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Abstract

Over the last decades, the problem of building Autonomous Underwater Vehi-

cles (AUVs) for missions in partially unknown underwater environment continue to

challenge researchers. Although the AUV technology has matured and commercial

systems have appeared in the market, a generic yet robust AUV command and con-

trol system still remains a key research focus. This thesis presents a novel command

and control system architecture for modular AUVs. Particular focus on this thesis is

the design and development of a generic control and software architecture for a single

modular AUV while allowing natural extensions to multi-vehicle scenarios.

The proposed command and control (C2) system has a hybrid, modular hierar-

chical control architecture. It adopts deliberative top-down approach in mission level

decision making and task planning while utilizing reactive bottom-up approach for

navigational control, obstacle avoidance and vehicle fault detection. The structure

provides vehicle developers with an explicit view of the clearly defined control respon-

sibilities at different level of control hierarchy. The underlying software architecture of

the C2 system adopts component and modular based design principle. Every C2 com-

ponent has its local data structure and implements its own logic without interfering

with other components. Such a design has several advantages for component con-

struction and maintainability. All the components have a uniform software interface

to facilitate inter-component communication within the AUV via Remote Procedural

Call (RPC). This allows computational load distribution by deploying C2 compo-

nents onto different processors in the AUV. The component based approach exhibits

robustness and adaptability as different components can be configured or exchanged

depending on the requirement of mission.

The resultant C2 system has been programmed and tested on a 3D System-In-The-

Loop simulator. It is also operational on a prototype AUV known as STARFISH built

by the Acoustic Research Laboratory (ARL) of the National University of Singapore



ii

(NUS). The resultant C2 system is utilized in a simple navigational mission in the

simulator and for a surface run from a lake test using the prototype AUV.
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Chapter 1

Introduction

This thesis presents a novel command and control (C2) system developed for modu-

lar Autonomous Underwater vehicle (AUV) performing autonomous underwater sur-

veying missions. C2 system of an AUV is the key component that determines the

outcome of an autonomous mission. While AUV technology has matured over the

last few years, AUV’s C2 system still remains a challenge for researchers.

The research motivations are discussed in Section 1.1 and some applications of

the AUV are illustrated in Section 1.2. Section 1.3 presents the problem statement

and adopted approach and Section 1.4 provides the outline of this thesis.

1.1 Motivation

Despite substantial progress in Autonomous Underwater Vehicles (AUVs) technolo-

gies over the last few years, the Command and Control (C2) system continues to

challenge researchers. To carry out a mission, the C2 system must be robust, adap-

tive, and able to cope with the changes in dynamics and uncertain environments. The

C2 system is a highly complex and critical software in a mission-based AUV. At a

higher level, it is in charge of defining mission tasks based on a predefined mission

1
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file, interpreting mission commands from the operator, making decisions and tak-

ing appropriate actions if a problem is encountered to ensure the safety of the AUV

throughout the mission execution. At a lower-level, the C2 system must be capa-

ble of interpreting raw data coming from the AUV’s sensors and combining different

actuators to generate the desired behavior to fulfil each mission task.

The C2 system for AUV projects has been evolving throughout the years. The

early development in C2 systems had architectures adopting reactive or deliberative,

centralized or distributed, top-down or bottom-up approaches. As AUV technologies

advanced, the need for better functionalities and capabilities arised in the AUV’s

working environment. Majority of the C2 systems nowadays utilize hybrid architec-

tures. Hybrid architectures are constructed by the combination and/or integration of

two or more different architectures that takes the advantages of each of the architec-

tures while minimizing their individual weaknesses.

The current trend in mobile robotics software is to move towards component-

oriented design principle. It has proven to be an effective approach in develop-

ing robotic software [7]. There are already a few frameworks available for mobile

robots as well as the industrial applications [28, 3]. However, few are specifically de-

signed for C2 purposes. Although the C2 systems are usually hierarchical in nature

and different modules within the overall control architecture have very distinctive

tasks and responsibilities, implementing the underlying software architecture based

on component-oriented principle provides certain advantages. Since every module

is different, specialized and well-defined, the software component interface can be

designed for each individual module in the C2 system. This allows software devel-

opers to implement different logics and algorithms in the same component without
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affecting the overall architecture. The pre-defined interface of components also en-

courages modularity of system tasks and responsibilities and makes construction and

maintenance of C2 system easier and manageable.

Instead of developing complex, expensive monolithic AUVs for underwater mis-

sions, researchers nowadays are moving their attention towards building simpler, low-

cost modular AUVs. Modularity in AUV’s development at software and hardware

level provides benefits to the developers and users. Different sections of AUVs can

be built separately by different group of developers at the same time provided they

comply to the same hardware interfaces. Besides that, different AUV sections can

also be exchanged or added to provide the functionalities needed for a particular mis-

sion task at the mission site. Every changeable section has its own software modules

that implements different algorithms depending on the section’s responsibilities in the

overall AUV setup, and when put together, they form a complete working AUV. How-

ever, this plug-and-play capability can only be achieved if the underlying C2 system

is capable of adapting to the various AUV configurations for different missions.

1.2 The STARFISH Project

The target application of the research described in this thesis is the C2 system for

prototype AUVs used in Small Team of Autonomous Robotic Fish (STARFISH)

project. The STARFISH project is an initiative at the Acoustic Research Laboratory

(ARL) of the National University of Singapore (NUS) to study collaborative missions

carried out by a team of low-cost, modular AUVs.

The use of a team of AUVs has many advantages compared with a single complex

AUV. A team of AUVs provides redundancy as well as fault tolerance; failure in one of
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Figure 1.1: Scenario for mission 1. The AUV goes from ORIGIN point at the surface
to END point via waypoint (x,y,z) within 2 km from the surface.

the AUVs will be less likely to affect the outcome of a mission compared with a single

AUV. Besides that, a team of distributed AUVs is able to provide larger mission area

coverage as well as simultaneous spatial sampling, thus, results in shorter mission

time and lower mission cost.

In order to demonstrate the functionalities of the project’s final outcome, two

missions have been defined to validate the resulting prototype AUVs as well as con-

firming their underlying C2 system’s capabilities in carrying out autonomous missions

in single and multi-AUVs scenarios:

Mission 1 - Single AUV Navigation Capability: In this mission, all the

basic functionalities of a single AUV is tested. This includes the hardware and soft-

ware components in the AUV’s modules. Given a chart, an AUV is instructed to

go from location ORIGIN (on surface) to location END (destination on surface) via

waypoint WP1 (x, y, z) within 2 km from the surface in a specified period of time

(Fig. 1.1). Between location ORIGIN and location END, the water depth is more

than 5m. The AUV should avoid obstacles shown in the chart.
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Figure 1.2: Scenario for mission 2. Two AUVs each with different payload section
work together to locate the target. Once the target is found, one of the AUVs will
go back to re-acquire the target based on the recorded position.

Mission 2 - Multi AUV Target Re-acquisition: This mission is designed to

test the collaborative behavior in a multi AUV scenario. A team of 2 AUVs, one spe-

cialized in survey scanning, the other specialized in position acquisition, are deployed

and assigned to search a 500m square area containing a reflective target (1̃m) on

the sea bed (Fig. 1.2). AUV specialized in position acquisition navigates within the

communication range of the AUV specialized in survey scanning to provide better

estimation of positioning. Once the target is located, the AUVs move away from the

target and surface at a pre-determined location. One of the AUVs then go back to

re-acquire the target based on the recorded position.

Mission Requirements: The two missions described above defined the mission

requirements for the onboard C2 system. First, the mission involves mission and path

planning from the ORIGIN point to the END point before the navigational command
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can be generated. Second, in order to ensure the AUV’s safety throughout the mission,

any obstacle lying in the AUV’s path must be detected and avoided. However, in case

the AUV is unable to avoid an obstacle, decision has to be made to abort the mission.

Third, in missions where multi-AUVs are involved, there must be communication

among the AUVs to exchange information. Furthermore, all the AUVs must be able

to keep track of their mission progress and update the operator whenever they can.

Finally, to make sure the team of AUVs carry out a mission effectively, a mission must

be broken down into individual tasks where each can be handled by the AUV with

its specialized payload section. This can be achieved through the interaction among

the AUVs in the team and task assignment can be done according to the multiple

AUV’s setup.

1.3 Problem Statement

The research in this thesis concentrates on developing generic C2 system for a single

modular AUV in STARFISH project while allowing natural extension to be used in

multiple AUVs working as a team. The C2 system’s construction is divided into two

parts: the control architecture and software architecture.

Control architecture refers to the organization of mission tasks into individual

control entities at different levels of control hierarchy. This includes mission trans-

lation into individual primitive navigational tasks; maneuver commands generation;

mission progress and vehicle safety monitoring; and mission level as well as vehicle

level decision making. Based on the mission requirements mentioned in section 1.1,

the proposed C2 system’s control architecture must be able to handle all the mission

tasks with minimum intervention from the operator.
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On the other hand, software architecture refers to the overall C2 system structure

which comprises of the software components, internal and external properties of those

components and the relationship among them. In this thesis, a modular software ar-

chitecture is desired to allow individual control entities to be implemented as software

components. Each software component handles specified command and control tasks

while interacting with other components within the architecture to achieve the mis-

sion requirements. The C2 system’s software architecture is built based and on top

of the work descried in [9].

1.4 The Thesis Layout

This thesis is organized as follows. Chapter 2 provides a brief discussion of related

works in design, and the development of control and software architectures for mobile

robot and AUVs. Chapter 3 presents the novel control architecture developed for the

AUV’s C2 system. Chapter 4 illustrates the software architecture of the proposed

component based C2 system. Chapters 5 and 6 present the simulation results from

an in-house built System-In-The-Loop simulator over a number of simulation cases

and a brief description of the first AUV prototype as well as its lake test experiment.

Finally, Chapter 7 concludes the thesis and makes suggestions for future work.



Chapter 2

Background

Developing the C2 system or mission controller for autonomous and remotely operated

robotic systems is a challenging task for researchers. It has to be robust and flexible in

handling uncertainties and animosities that might arise during the robot’s operation

in a highly hazardous and unknown environment. For the past few years, a great

number of autonomous mission controllers has been developed and implemented in

autonomous underwater, ground or air robotic systems. A complete C2 system is

described by its control architecture and the underlying software architecture.

2.1 Command and Control Architecture

Command and Control system architecture generally adopts the following architec-

tures: reactive or deliberative reasoning; distributed or centralized processing; com-

mand arbitration or sensor fusion; top-down or bottom-up control [27]. However,

due to the requirement of self-supervisory, goal-oriented and complex nature of au-

tonomous mission, most of the mission controllers adopt a hybrid approach which

integrates different architectures to utilize the advantages of some of the architecture

while minimizing the limitations of others [4].

8
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In [27] Yavuz adopted a hybrid approach that utilizes reactive, deliberative, dis-

tributed and centralized control for autonomous mobile robots. The author applied

fuzzy logic for centralized command arbitration by integrating activated behaviors

from distributed decision making processes running asynchronously across the robotic

system. The control architecture consists of deliberative modules that make high-level

navigational and tasks planning, and low-level reactive modules generating reflexive

and responsive reactions based on the inputs from sensors and actuators. The divi-

sion of the control tasks into individual modules that are distributed across different

level of control hierarchy increased the robustness, flexibility and adaptability of the

resulted control system.

For AUV mission controllers, Ridao et al [23] reports the implementation of three

layers of hierarchical mission controller which combined deliberative and reactive

control architecture in their semi-AUV, SAUVIM, to allow both predictability and

reactivity. Its hierarchical structure is produced by the planner according to the world

model in order to get a predictable scheme of the execution of the mission while the

parallel execution of the task modules coordinating sensors and actuators guarantees

reactivity. In 2007, Ridao et all [17] continued their development in AUV technology

and came out with another control architecture called O2CA2. There are three levels

in this control architecture where the ”Vehicle level” implements the vehicle controller

while the ”Task level” coordinates the mission tasks. This approach decouples the

robot control from the robot guidance, and together they exhibited reactive behaviors.

On the other hand, the ”Mission level” behaves deliberatively where it defines the

high level mission tasks as well as the configuration for the task level to accomplish

each mission task.
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Elsewhere, Bhattacharyya et al [5] implemented a hybrid mission controller for

AUV simulation for rapid development, while Yavnai [26] developed a reconfigurable

mission controller called ARICS that combines the characteristic of both reasoning-

based and reactive-reflexive behavior to provide goal-directed planning and good re-

sponsiveness.

From the literature, it can be observed that majority of the command and control

system developed for mobile ground or underwater robots is hybrid in its nature. Such

an approach which incorporates both deliberative and reactive behavior has demon-

strated the robustness, flexibility, adaptability and extendability that is required for

building complex robotic systems which are capable of handling various situations

and uncertainty in a highly dynamic environment.

Deliberative architecture [18] is both hierarchical and top-down in its control struc-

ture. Planing and decision making are done at the upper level and passed down to the

lower level for execution. Deliberative architecture relies heavily on the information

of the world model where the vehicle is situated in. During a mission, raw data from

the sensors are processed and used to update the model. The dynamically acquired

and updated model is then used for new plans or actions when necessary. To han-

dle problems in dynamic and partial unknown environment with the latest acquired

information is desired for AUV navigation. However, such an approach suffers from

computational latency during the sense-model-plan-act process.

Reactive architecture [4] is also known as bottom-up or behavioral architecture.

It consists of a set of elemental behaviors that defines the AUV’s capabilities. Global

behaviors emerge from the combination of several elemental behaviors activated in
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parallel when interacting with the world. Behavioral architecture reacts to the en-

vironment directly without involving any high level reasoning or replanning process.

Data is taken directly from the sensors to evaluate the current world model and ap-

propriate behaviors are chosen to adept to the model. The sense-react principle is

suitable for operations in highly dynamic world. However, this architecture may lead

the AUV into local minima because only immediate sensing is utilized to react with

the environment.

2.2 Component Based Software Architecture

Software architecture defines the organization as well as the construction of software

modules for a system. Component-based Software Engineering is becoming the pop-

ular approach adopted by robotists in developing robot software around the world in

the last few years. Such a software engineering approach enforces functional modu-

larization which helps control dependencies, distributed implementation and increase

system flexibility and robustness. Among the frameworks that are available including

Orca [6] and Orocos [8].

Orca is an open-source Component-Based software engineering framework de-

signed for mobile robots. It comes with an online repository that provides free soft-

ware components for building mobile robots. The framework emphasizes on and

provides two main advantages: software modularity and re-usability. By adopting

principle of modularity in software design and development, the resulted system is

easily reconfigurable to satisfy the system requirements due to the explicit and con-

trolled software dependencies. Besides that, it also allow the development work to

be distributed among individual components involved since one component is not
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directly interacting with another component. Furthermore, its software re-usability

is achieved through re-using the existing modules across a project that are either

sourced externally or built in house, in which the development cost and time can be

greatly reduced.

Orocos which stands for Open Robot Control Software, aims to develop a general-

purpose, free software, and modular framework for robot and machine control. This

framework consist of three major types of modules/components: Supporting modules

which is software without functional robotics contents, but provides visualization and

simulation for building the software.The Robotics modules which implement specific

robotic algorithms and User modules which build and configure the complete robotic

system based on the two modules mentioned before. This framework provides the

flexibility for the developer to build robotic systems based on the type of modules

associated with. Under the open source license, it also enables developers to imple-

ment their own stand-alone components which can be adapted and extended by other

end-users.

In AUV research, developers have started to adopt modular based software de-

velopments for the control system. Early efforts spotted in this area are reported in

[24]. In the paper, Rodseth applied Object-Oriented software development principle

in building the control system for AUV. The components of the control system are

identified as objects. Each object is a combination of its private state and methods to

manipulate it. The division of system tasks into individual objects encourage mod-

ularity of the resulted system. It also promotes re-usability and reliability through

generalization of object definitions in class trees which helped to factor out common

operations and decreases the number of coding errors.
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Recent developments in AUV control system have adopted component based de-

sign principle as in Neptus [10] and MOOS [20]. Neptus is a mission planning and

specification framework for AUV. Its is composed of individual service-oriented soft-

ware components that provide mission specified services across a network. Each

component keeps track of their own internal state and behaves according to the com-

ponent’s current state. Besides that, a component in Neptus can consist of several

sub-components which work together to handle complex tasks like mission planning

or mission reviewing and analysis.

MOOS on the other hand, is a set of key processes running in distributed com-

ponents to fulfill the ubiquitous roles in mobile robotics. It has been successfully

used to build the command and control system of AUV for research missions. The

components are designed to handle different mission tasks, and are connected in a

star-like topology through a central database/server. Each component implements its

own algorithm and has no knowledge of the content of other components. There is no

peer to peer communication among the components and, the sharing of data and in-

formation is facilitated by the central database. Although this design is vulnerable to

communication bottle-necking at the centralized server, it keeps the network simple

regardless of the number of components that are connected to it. Besides that, the

server has complete knowledge of all active components which not only makes com-

munication resources allocation feasible, but also prevent badly designed components

from directly interfering with other component.

Different from the works mentioned above, the proposed architecture clearly de-

fines navigational, mission and vehicle fault detection tasks into individual component

each with its own mutual assigned responsibilities. The components are modeled as
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agents which work together to fulfill the command and control tasks that are required

in an AUV mission. Besides that, the proposed control and software architecture also

allows changeable components for specified mission tasks and various AUV setups.

The aim is to develop a command and control system that can be deployed in mod-

ular AUVs and in the future, allows natural extension and simple modification for

multi-AUV scenarios.



Chapter 3

Command and Control System
Architecture

3.1 Introduction

This chapter presents a novel command and control system architecture for the AUVs.

An overview of the architectural design is illustrated in Fig 3.1. This is followed by

a detailed description of all the components distributed among the three levels of

control hierarchy: Supervisory level, Mission level and Vehicle level. There are total

of seven components in the control architecture that interact with each other to carry

out assigned missions: The Captain, Safety Officer and Cheif Scientist component are

categorized under the Supervisory level (Section 3.2); the Task Planner component

is located at the Mission level (Section 3.4) and finally the Path Executor, Obsta-

cle Detector, Chart Checker and Scientist components are at the Vehicle level.(Section

3.5).

15
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3.2 The C2 Architecture

Command and control system perform tasks ranging from planning, coordinating,

directing and controlling varies activities in an AUV. It receives the processed data

from the sensors as inputs and then outputs the control commands to the actuators

to generate desired maneuver behavior to achieve the mission objective while keeping

the AUV safe throughout the mission execution. The review of the literature revealed

various control architectures implemented by different researchers in the field in which

hybrid architecture is the most popular. Hybrid architecture is constructed by the

combination of both deliberative and reactive architectures.

In STARFISH project, a novel C2 system based on hybrid hierarchical control

architecture has been developed (Fig. 3.1). This means it adopts a deliberative-

reactive architecture while having the control modules arranged in hierarchical order

to depict the different levels of command responsibilities. As proposed by researchers

[27, 17, 13], our architecture consist of three levels: Supervisory level, Mission level

and Vehicle level. The Supervisory level is in charge of commanding and monitoring

the high level mission and vehicle status while ensuring the vehicle’s safety through-

out the mission. The Mission level is responsible for mission planning and finally, the

Vehicle level carries out the mission tasks and performs obstacle avoidance by utiliz-

ing different Sentuators (sensors and actuators) to generate the desired maneuvering

behaviors. An external communication component (Signaling Officer) has been built

to provide communication link with the mothership/operator or with another AUV.

Chart Room is the database where all the maps of mission areas are stored while the

Mission Script consists of different mission files identified by their mission numbers.

The following sections provide detailed descriptions regarding the responsibilities
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and tasks of different components in different levels of control:

3.3 Supervisory Level

There are three components under the Supervisory level: the Captain, the Chief Scientist

and the Safety Officer. Components in this level carry out the main decision mak-

ing issues regarding the navigation, mission and vehicle safety. Any one of these

components has the right to modify or abort a mission when necessary.

3.3.1 Captain

The Captain component is in charge of the high level supervisory tasks. It starts,

coordinates, oversees and controls the execution of all other components while keep-

ing track of the mission progress. Every component in C2 keeps a record of their

internal state. When a start command is received from the operator, the Captain

checks the internal state to make sure that all the components are in STANDBY

state before passing the command down to the Task Planner. In situations where

the AUV encounters problems caused by software errors or hardware failures, the

Captain determines the source of the problem and attempt to solve it by either reset-

ting the component’s internal states or restarting the component if the first attempt

fails. However, if the problem continues to exist, the current mission is aborted and

the operator is notified. The decision making is performed based on inputs from the

components in the C2 system with a simple rule-based system with knowledge rep-

resented as IF-THEN type predefined rules. For missions that involve multi-AUVs,

the Captain can also be involved in realizing cooperation and coordination among

the AUVs.
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3.3.2 Chief Scientist

The STARFISH AUV can have different payload sections added or exchanged to meet

the requirements of the mission and to perform underwater scientific experiments.

In the proposed C2 system, the Chief Scientist is responsible for the command and

control of payload sections. It detects payload sections attached to the AUV and based

on the mission tasks specified in the mission file, controls and coordinates the Scientist

components at the vehicle level. During mission planning, the Cheif Scientist checks

the AUV configuration file for any attached payload section and tries to establish

communication with the payload sections. It then retrieves the task sequence denoted

by the payload sub-tag in the mission file (Table 3.1). When the AUV is in the mission

area, the Chief Scientist turns on the corresponding Scientist components and starts

analyzing the obtained information. When necessary, the Chief Scientist may inform

the Captain to modify its navigational plan to new mission area, or to abort the

current mission if it fails to perform the assigned tasks.

3.3.3 Safety Officer

Due to the high cost involved in developing an AUV, it is important to ensure the

AUV’s safety throughout a mission execution. For an autonomous mission, the AUV

must be able to detect any abnormality that might arise and take necessary steps to

make sure that it is not lost during the mission. The safety issues in our C2 system are

divided into two categories: vehicle safety and mission safety. Both the safety issues

are handled and monitored by the Safety Officer component. This component resides

at the supervisory level of the C2 control hierarchy because whenever an emergency

occurs, it can take over the control of the vehicle without going through the Captain
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component.

Vehicle safety refers to the health status of the vehicle’s hardware. This includes

all the sensors and actuators in the vehicle. Every hardware device in the vehicle

maintain its own health status, and it is constantly queried by the Health Monitor

Component. For every component’s time tick, the Safety Officer pulls data regarding

the health conditions of all the devices from the Health Monitor component. It then

analyzes the health condition of each device and informs the Captain if any malfunc-

tion are detected. However, whenever a critical situation like water leak happens, the

Safety Officer will cut off the entire AUV’s power and drop the ballast to prevent the

hardware from being damaged.

Mission safety concerns with the safeness of mission generated commands, the

actions performed by the vehicle and the vehicle’s location throughout the mission

execution. Since the Safety Officer checks the data returned from sensors and ac-

tuators periodically, any dangerous behavior or action resulted from mission related

issues will be detected. For example, the command resulted from path planning with

the presence of obstacles might cause the vehicle to navigate at a depth that is over

the vehicle’s safety limit. Once the vehicle is deeper than the limit, data returned

from depth sensor will set off the alarm in the Safety Officer component and the mis-

sion will be aborted. Under the influence of sea current and underwater turbulence

, the vehicle might maneuver with large pitch or roll angle. This is undesirable be-

cause the vehicle’s dynamics can be affected making it to be out of control. Thus,

the Safety Officer will cut off the thruster and abort the mission whenever high pitch

or roll angle is detected to avoid the vehicle from going out of control.

Algorithm 1 shows how the vehicle and mission safety are checked and evaluated



21

in Safety Officer component. To ensure the safety of the vehicle, the component

implements an infinite loop for safety checking as long as the vehicle is turned-on.

Algorithm 1 Vehicle Safety Check

Require: Health Monitor and Sentuator.

1: loop

2: for all Health Records in Health Monitor do
3: check HEALTH and SEVERITY
4: if HEALTH 6= HEALTHY and SEVERITY == ABORT then
5: Inform Captain
6: else if HEALTH 6= HEALTHY and SEVERITY == EMERGENCY

then
7: Drop Ballast and Cut Vehicle Power
8: end if
9: end for

10: for all Safety Issues do
11: overLimit = checkLimits(Sentuator Data)
12: if overLimit == true then
13: Abort Mission
14: end if
15: end for

16: end loop

More safety issues can be defined in the future for multi-AUV mission operations.

These include minimum or maximum distance among the AUVs and mission area

boundaries.

3.4 Mission Level

Mission level concerns with the translation of a given mission file into individual tasks

and disseminates them to the components at the vehicle level for mission execution.

There is only one component at this level: the Task Planner. Task Planner retrieves
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tasks from mission file, plans the task sequence and outputs the task commands as

well as mission path for the mission execution.

3.4.1 Task Planner

Whenever a START command is received from the Captain, the Task planner reads

the mission file to retrieve the task sequence, the mission parameters as well as the

mission points. The retrieved mission points are then fed to the path planner for

mission path planning. If a feasible path is found between the start and target

mission points, the resultant tasks are passed to vehicle level for navigation, otherwise,

Captain is informed and the mission is aborted. The following describes the path

planner used for mission path generation, the format of mission file used as well as

the translation of a mission into individual tasks.

Mission Script and Mission Task

In STARFISH project, missions are written in XML format and is called mission

script. XML has been used widely as an universal data description language. It has

been applied successfully in robotic applications as a tool for system integration as

well as agent communication [15, 14]. Its structured well-formed document format is

suitable to specify the mission points in sequential order as well as desired mission

behavior in optional sub-tags.

A mission script can contain one or more missions identified by the mission num-

ber. Each mission consists of a group of default mission parameters and a set of

mission legs arranged in sequential order. Every mission leg defines a high level mis-

sion task denoted by the keyword type and their corresponding 3D mission point

denoted by x, y and z position. The default mission parameters can be overwritten
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<?xml version="1.0"?>

<missions>

<mission no="1" TimeOut="60">

<parameters CruisingSpeed="1" SafetyDistance="2.5" WaypointRadius="10"

MaximumDepth="50" MinimumAltitude="1" />

<leg type="STEER" x="-399" y="947" z="-5" />

<leg type="STATIONKEEPING" duration="100" x="-399" y="947" z="-5" />

<leg type="STEER" x="-52" y="1350" z="-13" >

<parameter CruisingSpeed="1" />

</leg>

<leg type="STEER" x="144" y="1643" z="-10" />

<leg type="STEER" x="577" y="1724" z="-1" />

</mission>

<mission no="2" TimeOut="60">

<parameters CruisingSpeed="0.7" SafetyDistance="2.5" WaypointRadius="10"

MaximumDepth="50" MinimumAltitude="4" />

<leg type="STEER" x="200" y="400" z="-3" >

<leg type="STEER" x="400" y="600" z="-3" >

<payload device="SIDESONARSCAN" duration="10"/>

</leg>

<leg type="STATIONKEEPING" x="400" y="600" z="-3" />

<leg type="STEER" x="100" y="100" z="0" />

</mission>

</missions>

Table 3.1: sample XML mission file.

if necessary by adding the parameter sub-tag within the mission leg tag. Whenever

payload sections are attached, they can be turned on and off to obtain data by adding

the payload sub-tag within the desired mission leg. This allows parallel execution of

multiple devices on the AUV. An example of XML mission file is shown in Table 3.1

and its mission Document Type Definition (DTD) is shown in Table 3.2.

From the user’s perspective, a STARFISH mission consist of a set of mission

tasks with optional sub-mission parameters and payload parameters. Besides being

the mission points for navigational pattern, the position tuple (x,y,z) that attached

with each mission leg denotes the end point for the execution of particular mission

task. For instance, a triple (x=10,y=50,z=-5) with type=”STEER” and payload sub-

tag device=”SIDESCAN” informs the AUV to turn on the SIDESCAN sonar while

navigating from the current position to the point (10,50,-5).
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<?xml version="1.0"?>

<!DOCTYPE missions [

<!ELEMENT missions (mission*)>

<!ELEMENT mission (parameters, leg+)>

<!ATTLIST mission no ID #REQUIRED>

<!ELEMENT parameters EMPTY>

<!ATTLIST parameters CruisingSpeed CDATA #REQUIRED

SafetyDistance CDATA #REQUIRED

WaypointRadius CDATA #REQUIRED

MaximumDepth CDATA #REQUIRED

MinimumAltitude CDATA #REQUIRED>

<!ELEMENT leg (parameter?, payload*)>

<!ATTLIST leg type CDATA #REQUIRED

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED>

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter CruisingSpeed CDATA #IMPLIED

SafetyDistance CDATA #IMPLIED

WaypointRadius CDATA #IMPLIED

MaximumDepth CDATA #IMPLIED

MinimumAltitude CDATA #IMPLIED>

<!ELEMENT payload EMPTY>

<!ATTLIST payload device CDATA #REQUIRED

duration CDATA #IMPLIED>

]>

Table 3.2: DTD for XML mission file.

Whenever a command is received to start a mission, the Task Planner loads and

processes the XML mission script based on the specified mission number. The mission

points are retrieved for path planning while the mission tasks are converted to a

mission array and optional parameters are recorded if they exist. Mission tasks is a

set of high level sequencing task information. Each task compose of one or more low

level vehicle behaviors, which executed together in parallel to generate the desired

navigational pattern specified by the mission task. However, the breaking down of

mission task to vehicle behaviors is the responsibility of the vehicle level.

To provide better explanation of the translation from mission file to mission task

sequence, an example is shown in Fig. 3.2. This translation of mission is based on

the mission No. 2 of mission file shown in Table 3.1. From the figure, it is seen



25

that all the mission legs from the mission file are retrieved and store in sequential

order together with payload section. When the mission starts, the mission sequence

informs the vehicle to traverse to (200,400) and at a depth of 3 meter below the

surface. Once there, it performs a survey mission with Side Sonar Scan (payload)

while traversing to (400,600) at the same depth. Once the second mission point is

reached, it performs station keeping at that same position until a continue command

is received from the operator (since there is no duration specified for station keeping).

When the command from operator is received, it surfaces at (100,100). Throughout

the mission execution, safety limits of minimum altitude = 4 m and maximum depth

= 50 is imposed. The whole mission is aborted if it is still running after 60 minutes

or any of the safety limits are violated.

Path Planning

Mission path is a set of three dimensional waypoints that define the AUV’s naviga-

tional pattern to fulfill the mission requirements. A safe path not only is crucial to

ensure the AUV’s safety, but also affects the mission outcome. During the planning

process, path planner takes the mission points from the script and tries to find a safe

yet shortest path between the vehicle position and the target. If a feasible path is

found, waypoints are generated and sent to vehicle level for navigation.

The existence of unpredictable sea current and obstacles makes path planning

in three dimensional partially unknown environment a challenging problem. Many

methods have been developed to tackle the problem. [25, 21, 2, 29] As part of this

project, a novel particle based path planning algorithm [22]. The particle based

path planning algorithm is developed based on particles generation and evaluation.

Random particles are generated at every planning step starting from the origin to the
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target. The particles are then assigned with different weights and evaluated according

to the following principles :

1. Moving towards the goal (the smaller the distance between the ith particle’s

position and the target position, the larger the ith weight);

2. Avoiding obstacles (if the ith particle drops in the obstacle area, its correspond-

ing weight is set to zero);

3. The size of sampling area of the particles is proportional to the vehicle turning

and pitching angles (the area for particles generation is restricted by the vehicle’s

turning and pitching limitations);

4. Preventing the AUV from getting trapped in local minima (the larger the po-

sition difference of the ith particle, the larger its weight is. Position difference

of a particle is the product of all the distances from the M previous planned

waypoints).

Every particle has its velocity and position elements. The velocity element is

obtained based on a 3D coordinate system with X, Y, Z axis and origin point O (Fig.

3.3).

A pair of angles, (θ, ϕ) is used to represent the direction of each particles’s velocity

in 3D space. The particle’s velocity element is calculated by:

vi
k =

||vk|| × {cos(αk−1 + γi
k), sin(αk−1 + γi

k),

cos(αk−1 + γi
k) · sin(αk−1 + γi

k) · tan(βk−1 + χi
k)} (3.4.1)
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Figure 3.3: Three Dimensional (3D) coordinate system.

where αk−1 and βk−1 are respectively the AUV’s bearing angle and pitching angle

at time step k-1 (Principle 3). Random angles γi
k and χi

k are respectively generated

from the uniform distributions and can be limited by AUV’s bearing and pitching

constraint.

On the other hand, the position element is obtained according to the following

point mass motion model,

si
k+1 = lk + vi

k · T, (3.4.2)

where lk is the AUV’s position at time step k (the kth planned waypoint) and T is

the time interval. In order for the AUV to escape from a local minima (Principle 4),

a large position difference is preferred and considered in the evaluation of the weights

of the particles (hypothesis). Position difference is defined as the sum of distance

from current particle’s position to the M number of previous planned waypoints and

is calculated by :

ρi
k+1 = ||si

k+1 − lk−M+1|| × ||si
k+1 − lk−M+2|| · · · ||si

k+1 − lk−1|| × ||si
k+1 − lk||. (3.4.3)

ρi
k+1 is chosen as the criterion to evaluate the ith particle and is proportional to its

weight.
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Once the evaluation is completed, the particle with the highest weight is chosen

as the next waypoint for the mission path. This process will be repeated for every

planning step until the target point is reached. The proposed path planning algorithm

provides robustness and flexibilities as it allows different parameters to be defined

according to the vehicle dynamics. Besides that, by considering only the sampling

area within a world model and storing only the waypoints planned at every step, the

computation time and memory requirement for path planning is greatly reduced.

3.5 Vehicle Level

The Vehicle level consists of five components: Path Executor, Obstacle Detector,

Chart Checker, Scientist and Health Monitor. They are the reactive components

that interact directly with the vehicle’s sensory and actuator level - the Sentuator

level. The control and processing at this level is distributed among the components.

Every component has its own responsibility and operates asynchronously based on

the commands instructed from the higher level of control hierarchy. Among the com-

ponents at this level, the Path Executor, Obstacle Detector and the Chart Checker

together play the role of a pilot for navigation. They handle tasks ranging from

translation of mission tasks into control signal, depth and position keeping, obstacle

avoidance and mission chart updating.

3.5.1 Obstacle Detector

During mission execution, floating obstacles and sea floor are threats to the AUV’s

safety. Collision with any threats may jeopardize the mission as well as the AUV.

Early detection of unknown obstacles lying along the AUV’s path is crucial to make
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sure it has enough time and space to perform the avoidance maneuver. The Obsta-

cle Detector reads the data from the Forward Looking Sonar (FLS) that is mounted

in the nose section of the AUV to determine the location of objects that exist within

the sonar scan area. In order to do that, the raw data from the FLS need to be

processed and the processing requires two separate steps: sensor noise filtering and

obstacle detection.

(a) (b)

Figure 3.4: During mission execution, the AUV will either have positive or negative
pitch angle. The sign of the pitch angle results in different calculation of the expected
length of sonar beams. (a)negative pitch angle. (b)positive pitch angle.

Before any possible obstacles can be determined, the sensor noise (sea bottom

and surface) from the sonar must be filtered. This is done by utilizing the depth and

altitude data from the sensors to estimate the sea depth and surface altitude based on

the AUV’s current position (Fig. 3.4). Any sonar beams returned with their length

fall within these range is considered as reflection from the sea bottom or surface and

is filtered out. The calculation of expected beam length reflected from the surface

(S Length) and reflected from the sea bed (B Length) depends on the AUV’s pitch
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angle. Since the FLS sends out sonar beams in a cone shape as shown in Fig. 3.4,

the S Length will be longer than the B Length when the AUV has a positive pitch

angle. The opposite is true when the AUV has negative pitch. The FLS sends out

multiple vertical beams with 35◦ height and 3◦ width each. It is programmed to scan

a sector of 90◦ horizontally. The calculations of both the S Length and B Length for

both positive and negative pitch angles are as per 3.5.1 and 3.5.2. It is assumed that

the FLS is mounted such that both S Length and B Length make an angle of 17.5◦

to the datum when the pitch angle of the AUV is 0◦.

s◦ = 17.5◦ − φ◦, (3.5.1)

b◦ = 17.5◦ + φ◦, (3.5.2)

where φ is the pitch angle of the AUV, s◦ is the angle made by S Length with the

surface and b◦ is the angle made by B Length with the sea bed. Since the measure-

ment returned by Altimeter (Altimeter Altitude) is based on the right-angle distance

between the AUV’s tail-nose axis with the sea bed, it will not depict the AUV’s exact

altitude whenever the AUV has a pitch angle. However, the perpendicular distance

of the AUV to the sea bed (AUV Altitude) can be calculated by:

AUV Altitude = Altimeter Altitude× cos(φ). (3.5.3)

Once the angles and AUV Altitude are obtained, both the S Length and B Length

can be calculated with :

S Length =
AUV Depth

sin(s◦)
, (3.5.4)
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B Length =
AUV Altitude

sin(b◦)

=
Altimeter Altitude× cos(φ)

sin(b◦)
. (3.5.5)

(a) (b)

Figure 3.5: Forward Looking Sonar model vertical view. (a)When no obstacle exist
in the sonar sweep, the reactive zone is the largest until it is reflected from the sea
surface/floor. (b)When obstacle presents, the reactive zone will be smaller depends
on the range of the detected obstacle from the AUV.

With that, any measurement returned by the FLS that is less than both the

S Length and B Length is considered as reflection from the objects located within

the cross-section of the sonar coverage and is used for obstacle detection. Fig. 3.5

shows the process of obstacle detection. The location of detected obstacle is calculated

as follows:
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
Xo

Yo

Zo

 =


XAUV

YAUV

ZAUV

 +Br


cos(W )cos(Q)

sin(W )cos(Q)

sin(Q)

 , (3.5.6)

where Xo, Yo and Zo are the 3D components of Obstacle’s location; XAUV , YAUV

and ZAUV are the 3D components of AUV’s location; Br is the range of the sonar

beam returned by FLS; W is the horizontal angle of the beam from AUV’s tail-nose

axis and Q is the vertical angle below datum. The effective range (reactive zone in

Fig. 3.5-(b)) of FLS is dependent on the AUV’s altitude as well as the mission site’s

maximum depth. The closer the AUV is to the surface and the shallower the mission

site, the lower the FLS’s effective range. Although this simple method is less efficient,

it only requires low cost FLS which allows fast processing of sonar signal.

3.5.2 Chart Checker

After the sensor noises are filtered out and the location of the obstacles are calcu-

lated, the processed data is sent to the Chart Checker component which in turn verify

wether the detected obstacle is present in the Chart Room. ChartRoom is the cen-

tral storage for the maps of the mission areas where the AUVs are operating. Each

map has two layers; the first layer has two dimensional arrays with numerical values

specifying the depth at the corresponding coordinates, while the second layer records

the forbidden zone where the AUV must not pass through during navigation. Obsta-

cles known in the Chart Room are taken into account when planning mission path.

Obstacles that do not exist in the Chart Room is marked and the corresponding loca-

tion and depth are updated in the maps. Collision checking is then performed by the

Chart Checker component along the mission path. If any of the newly found obstacles

lie in the mission path, Chart Checker component forward the data to Path Executor
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(a) (b)

Figure 3.6: Collision Detection performed by Chart Checker. (a)The AUV’s sonar
beam section when it is reflected by obstacles. (b)Two points on the edges of the
sonar beam section (P1,P2) are considered for collision detection. The LineSecbef
and LineSecaft are calculated before PIntersect is determined.

component for obstacle avoidance.

The process of collision detection between the newly detected obstacle and the

mission path are shown as follows:

1. The obstacle data sent by Obstacle Detector component is in the form of an

array. Each entry in the array denotes a processed data from sonar beam which

consists of the estimated location the sonar beam’s intersection point with the

obstacle, the distance of the obstacle from the vehicle and the sonar beam’s

angle with the vehicle’s tail-nose axis. For simplicity, only the location of two

beams from the widest edges of the sonar cross section is considered. These

two points (P1,P2) form a straight line and is used to find the closest waypoint

(WPclosest) in the mission path (MP ). This is done by computing the shortest
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distance from each of the waypoint in the mission path to that straight line.

2. The second step is to find the point of intersection(PIntersect), if there is any,

between the mission path and the plane formed by the obstacle data. Two

mission path segments immediately before (LineSecbef ) and after (LineSecaft)

WPclosest are taken for intersection check. To form a plane, two extra points

(P3,P4) are taken directly below P1 and P2 with identical X and Y positions but

lower Z position. If there is no intersection point found (PIntersect = NULL),

the mission path does not collide with the detected obstacle and the mission

continues.

3. Otherwise, further checking is needed to determine if the intersection point lies

on the interior of the obstacle region. It is required to check wether the inter-

section point (collision point, PIntersect) is inside the obstacle region enclosed by

P1, P2, P3 and P4. The checking is done by computing the sum of the angles

between the PIntersect and every pair of the edge points of the obstacle region.

The sum of angles will be 2π if the point is on the interior of the obstacle

region. Whenever the PIntersect falls in the obstacle region, the mission path

that is within this vicinity is modified according the obstacle avoidance mode.

This is the task of Path Executor component. Detailed implementation of the

collision detection is illustrated in Fig. 3.6 and Algorithm 2 at the end of the

chapter.

3.5.3 Path Executor

The Path Executor is responsible for translating the high level mission tasks into

vehicle’s low level maneuver control. The component implements a library of basic
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functions that the vehicle can use to generate the desired maneuver behaviors. One

or more basic functions can be invoked concurrently to achieve a high level mission

task. This is a bottom-up approach where distributed simple vehicle behaviors are

merged to exhibit complex maneuver. Currently, there are three basic functions

implemented in STARFISH project to fulfill the mission’s requirements: SteerToXY,

MaintainPosition and ObstacleAvoidance. Each basic function takes inputs from the

sensory modules (Senstuator level) and output the control signal to the actuator

modules independently. The selection of basic functions to be performed depends

on the mission’s current task as well as the state/activity of the component’s state

machine.

Figure 3.7: Path Following navigation. (a)Navigation without current. (b)Navigation
with current

• SteerToXY: steers the vehicle from current position to given mission point in

two dimensional plane, (x,y). This function takes in the current AUV’s bearing

signal and outputs the bearing offset to adjust the AUV’s heading to the target
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point. Bearing is defined as the direction in which the AUV’s tail-nose axis is

pointing while heading is the direction of the actual AUV’s motion over time.

A boolean function PointReached(p) is used to determine wether the AUV has

reached the target point or not. When the distance between the AUV’s current

position and the target point is less than the WaypointRadius specified in the

mission script, the boolean parameter is set to p=TRUE and new target point

from the path is loaded to continue the navigation. This process is repeated

until the AUV reaches the final mission point. Whenever sea current exist

during AUV’s operation, the bearing control is affected. In order to achieve

path following behavior, the velocity of sea current is first estimated as follows:

V current = V headingcurrent − V bearingcurrent, (3.5.7)

where V current is the sea current velocity, V headingcurrent is the AUV’s cur-

rent heading velocity and V bearingcurrent is the AUV’s current bearing velocity.

The V headingcurrent is obtained from Doppler Velocity Log (DVL) and Iner-

tial Measurement Unit (IMU) while the V bearingcurrent is estimated based on

combining of thrust based computation of | V bearing | and compass informa-

tion of angle(V bearing). Once the sea current velocity is obtained, the AUV’s

setpoint bearing is easily calculated:

V bearingnew = V headingdesired − V current. (3.5.8)

Fig.3.7 illustrates the AUV’s navigation with and without sea currents. The

implementation of navigation with sea current compensation using constant

thrust and varying bearing at the reactive level minimizes the control signal

delay resulting in better path following behavior.
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• MantainPosition: Although STARFISH AUV has slightly positive buoyancy

and its design does not allow hovering over a target point, some degree of

station keeping is still desired. The behavior is particularly useful when the

AUV is waiting for response or command from the operator, or path replanning

is required during mission execution. Under the effect of the positive buoyancy

and sea current’s disturbance, the AUV will float to the surface or drift by

the current if position maintaining behavior is not available. Two different

MantainPosition modes have been implemented in this project: with current

and without current. When there is no sea current, the AUV hovers in a circle

with certain fins angle so that the resultant propulsive force is able to counter

the positive buoyancy and keep it at a certain depth. On the other side, if sea

current exists, the AUV performs forward thrust against the direction of sea

current until its location is in front of the station keeping point (Fig. 3.8-(a))

before turning the thruster off. At that point, as long as the AUV’s depth and

location are within the allowable distance from the station keeping point, it lets

the force of the sea current to push it backward until its location is behind the

station keeping point before turning on the thruster again (Fig. 3.8-(b)). This

forward and backward motion allow the AUV to maintain its depth around

vicinity of the station keeping position.

• ObstacleAvoidance: Since this behavior shares the same vehicle control with

SteerToXY behavior, only one behavior is activated at a time. Whenever ob-

stacle data is received from the Chart Checker component, this behavior is

activated to avoid obstacles. The control is passed back to SteerToXY once

the vehicle is out of danger zone. Two ObstacleAvoidance behaviors have been
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(a) (b)

Figure 3.8: Station keeping when sea current exist. (a)AUV is considered in front of
the station keeping mission point (with respect to the AUV’s body frame). (b)AUV
is behind the station keeping mission point (with respect to the AUV’s body frame).

implemented to increase the robustness of the STARFISH AUV in mission ex-

ecution: the depth control and the altitude control avoidance modes. When

depth control mode is used, the avoidance behavior is performed by navigating

the AUV towards the right or left depending on the obstacle’s location. On the

other hand, in altitude control avoidance mode, the obstacle avoidance is done

by instructing the AUV to go over the obstacle by changing the depth while

maintaining its original course in xy plane and its altitude with respect to the

ground. Only sea bed obstacles are considered in this case.
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3.5.4 Scientist

Scientist component is responsible for processing and analyzing the data obtained

from payload sensors. To allow exchangeable payload sections, one Scientist compo-

nent is built per payload section and loaded by the Chief Scientist depending on the

AUV setup. More than one Scientist components can exist in a single AUV if there

are several payload sections attached. They are coordinated and controlled by the

Chief Scientist component throughout mission. Two payload sections are currently

built for STARFISH project. They are the Advanced Navigational payload and Side

Scan Sonar payload. The AUV configuration shown in Fig. 6.1 is the Advanced

Navigational payload which houses a DVL for more accurate velocity and altitude

updates.

3.5.5 Health Monitor

Health Monitor component keeps track of the health conditions for all the devices in

the AUV including the optional payload section. This is particularly important to

make sure that the AUV is in its optimum working condition. Every hardware inter-

facing component (Sentuator component) in the AUV implements an internal health

monitoring method which checks the health status of the hardware it is attached to.

This information is retrieved periodically by the Health Monitor component for ve-

hicle health status updating and forwarded to the Safety Officer for further analysis.
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Message Type Data Fields Characteristics

Status Message
(MDAT STATUS
STARFISH)

Message mode, AUV cur-
rent coordinate, bearing,
heading, pitch, roll, alti-
tude, thruster, velocity, bat-
tery usage, current mission
leg, AUV temperature.

Periodic, send updates
to the mother ship to
inform the status of
the AUV at a partic-
ular point of time.

Path Update
(MDAT CURRENT
PATH)

Message modes, mission leg
number, 5 waypoints from
the current mission’s path.

Periodic, allow the
AUV to inform the
mother ship regard-
ing the mission’s next
5 waypoints starting
from the current posi-
tion.

Command Message
(MDAT COMMAND)

Message mode, message ID,
command number, the first
waypoint to be changed in
the current mission path
and 4 new waypoints to be
added into the current mis-
sion path (optional, only
required if command is to
modify the mission points).

Sent by the mother
ship. Allows mother
ship to send com-
mand to the AUV
to execute commands
such as start, stop,
abort, or change mis-
sion point etc.

Table 3.3: Table summarizing the CCL messages used for AUV communication.

3.6 External Communication

3.6.1 Signalling Officer

Communications with the mission operator/mothership or other AUVs is supported

by the Signaling Officer through a message-passing mechanism. The Signaling Officer

acts as the AUV’s external communication node, and is represented outside the over-

all control hierarchy. This component deals with the encoding and decoding of the

messages between AUVs or between AUV and the operator. Besides that, the Sig-

naling Officer is also responsible for updating the operator with the current mission
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and AUV status periodically. As proposed in [12], The Common Control Language

(CCL) is adopted as the message format for acoustic communication. CCL is de-

veloped to establish a standard for communication between different agents during

operation and provide supports for interaction between machines and operators. A

CCL message is a data packet with 32 bytes in length. The first byte is used to

specify the message mode (type) followed by optional data values. The message is

encoded into a string of hexadecimal values using twos-complement method to maxi-

mize the limited bandwidth of underwater communication. Although some precision

will be lost during the encoding process, they are not significant to affect the overall

operational performance of the AUV. Fig. 3.9 shows the communication mechanism

between the mothership/operator and AUV by using CCL message. The two parties

which involved in the communication requires a CCL interpreter in order to carry

CCL message encoding and decoding. While the interpreter resides in the operator’s

terminal at the operator side, the interpreter in the AUV is implemented as part of

the Signaling Officer component.

At current stage of STARFISH project, three CCL messages are defined for the

communication between the operator and the AUV (Table 3.3). The first CCL mes-

sage is the Status Message, which updates the operator with the vehicle’s current

status like coordinate, bearing, heading pitch and roll etc. periodically. This is im-

portant so that the operator is aware of the AUV’s condition when it is operational

underwater. The second CCL message is the Path Update message, which sends the

current mission leg number together with the next 5 waypoints from its current path.

The waypoints are be plotted on the control GUI so that the operator can keep track

of the AUV’s navigational plan. The third CCL message is the Command Message.
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This is the only message that is sent from the operator to the AUV. The message

consist only the high level commands like mission start, mission stop, mission abort

and mission change. In the case when mission change is requested, the remaining

space in the message could carry up to 4 new waypoints if necessary.

Figure 3.10: Screen capture of the C2 GUI interface and a sample CCL message.

All three messages are currently being used for simulation test runs as well as

lake test for single AUV operation. During mission execution, different CCL mes-

sages are sent periodically to the operator’s machine for decoding and displayed via

GUI interface. Fig 3.10 shows a sample CCL message string with corresponding rep-

resentations and, the screen capture of Command and Control GUI module during

operation. More CCL messages can be defined in the future for multi-AUV scenario.
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3.7 Summary

In this chapter, the proposed C2 system architectural design is presented and illus-

trated in Fig. 3.1. The C2 system has a hybrid hierarchical control architecture

where it demonstrates deliberative behavior at the high-level mission control while

performing reactively for the low-level vehicle control. The control architecture is

divided into three different levels where each level handles different mission tasks.

The mission tasks in the C2 system are implemented into individual components.

The components are arranged in hierarchical order within the three control levels to

depict the different command responsibilities in the overall control system.

The components resides in the Supervisory Level deal with mission and vehi-

cle monitoring while the components in the Mission level handles mission and tasks

planning and finally, the components in the Vehicle level performs low-level vehi-

cle maneuver control as well as obstacle detection and avoidance. The C2 system

also equipped with an external communication component that is responsible for the

communication between the operator and AUV, among the AUVs in a multi-AUV

scenario.
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Algorithm 2 Mission Path Collision Checking

Require: P1, P2, P3, P4, MP
Ensure: true→ collision, false→ no collision

1: for all WP in MP do
2: Dist = getPointLineDist(WP , P1, P2)
3: if Dist < Lowest then
4: Dist = Lowest
5: WPclosest = WP
6: end if
7: end for

8: LineSecbef = getLineSegmentBef(WPclosest)
9: LineSecaft = getLineSegmentAft(WPclosest)

10: Obstacleplane = getPlane(P1, P2, P3)
11: PIntersect = getIntersection(Obstacleplane,LineSecbef , LineSecaft)

12: if PIntersect 6= NULL then
13: for i = 0 to 4 do
14: φ = getAngle(PIntersect, Pi, P(i+1)%4)
15: angleSum += φ
16: end for
17: if angleSum == 2π then
18: return true
19: else
20: return false
21: end if
22: else
23: return false
24: end if



Chapter 4

Command and Control Software
Architecture

4.1 Introduction

This chapter presents the underlying software architecture for the command and

control system. First, the overall software architectural design is depicted in Fig.

4.1. This is followed by the description of the software architecture’s basic building

blocks, the container and the component object in Section 4.3. Section 4.3.1 investi-

gates further into the component’s internal structure while Section 4.3.2 explains the

components external communication interfaces. Finally, Section 4.4 describes how

the component communicate with each other within the system.

4.2 Architectural Overview

The software architecture defines how the structure of different software components

in the AUV are built and integrated to form a fully functional system. Fig. 4.1

shows the overall software architecture of the STARFISH AUV. The architecture is

composed of a set of software components distributed among the onboard PC104+

47
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and the MicroController Units (MCUs). All the components are connected by their

own local software server and, the communication among the components is con-

ducted through Ethernet switch with a common RPC based communication proto-

col throughout the AUV. More details of the software components construction and

communication implementation is described in [9]. This design provides good overall

software organization that helps in maintainability.

Like all other modules in the software architecture, the C2 system consists of

individually built software components - the C2Component, that communicate over

the same link and communication protocol. Besides that, the C2 system also has its

own local software server - the C2Server, which serves as the central connection point

for all the C2Components. Overall, the C2 system resides at the highest level and

utilizes the services provided by the distributed software architecture described in [9].

Figure 4.1: STARFISH AUV Software Architecture
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Figure 4.2: The software container together with its components. Each container
defines a thread which runs at the platform.

4.3 Container and C2Component Object

The proposed C2 system software architecture is implemented as a multi-threaded

program in the STARFISH AUV. It consists of multiple software containers where

each container defines a thread in the operating platform. For simplicity, the Con-

tainers have been omitted in Fig. 4.1. However, the overall software architecture is

not affected because the containers only concern the low level implementation on the

operating platform.

Every Container implements a heart beat method, which is invoked by the op-

erating platform in a regular basis. The heart beat (tick method) frequency can be

adjusted to satisfy the system’s hard and soft real-time requirements. A container can

contain one or more components as shown in Fig. 4.2. The grouping of components

into a particular container is based on the assigned responsibilities and behaviors

under the C2 system. Each component is invoked sequentially by the associated con-

tainer via its tick method to perform the assigned specific tasks. For example, the

Task Planner and the Path Executor component are located in different containers

because they carry out very distinctive command and control task in the C2 system.
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Figure 4.3: C2Component and its internal structure as well as external communication
interface.

The Obstacle detector and the Chart Checker component are put into the same con-

tainer because they deal with obstacle detection and avoidance. The Chart Checker

component has to wait for obstacle data from the Obstacle Detector component when

an obstacle is detected before executing any avoidance behavior.

In the proposed C2 system, command and control tasks are divided into individual

components. The division is natural where each component is self-contained and the

components perform assigned tasks. For example, the Task Planner Component is

responsible for task and path planning while the Safety Officer Component monitors

the AUV’s condition to ensure its safety. Components are the basic functional units

of the whole C2 system. There is a simple interface class C2Component (Fig. 4.3),

any component that implemented this interface can be added into containers under

the C2 system. The C2Component interface also implements a common component

communication method to facilitate inter-component communication.

Fig. 4.4 shows the UML diagram of a ’container’, a ’Component’ and inher-

ited ’C2Components’. One container can contain one or more C2Components, each

C2Component in a container is invoked once sequentially by the Container’s heart

beat to perform its command and control tasks.
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Figure 4.4: Container, Component and C2Component.

The following are two methods for C2Component’s input and output channels:

• Send and Request methods as the output channel.

• GET and SET methods as the input channel.

Besides that a default State variable is used to keep track of the component’s state.

Every C2Component can define its own data structure and parameters depending on

its tasks and responsibilities. They are private to the particular component and

only accessible by the component’s GET and SET methods. Activity is the main

processing unit in a component; it implements the main algorithms that generate

the desired behaviors or outputs for the component. However, the type of activities

that are executed at a particular time is depending on the component’s current state,

which is controlled by a finite state machine. A tick() method is implemented at the

component level too. When this method is invoked by the parent container, the finite

state machine checks the components’s current state, and executes the activities that
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Figure 4.5: C2Component State Transition

are defined for that particular component state.

4.3.1 Activity and state transition

All C2Components have a finite state machine which processes their tasks contin-

uously depending on the current state of the component. The transitions between

states are triggered by commands from components at higher control hierarchy and/or

component’s internal events. The current state of a particular component can be

monitored and controlled by another component in the same architecture. There

are seven default states in all the C2Components: INIT, STANDBY, RUN, ERROR

SUSPEND, ABORT and STOP. However, extra sub-states can be defined to handle

more complicated tasks and algorithms in the component. Fig. 4.5 shows the state

transition chart of C2Component.

The implementation of state machine in C2Components is to facilitate control-

lability and observability in the control architecture [11]. Both controllability and

observability allow monitoring and controlling of the internal structure and behavior
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of the C2Component. This is particularly important in a C2 system where supervi-

sory components at the higher level control architecture can monitor and command

the behavior of lower level components.

4.3.2 Component input and output methods

As a mean of communication with other components, all C2Components own two

default output methods: Send and Request. It also provides two input methods: SET

and GET. Send is invoked by a component to provide information to the target com-

ponent, while Request is invoked to ask for information from the target component.

When the Send method is invoked from the source component, the corresponding

SET method is invoked in the target component to accept the information. On the

other hand, GET method is invoked in the target component to provide informa-

tion for the requesting component. Detailed operation of the interaction among the

C2Components using the component’s input and output methods is explained in the

following section.

4.4 Component Communication mechanism

Figure 4.6: C2Component communication via C2Server and C2Msg.
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The proposed C2 system provides a simple yet effective way for inter-component

communication. As shown in Fig. 4.6, all the components communicate with each

other by using C2Msg data structure through the input and output methods.

4.4.1 Communication Object : The C2Msg

C2Msg is a communication object which encapsulates the data types that can be ex-

changed among the components. This provides uniformity for communication among

the components, and allows developers to implement their own logics and algorithms

in new components as long as it complies to the common communication interface.

If needed, new data types can be added easily to the communication object in future

to handle more complex data.

Figure 4.7: C2Msg class diagram.

Fig. 4.7 shows the UML diagram of the C2Msg class currently implemented in
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the C2 system. At the current stage of the project, C2Msg can handle four complex

data types in addition to the primitive data types that were provided by its based

class - the ParamSet class. The four data types are handled by the methods described

below:

getPos and putPos get or put Position data type which encapsulates X, Y and Z

data fields to describe the location in a coordinate system. Each of the data field

is a Double data type with both positive and negative value. Since the origin is

a valid data during AUV’s mission, NULL is used whenever the position is not

available.

getPath and putPath get or put a path which consists of an array of Position

data types. This is useful for the Task Planner to pass the planned path to

the Path Executor and for the Chart Checker to check collision between the

mission path and detected obstacle. Whenever a path is not available, a NULL

value is returned.

getCCLCmdMsg and putCCLCmdMsg get or put CCL command message. Apart

from the mission start or abort commands, the command messages sent by the

operator may consist other information like mission number and mission points

to be changed in the current mission. Thus, these two methods provide an easy

way for those data to be passed on to the designated C2Components.

getObsData and putObsData get and put obstacle data between the Obstacle Detector

and the Chart Checker. The obstacle data consist of the obstacle’s position, its

angle from the AUV’s current bearing and its distance from the AUV’s current

location. The obstacle data can be used in future to help the Captain in decision
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making or for the Signaling Officer to update the operator’s terminal regarding

the detected obstacles.

The complex data are packed into C2Msg when the put methods in sending com-

ponent are invoked and returns the same message content when get methods are

called in the receiving component. Although the number of data types are sufficient

for the current version of C2 system, more data types can be added easily in the

future if found necessary.

4.4.2 Point of Communication : The C2Server

Figure 4.8: C2Sever class diagram.

Instead of connecting C2components directly to communicate with each other,

they are connected to a central routing hub - C2Server as shown in Fig. 4.6. C2Server

is responsible for delivering C2Msg from the source component to the destination

component via Remote Procedural Call (RPC) service using a message passing pro-

tocol. Fig. 4.8 shows the UML diagram of C2Server and its relationship with the

C2Components. Different from Container class, there is one and only one C2Server
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for all the C3Components in the C2 system. All the C3Components have to be added

to the server before they can interact with each other.

Besides being the central message routing node, the C2Server configures the C2

system when it starts. The loadMissionCTN() method reads all the Container/Component

configuration from the mission file before adding them into the C2Server. Con-

tainer/Component configuration specifies the container and C2Components to be

loaded for the missions in the mission file. The operator can easily configure the

C2Components to be loaded for a particular mission. This is very useful for the con-

figuration of the Scientist components in a single AUV as well as for the configuration

of AUVs in a multi-AUV scenario. The C2 system of the AUVs is equipped with all

the Application Programming Interfaces (API) and only relevant APIs will be loaded

depending on the individual AUV’s hardware setup.

(a) (b)

Figure 4.9: Component Communication with C2Component and C2Server.
(a)Sequence diagram showing a request operation. (b)Sequence diagram showing
send operation.

Fig. 4.9 shows the sequence diagrams for both C2Components’ request and send
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operations to further illustrate the overall operation of the C2Component commu-

nication with C2Server. Whenever a C2Component needs information from another

C2Component, a request operation is called with the serving component’s name as

well as the request message type. The information is packed as C2Msg and specified

by the message type (C2MsgType). Upon receiving the request, the C2Server calls

the get method of the serving component to obtain the requested information. If the

information is available, it is returned in the form of C2Msg to the C2Server who

forwards the message to the requesting component.

When a C2Component wants to send information to another component, it in-

vokes the send method with the receiving component’s name as well as the information

packed as C2Msg. The C2Server then calls the set method of the receiving component

to pass the information. Note that the C2Server only concerned wether the message

is received or not by the component which is denoted by an acknowledgement (integer

type). This acknowledgement is then forwarded to the sending component so that

it is aware that the message has been successfully sent. The underlying RPC oper-

ations that involved in message sending have been omitted for simplicity. Detailed

description can be obtained from [9].

Although the centralized hub may have some communication drawbacks, for STARFISH

AUV which consists of multiple computation nodes across Ethernet network, the cen-

tralized hub does provide some flexibilities for the overall system architecture. For

example, under certain conditions when C2 system is required to perform heavy com-

putational tasks, one or more of the C2Components can be loaded in different com-

puting nodes across the AUV to help to off load the computation burden on a single

processing unit. Besides that, such an implementation also allows new C2Components
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to be added into the C2 system in future with minimum modification to the overall

communication framework because only the C2Server needs to be notified and the

new C2Component needs to be registered before it can start functioning. Of course,

the supervisory components have to be modified so that it is aware of the presence

of the new C2Component in the control structure.

4.5 Summary

This chapter presented the software architecture of the proposed C2 system. Component-

based design principle is adopted for the construction of the control modules known

as C2Components. Every C2Component defines its own data structure and performs

specific algorithms or computational logics depending the assigned control task. Be-

sides that, all the C2Components have a finite state machine which processes their

tasks continuously depending on the current state of the component. The transi-

tions between states are triggered by commands from components at higher control

hierarchy and/or component’s internal events. The C2Components must not have

knowledge about the content of other components, and their internal state and event

do not interfere with other components.

The communication among the C2Components in the C2 system is achieved via

message passing protocol over an Ethernet network. All the components in the C2

system are equipped with two input and output methods for the purpose of communi-

cation. A communication object - the C2Msg is defined to encapsulate the data types

that can be exchanged among the components. This provides the components with

a standardized communication message and make future expansion possible. Instead

of connecting the C2Components directly for communication, they are connected to
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a centralized software server - the C2Server. Besides acting as the message routing

hub, the C2Server also configures C2Components at startup.



Chapter 5

Simulation Studies

5.1 Introduction

Simulation is always helpful for validating developments and implementations before

final deployment. In this chapter, the STARFISH simulator built by the ARL for

the STARFISH project is described in Section 5.2. Several simulation cases and

missions have been designed and tested on the simulator to verify the functionalities

of the command and control system. During the simulation trials, the AUV is given

a mission to dive at the start point; navigate though a few mission points at certain

depths and finally, surface at the end point. The purpose of this mission trial is

to 1) test the functionalities of the components in the C2 system and 2) verify the

overall C2 system’s performance in carrying out an assigned autonomous mission.

The missions and corresponding results are discussed in the following sections.

61
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5.2 The STARFISH Simulator

The C2 system designed and developed has been programmed and tested on the

STARFISH simulator - a 3D System-In-The-Loop (SITL) simulator that uses Open

Dynamic Engine (ODE) [1] and was built specifically for STARFISH project. SITL

simulation has the advantage of ”plug and play” capability when comes to system

testing and deployment. The same copies of codes or programs that are running in the

SITL simulator can be ported directly into the hardware platform for testing without

any alteration. The concept has been tested successfully with our first AUV prototype

(Fig.6.1 (b)) described in the next chapter. This results in rapid and simplified system

development.

The STARFISH simulator provides a GUI for the AUV as shown in Fig. 5.1.

This enables live data and simulated environmental visualization during mission ex-

ecution. Different sea floor terrain can be created and simulated in the simulator for

testings in different scenario. A configuration file is provided for simulator’s parame-

ter assignment while simulated data can be logged in separate file for post-simulation

analysis. Besides that, the simulator also allows different underwater conditions like

sea current to be created for more realistic testing.
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Figure 5.1: Screen capture of STARFISH simulator.

5.3 Path Following and WayPoint Following Nav-

igation

Vehicles operating on the water surface or underwater are subjected to the disturbance

from sea current or wind. In order to get to the target position, the vehicle has to

utilize either path following or waypoint following navigation. Waypoint following

navigation tries to adjust the vehicle’s bearing periodically so that the tail-head axis

of the vehicle is pointing towards the target position. On the other hand, path

following navigation compensates the disturbance by adjusting the vehicle’s bearing

so that the resultant heading of the vehicle’s movement is pointing towards the target

position.

In this simulation, the AUV is given a simple navigation mission going through

several mission points within the mission area. The simulation is repeated twice with

the same setup and thrust setpoint throughout the mission. The first simulation

is conducted without the sea current while during the second simulation, the AUV

is subjected to simulated sea current of 2 knots, at a bearing of 90 degree. The
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simulations validated the pilot component (Path Executor) within the C2 system in

performing different modes of navigation.

5.3.1 Simulation Results

Fig. 5.2 shows how well both the navigation modes perform in a simulated environ-

ment. From Fig. 5.2-(a), although the AUV managed to complete the mission, the

navigational pattern is not as expected. The resulted AUV trajectory is not smooth

throughout the mission and the AUV is forced to circulate about two of the waypoints

because of the disturbance caused by the sea current. This is inefficient as the AUV

had to make extra effort to point its bearing towards the following target position.

On the other hand, path following navigation mode (Fig. 5.2-(b)) has shown more

promising results under the disturbance of sea current. The AUV’s output trajectory

is smoother and there is no circular motion around any of the assigned waypoints.

Although larger turning radius is observed from the 2nd waypoint to the 3rd waypoint,

and again from 7th waypoint back to the start location due to the AUV’s bearing

at that instance as well as the sea current, this mode of navigation is preferred over

the earlier mode. The problem of larger turning radius can be avoided if subsequent

waypoints are made available to the pilot so that early compensation can be made

before the AUV reaches the current target waypoint.

Overall, both the navigation modes performed reasonable in the simulator. This

validated the navigational functionality of the pilot.
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Figure 5.2: Path following and WayPoint following navigation with current = 2 knots
at bearing of 90 deg. (a) waypoint following navigation. (b) path following navigation.

5.4 Obstacle Avoidance

In this part of simulation, obstacle avoidance behavior of the C2 system is tested.

There are two modes of obstacle avoidance behaviors built in the pilot component:

depth keeping mode and altitude keeping mode. Depending on the requirement of the

mission, either one of the behaviors can be activated. The simulations are carried out

first with path planning from the start position to the end position in a map without

any obstacles. However, after a straight path is obtained, the mission starts with

another sea map with the presence of two simulated obstacles protruding from the

sea floor. If the planned path is passing through the obstacle, the obstacle avoidance

behavior is initiated. After the AUV is clear of the obstacle, it resumes the mission

and continues with its planned path.
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5.4.1 Simulation Results

Fig. 5.3 shows the top and side views of a simple navigational mission with depth

mode obstacle avoidance behavior. The red marks are the obstacles detected by the

AUV’s FLS sonar, the blue line is the straight planned path between the start and

end points while the green line is the output trajectory performed by the AUV. Since

the AUV strived to maintain its depth, it has no choice but to avoid the obstacles by

going around them. From the top view (Fig. 5.3-(a)), it is clearly seen that the AUV

started to navigate away from its pre-planned path when it detected the obstacle. No

collision happened throughout the whole mission. Although some deviation occurred

between the resulted AUV’s depth and the path’s depth as seen in Fig. 5.3-(b), they

are acceptable considering the obstacle size and the AUV dynamics.

In the altitude control obstacle avoidance mode, the AUV tried to keep its altitude

with respect to the sea floor, and in this case, relative to the height of the obstacle.

Thus, instead of going around the obstacle, the AUV tried to go over the obstacle.

Fig. 5.4-(a) shows the top view of the resulted output trajectory from the mission.

Since both the missions for depth and altitude control obstacle avoidance modes start

and end at the same position, their pre-planned path is the same. It can be seen that

the AUV stayed on the pre-planned path throughout the mission even when it is

avoiding the obstacles. From Fig. 5.4-(b), the obstacle avoiding maneuver is evident

when the AUV is close to the obstacle. Again, the AUV did not collide with any of

the obstacles during the mission. Whenever the AUV has passed the obstacle (threat

is cleared), it continued with the rest of the pre-planned mission points’ depth.
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(a)

(b)

Figure 5.3: (a) Top-view of obstacle avoidance in depth control mode. (b) Side-view
of obstacle avoidance in depth control mode.
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(a)

(b)

Figure 5.4: (a) Top-view of obstacle avoidance in altitude control mode. (b) Side-view
of obstacle avoidance in altitude control mode.
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5.5 Station Keeping

Station keeping or position maintaining around an point is useful when the AUV is

waiting for operator’s command or in situations when the AUV needs to perform

intensive computation like decision making or replanning. The AUV in STARFISH

project is a single thruster, torpedo-shape underwater vehicle and is not designed

for accurate and stable station keeping behaviors, having certain degree of position

maintaining within an acceptable vicinity of a given point is still desirable. This not

only allows the operator to send command for mission change or replanning while the

AUV is operating underwater, but also ensuring that the AUV would not be drifted

by the sea current.

In this simulation, two modes of station keeping were tested. First is station

keeping without the sea current while second is with the sea current. Since the

STARFISH AUV has a slightly positive buoyancy, turning off the thruster for station

keeping even there is no sea current will not leave the AUV to stay at the same

position. Thus, for station keeping without the sea current, the thruster is turned on

and the AUV has to move in a circular maneuver so that enough downward torque

can be generated by the fins to keep the AUV at the specified depth and around the

station keeping location.

However, with sea current, the AUV may be carried away by the current if it is

moving in a circle to keep station. Instead of doing so, the AUV is instructed to

thrust forward against the direction of the sea current when it is behind the station

keeping position and stop the thruster when it is beyond the position so that the sea

current will push it backward again. This forward-and-backward motion of the AUV

around the position of station keeping makes sure that the AUV is within the point’s
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vicinity.

5.5.1 Simulation Results

The two simulations are conducted in STARFISH simulator and their output trajecto-

ries are plotted and shown in Fig. 5.5 and Fig. 5.6. Note that for the simulation with

sea current, the current speed is assumed constant at a fixed angle throughout the

test. For both the missions, the AUV is instructed to perform station keeping when

it reaches the first mission point. Fig. 5.5-(a) shows the overall trajectory output for

the mission while Fig. 5.5-(b) is the close-up around the first mission point where the

station keeping is performed. The AUV is able to navigate in a circular motion once

it gets to the mission point. When the time for station keeping is up or when the

AUV receives command from the operator to resume the mission, it continues with

its planned path to the next mission point. The AUV behaved as expected in station

keeping without current.

with a sea current of 2 knots at an angle of 334 degree, the AUV behaved differently

in station keeping (Fig. 5.6). When the AUV reached the mission point for station

keeping, it first adjusted its bearing so that its heading into the opposite direction

of the sea current. Once the AUV is in front of the point of station keeping, the

thruster is turned off to let the current to push the AUV behind the station keeping

point. The process is repeated as long as the AUV is in station keeping mode and,

continued the mission when command received from the operator or the duration

for station keeping has elapsed. Although the result does not show station keeping

over a straight line along the point of station keeping, the area occupied during the

operation is acceptable.
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(a) (b)

Figure 5.5: (a) Station keeping without current. (b) Zoom-in of the station keeping
without current.

(a) (b)

Figure 5.6: (a) Station keeping when current exist. Current speed is 2 knots, current
bearing is 334 deg. (b) Zoom-in of station keeping when current exist.
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5.6 Mission Abort

During mission execution, there are situations when the AUV may encounter prob-

lems that it can not handle. Under such circumstances, it is safer for the AUV to

abort the mission and surface. Besides that, the operator can also send abort com-

mands to the AUV if necessary during the time when it is in the water. Currently, the

C2 system provides 4 different types of abort commands for the operator. In emer-

gency, the operator can instruct the AUV to abort immediately and surface at its

current location. However, the AUV can also be instructed to abort the mission and

surface/navigate to the next mission point, the start location or the current mission’s

destination.

All of the mission abort types are tested in the simulator for a mission with a

total of four mission points. The abort commands are sent by the operator through

CCL message during the mission execution. Once the abort command is received,

the AUV discarded the current mission path and surfaced at the assigned location.

5.6.1 Simulation Results

Fig. 5.7 shows the top and side views of the AUV’s output trajectory when it was

instructed to abort immediately. Whenever an abort mission command is received,

the AUV discards its current mission path and surfaces. In the case of immediate

mission abort, the AUV just surfaces. It is then the operator’s task to retrieve the

AUV based on the last location updates or through the AUV’s GPS buzzer.

The AUV’s output trajectory to abort at next mission point of the current mission

is shown in Fig. 5.8. The abort command is received when the AUV is navigating

from its start location to the first mission point (which is also its immediate next



73

(a) (b)

Figure 5.7: Abort mission immediately. (a) Top-view of the mission path and AUV
output trajectory. (b) Side-view of the mission path and AUV output trajectory.

mission point for this case). As can be seen, the AUV surfaces and continues to

navigate to the first mission point before it stops.

Fig. 5.9 and Fig. 5.10 show the results of the AUV aborting to its start location

and destination. The start location is the point when the AUV received mission start

command. It is also the first position taken for path planning to the first mission

point. Destination is the location of the current mission’s last point. Both points are

recorded when mission is started. Again, the AUV behaved as expected to surface

and navigate to its assigned location before stopping the thruster. Both of the mission

abort types are useful to the operator so that the final location of the AUV, after a

mission is aborted, is known.
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(a) (b)

Figure 5.8: Abort mission and surface/navigate at the immediate next mission point.
(a) Top-view of the mission path and AUV output trajectory. (b) Side-view of the
mission path and AUV output trajectory.

(a) (b)

Figure 5.9: Abort mission and surface/navigate to the AUV’s mission start location.
(a) Top-view of the mission path and AUV output trajectory. (b) Side-view of the
mission path and AUV output trajectory.



75

(a) (b)

Figure 5.10: Abort mission and surface/navigate to the current mission’s destination
location (last point of the mission path). (a) Top-view of the mission path and AUV
output trajectory. (b) Side-view of the mission path and AUV output trajectory.

5.7 Full Mission

A full mission has been carried out using simulated ocean terrain extracted from one

part of the Singapore sea map [16]. In this section, an example of the execution

of a complete mission with the C2 system is presented. Detailed operation and

coordination among the C3Components is explained as follows:

When the mission starts, the Signaling Officer first receives start command and

mission number in the form of CCL [12] message from the mother ship. It then de-

codes the message into C2Msg object and relays to the Captain. After making sure

that all other components have been started and in standby state, the Captain sends

a command to the Task Planner for task decomposition and mission path planning
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according to the mission script. Once a valid path is found, waypoints along the mis-

sion path is generated and passed on to the Path Executor for navigation. Based on

the waypoints given and sensor information, the Path Executor generates appropriate

commands to navigate the AUV along the mission path and to maintain the desired

depth. Throughout the mission execution, there are few tasks being performed pe-

riodically. The Signaling Officer sends AUV status and segments of mission path to

the mother ship so that the operator is aware of the AUV’s current condition as well

as the mission progress. The Obstacle Detector reads the data from FLS and check

for the presence of obstacles in the mission path. The Safety Officer pulls data from

the Monitor Server to check on AUV’s health status and informs the Captain for

any abnormality found (The health condition of all the devices are simulated in the

simulator). The data acquired during the trials were collected and logged for post

mission analysis.

(a) (b)

Figure 5.11: (a) Three Dimensional (3D) view of the mission reference and actual
AUV path. (b) Top-view of the reference and actual AUV path.
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Figure 5.12: (a) Plot of AUV’s trajectory and bearing setpoints. (b) Plot of reference
and actual vehicle bearing during mission.

5.7.1 Simulation Results

Figure 5.11 shows the simulated ocean terrain, the resulting mission path and tra-

jectory executed during the mission. Figures 5.12-(a) and 5.12-(b) show the resulted

AUV’s trajectory and bearing of the AUV throughout the mission execution. The

AUV traveled a distance of approximately 1000 meters, with depth ranging from 0

to 15 meters under the sea surface and average bearing error under 5 degrees. As

can be seen in the zoomed in area of Fig. 5.12-(a), the bearing setpoints are made to

compensate the sea current so that the vehicle exhibits path following behavior. The

resulting mission path took into account of vehicle’s maximum turning and pitching

angle. All the waypoints were visited when the mission was completed. Although

these are preliminary results obtained with a simulator with a simple mission, it is

sufficient to verify the basic functionality of each component while confirming the
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integrity of the overall C2 system.

5.8 Summary

This chapter described the STARFISH simulator developed for system testing and

validation as well as the simulation results for several simulated missions designed to

validate the overall functionalities of the proposed C2 system. Initially, simulations

are carried out to evaluate the AUV’s capabilities in performing important maneuver

behaviors like path following with and without the presence of sea currents, obstacle

avoidance and station keeping. Later, different types of mission abort commands

are tested to ensure the AUV’s safety when required. Finally, A complete naviga-

tional mission was carried out in a simulated ocean terrain for the overall C2 system

evaluation.

The results from the simulations shown correct behaviors for the C2 system. How-

ever, further refinements are required to improve the performance of the control sys-

tem. Although the complete navigational mission is simple, it is sufficient to fulfill

the requirement of mission one mentioned in Section 1.2.



Chapter 6

Field Trials

6.1 Introduction

The current stage of the STARFISH project has yielded the first AUV prototype.

This enables the command and control system to be deployed into the real hardware

and tested in field trials to further validate its functionalities. Section 6.2 provides a

brief description of the AUV’s hardware implementation. This is followed by several

field trials that were conducted at the Pandan Resevoir, Singapore. The results from

the trials were analyzed and discussed in detail in the following sections.

6.2 Hardware Implementation: The STARFISH

AUV

6.2.1 Mechanical Design

The STARFISH AUV [19] has the shape of a torpedo and it is made of different sec-

tions, interconnected by means of a custom designed interlocking teeth arrangement

and made water tight by using a double piston o-ring seal (Fig. 6.1). The hull is made

of Aluminium Alloy while the nose cone is made of Delrin. It is 0.2m in diameter

and the length is restricted from 1.45 to 2m depending on the payload sections. The

79
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(a) (b)

Figure 6.1: (a) STARFISH AUV System Configuration. (b) STARFISH AUV at pool
test.

fineness ratio of the AUV hull varies from 7 to 10. The AUV weighs approximately

34.5kg in air and offers approx. 40kg of buoyancy. A custom designed emergency

ballast capable of holding trimming weights is built on the nose section to adjust the

buoyancy as required and released in time of emergency so that the AUV has enough

buoyancy to return to the surface.

The AUV’s nose section comprises of dry and wet subsections. The wet subsec-

tion is free flooded and houses sensors like altimeter, Foward Looking Sonar(FLS) and

pressure gauge while the dry subsection acts as the connection and communication

link between the C3 (Command Control and Communication) section and nose sec-

tion. C3 section contains the command, control and communication PC along with

related sensors. Besides, it also houses batteries that provide power for the operation

of entire AUV. A communication tower that consists of antennas for GPS, wireless

LAN, GSM modem and an Acoustic Modem transducer is built on top of the C3 sec-

tion to provide communication with the mothership/operator. The AUV is propelled

by a single DC motor and is mounted on the tail section together with the fins which
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are controlled by individually using servo motors. This section is partially flooded to

provide water cooling for the main thruster. These three main sections are interlinked

by the Ethernet backbone, Power bus, and the Run level bus.

6.2.2 Computer and Electronic module

The building of STARFISH AUV adopted modular principles from mechanical, elec-

trical and software perspectives. There are two types of modules: hardware modules

that implement software drivers to communicate with the electronics and software

modules that execute algorithms for AUV control. Every section consists of multiple

modules that are connected locally by the Ethernet switch. Modules from different

sections can communicate via the Ethernet backbone. There is a Pentium class PC

104+ with self complied embedded Linux residing in the C3 section and is responsible

for running core softwares. Besides that, other sections have Microcontroller Units

(MCU) that act as the hardware interface with the sensors and actuators.

6.2.3 Power System and Sensor Suite

The STARFISH AUV carries a total battery capacity of 1.35kWh with Lithium Poly-

mer (Li-Po) as primary energy source. The amount of power is sufficient for au-

tonomous mission of approximately 2 hours. Different sections obtain power from the

power bus which runs all along the length of the AUV and provides 48V of power.

Efficient DC to DC converters are used to convert the power as per the requirement

of different sections.

Sensors play an important role in AUV to make sure that it achieves mission

objectives as well as keeping the AUV safe throughout the mission. The STARFISH

AUV is equipped with a complete sensor suite. Firstly, the nose section is mounted
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with depth sensor, altitude sensor, pressure sensor and obstacle avoidance sonar.

The C3 section comes with a compass and an Inertial Measurement Unit (IMU) for

navigational purposes. In order to monitor the AUV’s condition during mission, all

the sections are equipped with leak detector and temperature sensor to make sure no

leakage and the electronics are functioning below the safe temperature limits. Since

the STARFISH AUV can be extended with different payload sections, other sensors

like Doppler Velocity Log (DVL) and side scan sonar can be attached to provide

more functionalities. In the AUV prototype, the DVL is attached as payload section

to provide better positioning capability.

However, the AUV requires only three basic sections which are Tail, Nose and C3

sections to function. Different payload sections can be added while the Tail or Nose

sections can be exchanged later depending on the requirement of the mission, provided

that the final setting has the three basic sections. This design has the advantages of

extensibility, modularity as well as flexibility because it allows different sections to be

included or exchanged with minimum effect to the software behavior as well as the

overall AUV system architecture.

6.3 Field Trial

A simplified surface field trial has been carried out to validate certain functionalities

of the C2 system. The trials were conducted at Pandan Reservoir (Latitude = 1.3171◦,

Longitude = 103.7482◦), Singapore (Fig. 6.2) using the first STARFISH prototype.

In the trial, the AUV is given a mission file to navigate through three mission points

and is expected to stop once the mission is completed. Since it is a surface mission

(depth = 0), the AUV is subjected to wind disturbance as well as north-pushing
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current caused by a whirlpool near the start location. The expected behavior is for

the deliberative layer to receive operator’s command and plan a path through the

mission points, while for the reactive layer to maneuver the vehicle based on the

mission path and abort the mission if any abnormity happens.

(a) (b)

Figure 6.2: (a) Photograph of STARFISH AUV during field trial. (b) Plot of AUV’s
mission path in a lake test. The coordinates are based on raw GPS data received
by the AUV during the execution. The AUV started from the floating platform and
navigated through all three mission points.

Fig. 6.2-(b) shows the resulted trajectory (yellow dots) executed by the AUV.

The AUV’s positioning is based on raw GPS data while the velocity and heading

is obtained from the DVL. Although the GPS lost its fix for a few times during

navigation (straight yellow line), the AUV managed to complete the mission.

The resulted AUV’s trajectory is plotted in Fig. 6.3-(a). Green arrows and the

blue line show the AUV’s bearing set points and the path executed. Red circles are

the waypoint radius. The waypoint is considered reached when the AUV is within this
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Figure 6.3: (a) Plot showing the AUV’s bearing setpoints (green arrows) during
navigation. Red circles are the waypoint radius, the waypoint is considered reached
when the AUV is within the circle. (b) Plot shows the AUV’s bearing and bearing
setpoints through the mission execution.
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area. The AUV’s bearing is set slightly towards the south-west direction at the start

location to compensate the whirlpool current. Once it is out of the whirlpool area,

the set points pointed directly towards the first mission point. This demonstrated

the path following behavior implemented in the reactive layer. Also, it can be seen

that the bearing setpoints changed to point to the next waypoint whenever the AUV

is within the waypoint radius.

The AUV’s commanded change in bearing is showed in Fig. 6.3-(b). Although

there is a delay in the response compared with Fig. 5.12-(b), it is expected in hardware

implementation. Despite the simplified surface navigational mission, the C2 system

has shown correct behavior so far. We expect to further validate the overall C2

system’s functionalities in our future trials.

6.4 Summary

In this chapter, the STARFISH first prototype AUV is described. The proposed

C2 system has been deployed in the AUV and a field trial has been conducted at

Pandan reservoir, Singapore. Since the prototype AUV is still undergoing hardware

and software fine-tuning, only simple surface missions can be carried out to test the

functionalities of the developed C2 system. The prototype AUV has successfully

completed a simple surface run navigating through three mission points within the

lake based on raw GPS data. More field trials will be carried out in the near future

when all the components in the AUV is working properly.



Chapter 7

Conclusions and Future Work

A novel command and control system architecture has been developed for AUVs in

the STARFISH project. The focus at current stage of the project has been to develop

a generic control and software architecture for a single AUV and later, expended to

multi-AUV operations.

The design, testing and validation of the architecture has been described. The

proposed control architecture has a hybrid structure. Control modules are grouped

into three hierarchical control layers that enables the mission supervision and com-

mand to be executed at a higher layer while decouples the vehicle and navigational

control from the lower layer. It also provides capabilities for real time mission status

updates and vehicle or mission error detection. The control architecture also allows

multiple Cheif Scientist components to be added when needed without affecting the

overall structure.

The use of Component-object based design principle for the development of soft-

ware architecture provides flexibilities in terms of software implementation or alter-

nation. Instead of modifying the existing software components, new components

86
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with identical interfaces but different algorithms can be built and loaded when nec-

essary. Inter-component communication using RPC protocol via Ethernet network

allows components with high computational requirements to be loaded in different

processing nodes across the network.

The proposed C2 system has been developed and tested in a software simulator.

Since the STARFISH project is still at its early stage, the test is only limited to a

single AUV performing simple navigational tasks. A field trial has been conducted at

Pandan reservoir, Singapore to further validate the functionalities of the developed

C2 system a prototype AUV. Although the field trial only involved a simple surface

navigational mission, it is able to show the expected maneuver behavior and identify

areas for further enhancement in the future.

Future work consist of refining the current C2 system and implement the Cheif Scientist

and the Scientist components. We also expect to proceed to sea trial once the results

from the field trials are satisfactory. When the second STARFISH prototype is avail-

able, the current version of C2 system will be enhanced and expanded so that it is

capable of handling multi-AUV missions.
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