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Motivational Example

• The larvae of nearly all coral reef fish develop 
at sea for weeks to months before settling 
back to reefs as juveniles.

• Although larvae have the potential to disperse 
great distances, a substantial portion recruit 
back to their natal reefs.

• Larvae are not passively dispersed but 
develop a high level of swimming 
competence.

• Recruits respond actively to reef sounds.
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[1]	
  S. D. Simpson, M. Meekan, J. Montgomery, 
R. McCauley, and A. Jeffs. Homeward sound. 
Science, 308(5719):221, 2005.

Figure reproduced from [1]

Homeward Sound
Stephen D. Simpson,1* Mark Meekan,2 John Montgomery,3

Rob McCauley,4 Andrew Jeffs5

Most reef populations are replenished with
recruits that settle out from an initially pelagic
existence. The larvae of nearly all coral reef
fish develop at sea for weeks to months before
settling back to reefs as juveniles. Although
larvae have the potential to disperse great
distances, recent studies show a substantial
portion recruit back to their natal reefs (1, 2).
Larvae are not passively dispersed but develop
a high level of swimming competence (3).
How they use these capabilities to influence
their dispersal is an open question. We show
here that recruits respond actively to reef
sounds, potentially providing a valuable man-
agement tool for the future.

Since the discovery that reef fish larvae are
accomplished swimmers, focus has shifted to
identifying cues that may influence their ori-
entation. Sound has emerged as a leading
candidate, because it travels in water irrespective
of current flowwith little attenuation and because
fish and invertebrates create a clamour that can be
heard for many kilometers around (4). We have
previously shown the attraction of settlement-
stage reef fishes from many families to reef
noise, using light traps and prerecorded sound
(5). Here we provide direct evidence that sound
enhances settlement of fish onto patch reefs.

We used two experiments to study settlement
behavior in the presence of recorded reef sounds
(6). In November 2003, we built 24 patch reefs
from dead coral rubble on sand flats in 3- to 6-
m-deep water at Lizard Island on the Great
Barrier Reef (fig. S1). For six nights, we de-
ployed submersible speakers broadcasting reef
noise (at 156 dB relative to 1 mPa at 1 m, mostly
the sound of snapping shrimp and fish calls) on
12 of these patch reefs, alternating the location
of the speakers each night. Most settlement
occurs at night, so recruiting fish were collected
from the patch reefs early the following
mornings. Of the 868 recruits we collected,
most were apogonids (or cardinalfish, 80%) or
pomacentrids (or damselfish, 15%). These two
families are key members of coral reef fish
assemblages around the world: The apogonids
contribute up to one quarter of all individuals on
reefs and the pomacentrids up to half of the total
fish biomass (7). Analyses showed no site or
date effects in our data, but both families settled
in greater numbers on noisy patch reefs than on
silent reefs (Fig. 1A). A preference for noisy
patch reefs was also seen in less common fishes,
with marginally more taxa (excluding apogonids
and pomacentrids) on patch reefs with broadcast
noise than on reefs without (Fig. 1B).

In December 2003, the experimental field
site was used to compare the settlement of fishes
to patch reefs where we broadcast primarily the
high frequencies of reef noise (80% 9 570 Hz,
predominantly shrimp) or low frequencies of reef
noise (80% G 570 Hz, predominantly fish) with
settlement to silent reefs. This time, nearly four
times as many recruits arrived (3111 fish), but
the taxonomic composition was similar. Apogo-
nids settled on high- and low-frequency patch
reefs in equivalent numbers, but pomacentrids
were preferentially attracted to reefs with high-
frequency noise (Fig. 1C). Again, reefs without
sound received less settlement from rarer taxa
than reefs with broadcast sound (Fig. 1D).

This study provides direct field evidence that
settling reef fishes use sounds to orientate
toward and select reefs. Furthermore, there is
an indication that some fish groups may be se-
lectively using specific components of the reef
sound to guide their settlement behavior. The
important use of sound at this critical life history
phase raises the possibility of potential adverse
effects of increasing anthropogenic noise pollu-
tion (e.g., shipping and drilling), but it may also
lead to the development of new tools for
fisheries managers for restocking fisheries or
newly established marine reserves.
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Fig. 1. Comparison of catches from patch reefs with different sound treatments (tables S1 to S3). (A and
B) Reefs broadcasting reef noise (black) or silent reefs (white). (C and D) Reefs with high-frequency
(black) or low-frequency (gray) reef noise or silent reefs (white). Statistical results are for (A) Chi-
squared analyses, (B) Wilcoxon’s matched pairs test, (C) pairwise Chi-squared analyses with Bonferroni
corrections, and (D) pairwise Wilcoxon’s matched pairs test with Bonferroni corrections (ms, P G 0.1; *,
P G 0.05; **, P G 0.01). All apogonids and pomacentrids were excluded from the analyses in (B) and (D).
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Simulation #1: Basic Model

• Fish larvae start at 1 km from the reef.

• The larvae can estimate intensity changes of sound from the reef to within 1 
dB.

• Each larva swims for 15 minutes in a random direction.  Then:

• If the intensity of sound increases, it keeps swimming in that direction.

• If the intensity of sound decreases, it randomly changes direction with a 
bias towards the opposite direction.

• If the intensity of sound does not change, it randomly turns by about 90 
degrees.

8

[2]	
J. R. Potter and M. A. Chitre. Do fish fry use emergent 
behaviour in schools to find coral reefs by sound?  In AGU 
Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.
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Simulation #1: Sample Run
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Ocean Sciences 
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Simulation #1: Sample Run

9

[2]	
J. R. Potter and 
M. A. Chitre. Do 
fish fry use 
emergent behaviour 
in schools to find 
coral reefs by 
sound?  In AGU 
Ocean Sciences 
Meeting, Honolulu, 
Hawaii, February 
2006.



CAMS 2013: Chitre and Shaukat

Simulation #2: Schooling Model

• Same as simulation #1 model.

• Additionally, larvae have a small bias to move towards the centroid of the 
neighbors that they can see.

10

Neighbor-
hood

[2]	
J. R. Potter and M. A. Chitre. Do fish fry use 
emergent behaviour in schools to find coral 
reefs by sound?  In AGU Ocean Sciences 
Meeting, Honolulu, Hawaii, February 2006.
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Simulation #2: Sample Run
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Simulation #2: Sample Run
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Simulation Results
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Key Takeaways

13



CAMS 2013: Chitre and Shaukat

Key Takeaways

1. The team “knows” more than each of the individual in the 
team.
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Key Takeaways

1. The team “knows” more than each of the individual in the 
team.

2. A bunch of noisy sensors may be sufficient, if the sensors 
can cooperate.

3. Communication is key in a team; but it can be implicit and 
very limited.

4. Apparently sophisticated team behavior can result from 
simple individual behaviors.

13
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Group behaviors
are commonly employed in nature

14
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Image courtesy: http://www.maxgerthel.com
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Bio-inspired algorithms
for groups of AUVs

Problem Statement
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Key Research Question
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Can we employ emergent behaviors in a small team 
of AUVs to solve useful problems?
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Problem Statement

• Localize a source using a small team of AUVs.

• Individual AUV behavior determined by a set of simple control laws.
All AUVs follow the same laws.

• No explicit communication between AUVs.
Information is communicated implicitly by observing neighboring AUVs.

18
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Sub-problems

• First Arrival Time (FAT)

• Last Arrival Time (LAT)

• Specific Arrival Time (SAT)

19

Reef
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Applications

• First Arrival Time:
Search Operations
(first AUV to find target)

• Last Arrival Time:
Homing Operations
(all AUVs to arrive at dock)

• Specific Arrival Time:
Search & Intervention Operations
(a specialized AUV in the team with 
intervention capability)

20
Image courtesy: http://www.roboticsbusinessreview.com/

Image courtesy: http://www.mwpower.co.uk/

Image courtesy: http://www.fennent.com/

http://www.roboticsbusinessreview.com
http://www.roboticsbusinessreview.com
http://www.mwpower.co.uk
http://www.mwpower.co.uk
http://www.fennent.com
http://www.fennent.com
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Bio-inspired algorithms
for groups of AUVs

Control Algorithm

21
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Algorithm Overview

22

Control Algorithm

Target Drive Group Cohesion
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Target Drive

23

time t-1
signal level P(t-1)

time t
signal level P(t)

ΔP=P(t)-P(t-1)

if ΔP > 0

if ΔP ≤ 0

N (✓,�✓)

If signal gets stronger, keep going; otherwise make a random turn
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Group Cohesion

• Based on studies on Golden shiners:

24

   Y. Katz,  K. Tunstrm,  C. Ioannou,  C. 
Huepe and I. Couzin, “Inferring the 
structure and dynamics of interactions in 
schooling fish,” Proceedings of the 
National Academy of Sciences, vol. 108, 
no. 46, pp. 18720-18725, 2011.
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Group Cohesion

Neighborhood

Move towards the centroid of the neighbors

Neighborhood
    radius

r 
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Group Cohesion: Left-Right (LR) Model

• Group cohesion model requires accurate knowledge of neighbor positions

• Further simplification possible without significant loss of performance by 
estimating which side has more neighbors

26

heading

Implementation on an AUV 
may involve sensors (camera/
hydrophone) on either side of 
the AUV

L R
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Group Cohesion: LR Model

27

Neighborhood

Turn towards larger number of neighbors

group
cohesion

heading
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Target Drive + Group Cohesion

28

target drive

group
cohesion

         final
direction

ftarget

f
group

⌘f
target

+ (1� ⌘)f
group

control parameter balancing 
target drive and group cohesion
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Results:
Fixed parameters
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Performance – Neighborhood
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Performance – First Arrival (FAT)
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Performance – Last Arrival (LAT)
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Performance – Specific Arrival (SAT)
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Summary of Results

• For the FAT problem, it is best to have no group cohesion.

• The LAT problem benefits significantly from group cohesion.

• Performance of the SAT problem becomes more deterministic 
with group cohesion.

34
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Bio-inspired algorithms
for groups of AUVs

Parameter Tuning

35
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Control Algorithm Parameters

36

• Number of AUVs – N (range: 1 to 30)

• Drive coefficient – η (range: 0 to 1)

• Turning angle distribution parameters – θ, σθ
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Optimization Objectives

• Mean first arrival time (FAT)

• Mean last arrival time (LAT)

• Mean specific arrival time (SAT)

37



CAMS 2013: Chitre and Shaukat

Optimization Framework

• Evolutionary Optimization

• Population size = 36

• Real-valued genes: (N, η, θ, σθ)

• Crossover + Mutation

• Binary tournament selection

• Elitism

38
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Optimization Framework

39
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Optimization Framework

40



CAMS 2013: Chitre and Shaukat

Results:
First Arrival Time (FAT)

with optimized parameters

41
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Optimization – Number of AUVs
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Fig. 3: Optimization of mean FAT: (a) Box-plot for evolution of N . (b) Box-plot for evolution of DBC coefficient, ⌘. (c)
Box-plot for evolution of correction-angle, ✓

c

. (d) Box-plot for evolution of variance in correction-angle, �
✓c (e) Mean FAT

vs. group size, N. (f) Correlation between the correction-angle ✓
c

and its variance �
✓c .

A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Performance – Group Size
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A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Fig. 3: Optimization of mean FAT: (a) Box-plot for evolution of N . (b) Box-plot for evolution of DBC coefficient, ⌘. (c)
Box-plot for evolution of correction-angle, ✓

c

. (d) Box-plot for evolution of variance in correction-angle, �
✓c (e) Mean FAT

vs. group size, N. (f) Correlation between the correction-angle ✓
c

and its variance �
✓c .

A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Fig. 3: Optimization of mean FAT: (a) Box-plot for evolution of N . (b) Box-plot for evolution of DBC coefficient, ⌘. (c)
Box-plot for evolution of correction-angle, ✓

c

. (d) Box-plot for evolution of variance in correction-angle, �
✓c (e) Mean FAT

vs. group size, N. (f) Correlation between the correction-angle ✓
c

and its variance �
✓c .

A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Fig. 3: Optimization of mean FAT: (a) Box-plot for evolution of N . (b) Box-plot for evolution of DBC coefficient, ⌘. (c)
Box-plot for evolution of correction-angle, ✓

c

. (d) Box-plot for evolution of variance in correction-angle, �
✓c (e) Mean FAT

vs. group size, N. (f) Correlation between the correction-angle ✓
c

and its variance �
✓c .

A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Fig. 3: Optimization of mean FAT: (a) Box-plot for evolution of N . (b) Box-plot for evolution of DBC coefficient, ⌘. (c)
Box-plot for evolution of correction-angle, ✓

c

. (d) Box-plot for evolution of variance in correction-angle, �
✓c (e) Mean FAT

vs. group size, N. (f) Correlation between the correction-angle ✓
c

and its variance �
✓c .

A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Fig. 3: Optimization of mean FAT: (a) Box-plot for evolution of N . (b) Box-plot for evolution of DBC coefficient, ⌘. (c)
Box-plot for evolution of correction-angle, ✓

c

. (d) Box-plot for evolution of variance in correction-angle, �
✓c (e) Mean FAT

vs. group size, N. (f) Correlation between the correction-angle ✓
c

and its variance �
✓c .

A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Fig. 3: Optimization of mean FAT: (a) Box-plot for evolution of N . (b) Box-plot for evolution of DBC coefficient, ⌘. (c)
Box-plot for evolution of correction-angle, ✓

c

. (d) Box-plot for evolution of variance in correction-angle, �
✓c (e) Mean FAT

vs. group size, N. (f) Correlation between the correction-angle ✓
c

and its variance �
✓c .

A. Mean FAT Optimization Results

The results of the mean FAT optimization for
⌦ = [N, ⌘, ✓

c

,�
✓c ] are shown in Fig. 3. The mean

FAT benefits from as many number of AUVs as possible as
shown in Fig. 3a. The optimal ⌘ converges to the maximum
bias towards the target as shown in Fig. 3b and the optimal
corrective angle ✓

c

⇡ 21

� whereas its variance �
✓c is nearly

zero as shown in Fig. 3c and Fig. 3d respectively.
The first two results agree with our initial findings as given

in [33] where we substantiated that FAT does not benefit from
any GC bias but does benefit from increasing N . When we
talk about FAT benefitting from the increasing number of
AUVs, it becomes important from a practical stand-point to
clarify how significant is the performance difference between
smaller teams in numbers N < 20 and the larger ones.

For this, we ran simulations for varying N and its impact
on the mean FAT as shown in Fig. 3e. We can see that
N = 20 shows an approximate 69% improvement in mean
FAT as compared to a single AUV mission. Even a team as
small as N = 5 shows an approximate 40% improvement.
However, we can also see that as the number of AUVs
are increased further the comparative improvement drops
sharply, e.g., if we compare improvement of mean FAT with
respect to N = 1, for N = 20 and N = 60, the difference
is merely 8.5%. From this, we can infer that increasing
N beyond a particular number of AUVs results in only
marginal returns in terms of convergence time, especially
if we consider the current cost of assembling a single AUV.

As Fig. 3d shows that the optimal �
✓c ⇡ 0

�, we investigate
if that is the behaviour which holds for all the different

N and if so, we can disregard �
✓c altogether. However

Fig. 3f shows otherwise, where ✓
c

and �
✓c are shown to

have a strong correlation if we observe the optimization
values in the range [1, 15] where we see that ✓

c

⇡ 90

� in
case of N = 1 decreases consistently to ✓

c

⇡ 8

� in case of
N = 15. However, �

✓c acts exactly in the opposite manner.
For N � 20, both these values settle down where ✓

c

is
confined in the range [18.5�, 21�] and �

✓c remains nearly
zero.

B. FAT: EA Evolved Solution and Initialization Distance

When dealing with evolutionary optimization techniques,
it is important to ascertain that the EA optimized solution
is not exploiting any specific information that is local to
the particular environment or any initial condition, which
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Fig. 4: Performance comparison of FAT in terms of CDF for
varying initial distances kg
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would not hold in a generic sense [39]. For this reason,
we initialized all the AUVs with different and random
✓
n

(0) from different g
x

n

(0) in all the four quadrants of Fg,
keeping kg

x

n

(0)k = 1.4 km constant. All such initializations
produced the same optimization results as discussed earlier.

Fig. 4 shows the CDF of FAT for different
initialization distances kg

x

n

(0)k while keeping the
same control parameters as evolved for the optimized
distance kg

x

noptimized(0)k = 1.4 km. For distances
kg
x

n

(0)k < kg
x

noptimized(0)k, the performance is either
better or nearly the same at different probability values
mainly because of the shorter distance and the evolved
search-paths of the individual AUVs which are biased
towards the target location. For kg

x

n

(0)k > kg
x

noptimized(0)k
the performance degrades which is intuitive for the
increased distance but the algorithm is robust in localizing
the target location. The simulation for N = 20 AUVs
for kg

x

noptimized(0)k = 1.4 km trying to localize the target
location for the case of kg

x

n

(0)k = 2 km can be seen in
the attached video which highlights the individual search
patterns and the biased search towards the target location.

C. FAT: From Shallow to Deep Waters
We test Bio-CAST’s performance for FAT in case of ↵ 2

{1, 1.5, 2.0}, i.e., from shallow to deep waters as shown in
Fig. 5. It can be seen that there is no significant comparative
degradation with respect to ↵ = 1 in the case of ↵ = 1.5
or ↵ = 2.0 and the performance of Bio-CAST is nearly
identical in both the cases.

D. LAT Optimization Results
The results of the mean LAT optimization for fixed

N = 20 AUVs and ⌦ = [⌘, ✓
c

,�
✓c ] are shown in Fig. 6.

The optimal ⌘ ⇡ 0.55 shows slightly more bias towards
the target than the group as shown in Fig. 6a. Nevertheless,
this is intuitive in the sense that more bias towards the group
results in no convergence at all. In comparison to the mean
FAT optimization where ⌘ was unilaterally biased towards
TD-dictated direction, here the evolutionary optimization has
taken significant advantage from GC. The optimal corrective
angle ✓

c

⇡ 180

� whereas its variance �
✓c is nearly zero as

shown in Fig. 6b. These trends are in agreement with those
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Fig. 5: Performance comparison of FAT in terms of CDF for
varying sea conditions ↵ 2 {1, 1.5, 2.0}.
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Fig. 6: LAT Optimization:(a) Evolution of DBC coefficient,
Evolution of ⌘. (b) correction-angle, ✓

c

and variance in
correction-angle, �

✓c .

seen for mean FAT in Fig. 3c and Fig. 3d where for cases
N � 20, optimal ✓

c

approached some constant value and the
associated optimal variance was reported as zero.

E. Emergent Behaviour in LAT: GC vs. No GC

It is important to highlight the difference in behaviour
and the consequential performance between a team that takes
advantage of GC and one that does not. For this purpose, we
carry out optimizations for ↵ = 1 and ↵ = 1.5 for the team
consisting of N = 20 AUVs with GC turned OFF (⌘ = 1).
Then the performance of the team with ⌘ = 1 is compared
with the team of same size but optimized with GC turned
ON as shown in Fig. 7. There is a significant advantage in
terms of convergence time for the team benefitting from the
implicit information of GC and this advantage is exaggerated
in the case of ↵ = 1.5 where 100% of the team with ⌘ = 1,
nearly never makes it to the target location. In fact, even if the
mission is marked as a success for 60% of team-convergence

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

LAT (hrs)

C
D

F

 

 

α = 1, η = 0.55
α = 1, η = 1.00
α = 1.5, η = 1.00
α = 1.5, η = 0.58
α = 1.5, η = 1.00, 60%arrivals

(a)

Fig. 7: Performance comparison of LAT in terms of CDF for
GC vs No GC for N = 20 and ↵ 2 {1, 1.5}.
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would not hold in a generic sense [39]. For this reason,
we initialized all the AUVs with different and random
✓
n

(0) from different g
x

n

(0) in all the four quadrants of Fg,
keeping kg

x

n

(0)k = 1.4 km constant. All such initializations
produced the same optimization results as discussed earlier.

Fig. 4 shows the CDF of FAT for different
initialization distances kg

x

n

(0)k while keeping the
same control parameters as evolved for the optimized
distance kg

x

noptimized(0)k = 1.4 km. For distances
kg
x

n

(0)k < kg
x

noptimized(0)k, the performance is either
better or nearly the same at different probability values
mainly because of the shorter distance and the evolved
search-paths of the individual AUVs which are biased
towards the target location. For kg

x

n

(0)k > kg
x

noptimized(0)k
the performance degrades which is intuitive for the
increased distance but the algorithm is robust in localizing
the target location. The simulation for N = 20 AUVs
for kg

x

noptimized(0)k = 1.4 km trying to localize the target
location for the case of kg

x

n

(0)k = 2 km can be seen in
the attached video which highlights the individual search
patterns and the biased search towards the target location.

C. FAT: From Shallow to Deep Waters
We test Bio-CAST’s performance for FAT in case of ↵ 2

{1, 1.5, 2.0}, i.e., from shallow to deep waters as shown in
Fig. 5. It can be seen that there is no significant comparative
degradation with respect to ↵ = 1 in the case of ↵ = 1.5
or ↵ = 2.0 and the performance of Bio-CAST is nearly
identical in both the cases.

D. LAT Optimization Results
The results of the mean LAT optimization for fixed

N = 20 AUVs and ⌦ = [⌘, ✓
c

,�
✓c ] are shown in Fig. 6.

The optimal ⌘ ⇡ 0.55 shows slightly more bias towards
the target than the group as shown in Fig. 6a. Nevertheless,
this is intuitive in the sense that more bias towards the group
results in no convergence at all. In comparison to the mean
FAT optimization where ⌘ was unilaterally biased towards
TD-dictated direction, here the evolutionary optimization has
taken significant advantage from GC. The optimal corrective
angle ✓

c

⇡ 180

� whereas its variance �
✓c is nearly zero as

shown in Fig. 6b. These trends are in agreement with those
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Fig. 5: Performance comparison of FAT in terms of CDF for
varying sea conditions ↵ 2 {1, 1.5, 2.0}.
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Fig. 6: LAT Optimization:(a) Evolution of DBC coefficient,
Evolution of ⌘. (b) correction-angle, ✓

c

and variance in
correction-angle, �

✓c .

seen for mean FAT in Fig. 3c and Fig. 3d where for cases
N � 20, optimal ✓

c

approached some constant value and the
associated optimal variance was reported as zero.

E. Emergent Behaviour in LAT: GC vs. No GC

It is important to highlight the difference in behaviour
and the consequential performance between a team that takes
advantage of GC and one that does not. For this purpose, we
carry out optimizations for ↵ = 1 and ↵ = 1.5 for the team
consisting of N = 20 AUVs with GC turned OFF (⌘ = 1).
Then the performance of the team with ⌘ = 1 is compared
with the team of same size but optimized with GC turned
ON as shown in Fig. 7. There is a significant advantage in
terms of convergence time for the team benefitting from the
implicit information of GC and this advantage is exaggerated
in the case of ↵ = 1.5 where 100% of the team with ⌘ = 1,
nearly never makes it to the target location. In fact, even if the
mission is marked as a success for 60% of team-convergence
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Fig. 7: Performance comparison of LAT in terms of CDF for
GC vs No GC for N = 20 and ↵ 2 {1, 1.5}.
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would not hold in a generic sense [39]. For this reason,
we initialized all the AUVs with different and random
✓
n

(0) from different g
x

n

(0) in all the four quadrants of Fg,
keeping kg

x

n

(0)k = 1.4 km constant. All such initializations
produced the same optimization results as discussed earlier.

Fig. 4 shows the CDF of FAT for different
initialization distances kg

x

n

(0)k while keeping the
same control parameters as evolved for the optimized
distance kg

x

noptimized(0)k = 1.4 km. For distances
kg
x

n

(0)k < kg
x

noptimized(0)k, the performance is either
better or nearly the same at different probability values
mainly because of the shorter distance and the evolved
search-paths of the individual AUVs which are biased
towards the target location. For kg

x

n

(0)k > kg
x

noptimized(0)k
the performance degrades which is intuitive for the
increased distance but the algorithm is robust in localizing
the target location. The simulation for N = 20 AUVs
for kg

x

noptimized(0)k = 1.4 km trying to localize the target
location for the case of kg

x

n

(0)k = 2 km can be seen in
the attached video which highlights the individual search
patterns and the biased search towards the target location.

C. FAT: From Shallow to Deep Waters
We test Bio-CAST’s performance for FAT in case of ↵ 2

{1, 1.5, 2.0}, i.e., from shallow to deep waters as shown in
Fig. 5. It can be seen that there is no significant comparative
degradation with respect to ↵ = 1 in the case of ↵ = 1.5
or ↵ = 2.0 and the performance of Bio-CAST is nearly
identical in both the cases.

D. LAT Optimization Results
The results of the mean LAT optimization for fixed

N = 20 AUVs and ⌦ = [⌘, ✓
c

,�
✓c ] are shown in Fig. 6.

The optimal ⌘ ⇡ 0.55 shows slightly more bias towards
the target than the group as shown in Fig. 6a. Nevertheless,
this is intuitive in the sense that more bias towards the group
results in no convergence at all. In comparison to the mean
FAT optimization where ⌘ was unilaterally biased towards
TD-dictated direction, here the evolutionary optimization has
taken significant advantage from GC. The optimal corrective
angle ✓

c

⇡ 180

� whereas its variance �
✓c is nearly zero as

shown in Fig. 6b. These trends are in agreement with those
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Fig. 5: Performance comparison of FAT in terms of CDF for
varying sea conditions ↵ 2 {1, 1.5, 2.0}.
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Fig. 6: LAT Optimization:(a) Evolution of DBC coefficient,
Evolution of ⌘. (b) correction-angle, ✓

c

and variance in
correction-angle, �

✓c .

seen for mean FAT in Fig. 3c and Fig. 3d where for cases
N � 20, optimal ✓

c

approached some constant value and the
associated optimal variance was reported as zero.

E. Emergent Behaviour in LAT: GC vs. No GC

It is important to highlight the difference in behaviour
and the consequential performance between a team that takes
advantage of GC and one that does not. For this purpose, we
carry out optimizations for ↵ = 1 and ↵ = 1.5 for the team
consisting of N = 20 AUVs with GC turned OFF (⌘ = 1).
Then the performance of the team with ⌘ = 1 is compared
with the team of same size but optimized with GC turned
ON as shown in Fig. 7. There is a significant advantage in
terms of convergence time for the team benefitting from the
implicit information of GC and this advantage is exaggerated
in the case of ↵ = 1.5 where 100% of the team with ⌘ = 1,
nearly never makes it to the target location. In fact, even if the
mission is marked as a success for 60% of team-convergence
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Fig. 7: Performance comparison of LAT in terms of CDF for
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• Small teams can demonstrate effective group synergy.

• Evolutionary optimization can effectively find parameters yielding 
good performance given a search space.

• The FAT problem does not require group cohesion, but needs many 
AUVs. The LAT problem benefits from a large team size, and plenty of 
cohesion.

• Interesting high-level behaviors emerge from the algorithm 
parameters learned through evolutionary optimization.
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Key Takeaways [again!]

1. The team “knows” more than each of the individual in the 
team.

2. A bunch of noisy sensors may be sufficient, if the sensors 
can cooperate.

3. Communication is key in a team; but it can be implicit and 
very limited.

4. Apparently sophisticated team behavior can result from 
simple individual behaviors.
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SwarmBot
Lake Tests

Small, portable
Low cost
Near-surface AUV
Group behavior tests
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Other Problems

• Specific Arrival Time (SAT)
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Algorithmic Enhancements

• Dynamic schooling:
Change η based on confidence level of an AUV

• Variable speed:
Vary AUV speed based on signal strength improvement ΔP or confidence 
level
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