

September 17, 2013 CAMS 2013

Bio-inspired algorithms for distributed control in small teams of autonomous underwater vehicles

Mandar Chitre

Department of Electrical & Computer Engineering, and ARL, Tropical Marine Science Institute, National University of Singapore

Mansoor Shaukat

Graduate School for Integrative Sciences and Engineering, National University of Singapore

Background

Autonomous sensing & platform technology

Underwater communication & networking

Dolphin Bioacoustics

Project STARFISH

"Small Team of Autonomous Robotic Fish"

Phase I – 2006-2009 Phase II – 2010-2014

Project STARFISH

Project STARFISH

Motivational Example

Motivational Example

- The larvae of nearly all coral reef fish develop at sea for weeks to months before settling back to reefs as juveniles.
- Although larvae have the potential to disperse great distances, a substantial portion recruit back to their natal reefs.
- Larvae are not passively dispersed but develop a high level of swimming competence.
- Recruits respond actively to reef sounds.

[1] S. D. Simpson, M. Meekan, J. Montgomery, R. McCauley, and A. Jeffs. Homeward sound. *Science*, 308(5719):221, 2005.

Simulation #1: Basic Model

- Fish larvae start at 1 km from the reef.
- The larvae can estimate intensity changes of sound from the reef to within 1 dB.
- Each larva swims for 15 minutes in a random direction. Then:
 - If the intensity of sound increases, it keeps swimming in that direction.
 - If the intensity of sound decreases, it randomly changes direction with a bias towards the opposite direction.
 - If the intensity of sound does not change, it randomly turns by about 90 degrees.

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #1: Sample Run

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #1: Sample Run

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #2: Schooling Model

- Same as simulation #1 model.
- Additionally, larvae have a small bias to move towards the centroid of the neighbors that they can see.

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #2: Sample Run

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #2: Sample Run

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation Results

1. The team "knows" more than each of the individual in the team.

- 1. The team "knows" more than each of the individual in the team.
- 2. A bunch of noisy sensors may be sufficient, if the sensors can cooperate.

- 1. The team "knows" more than each of the individual in the team.
- 2. A bunch of noisy sensors may be sufficient, if the sensors can cooperate.
- 3. Communication is key in a team; but it can be implicit and very limited.

- 1. The team "knows" more than each of the individual in the team.
- 2. A bunch of noisy sensors may be sufficient, if the sensors can cooperate.
- 3. Communication is key in a team; but it can be implicit and very limited.
- 4. Apparently sophisticated team behavior can result from simple individual behaviors.

Group behaviors

are commonly employed in nature

Bio-inspired algorithms for groups of AUVs

Problem Statement

Key Research Question

Can we employ <u>emergent behaviors</u> in a <u>small team</u> of AUVs to solve <u>useful</u> problems?

Problem Statement

- Localize a source using a small team of AUVs.
- Individual AUV behavior determined by a set of simple control laws.
 All AUVs follow the same laws.
- No explicit communication between AUVs. Information is communicated implicitly by observing neighboring AUVs.

Sub-problems

• First Arrival Time (FAT)

• Last Arrival Time (LAT)

• Specific Arrival Time (SAT)

Applications

- First Arrival Time: Search Operations (first AUV to find target)
- Last Arrival Time: Homing Operations (all AUVs to arrive at dock)

 Specific Arrival Time: Search & Intervention Operations (a specialized AUV in the team with intervention capability)

Bio-inspired algorithms for groups of AUVs

Control Algorithm

Algorithm Overview

Target Drive

If signal gets stronger, keep going; otherwise make a random turn

 $\Delta P=P(t)-P(t-1)$

Group Cohesion

• Based on studies on Golden shiners:

Y. Katz, K. Tunstrm, C. Ioannou, C. Huepe and I. Couzin, "Inferring the structure and dynamics of interactions in schooling fish," Proceedings of the National Academy of Sciences, vol. 108, no. 46, pp. 18720-18725, 2011.

Group Cohesion

Move towards the centroid of the neighbors

Group Cohesion: Left-Right (LR) Model

- Group cohesion model requires accurate knowledge of neighbor positions
- Further simplification possible without significant loss of performance by estimating which side has more neighbors

Group Cohesion: LR Model

Turn towards larger number of neighbors

Target Drive + Group Cohesion

Results: Fixed parameters
Performance – Neighborhood

Performance – First Arrival (FAT)

Performance – Last Arrival (LAT)

Performance – Specific Arrival (SAT)

Summary of Results

- For the FAT problem, it is best to have no group cohesion.
- The LAT problem benefits significantly from group cohesion.
- Performance of the <u>SAT</u> problem becomes more <u>deterministic</u> with group cohesion.

Bio-inspired algorithms for groups of AUVs

Parameter Tuning

Control Algorithm Parameters

- Number of AUVs *N* (range: 1 to 30)
- Drive coefficient η (range: 0 to 1)
- Turning angle distribution parameters θ , σ_{θ}

Optimization Objectives

- Mean first arrival time (FAT)
- Mean last arrival time (LAT)
- Mean specific arrival time (SAT)

Optimization Framework

- Evolutionary Optimization
 - Population size = 36
 - Real-valued genes: (*N*, η , θ , σ_{θ})
 - Crossover + Mutation
 - Binary tournament selection
 - Elitism

Optimization Framework

Individuals

36

Optimization Framework

Mutation rate as a function of Generation Number

Results: First Arrival Time (FAT) with optimized parameters

Optimization – Number of AUVs

гылттапсе – Group Size

Optimization – Turning Angle

Optimization – Turning Angle Variability

Optimization – Target Drive

Results: Last Arrival Time (LAT) with optimized parameters

Optimization – Target Drive

i i lluu

180

1 1 | | |

Last Arrival Time CDF

LAT - Simulations (N = 1)

MASJ 2013 Lecture: Mandar Chitre

LAT – Simulations (N = 1)

LAT – Simulations (N = 1, Optimized)

MASJ 2013 Lecture: Mandar Chitre

LAT – Simulations (N = 1, Optimized)

LAT – Simulations (No Schooling, N = 20)

MASJ 2013 Lecture: Mandar Chitre

LAT – Simulations (No Schooling, N = 20)

LAT – Simulations (Schooling, N = 20)

MASJ 2013 Lecture: Mandar Chitre

LAT – Simulations (Schooling, N = 20)

LAT– Simulations (Schooling, N = 80)

MASJ 2013 Lecture: Mandar Chitre
LAT– Simulations (Schooling, N = 80)

Conclusions

Conclusions

- Small teams can demonstrate effective group synergy.
- Evolutionary optimization can effectively find parameters yielding good performance given a search space.
- The FAT problem does not require group cohesion, but needs many AUVs. The LAT problem benefits from a large team size, and plenty of cohesion.
- Interesting high-level behaviors emerge from the algorithm parameters learned through evolutionary optimization.

Key Takeaways [again!]

- 1. The team "knows" more than each of the individual in the team.
- 2. A bunch of noisy sensors may be sufficient, if the sensors can cooperate.
- 3. Communication is key in a team; but it can be implicit and very limited.
- 4. Apparently sophisticated team behavior can result from simple individual behaviors.

Future Directions

Experiments

SwarmBot

Small, portable Low cost Near-surface AUV Group behavior tests

Lake Tests

Other Problems

• Specific Arrival Time (SAT)

Algorithmic Enhancements

Dynamic schooling:
Change η based on confidence level of an AUV

• Variable speed:

Vary AUV speed based on signal strength improvement ΔP or confidence level

