

data recorded by sensors on the ocean floor, pollution and environment monitoring

systems, and diver communication equipment. UAC development can be traced

back to submarine telephones developed by the Unites States Navy in the second

world war period. These devices used single side-band suppressed carrier modula-

tion signals in the 8-11 KHz range and were capable of sending acoustic signals over

several kilometers. With much more powerful computing systems today, it’s now

possible to implement complex signal processing and communication algorithms on

a modem that runs on a modest amount of power.

There are many papers that provide a comprehensive review of UAC, includ-

ing [1] and [2]. Modern acoustic signal processing has advanced the state-of-the-art

for communication technology significantly. Some examples of these advancement

include: 1) acoustically controlled robots for maintenance tasks of submerged plat-

forms [3], 2) video transmission from a 6500 meter deep ocean trench [4], and 3)

data telemetry in excess of 200 kilometers [5].

Of course, acoustics is not the only choice for wireless communication in

2

an underwater channel. However, radio waves with frequencies beyond 300 Hz

attenuate too rapidly for practical use, thus necessitating the use of large antennae

and high powered transmitters. The other option lies in transmission of optical

signals by using lasers. Optical signals do not su↵er as much from attenuation.

However, they are highly sensitive to scattering e↵ects. This requires one to use

highly directed laser beams and yet achieve a range of the order of only a few

meters.

Advancements in VLSI technology and computer architecture have resulted

in modems that are increasingly software driven. Software driven modems allow

us to implement a wider variety of algorithms, and the possibility of tuning the

parameters of those algorithms emerges. In this thesis, we are interested in devel-

oping a general method of improving the data rate performance of a communication

modem with tunable parameters.

1.4 Modern underwater communication modems

Teledyne Benthos, LinkQuest and Evologics are the major commercial providers of

underwater modems. There are also underwater modems developed by university

labs such as the WHOI micro modem [6], the UCSD modem [3] and the UNET-II

modem [7]. Teledyne Benthos and LinkQuest modems o↵er data rates of 2.4 and 9.6

kbps [3]. The WHOI micro modem o↵ers data rates of 0.08 to 5.4 kbps depending

on the modulation scheme selected, whereas the UCSD modem has a data rate of

200 bps [3].

In reality, depending on the channel, the measured data rates may di↵er sig-

nificantly from the ones cited above. For example, the Evologics modem [8] (S2C

modem) claims to work at upto 33 kbps [9]. These data rates were tested in the

Baltic sea. However, in a 2004 experiment conducted in Singapore waters, the Evo-

logics modems were only able to transmit at about 6 kbps at 10 m range, steadily

3

reducing to about 1 kbps at 90 m range, and failing to achieve a consistent link

beyond the 100 m range [9]. Note that the Evologics modems have been success-

fully tested at longer ranges since that experiment. Nevertheless, this serves as an

illustrative example of the e↵ects of di↵erent channels on the data rate performance

of the same modem implementation.

Underwater communication modems also feature a diverse variety of physical

layer implementations. For example, the Evologics modem is based on a sweep

spread spectrum communication scheme. The WHOI micro modem is based on a

frequency-shift keying with frequency hopping scheme, while the UNET-II modem

is based on orthogonal frequency division multiplexing (OFDM). Depending on the

implementation, each of these modems have some parameters that can be tuned.

As the processing power on chips continues to increase, we are likely to see even

more diversity in the physical layer implementations for underwater modems of the

future.

According to the Shannon capacity theorem, data rate is limited by the avail-

able bandwidth and power. There exist practical limitations imposed on bandwidth

by the attenuation characteristics of the underwater channel, ambient noise condi-

tions, transducer characteristics, and so on. Similarly, power is limited by trans-

ducer characteristics and cavitation processes [10], among other things. Increasing

power also increases inter symbol interference and may not always lead to improved

data rate performance. Underwater acoustic channels are both bandwidth as well

as power limited. Various other physical phenomena impose other limiations on the

underwater channel. Di↵erent physical layer implementations together with widely

varying channel conditions point to the need for a general link tuning algorithm

that can adapt the parameters of any particular physical layer implementation in

response to channel conditions.

We test our link tuning algorithms on the UNET-II modem. This modem is

4

based on OFDM. The default settings on the modem o↵ers a data rate of 345 bps.

Under the right channel conditions, the data rate can increase to a maximum of

about 11 kbps. These numbers serve as context to the reader in terms of the range

of data rates that we can experience on our modem of choice for the implementation

of the ideas proposed in this thesis.

1.5 Introduction to link tuning

We seek to improve the performance of underwater communication systems by de-

veloping algorithms that can tune a point-to-point underwater communication link.

The design and implementation of an underwater communication system includes

a number of subsystems, including algorithms for modulation and error correction

coding. As our hardware capabilities increase, it is possible to implement ever more

rich and varied kinds of communication algorithms to maximize the performance of

a modem. In particular, many algorithms are implemented in software. This opens

up the possibility of modifying the parameters of a modem at runtime in response

to the channel conditions.

For any given modem implementation, the data rate performance of a link

depends on the parameters of the communication algorithms in use. Determining

what might be a good set of parameter values to use in a given channel is critical

for achieving high data rates. The capability of having software control on these

parameter values means that one does not need to decide in advance what values

to set these parameters to. Instead, we can continuously tune them, in response to

the channel conditions. This thesis describes the algorithms and implementation of

such a link tuner. In particular, we implement link tuning algorithms to maximize

the average data rate in an underwater communication link. We implement our

link tuner in the UNET-II modem and present field trial results.

5

1.6 Motivation

The motivation for a link tuner arises from:

1. The large number of possible configurations for a link.

2. The need for an online tuning mechanism.

For modems with a variety of configurable parameters, the space of parameter values

can quickly grow to be large. As an illustrative example, consider the UNET-

II modem developed at the Acoustic Research Lab (ARL) [7]. The modulation

system is based on OFDM. It is possible to set values for the following parameters:

1. Modulation mode (coherent / incoherent or QPSK / BPSK).

2. Di↵erential mode (time or frequency).

3. Prefix / su�x length (values range from 0 to 1024)

4. Number of carriers (64,128,256,512,1024)

5. Number of nulls (values range from 0 to 1024)

6. Error correction type (Convolution, Golay, both or none)

Together, they represent 10’s of millions of possible configurations.

The need for an online tuning mechanism is evident by considering the dy-

namic nature of the underwater channel. There is no such thing as a “typical”

underwater channel [11]. The channel response changes with location, water depth,

temperature/salinity profiles, modulation methods used, frequency of operation,

tidal cycles, and a myriad of other factors. That makes it impossible to search for

the best set of parameter values o✏ine and store them. Hence we need a mechanism

for online tuning, so that we can continuously make improvements to the average

data rate in response to any channel.

6

1.7 Features of the link tuner

The link tuner that we develop has three characteristic feautures. Firstly, we use

a data driven approach to link tuning, as opposed to a physics driven approach.

Secondly, the exploration versus exploitation dilemma plays a key role in the design

of the link tuner. Finally, the tuner aims to optimize for the average data rate,

rather than attain the maximum possible data rate.

1.7.1 Data driven link tuning

We adopt a data driven approach to link tuning. Specifically, we make a series of

choices for parameter values based only on bit error rate data.

An alternative approach to developing such a link tuner would be to base

it on our knowledge of the channel from a physics based model. Such a model

would need to describe the interaction between a given underwater channel and the

communication signals generated from our modem.

However, rather than study physics based models, we instead choose to use

a data driven approach to drive our link tuner. Doing so has two advantages: a)

simplicity in terms of input requirements to the tuner, and b) decoupling of the

tuner from the modem implementation.

The input to our data driven link tuner simply consists of bit error rate

data. In contrast, physics based models are based on information such as ab-

sorption/spreading loss [11], ray/beam tracing information [12], Doppler / delay

spread [13], and so on. Bit error rate information is a fundamental quantity in

a communication system, so one may safely assume its availability. On the other

hand, spreading losses, etc. are harder to obtain, often requiring the modem to

process custom signals and expose special interfaces.

A data driven tuner has another advantage over a physics driven tuner: it

7

is not coupled to any particular modem implementation. A single data driven link

tuning framework can operate on di↵erent modems and it remains useful even as

the underlying physical layer implementation evolves and changes.

Relying only on bit error rate information and independence from the un-

derlying physical layer implementation prove to be critical advantages that cement

our decision to use a data driven approach to linktuning.

1.7.2 Exploration vs exploitation

One can think of the link tuner as a learning agent that tries to learn a mapping

from a given state to an action in order to maximize a numerical reward signal

returned by the environment. In our case, the state consists of our knowledge, the

action space corresponds to the set of available parameter configurations, and the

reward corresponds to the data rate.

In order to make better choices in the future, the agent needs to try new

actions by exploring the action space. But in order to generate more reward, the

agent needs to exploit its existing knowledge. This leads us to a central theme:

that of balancing exploration versus exploitation. Pursuing a purely exploration or

exploitation based policy leads to poor performance, so we need to find some sweet

spot in the middle. Balancing exploration and exploitation is critical for achieving

high average data rates.

In a supervised learning situation, which is more commonly discussed in

machine learning literature, an agent is supplied with sample vectors and output

results from an external oracle. In our scenario, we have no examples of how a

particular configuration might perform at the outset. Instead, the tuner needs to

learn this mapping by interacting with the channel.

8

1.7.3 Optimizing for average data rate vs maximum data

rate

We are concerned with the whole problem of maximizing the average data rate,

rather than attaining the maximum possible data rate. We measure the average

over the course of a data transfer. The time taken to tune the link is included while

measuring the average data rate. It may be possible to devise a search algorithm

to search for the configuration with the maximum possible data rate. We can run

the search process until either we have examined all configurations, or we meet a

stopping criterion such as a timeout or we have discovered a configuration with

data rates higher than a pre-set threshold. Rather than decide on an arbitrary

stopping criterion, we aim to maximize the average data rate. In other words, we

aim to optimize the entire sequence of parameter configurations that are tried out

in the process of link tuning.

Average data rate computation includes the time consumed by the tuning

process. From a user’s point of view, this is a better metric to optimize for as

compared to maximum data rate. The motivation of optimizing for average data

rate can be better understood by considering the role of the link tuner in a data

transfer situation. Attaining the maximum data rate would entail sampling a suf-

ficient number of schemes to infer the scheme that has the maximum possible data

rate. If the search space is large, and only a tiny amount of data needs to be

transferred, the tuner will spend a disproportionate amount of time in the search

process (as compared to the data transfer time) if we optimize for maximum data

rate. The link tuner client will have to wait until the search process terminates

before any data transfer can be initiated. It is also possible that the channel may

change fast enough that the search process never terminates because older results

become obsolete too soon. On the other hand, optimizing for average data rate

9

accounts for the time spent in the search process. This ensures that a link tuner

client continously experiences better data rates over time, regardless of the amount

of data to be transferred.

1.8 Summary

Software implementations of communication modems allow us to modify modem

parameters at runtime. The increasing variety and sophistication of modem im-

plementations, widely varying characteristics of underwater channels, and a large

search space for modem parameter values motivate the need for a link tuner that

is capable of optimizing the parameters of any modem implementation. We seek

a link tuner that continously modifies modem parameters in an online mode in

response to varying channel characteristics. The advantages of using a data driven

approach to tuning, rather than a physics driven approach is explained. The explo-

ration vs exploitation dilemma, which plays a central role in the development of the

link tuner, is described. The link tuner aims to optimize for the average data rate,

rather than attain the maximum possible data rate. This important distinction

is reviewed. We implement the ideas proposed in this on the UNET-II modem.

The default settings on this modem yield a data rate of 345 bps. Under the right

channel conditions, the data rate can increase to a maximum of about 11 kbps. We

list the various tunable parameters on this modem and point out the large number

of total possible configurations. The need for an online mechanism for link tuning

is explained. These numbers provide the reader with context in terms of the range

of data rates that we can experience in the tuning process.

10

2. Literature Review

Literature related to the ideas in this thesis are found in the fields of adaptive mod-

ulation, especially for terrestrial wireless/cognitive radios, as well as machine learn-

ing. We first cite literature to provide a general overview of these fields. Though

none of them directly apply reinforcement learning [14] algorithms to develop an

underwater link tuner, we review some work that has close parallels to the ideas

explored in this thesis. Finally we explain the critical di↵erences between closely

related work and how we build on it.

2.1 Adaptive modulation

Parallels to our work can be found in adaptive modulation techniques developed for

terrestrial wireless radio networks and in the cognitive radio domain. For a sampling

of literature from these areas, see [15], [16] and [17]. Many of these techniques focus

on optimizing energy / spectral e�ciency. The adaptation schemes often make use

of SNR information and in the case of MIMO-OFDM systems, of spatial diversity

/ beamforming. See [17] for an example of application of such techniques to 802.11.

There has also been considerable research e↵ort directed towards channel

estimation algorithms in both terrestrial wireless networks as well as the underwater

communication domain. See [18], [19] and [20] for a sampling of channel estimation

literature. We draw attention to [21] as a piece of work which contains similar

11

ideas as the ones proposed in this thesis. The authors develop a stochastic learning

automaton for adapting an ODFM link. The adaptation is based on estimating bit

error rates for various modulation and coding schemes and comparing them with

associated threshold bit error rate levels.

2.2 Machine learning methods

A distinctive feature of this thesis is the application of machine learning methods

to digital communication. In 1959, Arthur Samuel defined machine learning as a

“Field of study that gives computers the ability to learn without being explicitly

programmed”. See [22] for a comprehensive overview of this field. The space of

machine learning algorithms can be divided into 3 primary partitions: a) super-

vised learning, b) unsupervised learning and c) reinforcement learning. Supervised

learning is concerned with the inference of a function from labeled training data.

The training data consists of a set of objects, which are usually vectors derived from

the features of the underlying phenomena of interest. The labels may be discrete

or continuous valued, and the corresponding inferred functions are called classifiers

or regressors. Unsupervised learning methods seek to find existing structure in un-

labeled data. In contrast to supervised learning, unsupervised learning methods do

not require labels. The absence of an error or reward signal to evaluate a poten-

tial solution characterizes unsupervised learning. K-means clustering and principal

component analysis are examples of unsupervised learning.

Reinforcement learning is concerned with a learning by interaction [14].

Specifically, an agent seeks to take actions in an environment to maximize its

cumulative reward. In contrast to supervised learning, the agent is not presented

a set of training examples with labels.Instead, the agent needs to generate its own

set of training data by interacting with the environment. The focus in this setting

lies in the agent’s online performance. There is a critical need to balance between

12

an exploration of uncharted space and the exploitation of existing knowledge.

The learning algorithms explored in this thesis are categorized under rein-

forcement learning. [14] provides a comprehensive review of reinforcement learning

algorithms. We use the multi armed bandit problem [23] as our model of choice

for studying the tradeo↵ between exploration and exploitation. The multi armed

bandit problem has been well studied and there exists a rich body of literature

containing many algorithms to solve the problem and its variants. We specially

draw attention to the Gittins index [24] because it gives an optimal policy for max-

imizing the expected discounted reward. The Gittins index has also been heavily

used in some of the closely related work to this thesis [25], [26] and [27].We also

point to the upper confidence bounds (UCB) family of algorithms [28] because they

are regarded as the state of the art algorithms in a classical multi armed bandit

setting [29]. We implement and compare UCB algorithms in this thesis.

2.3 Closely related work

The most closely related work in terms of applying reinforcement learning methods

to a communication link is done by Haris et. al. in [25], [26] and [27]. The authors

try many exploration heuristics such as Boltzmann, ✏-greedy and Gittins index-

ing [24] methods (among others) to optimize the bit rate per hertz of a cognitive

radio. We also point out [30] and [31], which are the only literature we know of that

discuss reinforcement learning ideas applied to an underwater communication link.

The authors try exploration heuristics similar to Boltzmann and ✏-greedy methods,

and also develop other custom strategies.

This thesis builds on the above literature. A distinctive feature of this thesis

is that we address 3 aspects of the tuning problem which are not considered above.

These aspects turned out to be critical to achieving a high performance link tuner.

We elaborate on these aspects of the tuning problem below:

13

1. Finite vs. infinite search space: The above literature implicitly assumes that

the search space for a tuner is finite. In practice, the set of candidate search

points under consideration by the tuner would need to be reasonably small in

order to meet memory and time limitations for implementation on a practical

system. We present here a technique for dynamically generating new candi-

date search points in response to past results. This allows us to consider a

very large search space, enabling us to run fine-grained tuning process.

2. Estimation of packet success rates: We use a Kalman-filtering approach to

fuse information from user data packets along with training packets to get

bit error rate estimates. We then extrapolate this knowledge to obtain final

reward estimates. This approach better utilizes the incoming stream of packet

information, compared to simply counting the number of successful / failed

packet transmissions and estimating a packet success rate from that.

3. Arbitrary reward distribution: Some of the more sophisticated techniques

examined in the above works (such as the Gittins index [24]) require that all

actions yield the same reward upon success. As an alternative to the Gittins

index, we derive a dynamic programming based index that does not require

all actions to yield equal reward.

2.4 Summary

The ideas proposed in this thesis are drawn from an intersection of the fields of

adaptive modulation and machine learning. We reviewed literature that provides

a broad overview of these fields. With respect to adaptive modulation, one can

find similar techniques developed for wireless radio networks as well as cognitive

radio. Machine learning can be broadly divided to supervised, unsupervised and

reinforcement learning methods. The algorithms used in this thesis are classified

14

under the umbrella of reinforcement learning. Finally, we reviewed a small, but

specific set of papers that are closely related to our work in terms of applying

reinforcement learning methods to a communication link. We explain the critical

di↵erences between the closely related work and how this thesis builds on top of

those ideas.

15

3. Problem Formulation and

Solution Overview

A mathematical formulation of the link tuning problem is described. We describe a

high level overview of the architecture of the proposed link tuning solution. The link

tuner consists of 3 components: a BER estimator, a scheme generator, and scheme

selection algorithms. The inputs to the tuner consist of a set of measurements.

The tuner outputs scheme recommendations. The multi armed bandit problem is

a key concept used in the design of the link tuner. It is necessary to understand

the multi armed bandit problem before we describe the link tuner architecture in

further detail.

3.1 Problem Formulation

We define a scheme s 2 S to be a vector that contains the values of each parameter

we wish to tune. s

p
i

denotes a packet encoded in scheme i. We can apply an

encoding c 2 C to a packet, yielding an information rate of 0 r

c

 1. The

information rate is defined as the the ratio of the user data carrying bits to the

total bits in the packet. The information rate accounts for all header bits. We have

2 types of packets, depending on the encoding c applied to them: data packets and

test packets.

16

The encoding applied to a data packet is an error correction code. Since

error correction coding is also popularly known as forward error correction (FEC)

in literature, we shall henceforth use both terms interchangeably. A data packet

has an information rate r

c

that is equal to the code rate of the FEC it is encoded

with.1

Test packets do not use any error correction coding. Test packets are pre-

generated bit patterns, useful for BER estimation. A test packet has an information

rate of zero. A modem can recieve a test packet n bits in length and can compute

the number of bits k that were erroneously received.

Based on the above descriptions of data and test packets, we note that the

general notions of an encoding c with information rate r

c

applies to all packets.

However in the context of data packets, these correspond to an error coding scheme

c with a code rate r

c

.

We define the uncoded data rate of a scheme �

j

to be equal to the data

rate that one would obtain by setting r

c

= 1. �

j

corresponds to an under-specified

scheme (it does not specify the encoding c). For a data packet, it is equal to the

data rate that would result by not employing any FEC.

For a given �

j

, we arrive at scheme i (a complete specification) if we also

specify the information rate r

c

. Note the correspondence between i ⌘ (j, c). A

packet s

p
i

encoded in scheme i is equivalently encoded in s

p
j,c

. Upon successful

reception, s

p
i

yields an instantaneous data rate of �

j

r

c

.

Each error coding scheme c can tolerate an uncoded bit error rate upto a

certain threshold T

c

. We compute the value of T

c

depending on the FEC used.

For example, a [24, 12, 8] Golay code is a block code that carries 12 bits of user

information in a 24 bit code word. It is capable of correcting upto 3 error bits. If

1Information rate is a general concept that follows from the notion of applying an encoding to
packets, and is applicable to both test as well as data packets. In the case of data packets, this
encoding is an error correction code, and the code rate is equal to the information rate.

17

we assume that bit errors are independently distributed, a bit stream encoded with

this FEC will not tolerate an average bit error rate greater than 3/24 = 12.5%. In

general the lower the code rate, greater the threshold tolerance T

c

.

We have a point-to-point communication link that can return feedback on

our scheme choices. For test packets, the receiver reports the number of erroneous

bits k. For a data packet, the receiver reports successful / failed reception. We

are free to switch to any scheme at every transmission opportuinity.The modems

use a control scheme for communicating control information such as as number of

erroneous bits or packet reception success / failure. The control scheme is a robust,

low data rate scheme. It does not get tuned and is used only for communicating

control information.

Given the above setup, we seek to compute a sequence of schemes to maxi-

mize the average data rate.

3.2 Multi armed bandit problem

We use the multi armed bandit (MAB) problem as a model for the link tuning

process [23]. Suppose one is presented with a set of slot machines. When played, a

machine yields some reward as per an unknown probability distribution. The multi

armed bandit problem is defined as follows: in what sequence must one play the

machines to maximize the total expected reward? The MAB problem represents

the exploration versus exploitation dilemma inherent in situations like link tuning

where an agent needs to learn by interacting with the environment. When a slot

machine (also referred to as a bandit arm) is played, we gain knowledge about its

probability distribution. At any point, we are faced with a choice. We could either

gain more knowledge by playing new bandit arms, or we could exploit our existing

knowledge to maximize the current reward. Balancing this tradeo↵ holds the key

to attaining a good performance.

18

The mapping between the MAB problem and the link tuning process is as

follows: a bandit arm in the MAB problem is defined to be the same as a scheme,

except that the encoding c is left unspecified. A bandit arm j together with an

encoding c defines a scheme i. Thus each bandit arm can be associated with multiple

schemes, depending on the choice of c. A packet s

p
i

corresponds to scheme i, bandit

arm j, and an encoding of information rate r

c

. Note the correspondece between

the indices i ⌘ (j, c) as described in chapter 3. The uncoded data rate of s

p
i

is �

j

.

If s

p
i

is successfully received, it yields an instantaneous data rate of �

j

r

c

.

3.3 Architectural overview

Fig. 3.1 shows a high level overview of the link tuner architecture. The input

to the link tuner consist of measurements. The output of the link tuner consists

of recommendations for which scheme to use for the next tranmission. The link

tuner itself consists of 4 components: a database of schemes, a scheme generator,

a BER estimator, and a scheme selector. The link tuner is used in the context of a

point-to-point communication link with BER feedback. The transmitter decides to

switch to a particular scheme, and transmit packets encoded in that scheme. The

receiver reports success/failure if data packets were received, and k if a test packet

was received. The link tuner is fed these two pieces of information, from which we

derive the measurements referred to in Fig. 3.1.

The BER estimator consists of a set of Kalman filters. We maintain a

Kalman filter for each bandit arm. The relationship between the BER estimates

for a scheme and a bandit arm is explained in section 4.2. These filters estimate

the BER for their corresponding arm. This information is used to compute the

expected data rate for that scheme, which in turn is used by the scheme selector.

The scheme selector is responsible for selecting a scheme from the scheme database.

The selection logic is governed by bandit algorithms, which we explore several of.

19

Figure 3.1: Link tuner architecture

20

These algorithms work by either computing an index value for each scheme and

selecting the scheme with the highest index value, or by maintaining an explicit

policy over the arms, whose updates are informed by empirical means. Note that

the term index in the previous sentence refers to a value that is computed for a

scheme based on its history of rewards. The scheme generator adds new schemes to

the database at periodic intervals. Since the parameter space is exceedingly large,

it is impractical to enumerate all schemes and maintain indices/policies over all of

them. The scheme generator overcomes this problem by progressively adding new

schemes to the scheme database. The principle for generating new schemes is that

we sample points in the region surrounding the better performing schemes as time

progresses. The generation policy is based on heuristics that are informed by our

experience.

21

4. BER Estimation and Scheme

Generation

The BER estimator aims to maintain a BER estimate for each bandit arm. It is

implemented as a set of Kalman filters, such that each bandit arm has an associ-

ated Kalman filter. The inputs to the Kalman filter consist of either data packet

measurements or test packet measurements. We define the system model for the

Kalman filter in terms of measurement functions, and we derive the filter update

equations for time / measurement updates. The BER estimates determine the

choice of FEC used. We describe the FEC selection logic and explain the relation-

ships between BER estimates, code rate thresholds, packet success probability and

data rate estimates.

The scheme generator adds new schemes to the scheme database at periodic

intervals. Since the parameter space is large, it is impractical to enumerate all

schemes and maintain policies over them. The scheme generator overcomes this

problem by progressively adding new schemes to the database. The scheme gener-

ation logic is driven by the results of previous transmissions. The main principle

governing the scheme generator is that of progressively sampling the region sur-

rounding the better performing schemes. We describe the heuristics used by the

scheme generator and the rationale governing our choice of heuristics.

22

Figure 4.1: Kalman filter for BER estimation

4.1 Kalman filter for bandit arm

Fig. 4.1 shows an overview of the Kalman filter. The filter maintains a state estimate

x̂, which is a function of the BER. We maintain a filter for each bandit arm j.

The estimate undergoes a time update after every transmit-receive cycle. The

time update represents the decrease in confidence of an estimate over time due

to a potentially time varying channel. When a packet is received, we compute a

measurement and perform a measurement update for the corresponding filter. The

time update is applied to every filter, whereas the measurement update only applies

to the arm j corresponding to the received packet. We now describe the equations

for the Kalman filter.

Let 0 ✓ 0.5 be an unknown BER associated with the channel. We

observe one of two measurements associated with the BER:

• Test packet measurement: A test packet with n bits is received with k erro-

23

neous bits.

• Data packet measurement: A coded data packet with n coded bits is received

successfully or unsuccessfully. If it is received successfully, we assume that

the number of erroneous bits 0 k nTc where T

c

is a BER threshold for

FEC c. If it was received unsuccessfully, we assume that nT

c

 k n/2.

We wish to find an online estimator for ✓ given a stream of incoming measurements.

4.1.1 Model

Typically BER values are small, of the order of less than 1%. The variation in

BER values is smaller still, of the order of much less than 1%. We need a mapping

function f : ✓ ! x that would be highly senstive to ✓ at these values, where x is

the state. Based on this requirement, we use the following non-linear mapping f(·)

of BER ✓ as a state variable:

x = f(✓) =

8
<

:
log(2✓) ✓ 0.5

� log[2(1 � ✓)] ✓ > 0.5
(4.1)

Fig. 4.2 shows the mapping from ✓ to x. We use this mapping in our model due

to it’s high sensitivity to ✓ at around 1%, which is the typical range of values of ✓

seen in practise.

The system model is given by:

x

t

= x

t�1 + w

t

(4.2)

where w ⇠ N(0, Q) is the process noise.

When a test packet meaurement is available, the measurement z

t

= f(k/n)

is a noisy measurement of the state x

t

such that:

z

t

= x

t

+ v

t

(4.3)

24

0.0 0.2 0.4 0.6 0.8 1.0
✓ (BER)

�8

�6

�4

�2

0

2

4

6
x

(s
ta

te
)

Figure 4.2: Nonlinear mapping from BER to state

where the measurement noise v

t

⇠ N(0, �2
t

) and

�

2
t

=
k

n

2
(1 � k

n

)f 0(
k

n

) (4.4)

as k follows a Binomial distribution. Here f

0(·) is the derivative of f(·). When a

data packet’s success or failure is available, the measurement is given by:

z

t

=

8
<

:
f(Tc

2) success

f(Tc

2 + 1
4) failure

(4.5)

As before, z

t

is a noisy measurement such that:

z

t

= x

t

+ v

t

(4.6)

25

where measurement noise v

t

⇠ N(0, �2
t

) and 1

�

2
t

=

8
<

:

T

2
c

12 f

0(Tc

2) success

(0.5�T

c

)2

12 f

0(Tc

2 + 1
4) failure

(4.7)

4.1.2 Filter update equations

Given the above model, we have the following filter update equations where x̂ is

the estimated state with variance P . The Kalman equations can be found in [32].

However, [33] provides a much more accessible version of the equations, and we use

those to derive ours.

The time update equations are given by:

x̂

t|t�1 = x̂

t�1 (4.8)

P

t|t�1 = P

t�1 + Q (4.9)

The measurement update equations are given by:

K

t

=
P

t|t�1

P

t|t�1 + �

2
t

(4.10)

x̂

t

= (1 � K

t

)x̂
t|t�1 + K

t

z

t

(4.11)

P

t

= (1 � K

t

)P
t|t�1 (4.12)

4.2 FEC selection logic

We utilize the bit error rate estimates to determine which FEC c would be appropri-

ate to use for the given bandit arm. The relationship between code rate and BER

1We assume that the underlying bit error rate is uniformly distributed between [0, Tc] for a
successful data packet reception and between [Tc,

1
2+Tc] for a failed data packet reception.Equation

4.5 uses the mean values of the uniform distribution for making Kalman filter measurements.
Equation 4.7 follows from the equation of variance of a transformed random variable.

26

0.00 0.05 0.10 0.15 0.20 0.25
bit error rate

0.0

0.1

0.2

0.3

0.4

0.5

co
de

ra
te

feasible region

Figure 4.3: Code rate vs BER

for the error correction codes implemented in the UNET-II modem is illustrated

in Fig. 4.3, which marks a feasible region. The bit errors in a packet received in

the feasible region can be corrected for by the FEC. Packets received outside the

feasible region have too many bit errors for the FEC to correct. For example, a

packet encoded with an FEC with code rate 0.33 can be successfully received if it

has a bit error rate of less than 7%.

Let �

j

be the (uncoded) data rate of bandit arm j and ✓̂

j

be its estimated

bit error rate.We maintain a Kalman filter for each bandit arm to compute ✓̂. Each

encoding c 2 C has a threshold bit error rate T

c

and encodes a packet with an

information rate r

c

. Note that for test packets, r

c

= 0 for all values of T

c

. In

fact there is no notion of T

c

for a test packet, since the encoding c used in a test

packet is not an FEC. The recieved packet can not be successfully decoded if the

bit error rate exceeds T

c

. Each arm j is associated with |C| encodings. Scheme s

i

is

27

composed of the parameters specified in arm j together with encoding c. A packet

s

p
i

encoded in scheme s

i

has a packet success probability given by:

↵̂

i

= ↵̂

j,c

=

8
<

:
1 ✓̂

j

< T

c

0 ✓̂

j

� T

c

(4.13)

µ̂

i

is the estimated data rate of scheme s

i

and is given by:

µ̂

i

= µ̂

j,c

= ↵̂

i

�

j

r

c

(4.14)

4.3 Scheme generator

Since the parameter space is exceedingly large, it is impractical to enumerate all

schemes and maintain indices/policies over all of them. The scheme generator over-

comes this problem by progressively adding new schemes to the scheme database.

We have 3 requirements for the scheme generator:

1. It needs to consider the parameter space in its entirety, without discarding

any part of the search space.

2. It must progressively sample schemes in the neighborhood of the more suc-

cessful schemes.

3. We need a mechanism for controlling the probability that a newly generated

scheme lies close to the most successful schemes

Based on these requirements, we arrived at the following heuristics to generate new

schemes:

1. We draw schemes from a probability density function (PDF) curve, which we

modify as time progresses. Fig. 4.4 illustrates the evolution of the PDF for

an example parameter. Each parameter has its own PDF.

28

We manipulate the shape of the PDF for each parameter independently, even

though in reality the PDFs of the parameters are likely not independent.

Doing so is acceptable because we do not know the relationship between the

PDF’s of parameters. Given the absence of any way to easily deduce these

relationships, we treat the PDFs independently. That way, we retain the

option to sample schemes in all directions.

2. In the beginning, the schemes are drawn from a uniform distribution. This

meets the first requirement, i.e., we consider the parameter space in its en-

tirety. We draw d1 schemes and store them in the database initially.

3. After d2 transmissions, new schemes are generated. We determine which

scheme has the maximum expected data rate among the ones that were tried.

We refer to this scheme as the winning scheme.

4. We then add d3 schemes to our database. These schemes are drawn from

a discrete PDF, which is based on the normal distribution and centered at

the winning scheme. Drawing schemes from such a distribution allows us to

meet the second and third requirements: we now have higher probability of

sampling points closer to the previously successful schemes. Changing the

standard deviation of the normal curve provides us with a mechanism to

control the probability with which the newly generated schemes lie close to

the previously successful ones.

5. This discrete distribution is defined for each modem parameter. It has a

support equivalent to the valid range of parameter values. The distribution

defines a probability for selecting a given modem parameter value. We need to

define a discrete distribution instead of using the normal distribution directly

because modem parameter values are discrete and have finite support.

29

6. The discrete distribution is defined as follows. Suppose we have an integer

valued modem parameter y 2 [a, b], and we derive our discrete distribution

based on a normal PDF with mean ⇠ and standard deviation �. Probability

p(y
i

) of selecting a value y

i

is given by:

p(y
i

) =

8
>>>>>>><

>>>>>>>:

1
Z

x

i

+0.5R
x

i

�0.5

�(y; ⇠, �)dx a < x

i

< b

1
Z

bR

b�0.5

�(y; ⇠, �)dx x

i

= b

1
Z

a+0.5R
a

�(y; ⇠, �)dx x

i

= a

(4.15)

where �(y; ⇠, �) is the normal PDF and Z is a normalizing factor:

�(y; ⇠, �) =
1

�

p
2⇡

e

� (x�⇠)2

2�2 (4.16)

Z =

bZ

a

�(y; ⇠, �)dy (4.17)

7. If all the previously tried schemes have an estimated data rate of zero, we

draw again from the uniform distribution.

8. Suppose one of the parameters can take values between 0 and 100, and the

winning scheme had the value of this parameter = 75 We then generate dis-

crete PDF based on a normal distribution with mean = 75. Also, 75 divides

this range in two intervals: [0, 74) and [75, 100]. We set the standard devi-

ation of the normal curve to be half the range of the smaller interval, i.e.,

(100 � 75)/2 = 12.5. At every d2 transmissions it is time to generate new

schemes again. At this point, we multiply the standard deviation by a shrink

factor d

f

2 (0, 1).

We set d1 = 10, d2 = 6, d3 = 3 and d

f

= 0.9. The choice of using a normal

distribution, the method we use for setting its standard deviation, as well as the

values of d1, d2, d3 and d

f

are heuristics based on our experience:

30

0 20 40 60 80 100

0 20 40 60 80 100

pr
ob

0 20 40 60 80 100
param value

Figure 4.4: Evolution of probability density curves used by scheme generator

31

1. If d2 is too large and none of the schemes in the database are performing well,

then we have to wait for a long time before exploring any new schemes. If d2

is too small, then we end up generating new schemes too fast. A value of 10

works well in practice.

2. If d3 is set to be much larger than d2, then we end up accumulating too many

schemes that never get tried. Hence, our choice of value for d3 is primarily

guided by memory constraints.

3. The tuner performance is not very sensitive to d1.

4. d

f

controls the rate at which we narrow width of our normal distribution, and

we have found that a value of 0.9 works well in practice.

5. Setting the standard deviation of the normal curve to be equal to half of the

smaller interval between the mean and the extreme values of the parameter

makes the curve more symmetric about the mean.

32

5. Bandit Selection Algorithms

From the set of available schemes in the database, we need to select one for trans-

mission. The selection logic is governed by bandit algorithms, which we explore

several of. We begin by presenting the linktuning process as a sequential decision

optimization process. Based on this view of the linktuning process, we describe a

dynamic programming solution to the bandit selection problem. This is followed

by softmax and ✏-greedy methods, which are popular heuristics in the AI com-

munity. We then describe a version of the Pursuit algorithm, which is a popular

reinforcement learning algorithm. Finally, the UCB and UCB-tuned algorithms

are described, which are modern solutions to the bandit problem and come with

theoretical guarantees.

5.1 Dynamic programming solution

A dynamic programming solution arises out of modelling the link tuning process

as a sequential decision optimization process. We explain this view of link tuning

in more detail before defining the dynamic programming equations.

5.1.1 Link tuning as sequential decision optimization

The process of link tuning can be viewed as a sequential decision optimization

problem. At any given time, we possess a certain amount of knowledge about our

33

schemes and their performances in the channel. We can think of possessing this

knowledge as equivalent to being in a certain state. Given this state, we need to

make a decision and choose a scheme. Receiving the results of the transmission

allows us to update our state, and then it’s time to make the decision again.1 Thus

the link tuning process is essentially a decision process. We wish to optimize our

decisions to maximize the average data rate. Note that maximizing the average

data rate requires us to optimize the entire series of decisions, rather than any

particular decision in isolation.

Dynamic programming is an algorithmic paradigm that is well suited to solve

problems of this nature [34]. We shall now illustrate how dynamic programming

works. Consider an environment where we can transition from state ⇠

t

at time t to

T (⇠
t

, a) = ⇠

t+1 by choosing an action a. T (⇠
t

, a) is a function that describes the state

transitions. Choosing action a yields an immediate reward. The expected value of

immediate rewards are given by a reward function R(⇠
t

, a). The key idea of dynamic

programming lies in computing the value function V (⇠
t

). The value function is a

measure of the inherent goodness of that state. The optimal value function V

⇤(⇠
t

)

describes the maximum total expected reward looking into the future. The optimal

value function can be computed by the following recursive definition:

V

⇤(⇠) = arg max
a

{R(⇠
t

, a) + V

⇤(T (⇠
t

, a))} (5.1)

Equation (5.1) is known as the Bellman optimality equation in literature [34].

We now proceed to describe how to compute the optimum value function for the

link tuner and describe a bandit selection policy based on it. Note that we do not

have an explicit expression for T (⇠, a) in the context of the link tuner, and instead

compute it implicitly.

1The feedback mechanism is assumed to be reliable. In practise, this is achieved by using
a reliable (but low data rate) scheme for exchanging control data. Errors in the feedback will
a↵ect our BER estimates. The Kalman filter constructed in chapter 4 is designed to handle noisy
measurements and smoothes these errors over time.

34

5.1.2 Dynamic programming equations

Let the data rate, packet success probability estimate and bit error rate estimate for

scheme i (which is associated with arm j and error coding scheme c) at current time

t be µ̂

i,t

, ↵̂(j,c),t and ✓̂

j,t

. Note the correspondence between i and (j, c). We define

the state ⇠

t

to consist of the 3-tuple (↵̂(j,c),t, �j

, r

c

). Choosing an action corresponds

to transmitting a packet s

p
i

.The immediate expected reward is given by the function

R(⇠
t

, s

p
i

):

R(⇠
t

, s

p
i

) = ↵̂(j,c),t�j

r

c

(5.2)

Given the results of transmitting packet s

p
i

, we use the equations in sec-

tion 4.1.2 to compute the new state ⇠(t+1)|sp
i

. To compute ⇠(t+1)|sp
i

, we only need to

update ↵̂(j,c),t since �

j

and r

c

don’t change with time. To update ↵̂(j,c),t, we first up-

date ✓̂

j

using the Kalman filter equations in section 4.1.2, followed by Equation (4.1)

to update ↵̂(j,c),t.

Given that we transmitted s

p
i

, updating ↵̂(j,c),t is conditioned on a successful

/ failed reception of s

p
i

. Since failed receptions yield zero reward, we only need to

compute the update conditioned on successful reception, and multiply that by the

probability of successfully receiving s

p
i

. Putting all of this together, we arrive at

the following expression for the optimal value function for scheme i in state ⇠

t

:

V

⇤
i

(⇠
t

) = arg max
j,c

(
R(⇠

t

) +
X

c2C

↵̂(j,c),tV
⇤
i

⇣
⇠(t+1)|sp

i

⌘)
(5.3)

We define the following policy based on the optimal value function. At each

time step, we choose the scheme i that maximizes V

⇤
i

(⇠
t

):

j(t) = arg max
i

V

⇤
i

(⇠
t

) (5.4)

35

5.2 Softmax Exploration

Softmax exploration is a heuristic which computes probabilities for each scheme [14].

The probability of picking a scheme is proportional to its expected reward. Thus,

arms with greater empirical reward expectations are picked with higher probability.

Let µ̂

i

(t) be the expected data rate of scheme i at time t. p

i

(t), the probability of

choosing scheme i at time t is given by:

p

i

(t + 1) =
e

µ̂

i

(t)/⌧

P
i

e

µ̂

i

(t)/⌧
(5.5)

where ⌧ is a temperature parameter. When ⌧ = 0, the heuristic exhibits pure

greedy behaviour. As ⌧ tends to infinity, the algorithm picks schemes uniformly at

random. One could possibly use decreasing ⌧ schedules, but [35] show empirical

evidence that such schedules o↵er no practical advantages, so we choose a fixed

value of ⌧ = 0.1 for our experiments.

5.3 ✏-greedy

The ✏-greedy is a commonly used heuristic in the AI community [36]. It is very

simple and well suited for use in sequential decision problems. Given its widespread

use and adoption, we implement a version in the link tuner. The probability of

choosing a scheme i at time t is given by:

p

i

(t + 1) =

8
<

:
1 � ✏ + ✏/k if i = arg max

i

µ̂

i

(t)

✏/k otherwise
(5.6)

One could possibly vary ✏ adaptively. However, [35] presents empirical ev-

idence that finds no practical advantage in doing so. In our experiments we find

that a value of 0.05 works well, so we use that for our experiments.

36

5.4 Pursuit algorithm

Pursuit algorithms maintain a policy over each bandit arm, the updates to which

depend on the estimated reward of the arm. We use a version of the pursuit

algorithm as described in [14]. Each scheme is assigned a uniform probability of

selection, p

i

(t) = 1/|S|. The probabilities are updated as per:

p

i

(t + 1) =

8
<

:
p

i

(t) + (1 � p

i

(t)) if i = arg max
i

µ̂

i

(t)

p

i

(t) + (0 � p

i

(t)) otherwise
(5.7)

where 2 (0, 1) is the learning rate. We have found that = 0.9 generally works

well, so we use that value for our experiments.

5.5 Upper Confidence Bounds (UCB)

The UCB family of algorithms are regarded as the state-of-the-art algorithms that

solve the multi armed bandit problem. These algorithms were proposed by [28].

Unlike ✏-greedy and softmax methods, these algorithms are based on sophisticated

mathematical ideas and come with strong theoretical performance guarantees. We

use 2 versions of the UCB family of algorithms: the UCB1 and the UCB1-tuned.

5.5.1 UCB1

The simpler algorithm, UCB1, maintains a count of the number of times scheme

n

i

(t) scheme i was chosen. Initially, each scheme is played once. Subsequently at

round t, the algorithm chooses scheme i as per:

j(t) = arg max
i

µ̂

i

+

s
2 ln t

n

i

(t)

!
(5.8)

37

5.5.2 UCB1-Tuned

UCB1-Tuned is an alternate version of the algorithm proposed by the authors

in [28]. It can have better performance in practise, but it comes without theoretical

guarantees. The main feature of the UCB1-Tuned is that it accounts for the variance

of each scheme in addition to the expected reward. The schemes are chosen as per:

j(t) = arg max
i

µ̂

i

+

s
2 ln t

n

i

(t)
min(

1

4
, V

i

(n
i

))

!
(5.9)

where

V

i

(t) = �̂

2
i

(t) +

s
2 ln t

n

i

(t)
(5.10)

�̂

2
i

(t) is computed from the empirical sum of squares of µ̂

i

.

38

6. Results

We conducted comparative performance tests with a simulation setup, a water tank,

and at the Republic of Singapore Yacht Club (RSYC). We first describe the test

setup, present the results of our tests and finish with a short summary of results.

6.1 Test setup

We compare the performance by varying the bandit selection algorithm used and

plotting the average data rate. The x-axis of each plot represents time in terms of

the number of packets transmitted. The y-axis represents the average data rate at

that time instant. All data rates reported are user data rates, i.e., the total number

of user data bits recieved divided by time. Each test was performed by establishing

a single point-to-point communication link. Note that in practise, running such a

test necessitates the use of a handshake protocol. For example when we switch to

a new scheme, a control packet exchange is necessary in order to ensure that both

modems have switched to the correct scheme.

The handshake protocol imposes a time overhead of the order of a 2-way

propagation delay for every control packet exchange. Optimizing the protocol over-

head is essential for obtaining high data rates. In particular, an underwater channel

presents many opportunities for such optimization since one can exploit the large

propagation delay time. See [37] and [38] for examples of such optimizations. How-

39

0 5 10 15 20 25 30 35 40
transmission no

0

2

4

6

8
av

g
da

ta
ra

te
(k

bp
s)

DP
softmax

ucb
UcbTuned

pursuit
egreedy

Figure 6.1: Average data rate in simulation

ever protocol optimization is not the focus of this thesis. Hence, all the results

presented in this chapter do not account for the protocol overhead. 1

6.2 Simulation results

The majority of the tests over the course of the link tuner development were carried

out on a simulator. The simulator tries to simulate an water tank environment.

The simulator is a random forest regressor trained with data consisting of various

schemes and the resulting BER as observed in a water tank [22]. In order to train

the regressor, we transmitted 3,546 schemes in the tank and recorded the uncoded

BER. The regressor learns a function mapping from schemes to BER, and provides

1The time overhead is caused by the handshake protocol. Since protocol optimization is not
within the scope of this thesis, we do not account for the protocol overhead in our results. Since
the protocol overhead is not accounted for, setting an upper limit on it is unnecessary.

40

0 5 10 15 20 25 30 35 40
transmission no

0

2

4

6

8

10

12
in

st
an

ta
ne

ou
s

da
ta

ra
te

(k
bp

s)
instantaneous data rate (simulation)
DP
softmax

ucb
UcbTuned

pursuit
egreedy

Figure 6.2: Instantaneous data rate observed in simulation

us with a BER estimate when presented with a scheme. In order to estimate the

accuracy of the regressor, we performed a 5 - fold cross validation test. The data

was randomly split between training (80 %) and test (20 %) sets. The regressor

was trained on the training set, and its coe�cient of determination was measured

on the test set. The process was repeated 5 times, and the mean of the coe�cient

of determination was found to be 0.98, with a standard deviation of 0.45%.

Fig. 6.1 plots the average data rate attained in simulation. From the figure,

we can see that the dynamic programming method attains the highest average data

rate, followed by pursuit and softmax. UCB, UCB-tuned and ✏-greedy have similar

performance characteristics. In order to give the reader a sense of the exploration

and exploitation process undertaken by the tuner, we also plot the instantaneous

data rates. Fig. 6.2 plots the instantaneous data rates measured in the simulation

run. As in the previous plot, the x-axis represents time in terms of the number of

41

packets transmitted. The y-axis is the data rate measured for that packet. 2

In Fig. 6.2 the dynamic programming (DP) method first starts o↵ with a

data rate of zero at time zero, followed by two packets with data rates of around

4.5 kbps, followed by data rates of around 8 kbps for the rest of the test. The data

rate drops to zero periodically, and that corresponds to the decreases in the average

data rate curve for the DP method in Fig. 6.1.

The softmax method mostly yields data rates of around 3.5 kbps, but also

keeps dropping to zero periodically. The rest of the methods have similar behaviour,

except their data rates do not drop to zero as often. The instantaneous data rate

dropping to zero can be caused by: a) the tuner trying a new scheme that did not

succeed, b) the tuner transmitted a test packet (all test packets have a data rate

of zero), 3 or c) the bit error rate increased beyond the error correction capability

of the FEC in use.

6.3 Watertank tests

Fig. 6.3 shows the performance of the tuner in a water tank. The tank measures

2⇥2⇥2 meters. The modems were placed at diagonally opposite ends at depths

of 0.5 meters. We can see that the dynamic programming algorithm has the best

average data rate performance.

Fig. 6.4 shows the average data recorded at the end of the tank test. The

average data rate of the dynamic programming method exceeds the rest by 4 kbps.

2The time instances when the data rate is zero correspond to dropped packets. Packets get
dropped when the channel BER is greater than the BER threshold of the scheme. The zero
data rate points correspond to instances when the BER turned out to be greater than the BER
threshold for the schemes chosen by the DP algorithm.

3The decision to transmit a test packet hinges on the state of the BER estimator, the scheme
generator and the bandit selection algorithm. Transmitting test packets has an e↵ect on band-
width e�ciency and utilization. However these e↵ects have been fully accounted for in all our
simulation as well as field trial results. Specifically, have counted the time spent in transmitting
test packets while reporting all instantaneous as well as average data rate results.

42

0 5 10 15 20 25 30 35 40
transmission no

0

2

4

6

8

10

12
av

g
da

ta
ra

te
(k

bp
s)

DP
softmax

ucb
UcbTuned

pursuit
egreedy

Figure 6.3: Average data rate in tank

✏-greedy, pursuit, UCB-tuned, and UCB methods have average data rates between

2 to 3 Kpbs. The lowest average data rate is recorded by the softmax method. As

a benchmark, we also include the data rate of the default scheme (without tuning).

The data rate yielded by the default scheme is 0.345 kbps. All methods yield data

rates that are at least twice the default.

6.4 Test at RSYC

Fig. 6.5 shows the location of the RSYC test site as map snapshot. The dark red

line indicates the point-to-point communication link established for the test. The

RSYC is a marina which provides docking facilities for a number of yachts and

boats. It is located next to the West Coast ferry terminal. The ferry terminal

provides ferry services to a number of o↵shore facilities. The presence of nearby

43

default softmax ucb UcbTuned pursuit egreedy DP
0

1

2

3

4

5

6

7

8
av

g
da

ta
ra

te
(k

bp
s)

Figure 6.4: Average data rate in tank at end of test

Figure 6.5: RSYC test site

44

0 5 10 15 20 25 30 35 40
transmission no

�1

0

1

2

3

4

5

6

7
av

g
da

ta
ra

te
(k

bp
s)

DP
softmax

ucb
UcbTuned

pursuit
egreedy

Figure 6.6: Average data rate at RSYC

boating activities makes the channel a very noise one to operate in. The water

depth at RSYC is very shallow (6 to 7 meters on average). Both modems were

deployed at a depth of 1.5 meters. Fig. 6.5 shows the location of the modems at

the test site. The boating activity together with shallow depths provide us with a

very challenging environment to operate in.

Fig. 6.6 shows the average data rates recorded at RSYC. We can see that the

dynamic programming method has the highest average data rates for most of the

test duration. This is followed by the ✏-greedy, UCB-tuned and softmax methods.

The pursuit and UCB methods have nearly identical as well as the lowest average

data rates.

Fig. 6.7 shows the average data rate measured at the end of the test. We can

benchmark our results by comparing against the data rate o↵ered by the default

scheme (without any tuning). The default scheme o↵ers a data rate of 0.345 kbps.

45

default ucb pursuit softmax UcbTuned egreedy DP
0

1

2

3

4

5
av

g
da

ta
ra

te
(k

bp
s)

Figure 6.7: Average data rate at RSYC at end of test

By comparision, the average data rate of the tuner using the dynamic programming

method is 4.7 kbps, representing a 13-fold increase. The lowest average data rate

attained by the pursuit method is 1.06 kbps, which is 3 times the default data rate.

Fig. 6.8 shows the instantaneous data rate for the tests at RSYC. In comparision

with Fig. 6.2, Fig. 6.8 looks more chaotic in the sense that each method experiences

more variation in the instantaneous data rates. This is a likely reflection of the more

dynamic, and constantly changing nature of the RSYC enviroment in contrast to

a simulated water tank.

6.5 Summary of results

The average data rate at the end of the simulation and watertank tests range from

1 to 7 kbps, depending on the bandit selection algorithm used. For both tests, the

46

0 5 10 15 20 25 30 35 40
transmission no

0

2

4

6

8

10

12
in

st
an

ta
ne

ou
s

da
ta

ra
te

(k
bp

s)
instantaneous data rate (rsyc)

DP
softmax

ucb
UcbTuned

pursuit
egreedy

Figure 6.8: Instantaneous data rates observed at RSYC

dynamic programming method attains the highest average data rate. The average

data rates at the end of the RSYC test range from 1 to 4.7 kbps, depending on

the bandit selection algorithm used. In contrast, the default data rate (without

tuning) is 0.345 kbps. Again, the dynamic programming method has the highest

average data rate. The RSYC is a fairly challenging environment due to extremely

shallow water depths (around 1.5 meters) and noise generated by boating activity in

the vicinity. The dynamic programming method attains data rates that far exceed

other methods in a more forgiving environment such as a watertank. In contrast,

the average data rate curves for the RSYC test are much closer to each other. In

harsher environments such as RSYC, the ceiling for the maximum attainable data

rate drops considerably. This suggests that other parts of the linktuner (the scheme

generation process and the BER estimator) pay a relatively more important part

in the tuning process in such environments.

47

7. Analysis and Interpretation of

Results

We aim to give the reader some insight into the process of link tuning. Over

the course of the link tuning process, we dynamically add new schemes from the

available search space. We then use one of the bandit arm selection algorithms to

choose which scheme to use for transmission. Subsequent sampling is informed by

the history of results from previous transmissions.

Fig. 7.1 plots the sampling and selection process for one of the parameters,

namely the number of carriers in an OFDM symbol. The x-axis represents time

in terms of the number of transmissions. The y-axis is the value of the number

of carriers. We have 5 choices for this parameter (64, 128, 256, 512, 1024). The

blue dots correspond to the values that were sampled and added to our collection

of schemes. The red dots represent the values that were selected for transmission.

This plot was generated using link tuning data in a water tank environment with

the dynamic programming bandit selection algorithm.

We can see that the tuner begins by adding schemes with all 5 possible

choices in its set of available schmes. At the very early stages, it selects a di↵erent

parameter value each time. Soon after this early stage, it selects the value 1024

for the vast majority of the rest of the tuning session while occassionally sampling

/ selecting 512. The blue and red dots overlap in the 1024 band. Note that even

48

Figure 7.1: Evolution of number of carriers sampling and selection (simulation)

Figure 7.2: Evolution of prefix length sampling and selection (simulation)

49

though the tuner uses a value of 1024 for most of the tuning session, it occassionally

switches back-and-forth between 1024 and 512. This behaviour is reflective of a fine

tuning process, which occours after the tuner has already determined that a value

of 1024 performs well.

The tuner changes the values of all parameters simultaneously. Let us ex-

amine Fig. 7.2, which plots the sampling / selection history for another parameter:

the prefix length of an OFDM symbol. The x-axis represents time in terms of the

number of transmissions. The y-axis is the value of the prefix length. Most of

the selected values (i.e., the red dots) hover at around 256 in the beginning (until

transmission # < 30). The selected values then begin to drop in the region where

transmission # 2 (30, 100). They finally settle at values close to zero for transmis-

sion # > 100. We can see that for transmission # < 100, the selected values are

turbulent, which is reflective of the exploratory behavior of the tuner in that phase.

The sampled values (i.e., the blue dots) follow a similar trend to the selected

values: we can see that the sampled values are clustered around the selected values.

In the beginning (until transmission # < 100), the range of sampled values is

comparatively large. Again, this is reflective of the exploratory behavior of the

tuner. In the transmission # > 100 region, the certainty in our knowledge increases.

This is reflected in the comparatively narrow range of sampled values in this region.

One can interpret the tuner behavior in the transmission # < 100 region as a coarse

tuning process, as compared to the fine tuning in the transmission # > 100 region.

The above described sampling and selection process occurs simultaneously

across all parameters. Information is shared between the sampling and selection

processes, and they drive each other. Besides prefix length and number of carriers,

here are the other tunable parameters in the UNET-II modem implementation,

along with the range of values they can take:

1. Modulation mode (coherent or incoherent)

50

Figure 7.3: Link tuning represented as a graph (water tank data, DP algorithm)

51

Figure 7.4: Node ID versus the number of times the node was tried (+1)

2. Di↵erential mode (time or frequency)

3. QPSK or BPSK modulation

4. Su�x length (0 to 1024)

5. Number of nulls (0 to 1024)

6. Error correction type (Convolution, Golay, both or none)

In order to visualize such a multi-dimensional process, we use a directed

graph representation of the tuning process. The sampled and selected schemes tend

to cluster in regions yielding better data rates. One can observe that some nodes

in the graph are more prominent than others: these nodes are selected relatively

more frequently and new nodes in their neighbourhood are sampled. A graph

representation also allows us to better check that the tuner has indeed considered

all of the available search space. Note that we don’t need the tuner to have selected

52

schemes located all over the search space: that would result in a highly ine�cient

tuner. We do however, need to verify that all major regions of the search space were

sampled at some point of the tuning process. That way we know that no part of

the available space was discarded. We use a combination of a graph representation

along with some plots to do so.

7.1 Evolution and clustering of schemes

The nodes in our graph correspond to schemes. If the tuner selects scheme 2 now,

and the previously selected scheme was 1, then we add an edge to the graph from

node 1 to 2. If the tuner selects scheme 1 twice in a row, then we add a self edge to

node 1. The scheme generator generates new schemes in the vicinity of the winning

scheme. This is represented in the graph by an edge from the winning scheme to

the new scheme that was generated. Fig. 7.3 shows the graph that was generated

from a run of the link tuner in the water tank using the dynamic programming

algorithm. The node sizes are proportional to the degree, where the degree of a

node is the number of edges incident on it. The set of nodes has been partitioned

according to the number of times each node was selected for transmission. The

node colors were assigned to match this partitioning. For example, all the nodes

which have no edges incident on them were never selected, and hence they share

the same same color.

One of the features that stand out about the graph in Fig. 7.3 is that nodes

52, 20 and 9 are dominant. Fig. 7.5, Fig. 7.6 and Fig. 7.7 show the ego networks of

the graph centered at nodes 52, 20 and 9 respectively. An ego network centered at

a given node is a subgraph where all nodes are at a 1-hop distance from the center

node. From Figures 7.5, 7.6 and 7.7 it is evident that nodes connected to 52, 20

and 9 consist of the majority of the total nodes in the graph.

Fig. 7.4 plots the number of times a given node was selected plus one. (The

53

Figure 7.5: Ego network centered at node 52

54

Figure 7.6: Ego network centered at node 20

55

Figure 7.7: Ego network centered at node 9

56

addition of one is in order to accommodate a logarithmic scale on the y-axis). From

the figure, we see that most of the nodes were tried once. The second biggest group

of nodes correspond to the schemes that were generated and added to our collection,

but never selected for transmission. Finally, there are a few nodes that were tried

more than once. Of these, we can see that nodes 52 and 20 have the maximum

frequency of selection.

The tuner starts with an initial collection of schemes that are located far

apart in the search space. One can think of this as coarse tuning. Once it finds a

scheme that performs well, it generates new schemes in the vicinity of the winning

scheme. One can think of this as fine tuning. The scheme generation process

continues until the tuner finds schemes that perform better. When this process

is represented as a graph, some nodes nodes dominate, and one can conceptually

think of such nodes as hub nodes. Figures 7.5, 7.6, 7.7 and 7.4 are illustrative of

these characteristics.

Finally, it would be interesting to see the evolution of the graph over time.

Fig. 7.8 shows snapshots taken over the course of the evolution of the final graph.

The snapshots are in chronological order. They are placed in clockwise direction,

starting from the top left corner. The node sizing and coloring rules are the same

as those for Fig. 7.3.

The first snapshot was taken at the initialization. At this point, we only have

a set of 11 schemes in our collection. Out of those, we have only selected scheme 4

for transmission. The second snapshot was taken shortly after initialization. The

red nodes were tried more often than the green ones in this snapshot. We also see

that node 9 has emerged as a hub node in this graph: it has the most number of

edges incident on it, and it is also the only node with self-edges. The tuner often

alternated between trying a new scheme such as 4, 2, 1 etc. and going back to

selecting scheme 9. This behavior generates the many edges that go from other

57

initialization

Node 9 emerges
as a hub node

Nodes 15, 20, 22
may emerge as hubs

By the halfway mark,
nodes 9, 20 and 52 are
established as hubs

Figure 7.8: Evolution of the graph in Fig. 7.3

58

nodes and terminate at node 9, and is indicative of the balance the tuner is trying

to balance exploration versus exploitation.

The third snapshot continues this trend and we can see nodes 15, 20, and

22 gain prominence. The fourth snapshot was taken at the midway mark. By this

time, nodes 52, 20 and 9 have been well established as hub nodes. We can also

see that the graph tends to grow in clusters centered around the hub nodes. The

clustering e↵ect is a result of the scheme generator which generates new schemes in

the vicinity of the ones that have been found to perform well. We can also see the

group of purple nodes, which correspond to schemes that exist in our collection but

were never selected for transmission. This growth pattern continues and eventually

yields the graph shown in Fig. 7.3.

7.2 Visualizing RSYC trial data

We use a di↵erent node coloring scheme for this section in order to illustrate that

the tuner sampled schemes that were reasonably spread out all around the search

space. Fig. 7.9 shows a graph representation of the tuning process. The tuning data

for this graph was generated by tests at RSYC, and use the dynamic programming

bandit selection method. This graph looks di↵erent compared to Fig. 7.3, because

we use a di↵erent graph layout algorithm to render this graph for visual clarity

reasons.

The nodes are coloured as their scheme type. We define 6 di↵erent scheme

types, depending on the values of the following parameters:

1. Modulation type (coherent or incoherent)

2. Di↵erential mode (time or frequency di↵erential)

3. BPSK or QPSK

59

Figure 7.9: Graph representation of link tuning data (RSYC data, DP algorithm)

60

scheme type modulation type di↵erential mode BPSK/QPSK
1 incoherent - BPSK
2 incoherent - QPSK
3 coherent time BPSK
4 coherent time QPSK
5 coherent frequency BPSK
6 coherent frequency QPSK

Table 7.1: Mapping from scheme type to modulation parameters for nodes in Fig-
ure 7.9

Table 7.1 lists the mapping from scheme type to values of the above mod-

ulation parameters. Note that for scheme types 1 and 2, the di↵erential mode

parameter is not applicable since they use incoherent modulation. Fig. 7.10 lists

the correspondence between node color, scheme type and the percentage occurrence

of scheme type in the graph in Fig. 7.9. The node labels correspond to code rate

of the FEC used for that scheme, except for the ones labelled 0.0 (those nodes cor-

respond to test packet, and the label 0.0 was chosen to indicate that a test packet

does not carry any user data.)

We can see that all 6 scheme types are represented in the graph. Types 5 and

6 constitute the largest share (57.98%). That means most of the schemes sampled

in the tuning process were coded with coherent modulation, operated in frequency

di↵erential mode, and switched between BPSK or QPSK.

The node labels show that a mixture of test and data packets were sampled.

For data packets, we have 3 choices of FEC implementations on the UNET-II

modem. They have code rates of 0.5, 0.3 and 0.15 respectively. We can see nodes

with code rates of 0.3 and 0.15. However, there is no node with a label of 0.5.

This can be explained by considering the FEC selection logic in the link tuning

architecture. Recall that the tuner chooses an FEC for a given scheme by getting

BER estimates for that scheme. The BER estimates are provided by a Kalman

filter based estimator. In order to choose an FEC with code rate 0.5, the scheme

61

5 (28.99 %)
6 (28.99%)
1 (15.94%)
2 (10.14%)
3 (8.7%)
4 (7.25%)

Figure 7.10: Legend for Figure 7.9: node color, scheme type and percentage occur-
rence of node in graph

62

Figure 7.11: Evolution of number of carriers sampling and selection (RSYC data)

Figure 7.12: Evolution of prefix length sampling and selection (RSYC data)

63

needs an to have an estimated (uncoded) BER of less than 4%. It turns out that

none of the schemes sampled in the RSYC tests had an estimated BER of less than

4%, hence we don’t see any node labelled 0.5.

Fig. 7.11 shows the evolution of the sampling and selection process for the

parameter number of carriers. A blue dot indicates a sampled scheme, while a red

dot indicates a scheme selected for tranmsission. We have 5 choices for values of

this parameter: 64, 128, 256, 512 and 1024. We can see that all values were sampled

at some point in time. We can also see that 512 and 1024 are the dominant values

for this parameter.

Fig. 7.12 shows the evolution of the sampling and selection process for the

parameter prefix length. We have 1024 possible values for this parameter, ranging

from 0 to 1023. Values ranging from 8 to 352 were sampled at various points in

time. We can see that the sampled as well as selected values follow a general,

though somewhat chaotic downward trend, similar to Fig. 7.2. The prefix length is

one of the measures of overhead in a given OFDM symbol: higher the prefix length,

more the overhead. Thus, the downward trend in prefix length values reflects the

increase in average data rate over time.

7.3 Summary

A variety of visualizations were generated with the aim of providing insight into

the link tuning process. We showed how information is shared between the sam-

pling and selection process and how they drive each other. Illustrative plots of

the sampling and selection process were generated for two modem parameters. In

order to visualize the sampling and selection process across all modem parameters

simultaneously, a graph representation of the link tuning process was formulated.

Rendering the graph representation allowed us to visualize the evolution and clus-

tering phenomena of schemes over time. In order to verify that the tuner considers

64

the search space in its entirety, we generated a slightly di↵erent graph representa-

tion of link tuning data from the RSYC experiments. This representation confirmed

that the sampled schemes were reasonably spread out over the entire search space.

65

8. Conclusion

8.1 Summary of contributions

1. A family of learning algorithms to tune an underwater communication link

are derived.

2. A data driven approach to link tuning is pursued, leading to the development

of a tuner that works with any modem implementation, and requires only bit

error rate information.

3. Results from performance tests in: a) simulation, b) water tank, and c) field

trials at RSYC demonstrate a significant improvement in average data rates.

4. An extensive analysis and discussion of results is presented in order to provide

insight into the mechanism of link tuning.

8.2 Conclusion

Link tuning algorithms to tune a point to point underwater communication link

were presented. The link tuner is data driven and needs only bit error informa-

tion as input. Hence, the link tuner is independent of the modem implementation

and is useful even as the underlying physical layer implementation changes and

66

evolves. Online mechansims for link tuning were developed, allowing us to contin-

uously update modem parameter values for di↵erent channels. The online tuning

mechanism also allows the tuner aims to maximize for the average data rate, rather

than search for the maximum possible data rate. The link tuner was implemented

on the UNET-II modem. Results from simulation, tank tests and field trials at

RSYC were presented. In all cases, using the tuner resulted in improved average

data rate when compared with the default data rate without tuning. At RSYC,

average data rates between 1 to 4.7 Kbps were recorded, depending on the bandit

selection algorithm used. In comparison, the default data rate without tuning is

345 bps. Finally, a number of visualizations are presented in order to provide the

reader with insight and intuition into the process of link tuning.

8.3 Further research

The link tuner can be enhanced by augmenting it with physical models that describe

the properties of a given modem implementation. Future research into building

physics based models of interactions between the underwater channel and commu-

nication signals would involve investigation of acoustic propagation models as well

as the design of custom signals that can allow us to infer key properties of the under-

water channel. Ultimately, a hybrid approach that combines data driven techniques

along with physics based models customized for a given modem implementation can

lead to even better data rate performance.

67

Bibliography

[1] M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Underwater acous-

tic communications and networking: Recent advances and future challenges,”

in Proceedings of Oceans 2008, vol. 42, no. 1. Marine Technology Society,

2008, pp. 103–116.

[2] M. Stojanovic, “Recent advances in high-speed underwater acoustic commu-

nications,” IEEE Journal of Oceanic Engineering, pp. 125–136, 1996.

[3] B. Benson, Y. Li, R. Kastner, B. Faunce, K. Domond, D. Kimball, and

C. Schurgers, “Design of a low-cost, underwater acoustic modem for short-

range sensor networks,” in Proceedings of Oceans, 2010, pp. 1–9.

[4] M.Suzuki and T.Sasaki, “Digital acoustic image transmission system for deep

sea research submersible,” in Proceedings of Oceans, vol. 2, 1992, pp. 567–570.

[5] G. H. et. al., “Subsea remote communications utilising an adaptive receiving

beamformer for multipath suppression,” in Proceedings of Oceans, vol. 1, 1994,

pp. I/313–I/316 vol.1.

[6] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The WHOI

micro-modem: An acoustic communcations and navigation system for multiple

platforms,” in Proceedings of Oceans, 2005, pp. 1086–1092 Vol. 2.

i

[7] M. Chitre, I. Topor, and T. Koay, “The UNET-2 modem - an extensible tool

for underwater networking research,” in Proceedings of Oceans, 2012, pp. 1–7.

[8] K. G. Kebkal, R. Bannasch, A. G. Kebkal, and S. G. Yakovlev, “Ultrasonic

link for improved incoherent data transmission in horizontal shallow water

channels,” in Proceedings of Oceans, vol. 4, 2003, pp. 1786–1792 Vol.4.

[9] M. Chitre, “Underwater acoustic communications in warm shallow water chan-

nels,” Ph.D. dissertation, National University of Singapore, pp. 16-20, 2006.

[10] R. Urick, Principles of Underwater Sound. McGraw Hill, 1983.

[11] J. Preisig, “Acoustic propagation considerations for underwater acoustic

communications network development,” in ACM SIGMOBILE Mobile

Computing and Communications Review. New York, NY, USA: ACM, 2007,

pp. 2–10. [Online]. Available: http://doi.acm.org/10.1145/1347364.1347370

[12] M. Porter and M. Siderius, “Acoustic propagation in very shallow water,” in

Waterside Security Conference (WSS), 2010 International, 2010, pp. 1–4.

[13] P. Barley, H. Bucker, J. Rice, M. Green, and J. Woxstroem, “Acoustic commu-

nication channel modeling for the baltic sea,” in Proceedings of Oceans, vol. 3,

1999, pp. 1504–1511 vol.3.

[14] R. S. Sutton and A. G. Barto, Reinfocement Learning: An Introduction. MIT

Press, 1998.

[15] S. Gao, L. Qian, D. Vaman, and Q. Qu, “Energy e�cient adaptive modulation

in wireless cognitive radio sensor networks,” IEEE International Conference

on Communications, pp. 3980–3986, 2007.

ii

http://doi.acm.org/10.1145/1347364.1347370

[16] P. Tan, Y. Wu, and S. Sun, “Link adaptation based on adaptive modulation

and coding for multiple-antenna OFDM system,” IEEE Journal on selected

areas in communications, no. 8, pp. 1599–1606, 2008.

[17] F.Peng, J.Zhang, and W. Ryan, “Adaptive modulation and coding for IEEE

802.11n,” in Wireless Communications and Networking Conference, 2007, pp.

656–661.

[18] C. Pandana, Y. Sun, and K. J. R. Liu, “Channel-aware priority transmission

scheme using joint channel estimation and data loading for OFDM systems,”

IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3297–3310, 2005.

[19] Y. Jing and X. Yu, “ML-based channel estimations for non-regenerative re-

lay networks with multiple transmit and receive antennas,” IEEE Journal on

selected areas in communications, no. 8, pp. 1428–1439, 2012.

[20] K. Pelekanakis and M. Chitre, “Natural gradient-based adaptive algorithms for

sparse underwater acoustic channel identification,” in Proceedings of Under-

water Acoustic Measurements: Technologies and Results, vol. 38, no. 2, 2011,

pp. 323–332.

[21] C.Tang and V.Stolpman, “An adaptive learning approach to adaptive OFDM,”

Wireless Communications and Networking Conference, 2004.

[22] T.Hastie, R.Tibshirani, and J.Friedman, The elements of statistical learning.

Springer series in statistics, 2009.

[23] D. A. Berry and B. Fristedt, “Bandit problems: Sequential allocation of ex-

periments,” Monographs on Statistics and Applied Probability, 1960.

[24] J. Gittins, Multi-armed bandit allocation indices. Wiley-Interscience Series in

Systems and Optimization, 1989.

iii

[25] H. I. Volos, “Cognitive radio engine design for link adaptation,” Ph.D. disser-

tation, Virginia Polytechnic Institute and State University, 2010.

[26] H. I. Volos and R. M. Buehrer, “On balancing exploration vs. exploitation in a

cognitive engine for multi-antenna systems,” in Proceedings of the IEEE Global

Telecommunications Conference, vol. 9, no. 9, 2009, pp. 2902–2913.

[27] ——, “Cognitive engine design for link adaptation: An application to multi-

antenna systems,” IEEE Transactions on Wireless Communications, 2010.

[28] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multi-

armed bandit problem,” Machine Learning, 2002.

[29] V.Kuleshov and D.Precup, “Algorithms for the mulit-armed bandit problem,”

Journal of machine learning research, 2000.

[30] S. Shankar, M. Chitre, and M. Jayasuriya, “Data driven algorithms to tune

physical layer parameters of an underwater communication link,” in Proceed-

ings of IEEE Oceans Sydney, 2010.

[31] D. M. Jayasuriya, “Adapting underwater physical link parameters using data

driven algorithms,” Master’s thesis, National University of Singapore, 2010.

[32] R. Kalman, “A new approach to linear filtering and prediction problems,”

Transactions of the ASME-Journal of Basic Engineering, 1960.

[33] G. Welch and G. Bishop, An Introduction to the Kalman Filter. TR 95-041,

Department of Computer Science University of North Carolina at Chapel Hill,

2006.

[34] R. Bellman, Dynamic Programming. Princeton University Press, Princeton,

NJ. Republished 2003: Dover, ISBN 0-486-42809-5., 2003.

iv

[35] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empirical

evaluation,” in Proceedings of ECML, 2005.

[36] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.

Pearson Education, 2003.

[37] M.Chitre and W. Soh, “Reliable point-to-point underwater acoustic data trans-

fer: To juggle or not to juggle?” IEEE Journal of Oceanic Engineering (under

review), 2013.

[38] R. Bhatnagar, Implementing and testing of ARQ protocols for underwater net-

works. National University of Singapore EE5003 Project Report, 2003.

v

Appendices

vi

A. Related Publications

1. S. Shankar and M. Chitre, “Tuning an underwater communication link”, in

Proceedings of IEEE Oceans’13, (Bergen, Norway), June 2013.

2. S. Shankar, M. Chitre, and M. Jayasuriya, “Data driven algorithms to tune

physical layer parameters of an underwater communication link”, in Proceed-

ings of IEEE Oceans’10, (Sydney, Australia), May 2010.

1

	Summary
	List of Figures
	Chapter Background
	Summary of contributions
	Thesis organization
	Historical overview
	Modern underwater communication modems
	Introduction to link tuning
	Motivation
	Features of the link tuner
	Data driven link tuning
	Exploration vs exploitation
	Optimizing for average data rate vs maximum data rate

	Summary

	Chapter Literature Review
	Adaptive modulation
	Machine learning methods
	Closely related work
	Summary

	Chapter Problem Formulation and Solution Overview
	Problem Formulation
	Multi armed bandit problem
	Architectural overview

	Chapter BER Estimation and Scheme Generation
	Kalman filter for bandit arm
	Model
	Filter update equations

	FEC selection logic
	Scheme generator

	Chapter Bandit Selection Algorithms
	Dynamic programming solution
	Link tuning as sequential decision optimization
	Dynamic programming equations

	Softmax Exploration
	-greedy
	Pursuit algorithm
	Upper Confidence Bounds (UCB)
	UCB1
	UCB1-Tuned

	Chapter Results
	Test setup
	Simulation results
	Watertank tests
	Test at RSYC
	Summary of results

	Chapter Analysis and Interpretation of Results
	Evolution and clustering of schemes
	Visualizing RSYC trial data
	Summary

	Chapter Conclusion
	Summary of contributions
	Conclusion
	Further research

	Appendices
	Chapter Related Publications

