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Abstract

We present a computationally efficient method to generate random variables from a univariate conditional
probability density function (PDF) derived from a multivariate α-sub-Gaussian (αSG) distribution. The
approach may be used to sequentially generate variates for sliding-window models that constrain imme-
diately adjacent samples to be αSG random vectors. We initially derive and establish various properties of
the conditional PDF and show it to be equivalent to a Student’s t-distribution in an asymptotic sense. As
the αSG PDF does not exist in closed form, we use these insights to develop a method based on the rejection
sampling (accept-reject) algorithm that allows generating random variates with computational ease.

Keywords: random number generation, symmetric α-stable distribution, α-sub-Gaussian distribution,
Student’s t-distribution, rejection sampling.

1. Introduction

The heavy-tailed stable distribution has been ex-
tensively used in the literature to model impul-
sive data [11, 6, 15]. Heavy-tailed distributions
assign non-negligible probabilities to outliers and
therefore offer good fits to amplitude distributions
of impulsive datasets [11]. The motivation for
employing stable models stems from the gener-
alized central limit theorem (GCLT) [21], which
states that the sum of independent and identically
distributed (IID) random variables (vectors) con-
verges to a stable distribution as the number of
elements in the sum approaches infinity [21, 15].
The GCLT is in fact the central limit theorem (CLT)
but with the power constraint removed. The last
statement essentially implies that the well-known
Gaussian distribution is part of the stable fam-
ily. Moreover, it is the only member to have
light (exponential) tails [21, 15]. As the validity
of Gaussian models is primarily attributed to the
CLT [17], the GCLT offers a similar argument for
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heavy-tailed stable models when the process is im-
pulsive in nature [15, 11]. From an engineering
perspective, there are a number of practical sce-
narios where the ambient noise process is known
to be impulsive. The warm shallow underwater
channel, powerlines and interference-prone wire-
less networks are a few examples where such noise
is prevalent [6, 23].

In the literature, impulsive noise processes are
typically assumed to be white, i.e., the samples are
symmetric IID random variables [6, 5, 2]. Though
such assumptions offer mathematical tractability
in terms of developing optimized routines, they
are far from realistic [3, 10, 7, 4]. In practice, noise
is seldom white and therefore has memory. Thus,
at any given time, the current noise sample de-
pends on a number of previous samples. To in-
corporate this dependence within the noise frame-
work, several models have been proposed in the
literature [3, 10, 7, 6]. Recently, the stationary α-
sub-Gaussian noise with memory order m (αSGN(m))
process was proposed to model the ambient noise
in warm shallow underwater environments [7]. As
highlighted by its name, the αSGN(m) model is
based on the α-sub-Gaussian (αSG) distribution,
which is a subclass of the stable family with the

Preprint submitted to Elsevier June 22, 2016



added characteristic of being symmetric and ellip-
tical as well [14]. The new model is particularly
adept in tracking the dependence between sam-
ples of the noise process whilst constraining the
amplitude distribution to be that of a symmetric α-
stable (SαS) random variable and is shown to out-
perform contemporary colored and white models
in this regard.

Generating random variates is an important
component of simulation-based performance anal-
ysis of systems, schemes and algorithms. The
αSGN(m) model is based on a sliding-window
type framework and constrains samples within the
window to be αSG [7]. Therefore, a noise sam-
ple is returned from a univariate conditional distri-
bution of a multivariate αSG distribution. As shown
later, this is a computationally demanding task, es-
pecially when a large number of variates are re-
quired. However, by expressing the conditional
density in a suitable form and taking advantage of
its properties, it is possible to compute realizations
in a less time-consuming manner.

The primary contribution of this paper is to of-
fer a way to efficiently generate realizations for
αSG processes that are based on a sliding-window
framework. The αSGN(m) model falls within
this category. Generating independent outcomes
from multivariate αSG distributions is a straight-
forward task and may be accomplished with com-
putational ease [14, 9]. However, extending this
efficiency to processes with memory is not triv-
ial. To accomplish this, we investigate the prop-
erties of a univariate conditional distribution de-
rived from a (general) multivariate αSG probabil-
ity density function (PDF). We show that this con-
verges to a Student’s t-distribution in an asymp-
totic sense and express the latter’s parameters in
terms of the formers. These properties are then ex-
ploited to find suitable majorizing functions which
are used to efficiently generate random variates
by employing the established rejection sampling
(accept-reject) method [19]. Further still, the gen-
eral αSG PDF cannot be expressed in closed-form
[14]. For every instance of its argument, the PDF is
evaluated by numerically integrating over a heavy-
tailed function [11, 14]. The same holds true for its
corresponding conditional PDFs. We investigate
the underlying function and show that it can be
evaluated by a one-time tabulation and interpola-
tion over a certain range, after which limiting ex-
pressions may be applied. Employing this routine
in conjunction with the optimized setting of the re-

jection sampling algorithm substantially reduces
the time taken for generating the realizations. It
takes approximately a second to sequentially gen-
erate 10,000 samples of αSGN(m) on a 3.70GHz
processor.

This paper is organized as follows: In Section 2,
we briefly summarize stable, SαS and multivariate
αSG distributions. We then derive the univariate
conditional density for the latter and comment on
its properties in Section 3. Using these insights, we
discuss random number generation from the con-
ditional PDF via rejection sampling in Section 4.
We wrap up by presenting the conclusions in Sec-
tion 5.

2. Summary of Concepts & Notation

2.1. Stable Distributions

A random vector �X ∈ R
d is stable if and only if

a1 �X
(1) + a2 �X

(2) d
= b �X + c, (1)

where a1, a2, b, c ∈ R, �X(i) are IID copies of �X and
d
= implies equality in distribution [15, 21]. One of
the implications of (1) is that the distribution of
�X is conserved under linear transformations up to
location and scale. This is termed as the stability
property and is unique to this family of distribu-
tions [11, 21]. From (1), one notes that if �X is stable,
then any permutation of �X is stable as well. Fur-
ther still, if �X = [ �XT

1 ,
�XT
2 ]

T such that �X1 ∈ R
m and

�X2 ∈ R
d−m, then the marginal random vectors �X1

and �X2 are stable too [21].
A univariate stable distribution is parameter-

ized by four parameters, namely the characteris-
tic exponent α ∈ (0, 2], the skew parameter β ∈
[−1,+1], the scale δ ∈ (0,+∞) and the location
μ ∈ (−∞,+∞) [15, 21]. In notational form, it is de-
noted by S(α, β, δ, μ) [11]. Stable distributions are
generally heavy-tailed, with the heaviness solely
determined by α. As the latter increases, the tails
become increasingly lighter, ultimately converging
to a Gaussian distribution with mean μ and vari-
ance 2δ2, i.e., N (μ, 2δ2) for α = 2 [15]. If �X is a
stable random vector, then its elements are stable
random variables and have the same α.

A univariate SαS distribution is stable, but with
β and μ set to zero [11, 21]. Consequently, its PDF
symmetric about zero for any α. We denote such

distributions by S(α, δ). For α = 2, S(2, δ) d
=
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N (0, 2δ2). Extending this to the multidimensional
case, we note that �X ∈ R

d is SαS if it satisfies (1)
and its PDF f �X(x) is symmetric, i.e.,

f �X(x) = f �X(−x), (2)

where x ∈ R
d is a sample outcome of �X . Moreover,

all marginal distributions of �X are SαS and each
element of �X is SαS with the same α [21, 11].

One disadvantage of employing stable random
variables is the general lack of closed-form PDFs.
Exceptions are the Gaussian (α = 2) case and the
Cauchy case (α = 1). Evaluating the PDF at a point
requires calling a numerical routine, which is com-
putationally taxing [11, 21]. This is more promi-
nent in multivariate cases. However, in some in-
stances, certain conducive properties may be ex-
ploited to reduce evaluation times. The αSG dis-
tribution is such an example and is discussed next.

2.2. The αSG Distribution

An αSG distribution is heavy-tailed SαS with the
added constraint of being elliptical as well [14, 21].
More precisely, the random vector �X ∈ R

d is αSG
(α �= 2) if it can be expressed as

�X =
√
A�G, (3)

where A ∼ S(α2 , 1, 2(cos(πα4 ))2/α, 0) and �G ∼
N (0,Σ) is a d-dimensional Gaussian random vec-
tor with the all-zero location vector 0 and covari-
ance matrix Σ ∈ R

d×d [14, 21, 11]. Moreover, A
and �G are independent. The matrix Σ is also called
the shape matrix of �X [14]. The marginal distribution
corresponding to any tuple of elements in �X is also
an αSG distribution and is therefore elliptic as well
[14]. Denoting the ith diagonal element of Σ as σ2

ii,
the distribution of the ith element in �X is S(α, σii).

Before we present the PDF of �X , it is pertinent to
define the standard isotropic αSG vector

�Y = Σ−1/2 �X

=
√
A�GY , (4)

where �GY = Σ−1/2 �G ∼ N (0, Id) and Id is the d×d

identity matrix. The lower-triangular matrix Σ1/2

arises from the Cholesky decomposition of Σ, i.e.,
Σ = Σ1/2(Σ1/2)T, as the latter is a symmetric pos-
tive semi-definite matrix [22, 18]. In turn, the PDF

of �Y can be written in terms of the PDF of the ra-
dial random variable R = ‖�Y ‖ = (�Y T�Y )1/2 [14].
The latter can be expressed as

fR(r;α, d) = 2r

∫ ∞

0

fA(r
2/t;α)

fχ2(t; d)

t
dt, (5)

where fA(t;α) is the PDF of A (with argument t,
parameterized by α) and fχ2(t; d) is a χ2 PDF with
d degrees of freedom. The PDF of �Y is then given
by

f�Y (y;α, d) =
Γ(d/2)

2πd/2
‖y‖1−dfR(‖y‖;α, d). (6)

By using the expression

v(r;α, d) = |r|1−dfR(r;α, d), (7)

we can express (6) in a more simplified form:

f�Y (y;α, d) =
Γ(d/2)

2πd/2
v(‖y‖;α, d). (8)

As �X = Σ1/2�Y , one can invoke simple matrix
transformations to get

f �X(x;α,Σ, d) =
1√

detΣ
f�Y (Σ

−1/2x;α, d)

=
1√

detΣ

Γ(d/2)

2πd/2
v(‖Σ−1/2x‖;α, d).

(9)

Like most SαS distributions, the PDF in (9) cannot
be written in closed-form [14]. The only exception
to this is the Cauchy case (α = 1) [14, 20], for which
we have

f �X(x; 1,Σ, d) =

1√
detΣ

Γ(d+1
2 )

Γ( 12 )π
d/2(1 + ‖Σ−1/2x‖2) d+1

2

. (10)

As f �X(x;α,Σ, d) depends on v(r;α, d), one can
express (9) in terms of a single integral, irrespective
of d [14]. Consequently, the added computational
cost of calculating higher dimensional PDFs comes
primarily from the evaluating the determinant in
(9). In Figs. 1 and 2, we plot v(r;α, d) for α = 1.5
and α = 1.8, respectively, for d ∈ {1, 2, . . . , 10} on a
log-log scale. One notes that the curves are a non-
increasing function of r. Also, there are two linear
regions in each curve: a flat region as r → 0 and
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Figure 1: v(r; 1.5, d) for d ∈ {1, . . . , 10}.
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Figure 2: v(r; 1.8, d) for d ∈ {1, . . . , 10}.

a descending region for large r. These characteris-
tics are observed for other values of α and d. In
fact, from the series representation of fR(r) in [14],
v(r;α, d) has the limiting properties

lim
r→∞ rα+dv(r;α, d) = αk1(α, d) and (11)

lim
r→0

v(r;α, d) = k2(α, d), (12)

where

k1(α, d) = 2α
sin(πα2 )Γ(α+2

2 )Γ(α+d
2 )

πα
2 Γ(d2 )

and

k2(α, d) =
4Γ( dα )

α2dΓ(d2 )
2
.

Both (11) and (12) offer close approximations for
the downwards sloping and flat (near-zero) re-
gions in v(r;α, d), respectively. We use these ob-
servations to our advantage later on.

Remark 1. To get v(r;α, d), we first evaluate
fR(r;α, d) via (5) and then invoke (7). For general
α, fR(r;α, d) cannot be expressed in closed form

and needs to be evaluated numerically [14]. More-
over, it depends on fA(t;α) which also requires nu-
merical integration [12]. We employ the STABLE
package [13, 16] to get fA(t;α) and employ numer-
ical integration methods in MATLAB [8] to evalu-
ate (5). Thereafter, v(r;α, d) is calculated from (7).

3. The Conditional αSG Distribution

We now derive and investigate the properties of
the conditional PDF of a single component in an
αSG random vector. The results in this section of-
fer us the necessary tools to develop the algorithms
proposed in Section 4.

3.1. Derivation & Basic Properties

If �X ∈ R
d is an αSG random vector, we can ex-

press it as �X = [ �XT
1 , X2]

T, where �X1 ∈ R
d−1 and

X2 ∈ R. Similarly, as the underlying Σ is a sym-
metric matrix, it can be expressed in the block form

Σ =

[
Σ11 Σ12

ΣT
12 σ2

22

]
, (13)

where Σ11 is of size (d−1)×(d−1), Σ12 is (d−1)×1
and σ2

22 is a scalar. Note that Σ11 is a real co-
variance matrix, and is therefore symmetric posi-
tive semi-definite [17]. From the discussion in Sec-
tion 2.2, �X1 is αSG with underlying covariance ma-
trix Σ11. Therefore the PDF of X2| �X1 = x1 is

fX2| �X1
(x2|x1;α,Σ, d) =

f �X(x;α,Σ, d)

f �X(x1;α,Σ11, d− 1)
,

(14)

where x = [x1
T, x2]

T. For brevity, we em-
ploy the notation f(x2|x1;α,Σ, d) to represent
fX2| �X1

(x2|x1;α,Σ, d). On substituting (9) in (14),
we get

f(x2|x1;α,Σ, d) =

√
detΣ11

detΣ

Γ(d2 )

Γ(d−1
2 )

√
π

× v(‖Σ−1/2x‖;α, d)
v(‖Σ−1/2

11 x1‖;α, d− 1)
. (15)

It is hard to discern any properties from (15). We
therefore express it in a more interpretive form.
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Using block matrix manipulations, one can write

Σ1/2 =

[
Σ

1/2
11 0

ΣT
12Σ

−1/2
11

√
κ

]
, (16)

where κ = σ2
22 − ΣT

12Σ
−1
11 Σ12 is the Schur’s com-

plement of Σ11 [18, pg. 47]. Details are provided in
Appendix A. Using inversion identities for block
matrices [18, pg. 47], we have

Σ−1/2 =

⎡
⎣ Σ

−1/2
11 0

−ΣT
12Σ

−1
11√

κ
1/

√
κ

⎤
⎦ , (17)

and therefore

Σ−1 = (Σ−1/2)TΣ−1/2

=

⎡
⎣Σ−1

11 +
Σ−1

11 Σ12Σ
T
12Σ

−1
11

κ −Σ−1
11 Σ12

κ

−ΣT
12Σ

−1
11

κ
1
κ

⎤
⎦ . (18)

The latter follows as Σ−1
11 = (Σ−1

11 )
T. From (18) and

the fact that x = [x1
T, x2]

T, we have

‖Σ−1/2x‖2 = xTΣ−1x

= ‖Σ−1/2
11 x1‖2 +

(x2 − μ̂)
2

κ
, (19)

where μ̂ = ΣT
12Σ

−1
11 x1. Also, as κ is a scalar, we

may use the identity detΣ = detΣ11 detκ [18, pg.
46] to get

κ =
detΣ

detΣ11
. (20)

As Σ and Σ11 are positive semi-definite matrices,
κ ∈ R

+. On substituting (19) and (20) back in (15),
we finally get

f(x2|x1;α,Σ, d) =
1√
κπ

Γ(d2 )

Γ(d−1
2 )

× v
((
‖Σ−1/2

11 x1‖2 + (x2−μ̂)2

κ

)1/2
;α, d

)
v(‖Σ−1/2

11 x1‖;α, d− 1)
. (21)

For the special case of �X being a standard isotropic
random vector, (21) reduces to the simplified form:

f(x2|x1;α, Id, d) =
1√
π

Γ(d2 )

Γ(d−1
2 )

× v((‖x1‖2 + x2
2)

1/2;α, d)

v(‖x1‖;α, d− 1)
. (22)

Therefore, from (21) and (22), we have the relation-
ship:

f(x2|x1;α,Σ, d) =
1√
κ
f

(
x2 − μ̂√

κ
|x̂1;α, Id, d

)
,

(23)

where x̂1 = Σ
−1/2
11 x1.

Though cumbersome, the form in (21) offers us
some clear deductions:

1. The conditional PDF is symmetric about μ̂.

2. From (19), for a given ‖Σ−1/2
11 x1‖, one notes

that ‖Σ−1/2x‖ is a monotonically increasing
function of |x2 − μ̂|. This result, along with
the fact that v(r;α, d) is a non-increasing func-
tion of r, constrains (21) to be unimodal. Due
to the latter’s symmetry, the mode is located
at μ̂.

3. For any ‖Σ−1/2
11 x1‖ ∈ R

+, the scale of
f(x2|x1;α,Σ, d) is proportional to

√
κ. This is

more apparent in (23).

Due to the relationship in (3), it is not surpris-
ing that (21) shares the above properties with the
corresponding conditional distribution of the un-
derlying �G. More explicitly, if �G = [ �GT

1 , G2]
T,

then the distribution of G2| �G1 = g1 follows
N (ΣT

12Σ
−1
11 g1, κ). The properties listed above ex-

tend to the Gaussian case, but with x1 replaced
by g1. Do note that the conditional Gaussian PDF
is a closed-form expression. On the other hand,
(21) cannot be expressed in closed-form for gen-
eral α. The only exception to this is the Cauchy
case, which we briefly discuss next.

3.2. The Cauchy Case

It is well known that the multivariate Cauchy
distribution is also a multivariate Student’s t-
distribution [20]. For the latter, the correspond-
ing conditional distributions are also Student’s t-
distributions [20]. Therefore, the univariate condi-
tional PDF of a multivariate Cauchy distribution
will be Student’s t as well. More explicitly, from
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(10) and (14), we have

f(x2|x1; 1,Σ, d) =

√
detΣ11

detΣ

Γ(d+1
2 )

Γ(d2 )
√
π

× (1 + ‖Σ−1/2x‖2)−(d+1)/2

(1 + ‖Σ−1/2
11 x1‖2)−d/2

. (24)

On substituting (19) and (20) in the above expres-
sion and simplifying, we have

f(x2|x1; 1,Σ, d) =
1√
κπ

Γ(d+1
2 )

Γ(d2 )

×

(
1 + (x2−μ̂)2

κ(1+‖Σ−1/2
11 x1‖2)

)−(d+1)/2

√
1 + ‖Σ−1/2

11 x1‖2
. (25)

The univariate Student’s t-PDF is given by

fS(s; ν, δ, μ) =
Γ( ν+1

2 )

δ
√
νπΓ( ν2 )

×
(
1 +

(s− μ)2

νδ2

)−(ν+1)/2

, (26)

where ν ∈ R
+ is the degrees of freedom, δ ∈ R

+

is the scale of the distribution and μ ∈ R is the
location parameter [20]. We denote it by T (ν, δ, μ)
and note it to be unimodal and symmetric about
μ. Like the SαS family, the tails of a Student’s t-
distribution are algebraic, the heaviness of which
is controlled by ν. On comparing (25) with (26),
one notes that

f(x2|x1; 1,Σ, d)

= fS

(
x2; d,

√
κ(1 + ‖Σ−1/2

11 x1‖2)
d

, μ̂
)
. (27)

The equality in (27) is a known result [20], but it
raises an important question: Is the Student’s t-
distribution related to the conditional αSG PDF in
(21) for any α �= 1 and d ∈ Z

+? We answer this
next.

3.3. Convergence to the Student’s t-distribution

The PDF in (21) converges to that of a univariate
Student’s t only in a limiting sense. This is high-
lighted by the following proposition:

Proposition 1. If �X ∈ R
d is an αSG random vector,

then for 0 < α < 2, ν̂ = α+d−1 and μ̂ = ΣT
12Σ

−1
11 x1,

f(x2|x1;α,Σ, d)

∼ fS

(
x2; ν̂,

√
κ

ν̂
‖Σ−1/2

11 x1‖, μ̂
)

(28)

∀ x2 ∈ R, as ‖Σ−1/2
11 x1‖ → ∞.

PROOF. From (19), we have ‖Σ−1/2x‖ ≥
‖Σ−1/2

11 x1‖. Therefore, as ‖Σ−1/2
11 x1‖ → ∞,

then ‖Σ−1/2x‖ → ∞ as well. We can thus substi-
tute (11) for both the numerator and denominator
terms in (21) to get

f(x2|x1;α,Σ, d) ∼ 1√
κπ

Γ(d2 )

Γ(d−1
2 )

k1(α, d)

k1(α, d− 1)

×

(
‖Σ−1/2

11 x1‖2 + (x2−ΣT
12Σ

−1
11 x1)

2

κ

)−(α+d)/2

‖Σ−1/2
11 x1‖−(α+d−1)

(29)

as ‖Σ−1/2
11 x1‖ → ∞, where ∼ denotes asymptotic

equivalence. On simplifying the above expression,
we get

f(x2|x1;α,Σ, d) ∼ 1√
κπ

Γ(α+d
2 )

Γ(α+d−1
2 )

×

(
1 +

(x2−ΣT
12Σ

−1
11 x1)

2

κ‖Σ−1/2
11 x1‖2

)−(α+d)/2

‖Σ−1/2
11 x1‖

. (30)

On comparison with (26), we deduce that
the right-hand side of (30) is equivalent to
fS(x2; ν̂,

√
κ
ν̂ ‖Σ

−1/2
11 x1‖, μ̂), where ν̂ = α + d − 1

and μ̂ = ΣT
12Σ

−1
11 x1. �

Remark 2. In (29), the asymptotic expression in
(11) is substituted for both v(‖Σ−1/2x‖;α, d) and
v(‖Σ−1/2

11 x1‖;α, d − 1) to get (28). In the lat-
ter case, ∼ denotes asymptotic equivalence, i.e.,
lim f(x2| . . .)/fS(x2; . . .) = 1 as ‖Σ−1/2

11 x1‖ → ∞.
We note that (11) approximates the downward lin-
ear sloping region of v(r;α, d) very well (revert
to the example curves in Figs. 1 & 2). There-
fore, as ‖Σ−1/2x‖ ≥ ‖Σ−1/2

11 x1‖, one would ex-
pect fS(x2; . . .) in (28) to be a good approximation
for f(x2|x1;α,Σ, d) when ‖Σ−1/2

11 x1‖ is large. For
a given Σ, the latter arises when ‖x1‖ is large.
Therefore, if at least one element in x1 is impul-
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sive, f(x2|x1;α,Σ, d) is approximated well by (28).
Specifically, for the Cauchy case, one can see that
(28) (with α = 1) offers a good approximation to
(27) when ‖Σ−1/2

11 x1‖ � 1. On a different note,
we see that both μ̂ and the scale in (28) diverge as
‖x1‖ → ∞. One may be tempted to suggest that
in such a scenario (28) may not be influenced by
α or d. However, we see that the tails of the PDF
depend on v̂, which is independent of x1. Also,
when ‖x1‖ is finite but large, the asymptotic ap-
proximation applies. This results in both μ̂ and√

κ/ν̂‖Σ−1/2
11 x1‖ being finite.

Corollary 1. If �X ∈ R
d is a standard isotropic αSG

random vector, then for 0 < α < 2 and ν̂ = α+ d− 1,

f(x2|x1;α, Id, d) ∼ fS

(
x2; ν̂, ‖x1‖/

√
ν̂, 0

)
(31)

∀ x2 ∈ R, as ‖x1‖ → ∞.

PROOF. For the standard isotropic case, we have
Σ = Id. From the latter’s block form in (13), we
have Σ11 = Id−1 and μ̂ = ΣT

12Σ
−1
11 x1 = 0. Also,

from (20), we have κ = 1. These are substituted in
(28) to get (31). �

4. Generating Random Variates

Now that we have established various proper-
ties of the conditional αSG distribution, we will
address the primary objective of this paper, i.e., de-
velop a procedure to generate random variates for
models that employ such distributions. We start
off by briefly discussing how this can be accom-
plished for the underlying Gaussian distribution
and the Cauchy case.

As discussed in Section 3.1, G2| �G1 = g1 ∼
N (ΣT

12Σ
−1
11 g1, κ). Therefore, the corresponding

random variable can be expressed as

G2 = ΣT
12Σ

−1
11 g1 +

√
κW, (32)

where W ∼ N (0, 1). For the Cauchy case, from
(27), we note that the variable X2| �X1 = x1 can be
expressed as

X2 = ΣT
12Σ

−1
11 x1︸ ︷︷ ︸

μ̂

+

√
κ(1 + ‖Σ−1/2

11 x1‖2)
d

W, (33)

where W is a standard Student’s t random vari-
able with ν = d, i.e., W ∼ T (d, 1, 0). The simi-
larity between (32) and (33) is apparent. On the
other hand, the difference is in the distribution of
W and its coefficient, the latter of which is depen-
dent on x1 in (33). The above expressions offer an
effective method to generate random variates for
G2| �G1 = g1 and X2| �X1 = x1 (for α = 1), respec-
tively. However, for general α, one cannot express
the PDF of X2| �X1 = x1 in closed-form. Therefore,
one must revert to alternate methods to generate
the corresponding random variates.

4.1. Random Variates via Rejection Sampling

Rejection sampling offers us a generic frame-
work for random variate generation from an ar-
bitrary PDF [19]. In our case, we want to gener-
ate outcomes for the conditional random variable
X2| �X1 = x1, the PDF of which is f(x2|x1;α,Σ, d).
To employ the rejection sampling algorithm, a
PDF ρ(x2) needs to be specified such that cρ(x2)
majorizes f(x2|x1;α,Σ, d) for some c ≥ 1, i.e.,
cρ(x2) ≥ f(x2|x1;α,Σ, d) ∀ x2 ∈ R. The idea is to
find a ρ(·) from which it is sufficiently easy to gen-
erate random variates. At the same time, ρ(x2) is
desired to approximate f(x2|x1;α,Σ, d) as close as
possible for all x2, i.e., c ≈ 1. A summary of the al-
gorithm is as follows: Generate h from ρ(·), u from
U(0, 1) and check if cu ≤ f(h|x1;α,Σ, d)/ρ(h). If
the condition is satisfied, accept X2 = h. Else re-
ject the sample and repeat the procedure [19, pg.
51].

We note that both ρ(·) and c need to be deter-
mined before the algorithm can be implemented.
We address each of these issues below:

4.1.1. Choice of ρ(·)
From the discussion in Section 3, it is not hard

to see why selecting a Student’s t-distribution for
ρ(·) would be appropriate. Besides being asymp-
totically equivalent as highlighted in Proposition
1, we note that the tails of the PDFs in (21) and (26)
decay as a power law. One may equate these or-
ders to evaluate a suitable value for ν. A straight-
forward derivation in Appendix B gives us

lim
x2→∞xα+d

2 f(x2 + μ̂|x1;α,Σ, d) = c1, (34)
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while from (26) we have

lim
x2→∞xν+1

2 fS(x2 + μ; ν, δ, μ)

= lim
x2→∞xν+1

2 fS(x2; ν, δ, 0) = c2, (35)

where c1 and c2 are constants independent of x2.
On comparing (34) and (35), we note that the tail
order of f(x2|x1;α,Σ, d) is tracked by ν = ν̂ in
(35). Likewise, as fS(x2; ν̂, δ, μ) is unimodal and
symmetric about μ, equating the latter to μ̂ is ap-
propriate. Setting the scale parameter is a matter of
perspective. One possible method involves noting
that

fS(x2; ν̂, δ, μ̂) =
1

δ
fS

(x2 − μ̂

δ
; ν̂, 1, 0

)
and enforcing the constraint

fS(μ̂; ν̂, δ̂, μ̂) = f(μ̂|x1;α,Σ, d) (36)

⇒ δ̂ =
fS(0; ν̂, 1, 0)

f(μ̂|x1;α,Σ, d)
. (37)

The equality in (36) ensures that f(x2|x1;α,Σ, d)

and fS(x2; ν̂, δ̂, μ̂) are equivalent at the mode μ̂ of
either distribution. On substituting (21) and (26) in
(37), we get

δ̂ =

√
κ

ν̂

Γ( ν̂+1
2 )Γ(d−1

2 )

Γ( ν̂2 )Γ(
d
2 )

v(‖Σ−1/2
11 x1‖;α, d− 1)

v(‖Σ−1/2
11 x1‖;α, d)

.

(38)

Due to (36) and Proposition 1, we also note that

f(x2|x1;α,Σ, d) ∼ fS(x2; ν̂, δ̂, μ̂) (39)

∀ x2 ∈ R as ‖Σ−1/2
11 x1‖ → ∞, thus justifying the

choice of ρ(x2) = fS(x2; ν̂, δ̂, μ̂) in an asymptotic
sense.

Finally, we note that generating random variates
from a Student’s t-distribution is computationally
simple to do [20]. A single sample is derived from
a Gaussian and a chi-squared random variable.
The degrees of freedom for the latter is equivalent
to that of the Student’s t-distribution.

4.1.2. Evaluating c

As the probability of acceptance in rejection
sampling is 1/c, it is desired that c be as close to
1 as possible. This can be done numerically. From

η
-500 -300 -100 100 300 500

10-10

10-8

10-6

10-4

10-2

100 f(η|0; 1.5, I2, 2)
fS(η; ν̂, δ̂/

√
κ, 0)

Figure 3: A comparison of f(η|0; 1.5, I2, 2) and the correspond-
ing fS(η; ν̂, δ̂/

√
κ, 0).

η
-500 -300 -100 100 300 500

10-30

10-20

10-10

100 f(η|0; 1.5, I10, 10)
fS(η; ν̂, δ̂/

√
κ, 0)

Figure 4: A comparison of f(η|0; 1.5, I10, 10) and the corre-
sponding fS(η; ν̂, δ̂/

√
κ, 0).

[19], we know that c needs to satisfy the inequality

cfS(x2; ν̂, δ̂, μ̂) ≥ f(x2|x1;α,Σ, d) (40)

∀ x2 ∈ R. On substituting (22) in (40) and invoking
the scale and shift properties of fS(x2; ν̂, δ̂, μ̂) we
have

cfS

(
x2 − μ̂√

κ
; ν̂,

δ̂√
κ
, 0

)
≥ f

(
x2 − μ̂√

κ
|x̂1;α, Id, d

)
.

(41)

We note that if c satisfies the condition

c ≥ λ(η, ‖x̂1‖, α, d) (42)

where

λ(η, ‖x̂1‖, α, d) =
f (η|x̂1;α, Id, d)

fS

(
η; ν̂, δ̂√

κ
, 0

) (43)

∀ η ∈ R, then (40) holds as well. To avoid evaluat-
ing c for every ‖x̂1‖, we would want to maximize
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η
-5 -4 -3 -2 -1 0 1 2 3 4 5

10-3

10-2

10-1

100
f(η|0; 1.5, I2, 2)
fS(η; ν̂, δ̂/

√
κ, 0)

Figure 5: A comparison of f(η|0; 1.5, I2, 2) and the correspond-
ing fS(η; ν̂, δ̂/

√
κ, 0) for η close to zero.

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

10-3

10-2

10-1

100
f(η|0; 1.5, I10, 10)
fS(η; ν̂, δ̂/

√
κ, 0)

Figure 6: A comparison of f(η|0; 1.5, I10, 10) and the corre-
sponding fS(η; ν̂, δ̂/

√
κ, 0) for η close to zero.

(43) over both η and ‖x̂1‖ for a given α and d. The
optimal c in this sense is

ĉ(α, d) = max
η,‖x̂1‖

λ(η, ‖x̂1‖, α, d). (44)

As both f(η|x̂1;α, Id, d) and fS(η; ν̂, δ̂/
√
κ, 0) are

symmetric about η and equivalent at η = 0, we
may evaluate (44) for η ∈ R

+. Note that for any Σ,
we can simplify the initial problem in (40) to (44),
the latter of which depends on the conditional PDF
of a standard isotropic random αSG vector. For com-
parison we present f(η|0; 1.5, Id, d) and the corre-
sponding fS(η; ν̂, δ̂/

√
κ, 0) for d = 2 and d = 10 in

Figs. 3 and 4, respectively. Clearly, the conditional
PDFs in either figure are tracked well by their Stu-
dent’s t counterparts. Though Figs. 3 and 4 offer us
sufficient motivation to employ Student’s t-PDFs
as good majorizing functions, we need to make
some sense of where the maxima of λ(η, ‖x̂1‖, α, d)
lies in the η-‖x̂1‖ plane. By doing so, we are able
to quickly evaluate ĉ(α, d) by just analyzing small
regions in η-‖x̂1‖.

η
-500 -300 -100 100 300 500

10-25

10-20

10-15

10-10

10-5

100 f(η|x̂1; 1.5, I10, 10)

fS(η; ν̂, δ̂/
√
κ, 0)

Figure 7: A comparison of f(η|x̂; 1.5, I10, 10) and the corre-
sponding fS(η; ν̂, δ̂/

√
κ, 0) for ‖x̂1‖2 = 40.

To highlight the trends near η = 0, we
plot f(η|0; 1.5, Id, d) and the corresponding
fS(η; ν̂, δ̂/

√
κ, 0) for d = 2 and d = 10 in Figs. 5

and 6, respectively. In both cases we note that
the Student’s t-PDFs have relatively sharper
peaks than the corresponding conditional PDFs.
One would therefore expect (44) to exist at small
values of η. For the instances in Figs. 5 and 6, we
can clearly see that ĉ(α, d) exists in the interval
0 < η < 2. To see the impact of ‖x̂1‖ on (44),
from Proposition 1, we note that (42) is satisfied
for c = 1 as ‖x̂1‖ → ∞. To highlight this, we
present f(η|x̂1; 1.5, Id, d) and fS(η; ν̂, δ̂/

√
κ, 0)

for d = 2 and ‖x̂1‖2 = 40 in Fig. 7. Compared
with Fig. 4, the PDFs are much closer together
in Fig. 7 and would thus satisfy (42) for c close
to 1. Consequently, ĉ(α, d) should exist at small
values of ‖x̂1‖. In fact, from f(η|x̂1; 1.5, Id, d) and
(21), ‖x̂1‖ should be such that v(‖x̂1‖;α, d − 1)
and v((‖x̂1‖2 + η2)1/2;α, d) do not operate in
their respective linear descending regions, as this
is where one expects the maximum divergence
between the PDFs in (43).

To further strengthen the above arguments, we
consider all possible (α, d) pairs for 1.1 ≤ α ≤
1.99 (with a precision of two decimal places) and
d ∈ {1, 2, . . . , 10}. These parameter ranges ex-
emplify the statistics found in typical impulsive
data sets [6, 7, 14]. For each (α, d), we deter-
mine (η, ‖x̂1‖) that maximizes λ(η, ‖x̂1‖, α, d) over
all possible pairings of η ∈ {0, 0.1, . . . , 2} and
‖x̂1‖ ∈ {0, 0.2, . . . , 2}. Thereafter, the bin count
corresponding to the determined coordinate is in-
creased by one. In Fig. 8, we present the accu-
mulated bin count which is shown as a color map
in the η-‖x̂1‖ plane. We note that for the consid-
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Figure 8: Bin counts of maxλ(η, ‖x̂1‖, α, d) in the η-‖x̂1‖ plane
for 1.1 ≤ α ≤ 1.99 (with a precision of two decimal places) and
d ∈ {1, 2, . . . , 10}.

ered range and precision of α and d, the maxima of
λ(η, ‖x̂1‖, α, d) is found within 0.4 ≤ η ≤ 1.8 and
0 ≤ ‖x̂1‖ ≤ 0.2. Fig. 8 offers us some sense of the
distribution of ĉ(α, d) in the η-‖x̂1‖ plane. If ĉ(α, d)
is to be determined, then for most practical pur-
poses (1.1 ≤ α < 2 and d ≤ 10), one may just max-
imize (44) over the intervals 0 ≤ ‖x̂1‖ ≤ 0.2 and
0.4 ≤ η ≤ 1.8 instead of the entire η-‖x̂1‖ plane.

In Table-1 we highlight numerically evaluated
values of ĉ(α, d), rounded to the largest hundredth
for select instances of α ≥ 1 and d. From the insights
gained from Fig. 8, the values are determined by
calculating λ(η, ‖x̂1‖, α, d) for random samples of
0.4 ≤ η ≤ 1.8 and 0 ≤ ‖x̂1‖ ≤ 0.2, selecting the
maximum and rounding it off to the nearest largest
hundredth. We see that ĉ(α, d) decreases with d
and increases with α. Overall, a number of results
were compiled for 1.1 ≤ α ≤ 1.99 and d ≤ 10. We
found c = 1.2 to be sufficient to satisfy (42) within
this range.

Remark 3. From the discussion in Sections 4.1.1
and 4.1.2, we note that any appropriately shifted
(by μ̂) and scaled symmetric PDF with tails heavier
than f(x2|x1;α,Σ, d) can be used as ρ(·). Though
such a function may offer a low c for some (α, d)
pair, it may not perform as well for others. On the
other hand, fS(x2; ν̂, δ̂, μ̂) tracks f(x2|x1;α,Σ, d)
∀ x2 ∈ R very well for practical ranges of α and d.
This is evident from Table 1. Further still, it tracks
the tail order of f(x2|x1;α,Σ, d) and is asymptot-
ically equivalent to the latter (via Proposition 1).
Finally, generating random variates from the Stu-

Table 1: ĉ(α, d) rounded to the nearest hundredth for select val-
ues of α and d.

d
2 4 6 8 10

α

1.1 1.03 1.02 1.02 1.02 1.01
1.2 1.06 1.04 1.03 1.03 1.02
1.3 1.08 1.05 1.04 1.03 1.03
1.4 1.11 1.07 1.05 1.04 1.03
1.5 1.13 1.08 1.06 1.05 1.04
1.6 1.14 1.09 1.06 1.05 1.04
1.7 1.16 1.10 1.07 1.06 1.05
1.8 1.17 1.11 1.08 1.06 1.05
1.9 1.19 1.11 1.08 1.06 1.05

dent’s t-distribution is a straight forward process
[20]. These properties make the Student’s t-PDF
desirable to be used in the rejection sampling algo-
rithm.

4.2. Application & Computational Aspects

In certain applications, one may need to gen-
erate random variates from the conditional distri-
bution in (21). Simulations involving models that
employ sliding windows and constrain windowed
samples to follow a multivariate αSG distribution
fall in this category. An example is the genera-
tion of realizations from the αSGN(m) process [7]
which was introduced to model the elliptic depen-
dence structures found within delay scatter plots
of impulsive noise data in warm shallow waters.
The noise model uses a sliding window of length
m+1 and constrains the samples within to be αSG.
By further constraining the underlying covariance
matrix and α to be time invariant, stationarity is
guaranteed.

To generate an αSGN(m) realization, the noise
samples are returned sequentially, each from a
PDF conditional on the last m samples. Let �Xt,m =
[Xt−m, Xt−m+1 . . . , Xt]

T be the random vector cor-
responding to m + 1 such samples at time t, then
one can extend (3) to

�Xt,m =
√
At

�Gt,m, (45)

where �Gt,m = [Gt−m, Gt−m+1 . . . , Gt]
T is the un-

derlying Gaussian vector at time t with covari-
ance matrix Σ. Moreover, due to the sliding win-
dow framework and stationarity of the process, Σ
is now a symmetric Toeplitz matrix [7]. From (32),
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Gt| �Gt−1,m−1 = gt−1,m−1 can be expressed as

Gt = ΣT
12Σ

−1
11 gt−1,m−1 +

√
κWt, (46)

where Wt ∼ N (0, 1) are IID noise samples for
all t ∈ Z. Similarly, from (33), we can express
Xt| �Xt−1,m−1 = xt−1,m−1 as

Xt = ΣT
12Σ

−1
11 xt−1,m−1

+

√
κ(1 + ‖Σ−1/2

11 xt−1,m−1‖2)
d

Wt, (47)

for the Cauchy case, where Wt ∼ T (d, 1, 0) are
IID samples for all t ∈ Z. One notes that (46) is
an mth-order autoregressive (AR(m)) process [17],
however (47) is not as the coefficient of Wt is time-
varying due to its dependence on xt−1,m−1. There-
fore, (47) is a non-linear generalized autoregressive
conditional heteroskedasticity (GARCH) process
[1]. For general α, one can use rejection sampling
to generate the noise realization. This is summed
up in Algorithm 1. To initialize the process, one
generates xm,m−1 = x0 from the d-dimensional
αSG distribution with underlying covariance ma-
trix Σ. This can be done easily via (3): Generate
A ∼ S(α2 , 1, 2(cos(πα4 ))2/α, 0) and �G ∼ N (0,Σ11),
then x0 =

√
A�G.

Though optimized due to the choice of ρ(·) and
c, Algorithm 1 is still computationally intensive.
For each xt, we require f(h|x̂1;α, Id, d), which de-
pends on the two integrals v((‖x̂1‖2 + h2)1/2;α, d)
and v(‖x̂1‖;α, d − 1) as highlighted by (15). Like-
wise, from (38), δ̂ requires the further evaluation of
v(‖x̂1‖;α, d). Consequently, in one iteration of the
loop in Algorithm 1, there are three integrals that
need to be numerically evaluated. From (7) and
(5), we note that these functions depend upon the
heavy-tailed fA(t;α). Though numerical methods
do exist, the resulting computations are very time
consuming [14, 13], especially when N is large.
One can avoid this by doing a one-time tabulation
of v(r;α, d) and v(r;α, d − 1) over r for the values
of α and d that are of interest.

The log-log plots in Figs. 1 & 2 clearly show two
linear regions, with the transition being roughly
between r = 1 and r = 10. These trends are seen
for other values of α and d. Sampling at high reso-
lution for r ∈ [10−3, 103] (in the log-log domain) of-
fers us enough information about the transitional
range. One can therefore use linear interpolation

Algorithm 1: Generate N samples of αSGN(m).
Input: α, m, N , Σ
Initialize: Set xm,m−1 = x0, d = m+ 1 and

evaluate ν̂ and c
1 while m+ 1 ≤ t ≤ N do
2 x1 ← xt−1,m−1

3 Evaluate δ̂ and μ̂

4 Generate h from T (ν̂, δ̂, μ̂)
5 Generate u from U(0, 1)
6 if cu ≤ f(h|x1;α,Σ,d)

fS(h;ν̂,δ̂,μ̂)
then

7 xt ← h
8 t ← t+ 1

9 end

10 end

between immediately lower and higher sampling
indices to evaluate intermediate values of r within
this interval. For r < 10−3 and r > 103, the lim-
iting closed-form expressions in (12) and (11) may
be used, respectively.

5. Conclusions

In this paper, we derived and discussed vari-
ous properties of a univariate conditional distribu-
tion stemming from a multivariate αSG PDF. The
former was shown to be unimodal, heavy-tailed
and converged to a Student’s t-distribution in an
asymptotic sense. Using these insights, we pro-
pose a method based on rejection sampling that
allowed generating random variates from the con-
ditional distribution efficiently. As the PDF of the
latter is not in closed-form and is evaluated by in-
tegrating over a skewed heavy-tailed PDF, the al-
gorithm was still computationally taxing. For a
given α and d, we show how this could be avoided
by performing a one-time tabulation of three func-
tions.

Appendix A. Derivation of (16)

We can represent the lower-triangular matrix
Σ1/2 in the block form

Σ1/2 =

[
L11 0

LT
12

√
κ

]
, (A.1)
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where L11 ∈ R
(d−1)×(d−1) is a lower-triangular

matrix, L12 ∈ R
(d−1)×1 and κ is a scalar. Therefore,

Σ = Σ1/2(Σ1/2)T =

[
L11L

T
11 L11L12

LT
12L

T
11 LT

12L12 + κ

]
.

(A.2)

Comparing this with (13) leads to the following ex-
pressions:

Σ11 = L11L
T
11 (A.3)

Σ12 = L11L12 (A.4)

σ2
22 = LT

12L12 + κ. (A.5)

Clearly, L11 arises from the Cholesky decompos-
tion of Σ11, i.e., L11 = Σ

1/2
11 . As Σ11 is of full rank,

we have from (A.4), L12 = L−1
11 Σ12 = Σ

−1/2
11 Σ12.

Finally from (A.5), κ = σ2
22 − LT

12L12 = σ2
22 −

ΣT
12Σ

−1
11 Σ12, which is the Schur’s complement of

Σ11 [18, pg. 47]. Substituting these forms back in
(A.1) gives us (16).

Appendix B. Derivation of (34)

From (19), we note that

lim
x2→∞ ‖Σ−1/2x‖/(x2 − μ̂) = 1/

√
κ. (B.1)

On substituting (B.1) in (15), we have

lim
x2→∞

f(x2 + μ̂|x1;α,Σ, d)

v (x2/
√
κ;α, d)

=
Γ(d2 )√

κπv(‖Σ−1/2
11 x1‖;α, d− 1)Γ(d−1

2 )
. (B.2)

As x2 → ∞, one can invoke the asymptotic equal-
ity in (11) for v(x2/

√
κ;α, d) in (B.2) to get

lim
x2→∞xα+d

2 f(x2 + μ̂|x1;α,Σ, d) = c1, (B.3)

where

c1 =
αk1(α, d)κ

(α+d−1)/2

√
πv(‖Σ−1/2

11 x1‖;α, d− 1)

Γ(d2 )

Γ(d−1
2 )

.
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