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Summary

Multi-vehicle missions offer several advantages over single-vehicle missions in terms

of mission complexity and tolerance to single-vehicle failure. However, missions in-

volving multiple underwater vehicles pose two main challenges – the absence of a reli-

able positioning reference (GPS) and the extremely limited communication bandwidth

among the vehicles – both of which limit the application of multi-vehicle cooperation

techniques that are commonly used by their land and aerial counterparts.

This thesis develops two cooperative algorithms for a team of Autonomous Un-

derwater Vehicles (AUVs) that address the challenges. First, we design a cooperative

navigation strategy for a beacon vehicle to serve as navigation beacon for a team of

AUVs. The exchange of navigation information between the beacon and other vehicles

improves their individual position estimates. We propose dynamic positioning algo-

rithms for the beacon vehicle and analyse their performances in minimizing the position

errors of other vehicles in the team. Second, given the bathymetric terrain maps, we de-

velop cooperative localization using a team of sensor-limited AUVs. The localization of

each vehicle is performed via decentralized particle filtering on its bathymetric measure-

ments, assisted by acoustic range and information obtained from peer vehicles through

acoustic communication. We extend the filter of an individual vehicle to incorporate

information received from another vehicle to better estimate its position, and investi-

gate the impact of communication interval, sensor noise and biases on the localization

performance.



Summary

Designing a Command and Control (C2) system for a single AUV that is robust

and easily extensible to accommodate the requirements of multi-vehicle cooperative

missions is another focus of the thesis. In particular, we develop a hierarchical agent-

based C2 system for a low-cost modular AUV - the STARFISH AUV - that allocates

mission, navigation and vehicle tasks to individual self-contained agents. The collective

interactions among the pool of agents enables the AUV to achieve its mission objectives

autonomously. The C2 system has been developed and successfully deployed for vari-

ous single-vehicle, adaptive missions as well as multi-vehicle cooperative missions.

Using both simulations and field testings, we demonstrate the feasibility and ca-

pability of the developed algorithms in minimizing the position errors accumulated by

the AUVs during mission execution.
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Chapter 1

Introduction

Over the past decade, autonomous robotic systems have been deployed for various ex-

ploration missions. These robotic systems typically act as platforms to carry sensors

that collect data in an environment that is risky or inaccessible by humans. Perhaps the

best known examples are the robotic rovers that were sent to planet Mars in year 2003,

where different sensors and apparatuses were instrumented onto the rovers to gather

scientific data from the remote planet. The rovers have successfully carried out various

missions autonomously and are still operational after more than 10 years on the planet.

Besides space, another environment in which autonomous robotic systems have

been deployed, but received less attention, is in the ocean. The ocean is the lifeblood of

the Earth; it plays an important role in supporting all living organisms, driving weather

and regulating temperature. However, the extent of its influence is still not well un-

derstood till this day, due to the lack of available data. According to NOAA 1, More

than 70 % of the Earth’s surface is covered by the ocean, yet only about 5 % has been

explored by humans. Classical ocean exploration relies on static buoys, manned sur-

face and underwater vehicles. The high cost and substantial deployment and retrieval

efforts have limited their effectiveness in exploring and gathering scientific data from

the ocean.

1National Oceanic and Atmospheric Administration – Ocean. http://www.noaa.gov/ocean.html
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In recent years, the advancement in the Autonomous Underwater Vehicles (AUVs)

technology provides an attractive alternative. They require less efforts to operate, and

the cost of maintenance is marginal compared to those of manned vessels. Furthermore,

the levels of autonomy that can be implemented in an AUV, or a team of AUVs, has

enabled the operators to instruct the AUVs to carry out complex mission tasks which

otherwise would not have been possible using the conventional approaches.

1.1 Autonomous Underwater Vehicles

AUVs are fundamentally computer-controlled robotic systems that operate underwater.

In contrast with the manned or tethered underwater vehicles, they are self-guided, self-

powered vehicles, and have no physical connection to their operator. In general, there

are two different classes of AUVs: propeller-driven and buoyancy-driven. A propeller-

driven AUV uses propulsion systems like thruster or water-jet to propel itself forward,

while the buoyancy-driven AUV utilizes small changes in its buoyancy in conjunction

with wings to convert vertical motion to horizontal. Although biomimetic propulsion

has emerged as a new class of propulsion, it is still in the research stage and not com-

monly used in a commercial AUV.

The class of AUVs used are typically dictated by the mission objectives. Propeller-

driven AUVs are capable of fast and precise maneuverings, and are suitable for short-

range, time-limited missions. Among the vehicles in this class (Fig. 1.1) are the Bluefin

9, 12 and 21 series [1], REMUS [2] and STARFISH [3] AUVs. These vehicles have a

cruising speed range from between 1 ∼ 3 m/s and endurance of a few to tens of hours

depending on the power source carried onboard.

Conversely, buoyancy-driven AUVs have long endurance but much slower cruis-

ing speed. They are suitable for missions that require long-range and yo-yo shaped

transects, yet do not require precise maneuvering control. An AUV performing a yo-yo

shaped transect typically descends and ascends between two specific depths while nav-

igating towards a pre-planned location. This maneuvering pattern allows the AUV to
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(a) (b)

(c)

FIGURE 1.1: Propeller-drive AUVs. (a) Bluefin 9 series [1]. (b) REMUS 100 [2]. (c)
STARFISH [3].

(a) (b)

FIGURE 1.2: Buoyancy-driven AUVs. (a) Seaglider [4]. (b) Spray glider [5].

sense and profile the water column between the start and the end point of a mission. Ex-

amples of buoyancy-driven AUVs (Fig. 1.2) are the Seaglider [4] and Spray glider [5].

This class of AUVs is capable of cruising around 0.2-0.5 m/s, and covering a range of

6000 km [6].

Apart from ocean exploration, AUVs have been used for a wide range of applica-

tions. AUVs equipped with sonar systems are deployed for sea floor [7] and underside of

sea ice [8] mapping. More recently, cameras have also been attached to AUVs for map-

ping coral reefs around shallow waters [9]. Due to strong attenuation of light underwa-

ter, the camera can only capture a small area at a time. A complete picture can obtained
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by mosaicking a series of pictures taken around the coral reefs. Elsewhere, in order

to understand the evolution of ocean features like harmful algal blooms or frontal up-

welling fronts, scientists have equipped AUVs with chemical sensors and implemented

sophisticated motion-planning algorithms on the AUVs to track the features [10]. The

examples listed only represent a small subset of many possible applications.

The development of acoustic modems has enabled AUVs to perform acoustic

communication. Data can be shared wirelessly with other AUVs or operator working

on a mothership, within their communication range. The availability of inter-vehicle

communication has opened up possibilities for multi-vehicle operations and cooperation

during an underwater mission.

1.2 Motivation

Multi-vehicle missions offer several advantages over single-vehicle missions in terms

of mission complexity and tolerance to single-vehicle failure. Multiple vehicles are

capable of simultaneously surveying different points of a mission area, thus providing

spatio-temporal sampling that a single vehicle simply cannot. This is particularly im-

portant in the environmental sensing and monitoring missions where the dynamic of the

features of interest evolves at multiple spatial and temporal scales. However, missions

involving multiple underwater vehicles pose two main challenges – the absence of a re-

liable positioning reference (GPS) and the extremely limited communication bandwidth

among the vehicles – both of which limit the application of multi-vehicle cooperation

techniques that are commonly used by their land and aerial counterparts.

Instead of developing complex, expensive monolithic AUVs for underwater mis-

sions, researchers nowadays are moving their attention towards building simpler, low-

cost modular AUVs [2, 3, 11]. Depending on the mission requirement, new payload

modules can be built and tested independently, before being integrated into the AUV.

This approach promotes modularity, thus reduces overall system complexity while in-

creasing the system maintainability. Due to cost restrictions, these AUVs are generally
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equipped only with low-grade proprioceptive sensors for underwater navigation, re-

sulting in the accumulation of large position errors over the course of a mission. The

accuracy of the vehicles’ position estimates plays a crucial role during an autonomous

underwater mission. First, the quality of the data collected by the vehicles is directly

related to the accuracy of their position estimates. Second, missions that call for adap-

tive behaviors among the vehicles may require their trajectories to be re-planned based

on the current position estimates. Having a large position error may have catastrophic

consequences, as the vehicles’ new trajectories may deviate far from their estimates in

reality, causing them to move into uncharted areas, where total loss of vehicle could

occur.

Surfacing periodically to get a GPS fix to correct the position error may be an

option for some missions, but surfacing can jeopardize the vehicles’ safety when oper-

ating near busy shipping channels, or in rough seas. Surfacing from significant depth

also consumes time and energy. For example, an AUV that is capable of descending at

a rate of 0.5 m/s, would spend approximately 30 minutes round-trip to and from the sur-

face, if the depth of the water column is 500 m. On the other hand, if remain underwater

and navigate at 1.5 m/s horizontally, the AUV could cover a distance of 2.7 km using the

same amount of time and energy. Alternatively, navigation methods that involve deploy-

ing acoustic beacons are sometimes used. Among these are Long Baseline (LBL) [12],

Ultra-Short Baseline (USBL) [13] and GPS Intelligent Buoy (GIB) [14] arrangements,

which provide a geo-reference to correct an AUV’s position estimate. These methods

not only require considerable operational effort, but they also are limited in the operat-

ing range, and are costly.

To overcome the issues, alternate means of underwater navigation must be em-

ployed. The research presented here focuses on non-conventional, cooperative nav-

igation methods for multi-vehicle missions, using a team of low-cost sensor-limited

AUVs. In this thesis, sensor-limited refers to vehicles equipped only with minimum,

low-accuracy sensor-suite such as altimeter, depth sensor and compass. The vehicles

are also equipped with underwater modems, allowing them to communicate acousti-

cally with other vehicles in the team. Even though the AUVs are capable of measuring
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terrain information as well as estimating inter-vehicle ranges with these sensors, these

measurements are not commonly used, especially for underwater localization.

Developing and deploying Command and Control (C2) systems for AUVs is a

difficult task. As the demand for AUV autonomy and capability increases, a C2 system

not only has to cope with increasing mission complexities, but also has to handle new

mission requirements introduced by new sensor payloads. A part of this thesis is devoted

to the development of a C2 system that is easily extendable to cope with new mission

requirements and allow Software-In-The-Loop simulation 2. Such a system expedites

the development and testing processes, thus shortens the mission turn-around time.

1.3 Objectives

Cooperative 
Positioning

Cooperative 
Localization

Agent-based Command and Control System

FIGURE 1.3: The objectives of the thesis are to develop cooperative algorithms as
well as command and control system for a team of low-cost sensor-limited AUVs.

The main goals of this thesis is to design, develop and test cooperative algorithms for

the purpose of underwater positioning and localization using a team of AUVs (Fig. 1.3).

To meet these goals, this thesis focuses on the following objectives:

1. To develop a cooperative positioning algorithm for a moving beacon so that its

position broadcasts can be used to minimize the uncertainties in the position esti-

mates of a team of low-cost, sensor-limited AUVs.

2. To develop a cooperative localization algorithm using terrain information and

acoustic communications among a team of low-cost, sensor-limited AUVs.
2Software-In-The-Loop simulation allows an actual system software to be tested in a simulation envi-

ronment, before migration to a physical system.
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3. To design and develop a fully autonomous C2 system that allows the proposed

algorithms to be easily incorporated and tested in an AUV. The C2 system de-

couples the low level vehicle control from the high level mission planning and

execution, thus enables the developers to focus on developing high level inter-

vehicle cooperative behaviors. Furthermore, the C2 system’s capabilities must

be easily extendable to cope with new mission behaviors of a low-cost modular

AUV.

1.4 Thesis Contributions

This thesis contributes to the design and development of cooperative missions using a

team of AUVs. The key contributions are listed below.

1. The formulation of AUVs’ underwater positioning that relies only on a moving

beacon or the bathymetry information of a mission area, assisted by inter-vehicle

acoustic communications. These approaches avoid the need to deploy an under-

water positioning system such as USBL or LBL, and allow the AUVs to remain

submerged underwater for a longer period of time without incurring large position

error.

2. A cooperative path planning algorithm for a moving beacon to support other

AUVs in team operation. The algorithm is formulated within a Markov Decision

Process (MDP) framework, which takes into account and minimizes the position-

ing errors being accumulated by the AUVs.

3. Two different approaches of learning the cooperative path planning policy for a

moving beacon(a) using the cross-entropy (CE) method and (b) using the variable-

length genetic algorithm (VLGA). Both alleviate the “curse of dimensionality”

problem usually associated with MDP formulation when the state space is large.

4. A new approach for cooperative localization based on decentralized particle fil-

tering, using a team of sensor-limited AUVs. Each vehicles runs a particle filter

to estimate their respective positions using its own bathymetry measurements,
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and broadcast the filter’s information via acoustic communication. Once received

by other vehicles in the team, the information is used to influence their filters’

particle distribution and assist the position estimation.

5. Empirical studies of the impact of various parameters on the performance of the

cooperative localization filter.

6. A hierarchical agent-based C2 system for a single AUV that is robust and easily

extensible to accommodate the requirements of multi-vehicle cooperative mis-

sions. The C2 system that clearly allocates mission, navigation and vehicle tasks

into individual self-contained agents, each with their own responsibilities and be-

haviors. The C2 system has been successfully deployed on the STARFISH [3]

AUVs for numerous field experiments around the Singapore coastal waters.

7. Adoption of Backseat-driver paradigm at the Supervisory level of the C2 sys-

tem where mission decisions are made based on the inputs provided by a pool

of Backseat-driver (BD) agents, each implements different algorithms to achieve

specific mission objectives. The C2 system’s mission capabilities can be easily

extended via the introduction of new BD agents that exhibit desired mission be-

haviors. Besides, the approach also allows online mission adaptation since the BD

agents are able to interrupt the mission execution and propose alternate mission

objectives when necessary. The extensibility and adaptability of the C2 system

framework have enabled various single and multi-vehicle missions with very dif-

ferent mission requirements to be conducted successfully, both in the lake and sea

environments.

8. Field experimental results using the C2 system on different robotic platforms have

demonstrated its practicality in coping with different mission scenarios and veri-

fied the performance of the proposed methods.
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1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 presents an overview of

the state of the art in the domains which are the focus of this thesis: underwater commu-

nication, cooperative positioning using acoustic beacon, bathymetry-based localization

and command and control system for AUVs.

Chapter 3 introduces the cooperative positioning problem using a single moving

beacon, and presents the formulation of the beacon’s path planning policy within a MDP

framework. Two approaches are adopted to automatically learn the resulting policy: the

cross-entropy method and the variable-length genetic algorithm. Simulation and field

trial results are also presented.

Chapter 4 presents cooperative localization of a team of AUVs using terrain in-

formation from a given bathymetry map, and acoustic communications among the ve-

hicles in the team. Field data collected from trials in two locations with different terrain

variabilities are used for performing offline localization. Studies are carried out to inves-

tigate the impact on performance of sensor noise, communication intervals and losses,

and the existence of an ocean current.

Chapter 5 presents the design and development of the hierarchical agent-based

C2 system. The concept of back-seat driver paradigm at the mission level of the control

system is introduced. The capabilities of the resulting C2 system are illustrated through

simulations and field deployments on the STARFISH AUVs. Finally, Chapter 6 sum-

marizes the contribution of this thesis and highlights the future research directions.
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Chapter 2

Background

In order to carry out a cooperative mission underwater, a team of AUVs must be able to

carry out inter-vehicle communication, and estimate their individual’s position reliably,

repeatedly. This chapter reviews previous research related to cooperative positioning

using a moving beacon, as well as bathymetry-based localization for AUVs. It also

reviews some popular command and control systems that are currently being deployed

in autonomous robotic systems. Apart from providing a brief background on the existing

body of work in the domain of this thesis, it also aims to highlight the gaps that help to

identify the problems and issues being addressed by this thesis.

2.1 Cooperative Positioning

Recent advancements in the development of AUVs and underwater communications

have made inter-vehicle acoustic ranging a viable option for underwater cooperative

navigation and localization. The idea of cooperative positioning is to have a vehicle

with good quality position information (beacon vehicle) to transmit its position and

time-of-transmission (TOT) acoustically to supported AUVs (survey AUVs) within its

communication range during navigation. The time-of-arrival (TOA) is recorded when

the data is received at the receiver’s transducer. The difference between the TOA and

the encoded TOT (known as time-of-flight) are then combined with received position
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information of the beacon vehicle to estimate range. This approach requires timing

synchronization between the beacon vehicle and the survey AUVs. The time-of-flight

is known as one-way-travel-time (OWTT) [15]. However, in the absence of timing

synchronization, the vehicle must interrogate other vehicles in the acoustic network and

measure the time-of-flights between it and all replying vehicles. The inter-vehicle range

is then estimated using the two-way-travel-time (TWTT) of the acoustic signal.

The range information between the vehicles can then be fused with the data ob-

tained from proprioceptive sensors in the survey AUVs to reduce the positioning error

during underwater navigation. Generally, the beacon vehicle is equipped with high ac-

curacy sensors that are able to estimate its position with minimum errors. In some

cases, the beacon vehicle may operate at the surface and have access to GPS for posi-

tion estimation. Between acoustic communication, the individual vehicle’s position is

estimated solely by dead-reckoning. Dead-reckoning is the process of computing one’s

current position using a previously known position, advanced by a known or estimated

speed over elapsed time and path.

Depending on the accuracy of the beacon vehicle’s position information, cooper-

ative positioning is able to provide bounded-error position estimates. In addition, when

compared to the statically-deployed underwater positioning systems, which offer only

a few kilometers operating range, this approach has an advantage in that the navigation

can be conducted on an unbounded area as long as the beacon vehicle navigates within

the communication range of the survey AUVs.

The idea of cooperative positioning with a few vehicles that know their positions

well and other AUVs with poor navigational sensors is not new. The vehicles with

accurate position estimates are referred to by some authors as master vehicles [16], and

by others as communication and navigation aids (CNA) [17, 18]. Although multiple

beacon vehicles can provide higher accuracy navigation, our research focuses on single

beacon cooperative navigation due to its operational advantages and lower inter-vehicle

communication requirements. The earliest related research known to the authors is

reported in [19], where a least-square approach is adopted to estimate AUV’s position

from a series of range data transmitted from a LBL-beacon system. A LBL system uses
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a network of sea-floor mounted baseline transponders as reference points for navigation.

The network of transponders measures the distance from a vehicle acoustically and use

the measurements to triangulate the position of the vehicle. Although only simulation

results were presented, this research has motivated different methods in cooperative

positioning. However, the reliance on the sea-bottom fixed beacons for underwater

positioning limits its operational flexibilities as they have limited operating range, as

well as being time consuming for deployment and retrieval.

In the absence of underwater positioning systems like the LBL system, a mo-

bile CNA is used as the navigational aid. A number of related research are reported

in [15, 16, 18, 20], where the acoustic signal transmitted by the CNA is used by the

receiving vehicles for cooperative localization. In [16] the authors made use of range

information and an Extended Kalman Filtering (EKF) transmitted by the master vehi-

cle to estimate other AUV’s position. The authors in [18] adopted a similar approach

and compared its performance with two other estimators: Particle Filtering and Non-

linear Least Square (NLS) optimization. Field experiments using a surface craft as the

CNA shows that NLS provided the best performance. In [15] the authors extended a

centralized EKF approach to a Decentralized Extended Information Filter (DEIF) for

cooperative localization and showed comparable filter performance with its centralized

counterpart in localizing a single underwater vehicle, but with a lower communication

requirement.

Although most of these authors acknowledge that the relative motion of the vehi-

cles is key to having single beacon range-only positioning perform well, the problem of

determining the optimal path of the beacon vehicle given the desired path of the survey

AUVs has received little attention. For example, the research in [16] assumes a circular

path for the beacon vehicle, while [18] uses zig-zag path during experiments. In order

to maximize the mission period of a survey AUV for cable or pipeline surveyings, the

author [20] suggested that the leading beacon vehicle would likely have to maneuver

off course from its pre-planned path to achieve sufficient relative change of motion to

fix the survey AUV’s position. More recently, the authors in [15] also adopted a sim-

ilar approach and maneuvered the beacon vehicle above the survey site in a diamond

shape while keeping station at each apex to increase observability. These approaches
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of maneuvering the beacon vehicle in minimizing the survey AUVs’ position error are

opportunistic and sub-optimal as best. Ranging information is broadcast by the beacon

vehicle at some pre-determined periods and paths, without taking into account the posi-

tion error accumulated by the survey AUVs. The only research known to the author and

specifically designed to address this problem is reported in [21, 22]. In [21], the CNA

determines its optimal position for acoustic communication based on the prediction of

the AUVs’ future trajectories. The optimal position is defined as the location reachable

by the beacon vehicle at the next immediate time step, such that the ranging informa-

tion could best minimize the position error of the receiving vehicle. The prediction is

performed by using navigational information received from the periodic broadcasts of

the AUVs. However, the approach is optimal in a local sense (based on what is optimal

at the time the decision is made). As its authors noted, the approach can lead to a sub-

optimal long-term solution as the distance between the vehicles constantly grows until

the distance is too long for acoustic transmissions. The requirement to broadcast the

pose estimates, covariance matrix, course and speed could lead to substantial amounts

of data to transfer in a very limited acoustic communication channel.

In [22], the author applied the Dynamic Programming (DP) approach in comput-

ing the optimal position for the beacon vehicle to broadcast the ranging information.

Given the current location of the beacon vehicle, the DP approach computes an optimal

path recursively until the end of the mission, and assigns the first point in the path as the

next position for the beacon vehicle. However, this approach suffers from the drawback

of high computational load and is not practical for real-time implementation. Part of

the work presented in this thesis is concerned with designing a cooperative position-

ing algorithm for the beacon vehicle, in which the authors extended [22] and formulate

the problem within a MDP framework as described in Chapter 3, and utilize machine

learning techniques to automatically learn their planning policy. Simulations and field

experiments are conducted to demonstrate the capability of the algorithms in minimiz-

ing the survey vehicles’ position errors.

13



Chapter 2. Background

A
ltitu

d
e
(t-1

)

A
ltitu

d
e
(t)

(a) (b)

FIGURE 2.1: Different approaches for measurement model’s update stage. (a) Se-
quential approach. (b) Batch approach from [26].

2.2 Bathymetry-based Localization

Bathymetry-based localization and navigation, also known as Terrain Relative Naviga-

tion (TRN) [23], Terrain-aided Navigation (TAN) [24], and Bathymetric-aided Navi-

gation (BAN) [25] has been used for decades in aircraft and cruise missiles. Given a

bathymetric map, the idea of bathymetry-based localization is essentially to match wa-

ter depth measurements with the map, in order to estimate the vehicle’s position. The

performance of this localization technique obviously depends heavily on the variability

of bathymetry in the area of operation.

Bathymetry-based localization generally employs sequential Bayesian filtering to

estimate the probability of a vehicle being at a particular location in the map, using pro-

cess and measurement models [23–25]. The measurement model can be updated using

two different approaches: batch or recursive. The batch approach is based on matching

all the terrain profile measurements periodically with a prior bathymetry map, while

in recursive approach, the profile measurements are processed sequentially as they ar-

rive, to estimate the vehicle’s position. Typically, the type of sensor used for measuring

the terrain profile determines the approach employed: single-beam echo-sounder or al-

timeter calls for sequential approach, while multi-beam sonar or the Doppler Velocity

Log (DVL) which consists of 4 acoustic beams to measure velocity as well as altitude

of the device, can be used in batch approach. Fig. 2.1 illustrates both the approaches.
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Since there is no closed-form solution for the posterior probability density, due

to the highly non-linear bathymetric measurement model, sequential Monte Carlo fil-

tering methods are used as an approximation of the density [27, 28]. In [27] the authors

applied both the Point Mass Filter (PMF) and the Particle Filter (PF) for underwater

navigation using multi-beam echo-sounder. Offline filtering with field data showed that

the PMF slightly outperformed the PF, though it is more computationally expensive.

While in [28], the authors adopted the PF for underwater navigation and compared the

estimation results to that of those computed by the Cramer Rao Lower Bound (CRLB)

along the experimental trajectories to illustrate the efficiency of the filter. Although the

CRLB provides a good indicator of the performance of the localization filter, it is not

the focus of this thesis.

Often a particle filter is designed to estimate and track a large number of system

variables which requires a large number of particles for the filter to converge. This poses

a challenge for the AUVs’ limited computational power onboard. In order to alleviate

this, a number of researchers have adopted an approach called the Marginalized Parti-

cle Filter (MPF), also referred to as Rao-Blackwellization [29–34]. The idea behind the

MPF is to marginalize the system states that exhibit linear dynamics, and to estimate the

marginalized states using a Kalman Filter. The remaining part of states with reduced di-

mension can then be estimated by the PF, thus lowering the number of particles required

to produce comparable results. The MPF has been employed in [29], in an integrated

navigation system of an aircraft with a state vector of more than 15 dimensions, and

simulation results showed good performance with a much lower computational load. In

the domain of underwater navigation, the authors in [31] have shown the feasibility of

applying the MPF for an AUV with a particle set as low as 500 and was able to achieve

good localization. The results have encouraged the application of MPF-based localiza-

tion techniques in low-cost, limited computational-power AUVs. The work presented

in this thesis adopts the MPF localization technique due to its advantages.

In most marine applications, the data for the vehicle’s measurement model are

provided by on-board multi-beam echo sounders [23, 26, 35]. This enables multi-

ple simultaneous altimeter measurements at every time step and improves the filter’s
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performance. Furthermore, if the vehicle is fitted with a DVL, like the research re-

ported in [36], velocity information is available for more accurate propagation of the

process model. In fact, the combination of these high data-rate and high accuracy

navigational sensors also make underwater bathymetry Simultaneous Localization and

Mapping (SLAM) possible. For example, the research reported in [33, 34, 37] made

use of multi-beam sonar, DVL, INS and/or IMU to localize the vehicle’s position while

building 3 - D maps along the vehicle’s trajectories. However, these techniques are not

suitable for a low-cost AUV, which is capable of carrying only low accuracy sensors

and possibly dead-reckon upon its own thruster model to estimate its position. An ex-

ample is shown in [26] where the localization filter may diverge easily due to multiple

occurrences of similar terrain information within the bathymetry map, if the vehicle is

assumed to have only a single-beam measurement.

In recent years, researchers also complement bathymetry-based localization with

information obtained from other sources of sensor measurements, to better estimate the

position of the vehicles. This approach also has the potential to overcome the problem

that arises with bathymetry-based localization when the vehicle is over a terrain that

contains insufficient information for the filter to converge. The authors in [38] fused

both acoustic ranging (obtained from a surface beacon) and position information of

underwater targets (obtained by side-scan sonar) to better estimate a vehicle’s position

and demonstrated the filter’s performance via offline filtering with data collected from

the field. Another related research is reported in [39], where the DVL measurements are

fused with TAN for position estimates. Again, the reliance on these high data-rate and

high accuracy sensors makes these techniques not suitable for localization of low-cost

AUVs.

The research presented in this thesis is closely related with [40] where range

measurements are fused within the bathymetry-based localization filter to estimate a

vehicle’s position. In contrast with [40], this research does not consider a fixed beacon

on the sea floor where an absolute positioning reference can be obtained. Instead, the

author employed a team of low-cost AUVs where the localization of an individual ve-

hicle is based on the collective filters’ information, fused with the range measurements
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derived from the communicating vehicles. Even though the cooperative localization ap-

proach does not depend on a beacon, it requires the individual filter’s information to be

broadcast via acoustic communication.

Despite advances in underwater communications, conventional methods of shar-

ing a subset of particles [41] in the implementation of a distributed particle filter simply

cannot be applied in the underwater domain due to extremely limited bandwidth and re-

liability. Various particle distribution aggregations have been developed as alternatives

for alleviating communication limits [42, 43], but none of them have been applied in the

underwater domain. The approach proposed in this thesis is the first attempt in applying

the aggregation technique within the underwater domain.

2.3 Command and Control Systems

Developing the C2 system or mission controller for autonomous robotic systems is a

challenging task for researchers. In an autonomous mission, the underlying C2 sys-

tem’s responsibilities include the high-level mission planning and supervisory, as well

as the low-level vehicle and navigational control. Furthermore, to carry out the mis-

sion successfully, the C2 system has to be robust and flexible in handling uncertainties

and animosities that might arise during the robot’s operation in a highly hazardous and

unknown environment.

The C2 systems generally fall into two different architectures: reactive and de-

liberative [44]. Deliberative architecture is both hierarchical and top-down in its control

structure [45]. Planing and decision making are done at the upper level and passed down

to the lower level for execution. Deliberative architecture relies heavily on the informa-

tion of the world model. During a mission, raw data from the sensors are processed and

used to update the model. This dynamically acquired and updated model is then used for

new plans or actions when necessary. While handling problems in dynamic and partially

unknown environments with the latest acquired information is desired for AUV naviga-

tion, this approach suffers from computational latency during the sense-model-plan-act

process.
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On the other hand, Reactive architecture is also known as bottom-up or behav-

ioral architecture [46]. It consists of a set of elemental behaviors that define the AUV’s

capabilities. Global behavior emerges from the combination of several elemental behav-

iors activated in parallel when interacting with the world. Behavioral architectures react

to the environment directly without involving any high level reasoning or re-planning

process. Data are taken directly from the sensors to evaluate the current world model

and appropriate behaviors are chosen to adapt to the model. This sense-react principle

is suitable for operations in a highly dynamic world. However, this architecture may

lead the AUV into dead-ends while navigating because only the immediate sensing is

utilized to react with the environment.

Due to the requirement of self-supervisory, goal-oriented and complex nature

of an autonomous mission, most of the mission controllers adopt a hybrid approach,

which integrates different architectures to utilize the advantages of some architecture

while minimizing the limitations of others [46]. In [44] the authors adopted a hybrid

approach that utilizes reactive, deliberative, distributed and centralized control within

the control architecture of an intelligent autonomous mobile robots. The author applied

fuzzy logic for centralized command arbitration by integrating activated behaviors from

distributed decision making processes running asynchronously across the robotic sys-

tem. The modular design of the control architecture allowed subsystems to be designed,

developed, tested and modified separately as necessary. Although the mission-based

control tasks of the modules were not clearly defined, its architectural design has in-

spired the work presented in the thesis.

For AUV mission controllers, [47] reports the implementation of a hierarchical

mission controller which combined deliberative and reactive control architecture in their

semi-AUV, the SAUVIM, to allow both predictability and reactivity. Elsewhere, the au-

thors in [48] developed a reconfigurable mission controller called ARICS that combines

the characteristic of both reasoning-based and reactive-reflexive behaviors to provide

goal-directed planning and good responsiveness. While the architectures clearly allo-

cated the mission and vehicle tasks in different subsystem modules at different levels

of control hierarchies, their capabilities in coping with new mission requirements and

scenarios remain unclear.
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In terms of software for robotic systems, the challenge lies in building the soft-

ware stack starting from low level driver and vehicle control, and continuing up through

high level perception, supervisory and beyond. Due to the complexity, robotic soft-

ware frameworks typically consist of integrated modules, each responsible for different

functions of the robotic system. Functional modularization helps control dependencies,

distribute implementation and increase system flexibility and robustness. Among the

frameworks that are available include Orca [49] and ROS [50]. Orca is an open-source

Component-Based software engineering framework designed for mobile robotics. It

comes with an online repository that provides free, reusable software components for

building mobile robots. To promote software reusability, the framework defined a set

of commonly-used communication interfaces so that any component implementing the

same interfaces could be deployed in the same framework. ROS, on the other hand,

is a peer-to-peer software framework for robotic system that was developed with focus

in supporting multiple programming languages, tools-based development and runtime

environment. It is a general purpose middleware that facilitates inter-module communi-

cation and requires the developers to define the control structure as desired.

In AUV research, developers have started to adopt modular based software de-

velopments for the control system. A popular example is MOOS [51]. Similar to ROS,

MOOS is an open-source middleware that allows a suite of distributed processes to be

built and deployed. However, in contrast to the peer-to-peer communication mechanism

adopted by ROS, the processes running on top of MOOS communicate with each other

via a centralized database process. More recently, the MOOS-IvP [52], an extension

of the MOOS middleware that incorporates Interval Programming (IvP) technique for

decision making, was developed for unmanned marine vehicles. The focus of the work

is on the high-level autonomous decision making where mission decisions are provided

by individual mission behaviors implemented in separate MOOS modules. The IvP

technique is used for arbitrating among these modules whenever a conflict arises in this

behavior-based architecture.

While these frameworks are typically designed with a specific purpose and as-

pect that are deemed important to the particular developers, they either do not explicitly

define the control flow between components or do not allow the framework’s mission
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capabilities to be extended easily. In this thesis, our focus is to develop a C2 framework

for modular AUVs that clearly allocates navigational, mission and vehicle tasks into

an individual self-contained software module, termed as agent, each with its own vehi-

cle and mission responsibilities. Agent-based modeling provides several advantages in

terms of separation of concerns at different levels of a control hierarchy, well-defined

inter-agent communication interfaces and organization [53]. Furthermore, the author

also emphasizes scalability and extendability of the C2 framework in coping with new

mission requirements, both in single and multiple vehicles mission scenarios. Detailed

framework design and development is described in Chapter 5.

2.4 Summary

In this chapter, we briefly reviewed cooperative positioning using a single moving bea-

con. Although subject to extremely limited bandwidth and lossy channel, acoustic com-

munication is a viable option for cooperative navigation. Researchers have been using

filtering techniques to estimate the position of an AUV underwater using the acoustic

range measurements. However, little attention has been put on the relative motion and

the relative geometry of the vehicles involved during navigation, which has a significant

impact on the performance of the filters.

We also reviewed various approaches in bathymetry-based localization. Without

GPS signal or beacon as a geo-reference, AUVs that are capable of measuring terrain

profiles can compare the measurements against a priori bathymetry map to estimate

their positions underwater. The PF is a common technique used by researchers for the

position estimation. The MPF is adopted to alleviate the computational load of PF,

yet provides comparable performance. In order to improve performance and address

the short-comings of bathymetry-based localization, information obtained from other

sensor measurements has been used to complement the filter. However, these techniques

are not applicable for a low-cost sensor-limited AUV due to the absence of the high-

accuracy and high data-rate sensors.
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Last, we reviewed different control architectures for mobile robotic systems that

are commonly adopted by robotic researchers, and have identified the challenges of de-

veloping a robotic software framework. The control architectures are typically designed

with specific purpose and aspect that are deemed important to the particular developers.

They either do not explicitly define the control flow between components, or do not

allow the framework’s mission capabilities to be extended easily.
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Cooperative Positioning with a

Single Moving Beacon

Since GPS signal is not available underwater, AUVs rely on the on-board sensors such

as compass, Doppler Velocity Log (DVL) and Inertial Navigation System (INS) for

their position estimation. However, dead reckoning upon these sensors suffers from un-

bounded error growth due to the integration involved. Although this problem can be

avoided by having the AUV surface and obtain a GPS fix, or deploying fixed beacons

around the mission area, it may put the AUV and the beacons’ safety in jeopardy espe-

cially around busy shipping channels. Besides that, in an AUV team operation which

has the advantages of simultaneous monitoring and surveying, it is not cost effective

to have every AUV carry expensive DVL or INS that can provide an accurate position

estimate. With the development of underwater acoustic modems which are capable of

measuring the time of travel of acoustic signals among the AUVs, having a single bea-

con AUV that is equipped with accurate position estimate to cooperatively support other

AUVs within its acoustic range seems an attractive option.

Cooperative positioning missions typically consist of a beacon vehicle that acts as

a navigational aid for the survey AUVs which are deployed for monitoring or surveying

missions. By having a beacon vehicle supporting a team of survey AUVs, we can avoid

having to equip every single AUV with expensive navigational sensors. This not only
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FIGURE 3.1: The two AUVs for cooperative positioning. The range measure-
ment (Ranging) is derived from the travel time of acoustic communication between

the AUVs, assuming a known sound-speed profile.

reduces the space required to house all the electronics in the vehicles, but also prolongs

precious mission time due to lower power consumption.

Although previous works acknowledged that relative motion between the beacon

and survey AUVs play an important role in determining the performance of the cooper-

ative positioning algorithm, little attention has been put towards the motion planning of

the beacon vehicle. In this chapter, we develop a path planning algorithm for the bea-

con vehicle that takes into account the inter-vehicle geometries, and estimated position

errors accumulated by the survey AUVs. In order to estimate the position errors, the

beacon vehicle keeps track locally an error model of the supported survey AUVs and

updates the model whenever there is a ranging information exchange between the vehi-

cles. The planning policy is then learned through simulations using machine learning

techniques. Through computer simulations and field experiments in the costal waters

around Singapore, we compare the performance of the algorithms with another method

described in [22]. Please refer to [54–56] for related publications.

3.1 Cooperative Positioning using Acoustic Ranging

Cooperative AUVs need to communicate in order to cooperate. Hence they are usually

fitted with underwater acoustic modems that may also be used to measure range between

two vehicles using the travel time of the acoustic signals (Fig. 3.1). The measurements
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FIGURE 3.2: Illustration of error estimates by range measurements. The error ellipse
of the survey AUV (larger blue ellipse next to survey AUV) was reduced (yellow
ellipse) by acoustic ranging with beacon vehicle. The error estimate of the beacon

vehicle is assumed constant (circle next to beacon vehicle).

are typically performed under the assumption of known sound-speed profile. Depending

on the availability of timing synchronization across the vehicles, OWTT or TWTT can

be used to estimate the inter-vehicle range. In either case, the position of the beacon

vehicle and the estimated range between the vehicles is communicated to the survey

AUVs periodically. Upon receiving it, the survey AUVs can fuse the information into

its local position estimation filter to better estimate its position.

Although our focus in this work is on the problem of a single beacon vehicle

supporting a single survey AUV, we provide a general mathematical formulation where

the beacon vehicle may support multiple survey AUVs. The approximate paths to be

followed by the survey AUVs are pre-planned. The beacon vehicle’s path is planned in

real time through a series of sequential decisions made by the onboard command and

control system, using information about the survey AUVs’ desired path and reported

positions during mission execution. The decisions are made with an optimization cri-

teria that minimizes the estimated position error of the survey AUVs, avoids collision

between the vehicles and attempts to keep the vehicles within communication range.

Fig. 3.2 shows that the position error estimate (larger blue ellipse) of the survey

AUV is reduced in the radial direction (yellow ellipse) of the ranging circle centered

at the beacon vehicle each time a range estimate becomes available. The error in the
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tangential direction remains approximately unchanged and becomes the major axis of

the new estimated error ellipse. The cooperative positioning algorithm for the beacon

vehicle uses the newly estimated error ellipse and the estimated position of the survey

AUV to plan its future motion. If the beacon vehicle can maneuver in such a way that

the next range measurement occurs along the direction of the major axis of the error

ellipse, the estimated position error of the survey AUV can be minimized. This is the

key idea underlying the cooperative positioning for the beacon vehicle. Thus, in order

for the single beacon range-only cooperative positioning to perform best, the absolute

bearing between the beacon and the survey vehicles’ positions should vary such that

future range information transmission is along the direction of the major axis of the

error ellipse. We term this change in absolute bearing between vehicles’ positions as

the change of relative aspect. This observation agrees with the work in [38] which

claims that “ranging from the same relative direction” is one of the factors that results

in the reduction of performance of their approach in AUV navigation using both the

acoustic ranging and the side-scan sonar.

3.2 Problem Formulation

We assume that the beacon vehicle knows its position accurately and transmits a beacon

signal every τ seconds. By measuring the time-of-flight and using either the OWTT or

the TWTT of the signal, the survey AUVs’ ranges from the beacon vehicle can be esti-

mated. Since the beacon vehicle makes a navigation decision per beacon transmission

period, we represent time using an index t ∈ {0 . . .Γ}. The elapsed time in seconds from

the start of the mission to time instant t is simply tτ .

Although the underwater environment is three dimensional, it is common that the

depth of the beacon and survey vehicles is specified in a mission and may not be altered

by our path planning algorithm. We therefore represent the position of each vehicle

using a two dimensional position vector and the direction of travel of each vehicle by

a yaw angle. Let xB
t be the position and φ B

t be the heading of the beacon vehicle B

at time t. Let M be the number of survey AUVs supported by the beacon vehicle.
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We index the survey AUVs by j ∈ {1 . . .M}. Let x j
t represent the position of survey

AUV j at time t. At every time index t, we have estimates R̂ j
t of the two-dimensional

range (easily estimated from the measured range by taking into account the difference

in depths between the vehicles) between the beacon vehicle and each of the survey

AUVs (Fig. 3.3). We model the error in range estimation as a zero-mean Gaussian

random variable with variance σ2
R:

R̂ j
t ∼N (|x j

t −xB
t |,σ2

R). (3.1)

We further model the error in position estimation of the survey AUVs as a two

dimensional zero-mean Gaussian random variable described by three parameters – the

direction θ
j

t of minimum error, the error ε
j

t along direction θ
j

t , and the error ε̄
j

t in the

tangential direction. Since ranging from a single beacon vehicle carries only informa-

tion in the radial direction of the ranging circle centered at the beacon vehicle, the error

model allows the beacon vehicle to keep track and minimize the error of the survey

vehicle in all directions, regardless of the survey vehicle’s pose, provided that they are

within the communication range.
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Assuming the error in range measurement is much smaller than prior error in

survey AUVs’ position estimate, the posterior error is minimum along the line joining

the beacon and the survey vehicle (please refer to Appendix A. for detailed proof):

θ
j

t+1 = ∠(xB
t+1−x j

t+1) (3.2)

(ε j
t+1)

2 = σ
2
R +σ

2
B +ατ (3.3)

where σ2
B is the variance of zero-mean Gaussian random variable, N (0,σ2

B), describing

the position error of the beacon vehicle and α is the constant of proportionality (deter-

mined by the accuracy of the velocity estimate of the survey AUV). The position error of

the beacon vehicle is assumed to be isotropic and constant throughout the mission (other

error models can easily be accommodated in the formulation). The error in ranging is

independent of the error in position. When the distance between the beacon vehicle and

the survey AUV is much larger than the positioning error of the survey AUV, the range

measurement gives almost no information in the tangential direction and therefore the

estimated position error grows in that direction. Assuming that the survey AUVs use

velocity estimates (e.g. using DVL or thruster-induced speed) for dead-reckoning, the

position error variance in the tangential direction will grow linearly with time (please

refer to Appendix A. for detailed proof):

(ε̄ j
t+1)

2 =
(ε j

t ε̄
j

t )
2

(ε j
t cosγ

j
t )

2 +(ε̄ j
t sinγ

j
t )

2
+ατ (3.4)

where γ
j

t = θ
j

t+1−θ
j

t .

The navigation decision made by the beacon vehicle at each time step t is δ B
t , the

turning angle during the time interval until the next decision. If φ̇ B
max is the maximum

turning rate,

|δ B
t | ≤ φ̇

B
maxτ. (3.5)
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If sB is the speed of the beacon vehicle, then the heading and position of the vehicle at

time t +1 is approximately given by:

φ
B
t+1 = φ

B
t +δ

B
t (3.6)

xB
t+1 = xB

t + τsB

 cosφ B
t+1

sinφ B
t+1

 . (3.7)

In order to ensure that the beacon and survey vehicles do not collide but are within

communication range of each other, we require that:

Dmin ≤ |x j
t+1−xB

t+1| ≤ Dmax ∀ j. (3.8)

We assume that the position of each survey AUV is known at the start of the

mission with an accuracy of ε0 in all directions:

ε
j

0 = ε̄
j

0 = ε0 (3.9)

θ
j

0 = 0 (arbitrary choice). (3.10)

Given the desired paths {x j
t ∀ t} of the survey AUVs and the initial position xB

0 and

heading φ B
0 of the beacon vehicle, we wish to plan a path for the beacon vehicle such

that we minimize the sum-square estimated position error across all survey AUVs for

the entire mission duration. The path is fully determined by the sequence of decisions

{δ B
t } made during the mission:

{δ B
t }= argmin∑

j,t

[
(ε j

t )
2 +(ε̄ j

t )
2
]
. (3.11)

3.3 Markov Decision Processes

In this section, we present the formulation of the beacon vehicle’s path planning prob-

lem within the Markov Decision Process (MDP) framework [54]. Generally, an MDP

is defined by four main components: the state and action sets, the state transition prob-

ability matrix, and the reward/cost function. From (3.1), R̂ j
t is the estimated distance
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between beacon vehicle and survey AUV, φ B
t represents the beacon vehicle’s current

bearing at time t and φ
j

t+1 being the survey AUV’s bearing at time t + 1 respectively,

our state set is defined as a tuple: zt = {θ j
t , R̂

j
t ,φ

B
t , φ

j
t+1}. Since we assume that ε

j
t+1

in (3.3) is a constant, we need to minimize ε̄
j

t+1 in (3.4) to obtain (3.11) for every time

step t. This means having γ
j

t in (3.4) to be as close as possible to 90 deg. Thus, the

ability of beacon vehicle B to achieve this with respect to survey AUV j will depend on

its knowledge of the components in the state space as well as the actions that it can take.

Both the R̂ j
t and θ

j
t can be obtained from the acoustic range measurements and commu-

nication between the AUVs while φ
j

t+1 is usually pre-planned before the mission.

The action at is the turning angle from the beacon vehicle’s current bearing

(φ B
t ), |at | ≤ φ̇ B

maxτ . At every time t, after at is selected, the corresponding xB
t+1 can

be calculated and the accumulated sum-square error can be estimated through (3.3)

and (3.4). We model this accumulated error as the cost function, C, and we are inter-

ested in minimizing this cost over the entire mission path, which is equivalent to solv-

ing (3.11). An MDP policy is the state-action mapping that determines the probability

distribution of action, at , when the process is in the state zt at time step t. We dis-

cretize at into Na action states, zt into Nz states and define a policy matrix, Pza = (pza)

with z ∈ {1 . . .Nz} and a ∈ {1 . . .Na}, such that for each state z, we choose action a

with probability pza. This requires that for all z rows in Pza, the sum of each zth row is

equal to 1. In the case of cooperative path planning, this translates into the probability of

choosing a particular turning angle from the beacon vehicle’s current bearing (termed as

desired heading in the rest of the paper) at time t +1, given the beacon vehicle’s current

bearing, survey AUV’s next heading as well as distance and relative angle between the

AUVs. As a result, the cost minimization problem reduces to determining the beacon

vehicle’s path planning policy.

3.4 Policy Learning

Policy learning, also known as policy search, is one of the approaches of the Reinforce-

ment Learning (RL) adopted to “learn” the probability or reward of the state-action
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mapping in a MDP. Policy search approach is an iterative approach that updates an

existing policy with policy changes that will increase the expected reward [57]. The

learning process can be further divided into two different classes: gradient-based and

gradient-free. A classic example of gradient-based approach is reported in [58], where

the policy updating favors towards the direction that lies along the gradient of expected

reward. Although suffers from a potential drawback of plateauing at a local optima,

the work has received a lot of attention and motivated numerous, improved variants. A

detailed account can be found in [59].

In contrast, the research presented in this thesis is based on gradient-free ap-

proach, in which the policy search process uses a search heuristic that maximizes the

reward, while satisfying a number of constraints set by the problem [57, 60]. In this

section, we briefly introduce two different policy learning approaches and illustrate the

application as the beacon path planning policy.

3.4.1 Cross-Entropy Method

In this section, we briefly introduce the Cross-Entropy (CE) method and its application

in learning the MDP policy. For convenience, we call this the MDP-CE method. The

Cross-Entropy (CE) method was initially introduced for estimating the probability of

rare events in complex stochastic networks [61]. Later, it was modified to solve the

Combinatorial Optimization Problem (COP). The main idea behind the CE method in

solving COP is the association of an estimation problem with the optimization problem

which is called Associated Stochastic Problem (ASP). This ASP, once defined, can be

tackled efficiently by iterative estimation procedure shown in Algorithm 1. In what

follows, we present the simplified version of the CE method and refer the interested

readers to [61] and [62] for its detailed development and formulation.

Suppose we wish to minimize some cost function C on space χ , where χ is the

action space defined in the MDP shown in section 3.3. Let η∗ denote the minimum of

C on χ , η ∈ R+:
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η
∗ = min

x∈χ
C(x). (3.12)

We define a collection of indicator functions {I{C(x)≤η}} on χ for various thresholds

or levels η . Let { f (·;Pza),Pza ∈ V} be a family of (discrete) probability density func-

tions (pdfs) on χ , parameterized by a real-valued parameter Pza. For a certain p ∈ V ,

we can associate with (3.12) the following estimation problem:

l(η) = Pp(C(x)≤ η)

= ∑
x

I{C(x)≤η} f (x; p) = EpI{C(x)≤η} (3.13)

where Pp is the probability measure under which the random vector x has pdf f (x, p).

The association comes from the fact that the probability Pp(C(x)≤η) will be very small

(rare event) when η is close to η∗. By the CE method, this rare event can be estimated

by iteratively generating and updating a sequence of tuple {(η̂n, p̂n)} such that it will

converge to a small region of the optimal tuple (η∗, p∗). Let ψ be the stopping criteria,

the tuple (η̂n, p̂n) can be updated iteratively by Algorithm 1.

Algorithm 1 Iterative Estimation

- Let η0 = 0 and p0 = 1/ | χ |, set n = 0
repeat

- Set n = n+1
- Let ηn be the (1-ρ)-quantile of C(x) under pn−1
- Generate a set of N random vector from f (x, pn−1), denoted as xk for k∈ {1 . . .N}

- Estimate ηn, denoted as η̂n, by assigning it as the (1-ρ)-quantile of C(xk)
where C(xk) ∈ {C(x1)≤ ·· · ≤C(xN)}
- Estimate pn, denoted as p̂n, with fixed η̂n and pn−1. The estimation can be derived
from [61] as:

p̂n = argmax
p

1
N

N

∑
k=1

I{C(xk)≤η̂n} ln f (x,Pza). (3.14)

until |η̂n− η̂n−1| ≤ ψ

To sum up, the CE method generally consists of two important phases:
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i. Generate sample data x, according to a specified random mechanism (pdf parame-

terized by the vector p). Score and rank the resultant sample data according to the

cost function C(x).

ii. Select the η and update the parameters of the pdfs on the basis of the data, to

produce a “better” sample in the next iteration.

3.4.1.1 Beacon Vehicle’s Path Planning Policy Learning

In order to apply the CE method for learning the path planning policy, we must specify

the two important phases stated before, which in our case are: (a) how to generate the

sample beacon path, and (b) how to update the policy matrix at each iteration.

Since we have formulated the path planning problem within the MDP frame-

work, for a given survey AUV’s path with arbitrary path length of tLA steps, we can

generate a set of beacon paths with the same path length via the Markov process with

the policy matrix Pza. Let N be the total number of paths generated in the set, each

beacon vehicle’s path, xk, k ∈ {0 . . .N}, consists of a sequence of state-action pairs,

xk = (z0,a0, . . . ,ztLA ,atLA). The cost of each resultant beacon vehicle’s path can be esti-

mated through (3.3) and (3.4) as shown in Section 3.2.

Let C(xk) represent the total cost of path xk generated for policy learning at every

iteration, we sort the paths’ cost in increasing order and evaluate the (1-ρ)-quantile, η .

Once the η is selected, the policy matrix can be updated by solving (3.14) to obtain the

formula (see [61, 62]):

pza =
∑

N
k=1 I{C(xk)≤η}I{xk∈χza}

∑
N
k=1 I{C(xk)≤η}I{xk∈χz}

(3.15)

where C(xk) ≤ η means the total cost of path xk is less than the selection score, the

event {xk ∈ χz} means that the trajectory xk contains a visit to state z while the event

{xk ∈ χza} means the trajectory corresponding to path xk contains a visit to state z in

which action a was taken. The learning process is repeated until η converges within the

stopping criteria. Detailed steps are shown in Algorithm 2.
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Algorithm 2 Policy Learning through Iterative Estimation

Require: Pza uniformly initialized with (1/ | Na |)
- Let η0 = 0, set n = 0
repeat

- Set n = n+1
for all zs in Pza do

- Generate a random surveying path with the first path segment satisfies zs and
path length of tLA steps.
repeat

- Start from the initial state z0 = zs, set i = 0.
- Generate an action ai according to the zith row of Pza, calculate the cost
Ci = c(zi,ai) and generate a new state zi+1. Set i = i + 1. Repeat till i = tLA.
- Output the total cost (C(xk)) of the trajectory (z0,a0, . . . ,ztLA ,atLA).

until N trajectories
- Sort the N scores in descending order, take ηn as the (1 -ρ)-percentile of the
score set.
- Update the parameter matrix Pza according to equation (3.15).

end for
until |ηn−ηn−1| ≤ ψ

Instead of updating the policy matrix Pza directly with equation (3.15), we apply

a simple smoothing filter:

p̂za,n = µ p̃za,n +(1−µ)p̂za,n−1 (3.16)

where p̃za,n is the solution of equation (3.15) and µ is the smoothing parameter with

0.7< µ <1, as recommended by [61, 62]. The filter serves two purposes: (i) smoothing

the policy matrix update, and (ii) preventing p̂za,n from becoming zero especially dur-

ing the initial stage of the learning process. This is crucial as to prevent the learning

algorithm from finding a local minima and converging to an incorrect solution.

3.4.1.2 Policy Learning Setups and Results

The learning algorithm shown in section 3.4.1.1 was used with the the setup shown in

Table 3.1.

In our approach, we do not need to discretize our map into a grid map since we

are only concerned with the absolute bearings between the AUVs’ positions. However,
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TABLE 3.1: PARAMETERS FOR POLICY LEARNING

Parameter Value
tLA 20
τ 10s
σR 1 m
φ̇ B

max 0.07 rad/s
Dmin 100 m
Dmax 1000 m
ε0 1 m
α 0.1 m2/s
N 200
ρ 0.1
µ 0.9
ψ 0.1

we do discretize the angle between the AUVs and the AUVs’ bearing into 36 states

each representing an angle section of 10 deg spanning from 0 ∼ 360 deg. The AUVs

are allowed to navigate between 100 m and 1000 m within each other, the distance is

discretized into 3 states with first 2 zones having 300 m each while the last zone span-

ning 400 m to provide slightly higher resolution for areas closer to the survey vehicle,

since higher change of the aspect ratio could be achieved when the vehicles are close to

each other. Any distance closer than 100 m or more than 1000 m apart will be given a

heavy penalty that will contribute to the accumulated error. This is necessary to prevent

the AUVs from colliding if they are too close together while keeping the AUVs within

the communication range (which in our case, assumed to be 1000 m). The maximum

turning angle of the AUV is 40 deg and is discretized into 8 action states. Increasing

the resolution of the state space could potentially improve the outcome of the policy

training, but also increase the computational requirement of the training process expo-

nentially. The state and action space formulated for the policy learning are summarized

in Table 3.2.

Fig. 3.4(a) shows a example of survey path (red color) randomly generated for the

survey AUV, together with N number of beacon vehicle’s paths (blue color) generated

using the uniformly initialized planning policy. Since all the state-action mappings have

equal probabilities during the initial stage, the beacon paths generated were random,
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TABLE 3.2: STATE AND ACTION SPACE DISCRETIZATION

State Space, Nz Number of States
Beacon AUV’s current bearing 36
Surveying AUV’s next bearing 36
Relative angle between AUVs 36
Distance between AUVs 3
Total : 139968

Action Space, Na Number of Action States
Beacon AUV’s desired turning angle 8

N paths generated 
at 1st training iteration

sample 
survey path

(a)

N paths generated 
at 10th training iteration

(b)

FIGURE 3.4: (a). At the first iteration of the policy learning process, the beacon vehi-
cle’s paths were random due to uniform probability when the policy is first initilaized.
(b). At tenth iteration, the planning policy starts to converge and generates paths which

favor the directions that will minimze the cost function (3.12).

but subject to the vehicle’s dynamic constraints mentioned in Table 3.1. However, at

the tenth iteration as shown in Fig. 3.4(b), the planning policy starts to converge as

most of the beacon paths were generated along the directions that, according to the cost

function defined in (3.12), would minimize the position error of the survey AUV. In

contrast with the gradient-based approaches [21, 22] which favor only a single solution,

the CE method is robust against problems that have multiple solutions, as can be seen in

Fig. 3.4(b), where two opposite directions are equally favorable for the beacon vehicle

to navigate to in order to minimize the survey AUV’s position error.
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3.4.1.3 Application to Cooperative Path Planning

Once the policy learning is completed, the path planning for the beacon vehicle sup-

porting a single survey AUV reduces to a policy matrix lookup. At every planning step,

the beacon vehicle determines its current state and decides on its next heading using the

corresponding action row’s probability distribution. This process is repeated until the

survey AUV’s mission is completed.

3.4.2 Variable-Length Genetic Algorithm

One of the main drawbacks of the approach described in Section 3.4.1 is the tradeoff be-

tween computational load against state-action representation: Overly fine discretization

would produce a large policy and incurs a higher computational burden, while coarse

policy might result in unrepresented states or actions. Besides, the policy learning re-

quires exhaustive search of the value of being in a state, in respect to minimizing the

cost function.

In this section, we propose a novel method for Direct Policy Search (DPS) of a

MDP and employ the Variable-Length Genetic Algorithm (VLGA) to automatically dis-

cover the policy’s state-action mapping. We call this the MDP-GA method. Given the

beacon vehicle’s current bearing, the survey AUV’s next heading as well as distance and

absolute bearing between the AUVs’ positions, the cooperative path planning’s policy

determines the desired turning angle (action) from the beacon vehicle’s current bear-

ing (termed as desired heading) so that the position error of the survey AUV can be

minimized during the next ranging event.

3.4.2.1 State Space approximation and Action Space Mapping

It is not always easy to design a good policy and predict the value of being in a state

based on value function, as it is often computationally infeasible given the limited com-

putational power that an AUV has. In order to alleviate this problem, various approxi-

mation techniques have been applied, and encouraging results have been reported in the
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FIGURE 3.5: State-Action space mapping and chromosome representation.

literature [63].

We simplify the state space into the form of Voronoi Tessellation where states

located within a Voronoi cell are represented by their Representative States (RStates)

specified by their Voronoi seeds. Consequently, the path planning policy is the direct

mapping of these RStates into the action space as shown in Fig. 3.5. During cooperative

positioning, the beacon vehicle first determines the state using the latest ranging infor-

mation. It then locates the closest RState in terms of normalized Euclidean distance in

the state space. The normalization is to prevent domination of any state components

in finding the closest RState. Since each of the RStates is deterministically mapped to

a particular action, the decision making using the resultant policy is straightforward.

Compared to the previous method [54] presented in the last section, this approximation

technique greatly reduces both the size of the policy matrix and the computational load

of the beacon vehicle.
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3.4.2.2 Variable-length Genetic Algorithm Formulation

Genetic Algorithm (GA) was first designed to search and optimize solutions based on

natural selection and natural genetics [64]. It is a class of global optimization technique

based on simple yet powerful randomized search procedures. In GA based approaches,

the variables are encoded as genes in a chromosome, which in turns represents a candi-

date solution for the problem at hand. A population of the chromosomes are spawned

and allowed to evolve through natural selections and genetic operations so that the fittest

chromosome (solution) can be found. The VLGA is an extension of the GA approach

that allows the length of chromosomes to vary as the population evolves.

Three important parameters need to be tuned when solving the MDP formulated

in Section 3.4.2.1: the number of RStates to fully represent the entire state space, the

locations of each of the RStates and their corresponding action mapping in the action

space. To search for the optimal parameters, we use a VLGA to automatically discover

the number of RStates and their locations in the state space, as well as the RState-action

mappings for the resultant policy.

Chromosome Representation

The chromosomes are encoded in binary form. Each of the continuous variables in the

state and action space is discretized and encoded as a stream of binary numbers. They

represent the locations of the state and action within the space domain. Fig. 3.6 shows

an example of the chromosome represented using this scheme. Each of the genes in a

chromosome consists of a RState-action pair which represents direct mapping relation-

ship. The length of the chromosomes is variable during the process of evolution and

represents the number of RStates for the resulting policy. This representation scheme

is important to allow the VLGA to automatically discover the optimal number of the

RStates, their locations within the state space, as well as their corresponding action

mapping. Since the individual gene encodes the RState’s location in the state space and

its action mapping, the arrangement of the genes in the chromosome is irrelevant.
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FIGURE 3.6: Gene representation in Chromosome. Each gene consists of RState-
action pair; whenever the RState is selected, the corresponding action will be taken.
Each Chromosome in the population represents a beacon vehicle’s path planning pol-

icy.

Genetic Operations

Genetic operations found in traditional GA are used in this work for the process of

evolution. They are described as follows:

Elitism selection and reproduction:

After each evolution process, the chromosomes in the population are sorted in

decreasing order based on their fitness. Let Ps be the selection rate, the top Ps %

of the population are selected and reintroduced into the new population. Besides

that, the same proportion of new chromosomes are randomly generated and in-

troduced into the new generation. The rest of the population are then randomly

reproduced from the pool of best chromosomes. This approach ensures the ex-

ploitation of the best found solutions as well as exploration of the new solutions

in the new population.

Crossover:

Two chromosomes are randomly selected from the population according to the

Pc – the crossover rate. One-point crossover is performed between a pair of chro-

mosomes and the new resultant chromosomes are re-introduced into the popula-

tion. Physically, the crossover operation increases the probability of combining

good genes from different parent chromosomes, thus, producing fitter offsprings.

Mutation:

Let Pm be the mutation rate. At every generation, Pm chromosomes are chosen

from the new population to undergo mutation. In this work, we apply three dif-

ferent types of mutation operations to the selected sub-population:
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• Growth mutation – randomly produces a new gene and appends it to the

selected chromosome.

• Shrink mutation – randomly removes a gene from the selected chromosome.

• Flip mutation – applies flipping operation on the genes. The bit is flipped

with the probability equal to the mutation rate.

Both the growth and shrink mutation help to introduce good new genes and re-

move bad genes from the chromosome. Besides, the flipping mutation aids to

maintain the diversity of the new population in searching for an optimal solution.

Fitness Function

The fitness function of the chromosomes is evaluated based on the performance of the

encoded policy through Monte Carlo simulation. Detailed setups of the simulation are

presented in the following section. Since we are searching for a path planning policy

that will minimize the cost function, C, of the MDP described in Section 3.3, the fitness

function of the chromosomes is defined as follows:

fi =
1
Ci

=
1

∑
tLA
t=1

[
(εSA

t )2 +(ε̄SA
t )2

] (3.17)

where fi represents the fitness value of the ith chromosome, Ci is the cost incurred from

the path planned by the beacon vehicle, which is calculated through the summation of

the positioning errors (both the εSA
t and ε̄SA

t ) accumulated by the survey AUV for a

sample survey path of tLA steps.

Fitness Evaluation through Monte Carlo Simulation

The fitness of each individual offspring is evaluated through Monte Carlo simulation

between the beacon vehicle and a survey AUV. During the simulation, a survey path of

t steps with lawn mowing pattern is randomly generated to simulate a survey mission.

Starting from all the initial states in the state space, the beacon vehicle is deployed

and plans its path to support the survey AUV using the encoded policy. Since acoustic

ranging information is assumed to be available at each of the tLA steps, the resultant
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beacon’s path has the same length as the survey path. With both the beacon and survey

paths, the sum of the positioning errors (3.17), which is equivalent to the cost, can

be calculated. The same simulation is performed using the policies encoded in all the

chromosomes in the population, and the resultant fitnesses are ranked in descending

order for the selection operation. Detailed algorithm of the simulation is shown in

Algorithm 3.

Algorithm 3 Fitness Evaluation through Monte Carlo Simulation

Require: Nz – State Space
Require: Pop – Policies represented by chromosomes in the population

for all zs in Nz do
Generate a random surveying path with path length of tLA steps.
for all pi in Pop do

Start from the initial state z0 = zs, set j = 0.
Locate the RState in pi that is closest to z0 in terms of Euclidian distance.
Apply the corresponding action (encoded in the same gene as the selected
RState) and generate a new state z j+1. Set j = j + 1. Repeat until j = tLA.

Output the total cost (Cpi) of the trajectory (z0,z1, ...,ztLA).
Calculate the fitness fi of the policy pi.

end for
end for
return fi of all pi in Pop.

Policy Search Setup and Results

Instead of discretizing the map into grid map or graph nodes as is commonly done

for the path planning problem of mobile robots [65, 66], we discretized both the state

and action space of the beacon vehicle. For the convenience of binary encoding of the

chromosome, we discretize the AUVs’ bearing and the angle between the AUVs into

32 states (5 bits) spanning from 0 ∼ 360 deg. The distance between the AUVs are

discretized into 4 zones (2 bits): two forbidden zones (less than Dmin and more than

Dmax) and two legal zones with each occupying half of the distance in between Dmin

and Dmax. Heavy penalty that will contribute to the accumulated errors is given when-

ever the vehicles are in the forbidden zones. This is necessary to prevent the vehicles

from colliding if they are too close together while keeping them within the communi-

cation range. Due to the limitation of the turning radius achievable during navigation,

the beacon vehicle’s desired turning angle is constrained within [-20,20] deg (obtained
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TABLE 3.3: STATE AND ACTION SPACE DISCRETIZATION

State Space, Nz Number of States Number of Bits
Beacon vehicle’s current bearing 32 5
Surveying AUV’s next bearing 32 5
Relatives angle between AUVs 32 5
Distance between AUVs 4 2

Action Space, Na Number of States Number of Bits
Beacon vehicle’s desired turning angle 8 3

TABLE 3.4: PARAMETERS FOR BEACON VEHICLE AND VLGA

(a) Beacon’s Parameters

Parameter Value
tLA 20
τ 10 s
σR 1 m
φ̇ B

max 0.07 rad/s
Dmin 100 m
Dmax 1000 m
ε0 1 m
α 0.1 m2/s

(b) VLGA Parameters

Parameter Value
Ps 0.1
Pc 0.6
Pm 0.15
Encoding scheme Binary
Substring length 20
Population size (Pop) 200
Number of generations 1200

from τφ̇ B
max in Table 3.4(a)) of the vehicle’s current bearing and is divided into 8 zones.

Detailed parameter setups are shown in Table 3.3. Table 3.4 shows the parameters used

for the Monte Carlo simulation of the beacon vehicle and the DPS using the VLGA.

The fitness value and the length of the fittest chromosome in each generation of

the VLGA are shown in Fig. 3.7. Even though the length of an individual chromosome

in the population is allowed to evolve, it stabilizes at about 220 genes for the fittest

chromosome. In some instances during the policy search, we observe that the length

of the fittest chromosome is shortened (around generation 100, 500 and 700) while

its fitness value continued to increase. This shows that the fitness of the chromosome

(performance of the policy) does not only depend on the number of the RStates, but also

the locations of the RStates and their action mapping.
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FIGURE 3.7: Result of the VLGA showing the fitness value and the length of the
fittest chromosome in each generation. (a) The fitness of the chromosome with the

highest fitness value. (b) The length of the fittest chromosome.

3.4.2.3 Application to Cooperative Path Planning

At the end of the training process, the fittest chromosome of the latest generation is used

as the policy for beacon vehicle’s path planning. Instead of policy matrix lookup, path

planning using the policy trained with the VLGA method involves locating the closest

RState encoded within the genes of the chromosome, and taking its deterministically

mapped action. The process is repeated at every planning step, until the survey AUV’s

mission is completed.

3.5 Simulation

To evaluate the performance of the proposed beacon vehicle path planning algorithms,

we simulate two cooperative positioning missions in this section. The first mission

involves a single beacon vehicle supporting a survey AUV, while the second mission

involves supporting a team of two survey AUVs. The parameters used in the beacon

vehicle are listed in TABLE 3.5. We compare the simulation results obtained from both

the proposed MDP-CE and MDP-GA algorithms with the DP [22] method to highlight

their strengths and weaknesses. The DP method employs a recursive approach in gen-

erating an optimal path that would minimize the cost function (3.11). To alleviate the
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TABLE 3.5: PARAMETERS USED IN BEACON VEHICLE

Parameter Value
τ 10s
σR 1 m
φ̇ B

max 0.07 rad/s
[Dmin,Dmax] [100,1000] m
ε0 1 m
α 0.1 m2/s

computational burden of the algorithm, the method resorts to decision space (turn an-

gles) approximation and limits the level of value function computation. Four levels of

look-ahead (LA-4) strategy and three discrete turn angles (A=3) are used for the DP

method. We refer the reader to [22] for its detailed implementation. Throughout the

simulations, we assume that the beacon vehicle’s position uncertainty is isotropic and

constant.

3.5.1 Supporting Single Survey AUV

In the first simulation scenario, a survey AUV was given a lawn-mower mission sur-

veying an area of 500 m by 700 m as shown in the left column of Fig. 3.8. The survey

AUVs’ paths are pre-planned and are shared with the beacon vehicle. With this infor-

mation, the beacon vehicle plans its path iteratively using the policy matrix until the

survey AUVs’ missions are completed. During the simulation, all the vehicles are as-

sumed to be moving at the speed of 1.5 m/s. The survey AUV starts at point [0,0] while

the beacon vehicle starts at point [100,100].

The dotted-lines in the left column plots of the Fig. 3.8 show the resultant paths

planned by the beacon vehicle using the DP (top), MDP-CE (middle) and MDP-GA (bot-

tom) methods, while the right column plots show the resultant error uncertainties of the

survey AUV due to the ranging information broadcast by the beacon vehicle along its

planned paths. Without the supporting beacon vehicle, the error uncertainty of the sur-

vey AUV is expected to grow linearly without bound. However, it can be seen that the

position error uncertainty of the survey AUV is kept at around five meters throughout
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FIGURE 3.8: Simulated runs using the DP, MDP-CE and MDP-GA cooperative
path planning algorithms. Left column plots: Lawn-mowing paths of the survey
AUVs (blue lines) and the cooperative trajectories planned by the beacon vehi-
cles (dotted lines) using the different planning algorithms. Right column plots: The
error uncertainties of the survey AUVs tracked by the beacon vehicles. The beacon

vehicle managed to minimize the error uncertainty of the supported survey AUV.

the simulation. Besides, the results are comparable using the paths generated by the

different algorithms. We also observe that the beacon vehicle positions itself within the

mission area during its course of supporting the survey AUV. The beacon vehicle seems

to have “learned” that by keeping a close distance to the survey AUV, the chance for it to

achieve maximum change in absolute angle with respect to the survey AUV’s location,

is higher.
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3.5.2 Supporting Multiple Survey AUVs

In the second simulation scenario, we look into having a single beacon vehicle to sup-

port multiple survey AUVs. Two AUVs are put into a surveying mission where they are

required to navigate in a lawn-mower pattern adjacent to each other as shown in the left

column of Fig. 3.9, with an area of around 400 m by 700 m. Regardless of the num-

ber of survey AUVs, the DP method computes the cost function over all the supported

survey AUVs and produces a single desired heading for the beacon vehicle. However,

since the MDP methods were trained to support single survey AUV, the beacon vehi-

cle generates one desired heading with respect to each of the survey AVUs using their

respective policy table.

Since choosing one of the desired headings may reduce the accumulated error of

one survey AUV while increasing the other, care has to be taken while making the final

decision. One of the factors that affects the beacon vehicle’s capability in achieving the

maximum change of absolute bearing with respect to the survey AUVs’ locations, is to

maintain close distance with all the vehicles it is supporting. However, this is impossible

for the case of multiple survey AUVs where during a surveying mission, survey AUVs

may navigate far apart from each other. For the case of supporting two survey AUVs, the

beacon vehicle generates two desired headings, one for each of the survey AUVs, using

the policy table. The best strategy for the beacon vehicle to maintain close distance

to all the supported survey AUVs is to choose, between the two desired headings, the

heading that will navigate it in the proximity of the centroid location among survey

AUV team. Different strategies can be applied to produce different results [54, 55].

Thorough studies of the strategies’ performance are beyond the scope of the thesis.

Fig. 3.9 shows the resultant trajectories (dotted lines) planned by the beacon

vehicle (left column) and the corresponding error uncertainties of supported survey

AUVs (right column), using the DP, MDP-CE and MDP-GA methods. Although having

to support more than one AUV, the beacon vehicle still managed to minimize the error

uncertainties of the survey AUVs at around five meters. The results seem to show all

three planning methods alternately minimize the error uncertainties of the survey AUVs,

even though this “behavior” was not explicitly implemented in the planning algorithm.
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FIGURE 3.9: Simulated runs of single beacon vehicle supporting multiple survey
AUVs using the DP, MDP-CE and MDP-GA cooperative path planning algorithms.
Left column plots: Trajectories of beacon vehicles in supporting multiple survey
AUVs. Right column plots: Error uncertainties of the supported survey AUVs. Sim-
ilar to the results obtained via the DP method, the MDP-CE and MDP-GA methods

alternately minimize the error uncertainties of the supported survey AUVs.

Although the policies of both the MDP methods were trained through stochastic opti-

mization techniques and require much lower computational load when applied online,

their performance in minimizing the error uncertainties of the supported survey AUVs

are comparable with that of the DP method.

3.5.3 Position Estimation of the Survey AUV

The error uncertainties of the supported survey AUVs presented in the previous section

were tracked by the beacon vehicle. For position estimation, the survey AUV must

take into account the range measurements as well as the received position of the beacon
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FIGURE 3.10: The results of the survey AUV’s position estimation using the EKF,
based on the beacon vehicle’s paths planned with the DP, MDP-CE and MDP-GA
algorithms. (a) Positioning errors of the survey AUV using beacon trajectories of
Fig. 3.8. (b) Average positioning errors of the two supported survey AUVs using

beacon trajectories of Fig. 3.9.

vehicle to estimate its position. Using the trajectories planned by the beacon vehicle, we

perform position estimation of the survey AUV using the Extended Kalman Filter (EKF)

presented in [56]. A tidal current is simulated and is randomly selected between 0.1 and

0.2 m/s. The EKF’s process model tracks the vehicle’s position and tidal current offset,

while the measurement model fuses the range measurement whenever it is broadcast by

the beacon vehicle, to improve the tracking accuracy. The survey AUVs are assumed to

not be equipped with DVL which measures the vehicles’ velocities. The main objective

of this section is to assess the performance of the beacon trajectories in minimizing the

positioning errors of the supported survey AUVs. For detailed derivation of the EKF,

we refer the interested reader to [56] .

Fig. 3.10(a) shows the positioning error of the survey AUV based the beacon

trajectories shown in Fig. 3.8 while Fig. 3.10(b) shows the average positioning errors

over the two survey AUVs based the beacon trajectories shown in Fig. 3.9. As can be

seen, without the velocity and range measurement, the positioning error of the survey

AUV using the DR method grows unbounded. On the contrary, the range measure-

ments broadcast by the beacon vehicle along the trajectories planned by the proposed

algorithms managed to keep the positioning error of the survey AUVs low throughout
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the mission. More importantly, it also shows that both the MDP-CE and MDP-GA al-

gorithms performed equally well as the DP method. Since there was no tidal current

information at the beginning of the simulation, the positioning error of the survey AUV

increased slightly. However, the EKF started to track the tidal offset once the range

measurements were received from the beacon vehicle.

3.6 Field Experiments

We next present performance estimates based on the survey AUV’s data obtained dur-

ing field experiments with a simulated beacon vehicle and range measurements. The

field experiment provided us with valuable navigational data collected from the survey

AUV’s proprioceptive sensors that could not otherwise be reproduced in the simulation

environment. In addition, the environmental uncertainties due to tidal current around

the coastal waters also allowed us to test the robustness of the algorithms in handling

unexpected natural events.

3.6.1 Cooperative Positioning with Geo-fence

Often time the AUVs have to operate within a geo-fence due to safety reason or op-

erational constraint. A geo-fence is a confined region marked within a mission area

where the AUVs are allowed to carry out their missions. In this field experiment, two

STARFISH AUVs [3] were deployed in the Pandan Reservoir, Singapore to perform

cooperative positioning, where one assumed the role of beacon vehicle and the other

one as survey AUV. Both the AUVs were executing their missions on the surface so

that their GPS position logs can be used as ground truth for offline tracking. Due to the

close proximity to the launching platform and to avoid any potential collision between

the AUVs, a geo-fence is defined for the beacon vehicle as shown in Fig. 3.11(a).

During the experiment, we managed to execute a number of cooperative missions

using the MDP-CE method, with one of them shown in Fig. 3.11(a). To investigate the

performance differences, we also simulated the mission with three different types of
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FIGURE 3.11: (a) The resultant beacon paths planned within the geo-fence bound-
ary (red dotted-box). (b) Positioning errors (top) and estimated error uncertain-
ties (bottom) tracked by the EKF, using the resultant beacon paths. Compared to
the result of a fixed beacon, the positioning errors were lower based on the offline
simulations. However, the estimated error uncertainties were higher at some points,

especially for the MDP-GA method.

beacon aids, by using the same survey vehicle’s navigational data collected during the

field experiment. The same EKF presented in [56] was used for the offline tracking

of the survey AUV. The positioning errors of the survey AUV were comparable for all

the beacon aids since the mission is relatively short and there is no tidal current in the

reservoir. To illustrate the advantage of having mobile beacons, we repeated the offline

tracking with a simulated tidal current offset of 0.1 to 0.2 m/s, randomly selected for

each simulation run. A total of 100 simulations were performed for the same beacon

paths, but with different realization of the measurement noise.

3.6.1.1 Experimental Results

The resultant positioning errors of the survey AUV were shown in Fig. 3.11(b) (top).

Again, without any range measurement, the survey AUV with the DR method grew un-

bounded. Even though confined within the geo-fence, the beacon vehicle’s trajectories
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were able to minimize the survey AUV’s positioning error, except at the initial stage

of the mission where there was no tidal information and the filter was just beginning

to track it through ranging measurements from the beacon vehicle. On the other hand,

the range measurements from the fixed beacon allowed the positioning error to grow

much higher before being reduced towards the end of the mission. The result suggests

that having range information from a fixed location is only able to help in reducing the

positioning error opportunistically, depending on the survey AUV’s path pattern; if the

range measurements are received along the same absolute bearing between the survey

AUV and fixed beacon’s locations, the positioning error could grow in the tangential

direction.

However, the plot of estimated error uncertainties (Fig. 3.11(b) (bottom)) shows

relatively poor performance when the beacon vehicles are confined within the geo-

fence, especially for the case of the MDP-GA method. This is because the beacon

vehicle is forced to take sub-optimal actions that navigate itself within the geo-fencing

box, potentially disregarding the best state-action mapping encoded in the planning pol-

icy. To further illustrate the effect of geo-fencing, we repeated the simulation with the

MDP-GA method, but without the geo-fence constraint. Fig. 3.12(a) shows the resul-

tant path of the beacon vehicle without the constraint of the geo-fence, with the previous

geo-fenced beacon path overlaid for comparison purposes. It can be seen that the bea-

con vehicle could navigate more freely around the survey AUV in order to attain change

of absolute bearing between the vehicles for every consecutive range information broad-

cast. The improvement due to this geo-fence free beacon trajectory can be clearly seen

in Fig. 3.12(b) where estimated error uncertainty of the survey AUV is relatively lower

than the case of geo-fenced for the most part of the mission.

3.6.2 Cooperative Positioning around Coastal Waters

On July 9, 2011, a field trial was conducted near Serangoon Island, Singapore using

the STARFISH AUV (Fig. 3.13). The STARFISH AUV [3] was deployed to perform a

simple surface surveying mission with GPS position available as ground truth. The nav-

igational data were collected and used as the pre-planned path for the simulated beacon
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FIGURE 3.12: (a) The trajectories of the beacon vehicle with and without geo-gence,
using the MDP-GA method. (b) The corresponding estimated error uncertainties of

the survey AUV tracked by the EKF.

Map of Singapore

FIGURE 3.13: Top: Field trial near the Serangoon Island, Singapore. Bottom: The
STARFISH AUV [3].
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vehicle. In the simulation, the position of the survey AUV was estimated (assuming no

GPS) using only compass measurements and simulated acoustic range updates. Only

the first few GPS updates were used to initialize the position of the survey AUV.

The acoustic range updates were assumed to occur at a fixed interval τ = 10

seconds for the simulation studies reported in Section 3.5. However, the updates may

be sporadic in reality due to the communication packet loss and this may affect the

computation of the position estimate and the error estimate of the survey AUV. From

the measured acoustic ranging statistics during the field trial, the range updates occurred

between 5 and 20 seconds with some exceptions due to packet loss. In this part of study,

we simulated range updates received by the survey AUV to occur at any time uniformly

distributed between 5 and 20 seconds, with a packet loss probability of 0.46, to match

the statistics collected from a recent field trial. The difference in terms of the range

update frequency allows us to investigate the robustness of the resultant path planning

algorithms in handling the uncertainty associated with the acoustic communication.

For the comparison purposes, simulations were conducted with five different

types of ranging aids each transmitted from a single beacon. The ranging aids used

were: single fixed beacon, circular moving beacon (CMB), cooperative beacon (beacon

vehicle) where its paths were planned using the DP method reported in [22], and both the

MDP-CE and MDP-GA methods resulted from this work. The fixed beacon remained

stationary throughout the mission, while the circular moving beacon maneuvered in a

circular pattern around the center of the survey site. Finally, we also conducted a simu-

lation where the survey AUV relied solely on the DR method for navigation to further

illustrate the rate of position error growth without range measurement.

In total, 100 runs were conducted for the each simulation scenario. Throughout

the simulation studies, we assumed the survey AUV was not equipped with a DVL. The

only available measurements for position estimation were the compass and the acoustic

ranges. The survey AUV’s position for each of the simulated scenario was estimated

with the same EKF as the previous sections. Detailed derivation of the filter can be

found in [56]. Similar to the simulation study, four levels of look-ahead (LA-4) strategy

and three discrete turn angles (A = 3) were used for the DP method while the policy
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table trained with the MDP-CE and MDP-GA methods were used for beacon vehicle’s

path planning.

3.6.2.1 Experimental Results

Fig. 3.14(a) and 3.14(b) shows the real path of the survey AUV and the resultant beacon

paths generated with different beacon types while Fig. 3.14(c) shows the accumulated

positioning errors of the supported survey AUV.

Throughout the mission, a total of 77 simulated acoustic range updates were re-

ceived by the survey AUV (simulated with packet lost probability of 0.46). It can be seen

that the DR method without range measurement produced the worst position estimation

for the survey AUV. Since the GPS updates were only available at the beginning, the po-

sition estimation using the DR method started to drift uncontrollably throughout the rest

of the mission. However, the error growth rate was different at different mission legs

depending on the prevalent tidal current. The tidal current during the mission varied sig-

nificantly in different mission legs. Fig. 3.15(a) shows the real trajectory of the survey

AUV with time noted at every 200 seconds. The survey AUV was commanded to thrust

at a constant level of 70% throughout the whole mission, which gives about 1.5 m/s rela-

tive speed with respect to the water. Since the observed displacement was not 300 m for

every 200 seconds, it is clear that there was some tidal current slowing down or speed-

ing up the AUV along its heading direction, in addition to the local non-tidal current

variations along the channel, as reported in [67] and estimated in Fig. 3.15(b): in the

first leg (200 to 400 seconds), there was a mild current stream (about 0.5 knots) against

the AUV’s direction; in the second leg (600 to 800 seconds), the effect of ocean current

was along the AUV’s heading direction, thus increased its effective speed; in the last

leg (1000 to 1600 seconds), there was a strong current stream (up to 2 knots) slowing

down the AUV and caused it to move only about 100 m for every 200 seconds interval.

In Fig. 3.14(c), the fixed beacon and the CMB performed poorly in correcting

the positioning error of the supported survey AUV since the changes of relative aspect

between the vehicles were small during the acoustic range updates. This caused the

tidal current estimation in the state vector to become worse. The poor tidal current
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FIGURE 3.14: Performance estimate using the field data collected on July 9, 2011
near the Serangoon Island, Singapore. The beacon vehicle starts at an offset of [50,50]
meters from the survey AUV. (a)-(b) Figure showing the planned paths by varies types
of beacons overlaying the pre-planned path of the survey AUV. (c) Positioning errors
of the survey AUV supported by different types of beacons. The vertical lines (blue)

at the bottom of the plot show the time when there is an acoustic range update.

estimation in turn resulted in poor estimation of future positions. This feedback cycle

escalated the growth of positioning error in the survey AUV. However, when the ocean

current was almost zero and the survey AUV maneuvered in favor of the fixed beacon’s

location (600 to 800 seconds), the positioning errors were significantly reduced by its

range updates. This observation further supported the claim that the location of the fixed

beacon is one of the important factors that determines the performance of the beacon.
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TABLE 3.6: POSITIONING ERRORS INCURRED BY VARIOUS METHODS.

Methods DR Fixed beacon CMB DP MDP-CE MDP-GA
Max Errors (m) 553.6 241.0 521.7 79.8 104.0 108.6
% o.d.t* 35.57 15.49 33.52 5.13 6.69 6.98
Ave. Errors (m) 343.7 54.7 233.4 19.1 26.5 16.1
% o.d.t* 22.09 3.51 15.00 1.23 1.71 1.03
* over the distance travelled of ∼ 1.5 km

(a) (b)

FIGURE 3.15: The real path of the survey AUV during the field trial on the July 9th,
2011 and the estimates of the ocean current in the AUV’s body-frame. The AUV
encountered a strong ocean current stream from time 1000th seconds onwards. (a)
survey AUV’s executed path with time stamps of every 200 seconds. (b) Ocean current

estimated in the AUV’s body-frame.

Both the DP and MDP methods (both MDP-CE and MDP-GA) kept the posi-

tioning error of the survey AUV fairly small throughout the mission, even though they

were under the effect of varying tidal currents. This demonstrated the robustness of both

the DP and MDP methods in handling the environmental uncertainties. For the entire

survey path of around 1.5 km, the survey AUV position error with both the fixed bea-

con and the CMB reached a maximum of around 16% and 34%, while the DP and MDP

methods yielded a maximum error well below 7%. The average errors accumulated over

the entire mission were around 3.5% and 15% for both the fixed beacon and the CMB,

and 1.2%, 1.7% and 1.03% for the DP, MDP-CE and MDP-GA methods respectively.

Detailed position error estimates using various methods are shown in Table 3.6.
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3.7 Discussion

The solution to single beacon cooperative positioning problem consists of multiple lo-

cal minima. Even though the paths generated based on different algorithms may look

different, as can be seen from the results of both the simulation and field experiment sec-

tions, they are equally good in minimizing the estimated position error of the supported

survey AUVs.

Although the DP method performed slightly better than the MDP methods, the

differences are not significant. However, the MDP methods have an advantage over the

DP method in terms of the computational complexity in planning the beacon vehicle’s

path. In the following, we present the comparisons of the algorithms’ complexities in

terms of their computational loads and the size of the resultant policy tables.

Computational Load and Policy Table

Let Γ be the length of the mission and A be the size of decision space. The

computational load for the DP method in generating an optimal route using the greedy

strategy to support a single survey AUV is O(ΓA) and only increases linearly with

the length of the mission. However, its computational load increases exponentially to

O(ΓAL+1) if L-level of look-ahead strategy is employed, which can be significantly

higher than that of the greedy strategy (equivalent to 0-level look-ahead strategy). In

supporting multiple survey AUVs, the computational load increases to O(ΓAL+1M),

where M is the number of survey AUVs.

On the other hand, the computational loads are only O(Γ) for the MDP-CE

method and only O(ΓNRstate) for the MDP-GA method, where NRstate is the num-

ber of RStates. In supporting multiple vehicles, the loads increase to O(ΓM) and

O(ΓNRstateM) respectively. Although the computational loads are significantly lower

than the DP method, the process of the decision making in the MDP methods is heuris-

tic, and generates sub-optimal routes. Furthermore, the policy learning step can be time

consuming even though it can be performed offline.
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The DP method does not use a policy table as the optimal route is computed

online at every τ seconds. Given the discretization shown in Table 3.2, the MDP-CE

method carries a policy table with 1119744 states. In contrast, the MDP-GA method

only carries a policy table of 7040 states (based on discretization shown in Table 3.3),

yet it managed to achieve comparative performance.

3.8 Summary

In this chapter, we developed a cooperative path planning algorithm for a beacon ve-

hicle to support one or more survey AUVs. The beacon vehicle utilizes acoustic range

measurements to minimize the survey AUVs’ accumulated positioning errors during

underwater navigation. The algorithm planned the beacon vehicle’s path around the

survey AUVs such that when range information is exchanged, the position errors of the

supported survey AUV can be kept small.

We formulated the path planning problem within a MDP framework and proposed

two different gradient-free policy search techniques to learn the planning policy, taking

into account the survey AUVs’ accumulated position errors, relative geometries and

inter-vehicle distances between the vehicles. The policy of the MDP-CE method was

searched using a combinatorial optimization technique while the policy of the MDP-GA

method was learned through natural evolution.

Simulation studies using vehicle data collected from field experiments showed

that the proposed algorithm kept the position errors of the supported survey AUVs small

throughout the mission runs. In addition, the algorithm was also shown to be robust in

handling varying range update rates as well as environmental uncertainties. While both

the techniques greatly reduced the computational load compared to previous published

approaches, the MDP-GA method only requires a significantly smaller policy table,

yet managed to perform comparatively well in terms of minimizing the survey AUVs’

position errors.
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Cooperative Bathymetry-based

Localization

Equipped with underwater modems, an AUV is able to estimate inter-vehicle range

using the time-of-flight of an acoustic signal transmitted by another AUV. The range

measurements among the AUVs provide relative geometrical constraints on their posi-

tion estimates. However, such an approach requires at least a geo-referenced position

information (e.g from GPS), and the information passing within the vehicle network to

be acyclic. When the information passing within the network is allowed to be cyclic,

the position estimates of the vehicles become correlated. The cross-correlations, if not

taken into account, can cause the issue of overconfidence on the position estimation

and result in filter divergence [68]. Even though the issue can prevented by maintain-

ing the filter’s consistency [69], it requires careful bookkeeping to track the origins of

information broadcast.

Although underwater localization using bathymetry information has been reported

in numerous literatures, its application is generally limited to a single sensor-rich AUV

equipped with high accuracy navigational sensors and multi-beam echo sounders. In

this chapter, we develop a cooperative bathymetry-based localization approach using

a team of sensor-limited AUVs, equipped only with a single-beam altimeter, a depth

sensor and an acoustic modem. The localization of the individual AUV is achieved
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via decentralized particle filtering, with the filter’s measurement model driven by the

AUV’s altimeter measurements and ranging information obtained through inter-vehicle

communication. We validate the feasibility of the decentralized filter through simula-

tion studies, using randomly generated trajectories, as well as trajectories executed by

the AUVs during field experiments. We also perform empirical analysis on the factors

that affect the filter performance. Please refer to [70] for related publication.

4.1 The Concept of Cooperative Bathymetry-based Localiza-

tion

An AUV that is capable of measuring only a single altitude measurement at every sam-

pling time step can not localize itself effectively within a given bathymetry map, due

to the multiple occurrences of similar terrain information in the map. However, a team

of these AUVs that are also capable of estimating the inter-vehicle ranges may use this

information to impose a geometrical constraint on the vehicles’ altitude measurements.

The set of geometry constrained measurements reduces, if not eliminates, the likelihood

of multiple occurrences of similar terrain information in the map and allows each vehi-

cle to estimate their individual positions. This is the main idea behind the cooperative

bathymetry-based localization.

Cooperative bathymetry-based localization involves a team of low-cost, sensor-

limited AUVs. The localization of the individual AUVs is based on bathymetry infor-

mation measured along their trajectories, complemented with the ranging information

obtained by the inter-vehicle communication among the vehicles in the team. This

approach is inspired by the fact that given the vehicles’ estimated locations, the rel-

ative geometry among the vehicles needs to be consistent with the bathymetry infor-

mation measured at those locations. In contrast with the cooperative positioning, the

bathymetry map acts as the source of geo-referenced position information, replacing

the need for the vehicles to access a GPS signal.

Each of the vehicles in the team runs (locally) a decentralized particle filter to

estimate their respective positions. The filter’s process model is driven using only the
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FIGURE 4.1: Multi-AUV cooperative localization using altimeter measurements and
inter-vehicle acoustic communication.

AUV’s control inputs and a model that predicts the AUV velocity based on the thruster

control input and an onboard compass. The corresponding measurement model is up-

dated by comparing the vehicle’s water depth (altitude + depth) measurements against

the bathymetry information. At every pre-scheduled period of time, the AUVs broadcast

their filters’ local sufficient statistics (belief) sequentially, via acoustic communication.

Once received by other vehicles in the team, the information and the inter-vehicle range

are fused into their respective measurement models to influence the filter’s particle dis-

tribution.

Fig. 4.1 further illustrates the concept of the proposed cooperative localization.

The decentralized formulation allows the approach to be scaled up with the number of

vehicles without increasing the computational complexity. Since the individual vehi-

cles’ position and error uncertainties are estimated solely from their own bathymetry

measurements between the times of acoustic communication, the proposed cooperative

localization method alleviates the issue of overconfidence on the position estimates,

even if the filters’ belief broadcasts within the vehicle network are cyclic.

61



Chapter 4. Cooperative Bathymetry-based Localization

4.2 Problem Formulation

4.2.1 Process and Measurement Models

Let x,y be the easting and northing position of the vehicle, and cx,cy be the ocean current

in the easting and northing direction. Furthermore, let t be the time step and the elapsed

time between step t and t+1 be ∆t. The discrete-time process model used for the vehicle

is described by :

πt+1 = Fπt +Guut +ζt (4.1)

where π = [x,y,cx,cy]
> is the state vector, F and Gu are the state transition and control-

input matrices respectively. ut = [ux,uy]
>
t is the control input that determines the AUV’s

motion. The control input (derived from commanded heading and thrust) is the com-

manded velocity at which the AUV should move in the easting and northing direction for

the time step. The commanded heading is subjected to the same maximum turning rate

as modeled in Equation (3.5) and (3.6). ζt is the process noise, modeled as an additive

zero-mean Gaussian (ζt ∼N (0,σ2
ζ
)). The corresponding discrete-time measurement

model is

yt = h(πt)+ξt (4.2)

where ξt is the measurement noise, modeled as an additive zero-mean Gaussian (ξt ∼
N (0,σ2

ξ
)). yt represents the vehicle’s measurement at time t while h(πt) is the non-

linear function that relates the bathymetric information at state πt to the measurement.

4.2.2 Marginalized Particle Filter

Let N represent the number of particles used for the particle filter, π i
t being the ith

particle at time t. We adopt the marginalized particle filter (MPF) described in [71] and

decompose the state vector into two parts:
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π =

 πpf

πkf

 . (4.3)

where πpf = [x,y]> represents the position of the vehicle estimated by Particle Filter (PF)

and πkf = [cx,cy]
> represents the ocean current bias estimated by a Kalman Filter (KF).

The resulting state-space model becomes:

 π
pf
t+1

πkf
t+1

=

 I2×2 Fpf

02×2 Fkf


︸ ︷︷ ︸

F

 π
pf
t

πkf
t

+
 Gpf

u 02×2

02×2 02×2


︸ ︷︷ ︸

Gu

 ut

02×1

+
 ζ pf

ζ kf

 .
(4.4)

where Fpf = Gpf
u =

 ∆t 0

0 ∆t

 and Fkf =

 1 0

0 1

. Since we assume that the vehicle

does not equipped with any exteroceptive navigational sensor, tracking the ocean cur-

rent will improve the accuracy of the vehicle’s position propagation.

Prediction:

The decomposed state vectors are propagated from time t to time t +1 with :

π
pf,i
t+1 = π

pf,i
t +Fpf

π
kf,i
t +Gpf

u ut +ζ
pf
t . (4.5)

where ζ
pf
t = N (0,FpfPkf

t|t−1(F
pf)>+Qpf) with Qpf being the process noise intensity

matrix and Pkf
t|t−1 denotes the prediction of the estimate covariance of the ocean current

from time t−1 to t.

The ocean current is estimated through the following process and measurement

equations:
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π
kf
t+1 = Fkf

π
kf
t +ζ

kf
t .

Zt = Fpf
π

kf
t +Gpf

u ut +ζ
pf
t .

(4.6)

For each of the particles, the estimation Zi
t corresponds to the Euclidean distance

between the particle’s position, π
pf,i
t and its immediate successor, π

pf,i
t+1, as predicted

in (4.5). Thus, the innovation Zi
t − (Fpfπ̂

kf,i
t|t−1 +Gpf

u ut) is the difference between the

distance measured, Zi
t and the predicted distance traveled by the vehicle due to ocean

current bias, Fpfπ̂
kf,i
t|t−1 and vehicle’s control input, Gpf

u ut . Within a KF’s formulation, the

ocean current bias’s state vector of each particle is propagated with:

π
kf,i
t+1 = π̂

kf,i
t+1|t

= Fkf
π̂

kf,i
t|t .

(4.7)

where the KF’s update expression of the ocean current bias estimate and the correspond-

ing covariance matrices are [71]:

π̂
kf,i
t|t = π̂

kf,i
t|t−1 +KtVt .

Vt = Zi
t − (Fpf

π̂
kf,i
t|t−1 +Gpf

u ut).

Kt = Pt|t−1(Fpf)>
[
FpfPt|t−1(Fpf)>+Qpf

]−1
.

Pt|t = (I−KtFpf)Pt|t−1.

Pt+1|t = FkfPt|t(Fkf)>+Qkf.

(4.8)

Update:

The update step consists of updating the particle’s relative weight (importance) based

on its observation. Let wi
t be the relative weight associated with ith particle at time t,

the weight of a particle is updated according to [71] as:
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wi
t = wi

t−1.p(yt | π i
t ) (4.9)

where p(.) is the likelihood function of the observation yt given the particles’ predicted

states π i
t and wi

0 is initialized to 1/N. With the updated weights, a point estimate of the

current state π̂t can be estimated through:

π̂
MMS
t '

N

∑
i

wi
tπ

i
t (4.10)

while the PF’s covariance is approximated by:

Ppf
t =

N

∑
i

wi
t(π

pf,i
t − π̂

pf,MMS
t ) · (πpf,i

t − π̂
pf,MMS
t )> (4.11)

and the corresponding Kalman part of the state vector has a covariance estimated by:

Pkf
t = Pkf

t|t +
N

∑
i

wi
t(π̂

kf,i
t|t − π̂

kf,MMS
t ) · (π̂kf,i

t|t − π̂
kf,MMS
t )>. (4.12)

4.2.2.1 Sampling Importance Resampling

One of the problems with particle filters is degeneracy of particles where only a small

percentage of the particles are contributing to the estimation. This happens because as

the filter propagates, most of the particles will have small weights as they drift apart.

One way to detect the degeneracy problem is to estimate the number of effective sam-

ples (Neff) that are currently in the particle set. This Neff indicates how well the current

particle set represents the target distribution:

Neff =
1

∑
N
i=1(w

i
t)

2
. (4.13)
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Whenever Neff is lower than the resampling threshold (Nth), resampling should

be performed to generate a new set of particles. In this work, we adopt the sampling

threshold value in [72]:

Nth =
2N
3
. (4.14)

The resampling steps mentioned above are generally referred to as Sampling Im-

portance Resampling (SIR) [28, 71, 73], and are summarized in Algorithm 4. The type

of resampling method used affects the overall computational complexity of a particle

filter, and is one of the important considerations because of the limited computational

power that a low-cost AUV has onboard. We employed the Residual Resampling re-

ported in [74] for its efficiency in terms of computation time and quality of variance

reduction.

However, due to the discrete nature of the particle set, resampling over time leads

to another problem called sampling impoverishment [75], where the newly generated

particle set consists of only the offspring of a small number of particles and could not

reflect the true density. To reduce the effect of this, we add randomly generated Gaussian

noise (with variance equals to two times the map resolution) to every sample that was

chosen more than once.

4.3 Measurement Model for Cooperative Localization

The evaluation of the likelihood function in (4.9) is according to the vehicle’s measure-

ment model. For the case of single vehicle localization, the measurement consists of

the water depth estimate (AUV altitude measurement + AUV depth measurement) at

the location of the AUV. Whenever acoustic communication is available among the ve-

hicles, the measurement model also incorporates the localization information broadcast

by other vehicles for the evaluation of the likelihood function.
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4.3.1 Localization in Single-vehicle

At every time step, the vehicle performs altitude and depth measurement. Without

acoustic ranging and information from peer vehicles, the measurement only consists

of the vehicle’s water depth information along its trajectory. The vehicle keeps a history

of the previous ` (where ` ≥ 1) time step measurements and the segment of trajectory

where these measurements were made. The differences in water depth within this trajec-

tory can then be computed by subtracting each of the measurements from its previous

time step’s measurement. Fig. 4.2. shows an example of the altitude measurements

along a vehicle’s trajectory. This approach has the advantage of eliminating the tidal

offsets between the time when the bathymetric map was generated and time of mission

deployment.

At At-1 At-...

At-`

FIGURE 4.2: Altitudes measured along the vehicle’s trajectory. The differences in wa-
ter depth can be calculated by subtracting each of the measurements from its previous

time step’s measurement.

The weights of the particles are updated based on the likelihood function p(.) of

the measurement yt given the predicted states π i
t at every time step. In our case, the

segment of trajectory history kept by the vehicle is appended to each of the particles.

The corresponding water depth information of the appended particles is obtained from

the bathymetric map, using the same measurement interval. As a result, each of the

particles has an array of ` measurements. An example is shown in Fig. 4.3(a). The

measurement model of the filter takes into account the variation between the differences

in water depth measured at the particles’ predicted locations (black diamonds, with
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FIGURE 4.3: (a) Examples of the vehicle’s position (red circle) and its trajectory
of length ` = 14 (blue cross). The trajectory is appended to all the particles (black
diamonds) forming the particles’ trajectories (magenta asterisks). (b) Examples of
depth profile measured by the vehicle and the particles’ trajectories. The closer the
depth profile measured by a particle’s trajectory to that of the vehicle’s, the higher the

weight that is assigned to that particular particle.

measurement noise from section 4.2.1) and the true differences in water depth measured

by the vehicle along the trajectory segment (red circle). The smaller the differences, the

higher the weight that is assigned to the particular particle. An example of depth profile

measured by the particles and the vehicle along a trajectory of ` measurements is shown

in Fig. 4.3(b). Thus, the likelihood function of the ith particle is:

p(yt | π i
t ) = p(yt:t−`−h(πpf,i

t:t−`)) (4.15)

where the subscript t : t−` denotes an array of the differences in water depths measured

from time t− ` to the current time t. This approach reduces the probability of multiple

occurrence of sea bottom topology that occurs if the localization is performed using a

single-beam altimeter. According to the study in [26], the higher the number of beams

used, the lower the number of false-likelihood positions. However different from the

multi-beam sonar where the distances between the measurements are fixed due to the

fixed sensors layout, appending the individual measurements made along a vehicle’s

trajectory introduces accumulative errors in the distances between the measurements,

due to interpolating errors and sensor noise.
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4.3.2 Localization in Multiple Vehicles

Fitted with an acoustic modem, the vehicles are able to communicate and share infor-

mation with other vehicles within their communication range. The vehicles in the team

are assumed to be capable of measuring the time-of-flight of acoustic signals and there-

fore can estimate their range from broadcasting vehicle using either the OWTT or the

TWTT of the acoustic signal, with an assumed constant sound speed profile. A simple

round-robin scheduling is adopted such that each vehicle, termed as Peer Vehicle (PV),

in the team broadcasts its local state information, sequentially using acoustic commu-

nication. Round-robin scheduling for ranging among the vehicles has the advantage of

eliminating the probability of collision, thus increasing the throughput of the network.

Due to the extremely limited communication bandwidth, the broadcast information in-

cludes only the vehicle’s current position point estimate, π̂PV
t and its filter’s estimated

covariance matrix, PPV
t , as estimated in equations (4.10) and (4.11), even though its lo-

cal particle filter may be tracking a multi-modal particle distribution. Sharing multiple

modes of the distribution, if they exist, may improve the performance of the proposed

decentralized filter. However, this will increase the requirement of the communication

bandwidth and potentially decrease the robustness of the communication link.

When the acoustic signal is received by other vehicles, termed as Receiving Ve-

hicle (RV), the range, R̂t , between the two vehicles can be estimated. Since the range

is part of the measurements, we model its measurement error as a zero-mean Gaussian

random variable with variance σ2
R :

R̂t ∼N (| πPV
t −π

RV
t |,σ2

R) (4.16)

where πPV
t and πRV

t are PV and RV’s ground truth positions, respectively.

The information received cannot be used directly to influence the measurement

model, as presented in [40]. This is because none of the vehicles in the team is equipped

with high accuracy navigational sensors, and the PV may have accumulated significant

error by the time the information is broadcast. Instead, PV’s information is used to
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FIGURE 4.4: (a) Local sufficient statistic information (both the estimated position
and error covariance) is broadcast by the PV during Acomms. (b) N particles (Red
dots) approximated by RV1 using the received information. (c) N particles (red dots)

approximated by RV2 using the received information.

influence RV’s particle distribution, and affects the corresponding likelihood computa-

tion. In the following sections, we present two different approaches for incorporating

the PV’s information in the RV’s measurement model.

4.3.2.1 Approximation of the Peer Vehicle’s Particles

The first approach approximates PV’s particle set and utilizes the inter-vehicle ranging

information to influence the particles’ likelihood computation. Given R̂t , PPV
t and π̂PV

t ,

we assume that the probability of RV’s particle representing the vehicle’s true position

is directly proportional to the probability of the particle located at R̂t meters away from
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the π̂PV
t , taking into account the π̂PV

t ’s uncertainty covariance, PPV
t . The likelihood

evaluation for each of the RV particles (πpf,i
t , i ∈ 1 . . .N) is as follows:

1. Whenever the PV’s information is received via acoustic ranging, a set of N parti-

cles (ϖPV
j , j = 1 . . .N) are normally distributed around π̂PV

t with covariance PPV
t .

2. The Euclidean distances from π
pf,i
t to all the particles generated in step 1 are

computed, resulting in N distance measurements.

3. The likelihood of π
pf,i
t is evaluated by taking the sum of the differences between

the N measurements against the estimated range, R̂t . The smaller the differences,

the higher the likelihood of π
pf,i
t :

p(πpf,i
t , R̂t ,PPV

t , π̂PV
t ) ∝ 1/(

N

∑
j=1
|‖πpf,i

t −ϖ
PV
j ‖− R̂t |) (4.17)

The assumption makes use of the PV’s estimated state information as well as

ranging information to further influence the RV particle’s distribution. An example of

state information approximation and sharing among the vehicles is illustrated in Fig. 4.4.

As a result, the RV particles’ likelihood evaluation consists of an extra likelihood func-

tion, fusing the information received via acoustic communication:

p(yt | π i
t ) = p(yt:t−`−h(πpf,i

t:t−`))× p(πpf,i
t , R̂t ,PPV

t , π̂PV
t ) (4.18)

4.3.2.2 Introduction of Auxiliary Particles for the Receiving Vehicle

The second approach approximates the RV’s particle set based the PV’s state informa-

tion, and uses the PV’s water depth measurement, in addition to the inter-vehicle ranging

information, to influence the likelihood computation. Let yPV
t be the PV’s latest water

depth measurement. At every communication period, the yPV
t is first fused into the PV’s

local filter, before being broadcast together with the resulted PPV
t and π̂PV

t to all the RV.

Once received, the likelihood of RV’s particle set is computed in two separate stages:
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FIGURE 4.5: (a) Illustration shows the PV broadcast its current position estimate and
error covariance via acoustic communication. Upon receiving it, the RV determines
the distance (acoustic range) from the PV, and uses the PV’s information to introduce
new particle set (green ellipse) into its own particle set (red circle). (b) Illustration
shows information from PV is used by the RV’s particles for the second stage likeli-
hood evaluation. N particles are resampled with replacement from the pool of N +M

particles according to their relative normalized weights.

1. Introduction of Auxiliary Particle Set

A set of M auxiliary particles is added to the RV’s original particle pool. These particles

are normally distributed around a position that is at a distance R̂t away from π̂PV
t and

located along a straight line between PV and RV, with the covariance of the distribution

being PPV
t (Fig. 4.5(a)). The resultant N + M particles then are weighted using the

same likelihood function (4.15) as other particles. Intuitively, the introduction of the

auxiliary particles modifies the distribution through the inter-vehicle constraints from

ranging. The new distribution has the potential to alleviate divergence when the vehicle

navigates over a flat terrain, until it enters another area that has more terrain variability.

2. Utilizing PV’s Water Depth Measurement

Given R̂t , yPV
t and PPV

t , we assume that the probability of an RV particle repre-

senting the vehicle’s true position is directly proportional to the probability of measuring
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yPV
t within the ellipse described by the PPV

t , and at a distance of R̂t away from the par-

ticle’s current position. For each of the N +M particles, ϖRV
i where i = 1 . . .N +M,

resulting from the first stage, a new set of particles, ϖ int, is randomly generated along

the arc formed by the intersection of a circle having radius R̂t and centered at ϖRV
i , with

PPV
t . The average likelihood of ϖ int evaluated against yPV

t contributes to the likelihood

of ϖRV
i . This assumption makes use of PV’s water depth measurement as well as the

derived ranging information to further influence the local particles’ distribution. This

second stage likelihood evaluation is further illustrated in Fig. 4.5(b).

As a result, the particle’s likelihood evaluation is similar to that of (4.18), but

with an extra term incorporating the water depth measurement:

p(yt | π i
t ) = p(yt:t−`−h(πpf,i

t:t−`))× p(πpf,i
t , R̂t ,PPV

t , π̂PV
t ,yPV

t ) (4.19)

Once all the particles undergo the likelihood evaluation, the original N particles

are resampled with replacement, from the pool of N +M particles, according to their

relative normalized weights.

4.4 Simualtions and Results

A series of simulation studies were carried out to assess the feasibility of the proposed

decentralized MPF, and to evaluate its performance by varying different parameters

used in the filter. The parameters shown in Table 4.1 were kept the same throughout

the simulation runs, except for studies that involved varying the specified parameters.

The process and measurement noises were assumed independent and drawn randomly at

every propagation and measurement steps, from Gaussian distribution characterized by

the noise matrices. We assumed that all the vehicles have a GPS fix before submerging.

Thus, each of their local filters were initialized to cover a search area of 20 × 20 m2

centering at the individual fixes.

The bathymetry map was obtained from the water near the St. John Island, Sin-

gapore in year 2012 using a Reson 8125 multi-beam echo-sounder. The equipment was
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Algorithm 4 Marginalized Particle Filtering for cooperative localization

1. Initialization:
t← 0 (time steps);
let Vm be the number of vehicles in the team.
Draw N particles: π

i, j
0 ∼ px0 ; i = 1 : N and j = 1 : Vm.

Pkf, j
0|−1← Pkf

0 ; j = 1 : Vm.

wi, j
0 ← 1

N ; i = 1 : N and j = 1 : Vm.

2. Time update:
for j = 1→Vm do

for i = 1→ N do
Compute π

pf,i, j
t+1 according to (4.5) and π

kf,i, j
t+1 according to (4.7)

end for
end for

3. Measurement update:
for j = 1→Vm do

if PV’s information received then
Evaluate p(yt | πpf,i, j

t ) according to section 4.3.2.1 or section 4.3.2.2
else

Evaluate p(yt | πpf,i, j
t ) according to (4.15)

end if
Compute the weights: wi, j

t ← wi, j
t−1 p(yt | πpf,i, j

t ); i = 1 : N

Normalize the weights : wi, j
t = wi, j

t

∑
N
i=1 wi, j

t

end for

4. State estimation:
for j = 1→Vm do

π̂
MMS, j
t ← ∑

N
i=1 wi, j

t π
i, j
t

end for

5. Resampling :
for j = 1→Vm do

Let Neff = 1
∑

N
i=1(w

i, j
t )2

if Neff ≤ Nth then
π

i, j
t = Resample({w j

t },{π j
t }); i = 1 : N

wi, j
t ← 1

N ; i = 1 : N
end if

end for

6. Iterate :
t← t +1
Goto Step 2.
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TABLE 4.1: SIMULATION PARAMETERS

Parameter Value
No. of vehicles 3
No. of particles 600
Filter sampling time 1 s
Vehicles velocity 1.5 m/s
Ranging Period per vehicle 9 s
Ranging scheduling Round Robin

Process noise std. div., (σζ )


0.05 0 0 0
0 0.05 0 0
0 0 0.01 0
0 0 0 0.01

 m

Altimeter measurement noise std. div., (σξ ) 0.05 m
Ranging measurement noise std. div., (σR) 1 m

operated with 240 beams at 455 kHz with a combined swathe width of 120 deg. The

vertical resolution of the data is 0.01 m while the horizontal resolution is down-sampled

to 1 m grid cells. The water depth is from a few meters to around 30 m depth.

The feasibility of bathymetry-based localization depends on the amount of infor-

mation contained within a bathymetry map. Besides varying different parameters for

the filter in the simulation runs, we also investigate, in general, if a given bathymetry

map contain sufficient amount of information for multi-vehicle localization. Thus, 300

different lawn-mowing paths (100 paths for each of the vehicles) were randomly gen-

erated within the map. This allows us to conduct 100 different simulated runs (with

one trial per path set) using those paths. The results of the simulations are shown in

the form of position estimation errors of each vehicle at the end of all the simulated

runs. If a high percentage of the simulated runs achieve good localization performance

(low position estimation errors), we conclude that the map indeed has sufficient terrain

information. Using the results from the simulation, we perform analysis on the best

and worst performing cases to further investigate the influence various parameter set-

tings have on the performance of the filter. Fig. 4.6 shows the bathymetry map used in

the simulation studies and examples of randomly generated lawn-mowing paths for the

simulation studies.
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(a) (b)

FIGURE 4.6: (a) Bathymetry map of St. John Island, Singapore obtained in year 2012.
Terrain variation ranging from a few meters to 30 m depth. (b) Examples of randomly

generated paths within the bathymetry map.

4.4.1 Measurement Models

The first simulation study was conducted to compare the performance of the measure-

ment models presented in section 4.3.2. We term the model in section 4.3.2.1 as the

Model with Particle Approximation (MPA), and the model in section 4.3.2.2 as the

Model with Auxiliary Particles (MAP). Whenever inter-vehicle communication hap-

pened, a total of 300 auxiliary particles (M = 300) were generated for stage 1 of MAP,

resulting in 900 particles for the evaluation against the water depth measurement in

stage 2.

The boxplots in Fig. 4.7 show that the MPA perform significantly better than the

MAP in estimating the vehicles’ positions. Even though MAP manage to perform well

in some cases as illustrated by the low position error of its boxplot’s smallest value, as

well as by the results reported in [70], its performance is less consistent than the MPA

in handling different terrain profiles and path configurations. Nevertheless, MAP still

outperformed the dead-reckoning in most cases.
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FIGURE 4.7: Distribution of position estimation errors for the decentralized MPF
using different measurement models. Boxplots show median (numeric) and 25% -
75% quartiles while the whiskers are the smallest and greatest values, and the red

crosses are the outliers.

Besides, the MPA is also more computationally efficient than MAP. During like-

lihood computation, the MAP has M extra particles and (N+M)×ϖ int bathymetry map

look-ups for evaluations against yPV
t . Due to the advantages, we chose the MPA for the

simulation studies in the following sections.

4.4.2 Influence of Communication Bandwidth

Due to the limited underwater communication bandwidth, it is impractical to share all

the PV’s particle information with the RV during underwater cooperative localization.

Nevertheless, the simulation can be used as a good benchmark to compare the perfor-

mance of the decentralized filters, when it is performed offline. In this section, we

undertake a simulation study whereby all the vehicles have unlimited communication

bandwidth during the filter information broadcast step. As in the decentralized version,

each vehicle still runs a local filter. However, instead of approximating the PV’s particle

distribution, it is assumed that all the vehicles have access to all the other vehicles’ filter

information. This can be seen as the unconstrained version of the filter with MPA pre-

sented in the previous section, where the vehicles have access to other vehicles’ particle

sets.
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FIGURE 4.8: Distribution of position estimation errors for decentralized filters with
and without communcation bandwidth limitation.

During the filter’s measurement update, instead of approximating the PV’s parti-

cle distribution as shown in Fig. 4.4, and using them for the computation of the likeli-

hood of the RV’s particles, the exact locations of PV’s particles are used. This approach

makes sure the filters use same process and measurement models, and provides a fair

comparison that the only factor which affects the performance of the filter is the amount

of information being exchanged among the vehicles in the team.

The first boxplot on the left of Fig. 4.8 shows the distribution of position es-

timation errors where the filters information was broadcast assuming unlimited com-

munication bandwidth. By allowing full access to other filter’s information during the

measurement update step, the decentralized filters achieve the best performance. More

importantly, the performance achievable by the filter with MPA is comparable (middle

boxplot in Fig. 4.8), even though the filter’s information sharing is based on distribu-

tion aggregation. The results demonstrate the feasibility of the decentralized filter to

be used for underwater multi-vehicle cooperative localization, where only the sufficient

statistic of the particle distribution need to be shared via the bandwidth limited acoustic

communication .

The ability of a particle filter in estimating a vehicle’s position depends on how

accurate the position’s probability distribution is represented by a set of particles. Apart
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FIGURE 4.9: Distribution of position estimation errors of various decentralized MPFs
against dead-reckoning. The results show the importance of having both the terrain

and ranging information in the filter’s performance.

from the issue of sample impoverishment mentioned in Section 4.2.2.1, the number

of particles used also plays an important role. Higher number of particles may in-

crease the accuracy, but also incurs higher computational cost, while insufficient num-

ber of particles may result in the true density not being encompassed by the sample

set. We repeated the simulations and increased the number of particles in the filter

from 600 to 2000, while keeping the other parameters mentioned in Table 4.1. The

result showed only a slight improvement (right-most boxplot in Fig. 4.8) and that a set

of 600 particles appeared to be sufficient for representing the distribution, and is used

for subsequent studies.

4.4.3 Importance of Acoustic Communication and Bathymetry Informa-

tion

As mentioned in the Section 4.3.2, multi-vehicle cooperative localization is achieved

by incorporating both the vehicle’s water depth and inter-vehicle range measurements

into the decentralized MPF’s measurement model, to estimate the vehicle’s position. In

this section, we perform simulation studies to investigate the importance of having both

pieces the information (terrain & ranging) on the filter’s performance, as against having
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only a single piece of information: either using the terrain information (terrain-only) or

the ranging information (ranging-only). The results were compared with the position

errors accumulated by the dead-reckoning method, to illustrate the potential benefit, if

any, of having terrain and/or ranging information (Fig. 4.9).

The position estimation errors of the decentralized MPF with both the terrain and

ranging information were the same as the previous case shown in Fig. 4.8. However,

the estimation errors increase significantly in the absence of acoustic communications

among the vehicles, as shown by the terrain-only boxplot in Fig. 4.9. Since the fil-

ter’s performance in this case depends solely on the terrain information within the area

where the paths were generated, the wider spread of position errors showed there was

a good mixture of areas, each containing different amount of terrain information, that

was randomly selected within the bathymetry map for planning the vehicles’ paths. The

mixture provided suitable scenario to illustrate the benefits of incorporating acoustic

communication, as can be seen in terrain & ranging boxplot. Nevertheless, the resulting

terrain-only filter still outperformed the dead-reckoning method in most cases, except

some outlier cases where the filter diverged due to insufficient terrain information. On

the other hand, cooperative localization with ranging-only performed poorly and in most

cases, worse than the dead-reckoning method. This is due to overconfidence of the fil-

ter’s estimations mentioned in the previous sections, and made worse especially when

none of the vehicles have a geo-referenced position information. The results will be

further explained in the following sections.

4.4.3.1 Influence of Inter-vehicle Acoustic Communication

In this section, we turn to the concept of information gain to illustrate the benefits of

having acoustic communication in cooperative bathymetric-based localization. As de-

scribed in [76], the mutual information I(X;Y) is the reduction in the uncertainty of the

random variable, X, due to the knowledge of random variable, Y . In the case of cooper-

ative localization, this translates to the reduction of uncertainty in the vehicle’s position

estimate, due to the information gained from the terrain and/or ranging information.

This measure can be treated as an indicator for the effectiveness of the decentralized
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FIGURE 4.10: Mutual information against the average position estimation erros of the
best performing cases. The decentralized MPF is more effective whenever both the
ranging and bathymetry information are incorporated in the filter’s measurements. (a)
Comparison using the best performing case of terrain & ranging (circle-dashed line).
The simulation was re-ran without ranging information (plus-solid line). (b) Compar-
ison using the best performing case of terrain-only (plus-solid line). The simulation
was re-ran with the addition of inter-vehicle ranging information (circle-dashed line).

MPF in estimating the vehicle’s position: if the filter is effective and converges to the

correct estimate, large information gain should yield lower position error.

Mutual information is defined as:

I(X ;Y ) = H(p(X))−H(p(X) | p(Y )) (4.20)

where H(X) is the entropy of the prior distribution and H(X | Y) is the posterior dis-

tribution. We adopt the approach in [77] to approximate the entropy of a probability

distribution, p, using:

H(p)≈∑
i

wi ln∑
j

w jK(πpf,i | πpf, j) (4.21)

where K(πpf,i | πpf, j) is a Gaussian radial kernel approximated by:

K(πpf,i | πpf, j)≈ e−
1
2‖πpf,i−πpf, j‖2/σ2

. (4.22)
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For comparison, the best performing case of the terrain & ranging, and the terrain-

only simulation results shown in Fig. 4.9 were used to investigate the benefits of having

inter-vehicle ranging during cooperative localization. The results from the first study

is shown in Fig. 4.10(a) where the simulation using terrain & ranging (circle-dashed

line) was re-run without the ranging information (plus-solid line). The results from the

second study are shown in Fig. 4.10(b) where the simulation using terrain-only (plus-

solid line) was re-run with the addition of inter-vehicle ranging information (circle-

dashed line). The large differences in the average position errors, across all levels of

mutual information, clearly show that the decentralized MPF is more effective when the

ranging information is incorporated in the measurement model.

4.4.3.2 Influence of Bathymetry Information

Without geo-referenced position information such as the beacon vehicle mentioned

in [56, 78], the vehicles only rely on relative range measurements to estimate their

positions. Over time, this causes the uncertainty of the vehicles’ position to increase,

due to the accumulation of the process and measurement noises. Furthermore, as il-

lustrated in section 3.1, acoustic signal broadcast by a PV, at position πPV, only con-

tains ranging information in the radial direction of the ranging circle centered at πPV.

Consequently, if the ranging is measured consecutively from about the same relative

aspect (see section 3.1), with respect to the PV, the position uncertainty of the RV in

the tangential direction continues to grow. In this section, we analyze one of the cases

from the ranging-only simulation results shown in Fig. 4.9. The simulation is repeated

with the addition of bathymetry information in the filter’s measurement model. The ve-

hicles’ paths used for the simulation, as well as the Estimated Error Covariance (ECC)

at different waypoints are shown in Fig. 4.11(a).

Fig. 4.11(b) shows the aspect ratio of the error ellipsoid described by the EEC

for all the three vehicles (V1,V2 and V3), while Fig. 4.11(c) shows the trace (sum of

diagonal elements) of the ECC matrix throughout the mission time. The aspect ratio

denotes the skewness of the error uncertainty, while the trace denotes the magnitude of

the error uncertainty. An effective filter typically has an aspect ratio as close to 1 as
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FIGURE 4.11: (a) The Estimated Error Covariance (EEC) at different waypoints (blue
triangles) along the vehicles’ paths. (b) The ratio between the major and minor axes
of the EEC throughout the mission time. (c) The trace of the EEC throughout the
mission time. By incorporating both the bathymetry and ranging information in the
measurement model, the vehicle’s individual filter was able to achieve lower trace and

keep the aspect ratio closer to 1 throughout mission time.
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FIGURE 4.12: Position estimation errors of the decentralized (De) MPF and dead-
reckoning (Dr) under the influence of simulated ocean currents with different magni-

tude.

possible, and keeps the trace minimum. The results in Fig. 4.11(b) and 4.11(c) clearly

show that by incorporating bathymetry and ranging information in the measurement

model, the filter is able to achieve lower trace and keep the aspect ratio closer to 1

throughout mission time.

The position estimation errors in some ranging-only cases can be worse than the

dead-reckoning method (see Fig. 4.9). This may due to filter divergence in one of the

vehicles, exacerbated by the wrong estimate feedbacks within the vehicle network, caus-

ing error reinforcement. However, if the cooperative localization is aided by bathymetry

information, this issue can be potentially avoided, as the individual vehicles’ positions

and error covariances are estimated solely from their own bathymetry measurements

between acoustic communications.

4.4.4 Influence of Simulated Ocean Current

Without an exteroceptive sensor, like the DVL, to measure the vehicle’s ground speed,

it is crucial for the filter to track the existence of an ocean current for more accurate

propagation of the process model. In this section, we repeat the simulations with a

southward simulated ocean current to investigate its influence on the performance of the
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FIGURE 4.13: Position estimation errors of the decentralized MPFs under the influ-
ence of compass bias of 1 deg and thrust bias of 0.1 m/s. The filter shows some level

of robustness against the biases and simulated ocean current.

filter. We also compare the results with the dead-reckoning method to further illustrate

the benefits of employing cooperative localization. The parameters shown in Table. 4.1

remain the same.

Fig. 4.12 shows the results from the simulations with different magnitudes of

simulated ocean current. The decentralized MPF is able to retain its performance under

the influence of a southward ocean current with a magnitude of 0.25 m/s, and degrades

slightly when the magnitude was increased to 0.50 m/s. However, all three filters’ per-

formance still outperform the results produced by the dead-reckoning method, with or

without the ocean current.

4.4.5 Influence of Compass and Thruster Biases

Often a vehicle’s sensors or actuators produce readings with a constant offset (also

known as bias), if left uncalibrated. Although the biases can be modeled as part of

the system state and tracked by the decentralized MPF, it increases the dimensionality

of the search space, thus requiring a higher number of particles for the filter to converge.

Since we do not model any bias in the system state, it is worthwhile to investigate the
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robustness of the filter when there are indeed biases that exist in either the sensors or

actuators of the vehicle.

In this simulation study, we repeated the simulation runs with a compass bias of

0.1 deg, and a thruster model bias of 0.1 m/s. The results of the simulation runs are

shown in Fig. 4.13. As can be seen, the position estimation errors increased signifi-

cantly due to the existence of the biases. Since the biases were not taken into account

in the process model, they were treated as the ocean current by the filters and misled

the propagation process. However, in areas with sufficient bathymetry information, the

decentralized MPF managed to keep the position estimation errors low, as shown by

the lower whisker and smallest value of the boxplots. The simulation results showed

that given sufficient amount of bathymetry information in a mission area, the decentral-

ized MPF is robust against some levels of compass and thruster biases, even under the

influence of simulated ocean currents.

4.4.6 Influence of Bathymetry Map Resolution

The bathymetry maps used for underwater localization missions may come in different

resolutions. The performance of the bathymetry-based localization not only depends on

the sampling efficiency of vehicle’s sensors, but also depends on the resolution of the

bathymetry map used. A low resolution bathymetry map resembles a topography that

contains little excitation where the depth variation within a large grid cell is assumed

constant. Regardless of the location of the particles within a grid cell, the best depth

information that a particle can deduce from the bathymetry map is from the closest

vertex of the containing grid cell. Even though interpolation techniques can be used to

improve the result, their accuracies are still subjected to the assumption made within the

interpolant, and may not depict the true depth reading.

To investigate the impact of the bathymetry map resolution against the perfor-

mance of the proposed filter, we repeated the simulation runs using bathymetry maps

with different map resolutions. For the purpose of this study, the original bathymetry

map with 1 meter resolution is downsampled to 5 meters and 10 meters respectively.

During the depth measurement step, the depth information of the closest grid vertex,
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FIGURE 4.14: Position estimation errors of the decentralized MPFs when bathymetry
maps with different resolutions were used. The performance of the filters decreased

as the resolution of the bathymatry maps decreased.

with respect to the particles’ latest propagated locations, were used as their depth mea-

surements.

The middle and right-most boxplots in the Fig. 4.14 show the distributions of

position errors of the decentralized MPFs when the bathymetry map of 5 meters and

10 meters resolution were used. Compared with the result where bathymetry map of

1 meter resolution was used (left-most boxplot), it can be seen that the resolution of

the bathymetry map used has an impact on the decentralized MPF’s performance. As

the resolution of the map decreases, so does its information content. Thus, the position

errors of the filters also increase.

4.5 Field Experiments

In this section, we present the results obtained from field experiments using bathymetric

maps from two areas with distinct terrains. The first map is from waters Charles River

Basin, Boston (Fig. 4.15) where the terrain is flat and patchy in places. The second

map is from the water near the St. John Island, Singapore, as shown in Fig. 4.6(a).

In the following experiments, we collected necessary data using vehicles fitted with

single-beam echo-sounder, and ran the decentralized MPF in post processing to evaluate
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FIGURE 4.15: Bathymetry map of Charles River, paths executed (solid-line) by the
autonomous surface vehicle (insert) and the trajectories tracked (dotted-line) by the

decentralized MPF. The vehicle was fitted with a single-beam altimeter.
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FIGURE 4.16: The average position estimation errors for all three vehicles (V1. . . V3)
over 10 localization runs using the same paths. The position errors of the vehicles
are lower when both the ranging and bathymetry information are incooperated in the

decentralized MPF for cooperative localization.

the localization performance. The MPA (Section 4.4.1) measurement model and the

parameters shown in Table 4.1 were used throughout all the runs. The process and

measurement noises are assumed Gaussian independent and drawn randomly at every

propagation and measurement step.

88



Chapter 4. Cooperative Bathymetry-based Localization

4850 4900 4950 5000 5050 5100 5150 5200 5250
4650

4700

4750

4800

4850

4900

4950

V1

V2

V3

meter

m
e
te

r
Estimated Error Covariance (EEC) of the Vehicles

 

 

Vehicle Paths

WayPoints

EEC at time = 1 s

EEC at time = 200 s

(a)

0

50

100

  

Relative Angles between Vehicles during Ranging

 

 
V1 a) From V2

From V3

0

200

400

 R
e
la

ti
v
e
 A

n
g

le
 (

d
e
g

re
e
)  

 

 
V2 b) From V1

From V3

0 50 100 150 200 250 300

70

250

Mission Time (second)

  

 

 
V3 c) From V1

From V2

(b)

FIGURE 4.17: The inter-vehicle ranging at about the same relative aspects cause the
estimated error covariance (EEC) of the vehicles to grow at tangential direction with
respect to the direction of ranging from mission time t = 1 to t = 200 seconds. (a) The
EEC for each of the vehicles (V1. . . V3) estimated at different waypoints (triangles)
along the vehicle paths. (b) Relative angles between the vehicles (global frame) during

inter-vehicle rangings.

4.5.1 Charles River Basin, Boston

The first set of tests was performed using the bathymetry map of the Charles River

Basin, with altimeter measurements obtained from an autonomous surface vehicle (ASV).

The ASV is fitted with a Tritech-PA500 single-beam altimeter, providing one-millimeter

resolution when it operates in digital mode. A total of three lawnmowing-like paths

were planned within the area where the bathymetry information is available. The ASV

was commanded to follow these three paths using high-precision RTK GPS as a ground

truth, while collecting depth data. The resultant paths are shown in Fig. 4.15. The oscil-

lating patterns on the trajectories were due to the surface waves and the ASV’s onboard

control system, which were not modeled in the filter.

With control input to the filter’s process model derived from the planned paths,

we carried out cooperative localization using the depth data as if it has been obtained

by three separate vehicles. Acoustic communication was simulated between the ve-

hicles with a ranging period of 15 seconds per vehicle. The range between the ve-

hicles was computed from the vehicle’s GPS ground truth during acoustic communi-

cation, corrupted with measurement noise in (4.16). Fig. 4.15 shows the trajectories

tracked (dotted-lines) by the decentralized MPF of each vehicle, while Fig. 4.16 shows
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the corresponding position errors accumulated by the filters. Throughout the mission

execution, the decentralized MPF maintained the position errors within 20 m (under

10 m for most of the time). In comparison, the position errors are higher when there is

no filter and ranging information sharing among the vehicles, and even higher when the

vehicles depend solely on dead-reckoning for navigation.

Due to the layout of the vehicles’ path, individual vehicle receives the ranging

broadcasts from other vehicles at about the same relative aspects (or 180 deg succes-

sively from each of the vehicles in the case of V3) throughout the mission, as shown

in Fig. 4.17(b). Such inter-vehicle ranging does not contain position information in the

tangential direction (with respect to the direction of ranging) and causes the estimated

error covariances (EEC) to grow unbounded in that direction. This can be clearly seen

in Fig. 4.17(a) where the EEC of individual vehicle evolved from circular shape at be-

ginning of the mission, t = 1 second, to elongated ellipses with their major axes almost

parallel to each other, at time t = 200 seconds. such cases of inter-vehicle ranging,

coupled with the patchy terrain (lack of terrain information) around the mission area,

resulted in poor localization performance especially around 200 seconds mark into the

mission for V1 and 260 seconds mark for V2 (see Fig. 4.16).

4.5.2 St. John Island, Singapore

In this section, we performed offline cooperative localization with field data collected

by the STARFISH AUV [3] (Fig. 1.1(c)). The AUV is equipped with a Tritec Micron

single-beam altimeter, providing five-millimeter accuracy, when operated in digital mode.

All the tests were conducted as surface missions so that the GPS logs can be used as

ground truth.

A total of three separate missions conducted during sea trials in year 2013 were

used for the offline validation (see Fig. 4.18(a), and Fig. 4.18(b) for the individual paths).

The vehicles were either performing lawn-mowing mission (V3) or cooperative posi-

tioning algorithms (V1 and V2) mentioned in [56]. For the offline cooperative local-

ization, we make use of the altitude measurements collected during those missions to

assess the decentralized MPF’s performance. Acoustic communications were simulated
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(a)

(V1) (V2) (V3)

(b)

FIGURE 4.18: (a) Trajectories of the AUVs during the field trials. (b) Individual
AUV’s trajectory with mission time steps marked at 100 seconds span. Dotted lines

are the trajectories traked by the decentralized MPFs.

so that filter information can be shared among the vehicles. Each vehicle was scheduled

to broadcast its filter information at a period of 9 seconds. Similarly, the range between

the vehicles was computed from the vehicle’s GPS ground truth and corrupted with the

measurement noise mentioned in (4.16).

Fig. 4.18 shows the trajectories executed by the vehicles (solid lines) during the

sea trials, together with the corresponding trajectories tracked (dotted lines) by the de-

centralized MPFs. Using the vehicles’ altitude measurements, ranging measurements
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FIGURE 4.19: The average position estimation errors for all three vehicles over 100
localization runs using the same paths. The errors are lower when both the bathymetry

information and acoustic communication are used for cooperative localization.

and filter information shared among the vehicles, the individual filter managed to closely

track the executed trajectories, with the exception at around 300 - 400 seconds where

the filter’s estimation errors momentarily increased. However, without acoustic com-

munications among the vehicles, V1 and V2’s filter diverged on quite a few occasions

as shown in Fig. 4.19.

The detailed position estimation errors, water depths measured by the vehicles as

well as the water depths at the point estimates (see (4.10)) of the particle sets are shown

in Fig. 4.20. Close inspection of plots (right column of Fig. 4.20) at around 300 ∼ 400

seconds mark reveals that the divergence of the filter may be due to the similarity of ter-

rain profiles along the vehicles’ trajectories around that particular period of the mission

times. This is illustrated by the similarities of terrain gradients from 290∼ 330 seconds

marks of the enlarged plots. Besides, Fig. 4.19-(b,c) also show that both the V2 and

V3’s filter failed to track their positions at around the same time, using the bathymetry

information alone (blue-squared line). When acoustic communications are available

among the vehicles, the feedback of the wrong estimates by V2 and V3 cause the filter’s

estimation errors of V1 (Fig. 4.19-(a)) to increase too.
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FIGURE 4.20: Position estimation errors and water depth measurements of all the
AUVs are shown on the left while the enlarged plots between second 300 - 400 are
shown on the right. The similarities of the terrain profiles caused the filter to diverged
momentarily. (a) Position errors and water depth measurements of V1. (b) Position
errors and water depth measurements of V2. (c) Position errors and water depth mea-

surements of V3.
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4.6 Sensitivity Analysis

In an autonomous underwater mission, the underwater acoustic communication is often

lossy and unreliable, while the sensors carried onboard the low-cost AUVs are often cor-

rupted by noise, introduced by internal electro-mechanical systems or external environ-

mental factors. Since the decentralized MPF mainly relies on the vehicles’ abilities to

measure bathymetry information and performing inter-vehicle acoustic communication,

it is imperative to investigate their impacts on the decentralized MPF’s performance.

In this section, we make use of the data from Section 4.5.2 to conduct sensitivity

analysis on the performance of the resultant decentralized MPF. This is done by varying

the ranging frequency and success rate among the vehicles in the team, as well as by

introducing different levels of sensor noise to the vehicles’ single-beam echo sounder.

We present the results in terms of position estimation errors accumulated by the decen-

tralized MPF at the end of each mission runs.

4.6.1 Influence of Ranging Frequency and Success Rate

The results presented in Section 4.5 illustrate the importance of acoustic communication

in cooperative localization. However, the assumption of 100 % success rate for the

simulated acoustic communication among the vehicles may be impractical especially

in a lossy and unreliable underwater acoustic channel. Also, the ranging period of 9

seconds may be too short, as each vehicle has to broadcast a signal and decode two

separate signals sent by the remaining two vehicles in the team. In this section, we

repeated the offline localization runs with different acoustic ranging success rates, to

investigate their impact on the performance of the decentralized MPF. We also carried

out separate tests where the broadcast period of each vehicle in the team was increased

from 9 seconds (as stated in Table 4.1) to 1 minute.

Fig. 4.21(a) shows the boxplots of the position estimation errors against acous-

tic communication success rate. Overall, the decentralized MPF is robust against the

acoustic communication loss up to approximately 50 % success rate. Besides that, it is
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FIGURE 4.21: (a) Position estimation erros against different success rate of the acous-
tic communications. The decentralized MPF is robust again communication loss up
to around 50 % success rate. (b) Position estimation errors of the filters with dif-
ference ranging period. The increase in position errors are not significant when the

communication period is increased to 1 minute.

also robust against slower update rate as shown in Fig. 4.21(b) where the position esti-

mation errors only increase slightly when the communication period was lengthened to

1 minute for each of the vehicles.

4.6.2 Influence of Sensor Noise Level

The assumption of 0.05 m for the standard deviation of the sensor measurement noise

may be too small in some cases, especially for AUVs operating in deeper water. Be-

sides, low-cost AUVs may be fitted with lower accuracy sensors due to the limitation of

budget. To study how the measurement noise may impact on the decentralized MPF’s

performance, we repeated the same set of offline localization runs, but with the standard

deviation of the measurement noise increased from 0.05 m to 1 m. Fig. 4.22 shows

the distribution of the position estimation errors when the measurement noises were in-

creased. In this case, the decentralized MPF is robust against noisy sensors with the

noise level up to 0.5 m. The errors increase significantly when the sensor noise was

increased above that level. Other factors like the depth sensor’s sampling frequency and

terrain variability also affect the filter’s localization performance, and will need to be

considered in more detail.
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FIGURE 4.22: Position estimation errors of the decentralized MPF when the altitude
sensor is corrupted with different Gaussian noise levels.

4.7 Discussion

Although the proposed cooperative filters do not take the correlation of the estimation

into account, the issue of overconfidence is not be serious enough to cause the filter to di-

verge, as shown in Fig. 4.8 where the position errors for the cooperative filters remained

low for most of the simulation runs. Tracking the correlation may further improve the

performance of the cooperative filters, provided that there is sufficient communication

bandwidth for the vehicles to share the correlation information.

During the PV’s filter information broadcast, some information is lost because

only a single mode of the particle’s distribution is estimated (via equations (4.10) and (4.11))

and shared with other vehicles. Even though it is impractical to transmit all the parti-

cles’ locations via the bandwidth-limited underwater communication link, it may be

beneficial to estimate and transmit multiple modes of the distribution, if they exist. This

will allow the RV to better approximate the PV’s true particle distribution during the

measurement update step, and potentially improve the filter’s performance. However,

the approach comes with a cost of longer packet size for the information broadcast, and
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may potentially decrease the transmission success rate and cause the channel throughput

to be lower.

The filter’s state space for tracking and localization applications also typically

include the vehicle’s velocity and heading estimates. Due to the limitation on the com-

putation power and the absence of a velocity measurement in the sensor-limited AUVs,

we do not consider them in this work. However, a natural extension for this work is

to include these estimates in the future filter’s state space. Although the increment in

the dimension of the filter’s state space will inevitably increases the requirement of the

size of the particle set for the filter to converge, it would be instructive to assess the

improvement in the localization accuracy attributed to the extension.

4.8 Summary

In this chapter, we showed that it is feasible for a team AUVs equipped with single-

beam altimeter, depth sensor, and acoustic modem to perform cooperative localization.

In particular, we employed the marginalized particle filtering in a distributed manner

in each of the vehicles and extended the filter’s measurement model to incorporate the

information broadcast by other vehicles in the team.

We showed that both the bathymetry information and inter-vehicle acoustic com-

munication among the vehicles are crucial for sensor-limited, low-cost AUVs to perform

cooperative localization. Empirical studies using simulated data demonstrated the ben-

efits of the decentralized filter against dead-reckoning navigation, as well as showcased

its ability in estimating the vehicles’ position under the influence of ocean current and

sensor biases. Finally, offline localization using data from field experiments also vali-

dated the effectiveness of the cooperative localization algorithm at localizing a team of

three vehicles, and showed its robustness against sensor noise and unreliable communi-

cation channels.
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Command and Control System for

Autonomous Underwater Vehicles

In this chapter, we focus on the design and development of a C2 system for a single AUV

that is robust and easily extensible to accommodate the requirements of multi-vehicle

missions. We adopt a multi-agent approach where mission, navigation and vehicle con-

trol tasks are allocated to individual software agents that are arranged in a hierarchical

order according to their corresponding control responsibilities. The agent-based model-

ing approach provides separation of concerns in developing agents that handle various

C2 tasks, thus clearly defining each agent’s responsibilities and interfaces. At the C2

system’s Supervisory level, we adopt the Backseat Driver (BD) paradigm introduced

in [52, 79], where the mission tasks are handled by individual DB agents that imple-

ment specific algorithms to satisfy the tasks’ objective. We show that this approach

enables the C2 system to cope with new mission requirements easily by adding new BD

agents.

Next, we present the software implementation for the C2 system and showcase

its robustness in executing various single and multi-vehicle missions via Software-In-

The-Loop simulations. Finally, we illustrate the use of the C2 system in an AUV called

STARFISH (Fig. 1.1(c)). The STARFISH AUV is a low-cost modular AUV developed

as a research platform and is capable of being extended with various sensor payload
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FIGURE 5.1: Overview of the Agent-based Command and Control (C2) System. The
allocation of C2 responsibilities to different agents at different control hierarchy pro-

vides an explicit view of the control flow within the control architecture.

modules for sensing and monitoring missions. The availability of different payload

modules on the STARFISH AUV allows us to demonstrate the extensibility of the C2

system in coping with different mission requirements, through various single and mul-

tiple vehicles mission scenarios. To further illustrate the portability of the C2 system,

we also present the mission scenario where the C2 system was ported into a different

robotic system for a collective localization mission, with minimum modifications to its

software architecture. For related publications of the C2 system, we refer the reader

to [3, 80, 81].

5.1 Heirarchical Agent-based Control Architecture

The C2 system is based on a hybrid-hierarchical model as shown in Fig. 5.1. It adopts

a deliberative-reactive architecture that consists of a set of interacting agents (termed

C2 agents) organized in three different levels within the control hierarchy: Supervisory
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level, Mission level and Vehicle level. Each of the control levels assumes different C2

responsibilities and defines the responsive requirements for an agent located within it.

The Supervisory level is in charge of making high-level mission decisions, monitoring

the vehicle status and handling the communication with the operator/mothership and/or

other vehicles. The agents within this level maintain internal states and deliberate upon

the state information for decision making. The Vehicle level is responsible for perform-

ing low-level vehicle control and interacts reactively with Sentuator (vehicle sensors

and actuators) [82] components to generate the desired maneuvering behaviors. The

agents in the Mission level act as the arbitrators among the agents in the Supervisory

and Vehicle level by translating the mission goals into collision-free path waypoints for

the vehicle to follow.

Each agent has its private data and implements its own algorithms depending

on the assigned responsibilities. All the agents are self-contained and have a uniform

software interface to facilitate inter-agent communication via a message-passing mech-

anism. The vehicle’s C2 tasks are achieved through the interaction and cooperation

among the involved agents. The agent-based design provides flexibility in terms of

software implementation; rather than modify existing software components, new agents

that adhere to the software interface, but implement different algorithms, can be built

and loaded to replace the existing agent when necessary.

The C2 system design offers many benefits. The hybrid architecture allows high

level mission control to behave deliberatively while decoupling the low level reactive

vehicle control. It also defines the real-time requirements of the agents residing within

each control level. The breaking down of the C2 tasks into individual agents presents

an explicit view of the clearly defined control responsibilities at different levels of the

control hierarchy. The architecture provides an important guideline for agent developers

and ensures the resultant C2 system’s integrity.

5.1.1 Agents Responsibilities

As mentioned in the previous section, different C2 responsibilities are handled by dif-

ferent C2 agents, and the collective interaction among the agents ensures the mission
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objectives are achieved. The C2 agents are shown in Fig. 5.1, and their C2 responsibili-

ties are briefly described below:

• Captain:

– Starts, coordinates, oversees and controls the execution of missions.

– Listens to the safety notifications from the Safety Officer and aborts the

mission if any abnormality is observed.

– Executes Operator’s commands delivered by the Signaling Officer and broad-

casts mission planning requests to the Agent Services and assigns the mis-

sion point generator. More details are discussed in section 5.1.2.

• Signaling Officer:

– Acts as the AUV’s external communication node: uses WIFI or Global Sys-

tem for Mobile Communications (GSM) when the vehicle is at the surface;

uses acoustic modem when the vehicle is submerged.

– Updates the Operator with the latest mission and AUV status periodically.

– Decodes the mission commands received and passes them to the Captain.

• Safety Officer:

– Detects any abnormality reported by the Health Monitor and monitors vehi-

cle navigational status (maximum pitch, roll, depth and minimum altitude)

and system resources.

– Ensures that the vehicle navigates only within the geofenced area defined

by the Operator.

• Backseat Drivers and Scientists:

– Generate mission points according to the mission specification.

– Interrupts the Captain with new mission points when needed. The Scien-

tist is a type of the Backseat Driver that controls and interacts with optional

payload modules attached to the AUV. More details are discussed in sec-

tion 5.1.2.
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• Executive Officer:

– Receives mission tasks in the form of mission points and passes them to the

Navigator for waypoint planning. Once waypoints are received, sends them

to the Pilot for execution.

– Stops the execution of the Pilot and notifies the Captain if the vehicle fails

to avoid obstacles that are detected in the mission path.

• Navigator:

– Plans a collision-free path from one mission point to the next. Re-plans the

waypoints if obstacles are detected in the path.

– Notifies the Executive Officer if a collision free path to the next mission

point is not found.

– Marks the newly detected obstacles in the mission Chart Room.

– Executes different waypoint planning algorithms according to the mission

specifications.

• Health Monitor:

– All the sensor and actuator (Sentuators) drivers in the vehicle implement a

health reporting mechanism. The Health Monitor collects the information

and analyzes the severity when Sentuators are found unhealthy.

– Notifies the Safety Officer if the severity is high.

• Pilot:

– Translates the waypoints into primitive vehicle control (bearing, speed, depth

and altitude control set-points). This is done according to the mode of way-

point execution. Two modes are currently implemented: Waypoint Follow-

ing and Path Following.

– Sends the vehicle control to the vehicle’s control system.

– Broadcasts the waypoint’s execution status periodically.

• Lookout:
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– Processes and analyzes the sensor data provided by the Forward Looking

Sonar for obstacle detection.

– Informs the Navigator with the range and bearing of newly detected obsta-

cles.

• Mission Files and Chart Room:

– Stores mission files and mission area bathymetry.

5.1.2 Backseat Driver Paradigm

To allow for different mission behaviors and cater to various payload modules with po-

tentially different mission requirements, the Supervisory level adopts a backseat driver

paradigm where mission decisions are made based on the input provided by a pool of

BD agents. This pool is termed as Agent Services (AS). Each BD agent in the AS im-

plements different algorithms and monitors various sensor data to generate input in the

form of mission points, which when accepted for execution, achieve a specific mission

task. Depending on the requirements of the mission, the BD agents can be tasked to

generate mission point-sets in some pre-planned pattern, or to generate single mission

point iteratively adapting to sensor data as the mission progresses.

The Scientist agents are special BD agents that interact exclusively with the pay-

load modules. This enables the payload developers to implement algorithms that make

use of the payload sensor data to adaptively generate mission points for sensing and

tracking missions. A Scientist agent can be developed to handle each newly added pay-

load module. Optionally, the payload module can also provide its own Scientist agent,

which is separately loaded in the module’s computing node, instead of the vehicle’s

main computing node. This option decouples the development of the payload mod-

ules to that of the main vehicle and increases the reconfigurability of the modular-based

AUVs. Depending on the vehicle’s final payload setup, different Scientist agents can be

loaded to generate mission points to achieve the overall mission objectives. However,

this does not prevent the introduction of payload modules like the DVL that provide only
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FIGURE 5.2: Sequence diagram showing the interactions between the Captain and
the Agent Services. During a mission, the interaction consists of two different stages:

Agent Discovery Stage and Mission Execution Stage

navigational data for the onboard positioning system, and do not need a corresponding

Scientist agent.

The BD design paradigm relies strongly on the interactions between the Captain

agent and the pool of BD agents. Essentially, the interactions happen in two differ-

ent stages during a mission: Agent Discovery stage and Mission Execution stage. The

Agent Discovery stage takes place when the mission starts. A mission consists of at

least one or more mission legs (MLegs). Each MLeg encodes the MLeg type, posi-

tion and parameters that define speed, waypoint radius, maximum depth and minimum
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altitude. When the start command is received from the operator, the Captain agent

broadcasts a request for mission planning with the corresponding MLeg. BD agents

that are programmed to handle the particular MLeg type will respond.

The Captain agent waits for a time period, T , and collects all the BD agents’ re-

sponses. If no response is received for the requested MLeg type, the mission is aborted

since there is no BD agent that is capable of translating the mission leg command into

mission points. If only one response is received, the corresponding BD agent will be

assigned for mission point generation. However, in the case where more than one re-

sponse is received, the Captain agent identifies one of the BD agents as the mission point

generator according to a specific preference. In this thesis, we adopted a simple priority

based selection scheme. More complex scheme like the market-based approach [83]

or automated planning approach like T-REX [84] can be adopted when needed. Once

selected, the assigned BD agent is notified with an agreement and contracted as the

mission point generator.

During the Mission Execution stage, the assigned BD agent provides the gener-

ated mission points to the Captain agent and monitors the mission status. This process

is repeated until the completion of the mission leg or the BD agent gives up the control

(due to failure in achieving the mission leg’s objective). In the later case, the mission is

aborted for safety reasons.

Depending on the mission requirements and the BD agents’ configuration, the

current executing mission point can be aborted and replaced with new mission points

by the same BD agent or by another BD agent to pursue tasks of interest with higher

priority. This approach allows the C2 system to adapt the mission during execution.

A mission that requires the vehicle to survey an area and track a feature of interest, if

and when it is detected, benefits from the C2 system’s adaptive capability. Detailed

interactions between the Captain agent and the BD agents during a sample mission are

shown in Fig. 5.2. The chosen mission scenario presented in section 5.3 showcases the

usefulness of the adaptive capability.
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FIGURE 5.3: The overview of the vehicle’s software architecture. The C2 agents re-
ceive vehicle’s sensor data and send actuctor commands via the Sentuator [82]. The
communication with the operator or another AUV (WIFI and acoustic communica-

tion) is facilitated by the UnetStack [85].

5.2 Software Architecture

The software architecture defines how the structure of different software components in

the AUV are built and integrated to form a fully functional system. Fig. 5.3 shows the

overall system software architecture of the STARFISH AUV. The software components

are distributed among the onboard Single Board Computer (SBC) and MicroController

Units (MCUs). The C2 agents interact with other software components via message

passing mechanism via the Ethernet switch, which acts as the centralized communi-

cation hub in the vehicle. The communication between the C2 agents with the sys-

tem’s sensors and actuators are facilitated by the Sentuator components and Sentuator

Server described in [82], while the communication with the operator and other vehicles

is achieved using the network stack provided by the UnetStack [85].
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5.2.1 Command and Control Agents

The C2 agents are the basic functional units of the whole C2 system. They are built

using the fjåge lightweight agent framework 1 (fjåge). Each of the C2 agents is self-

contained and defines its own data structure and parameters depending on its tasks and

responsibilities. The agent’s activity is governed by a finite state machine, which checks

the agent’s current state at every agent’s life cycle, and executes the routines that are de-

fined for that particular agent state to generate the desired behaviors or outputs. The

implementation of state machine in C2 agents is to facilitate controllability and observ-

ability in the control architecture, both of which are important in a C2 system where

supervisory C2 agents at the higher level of control hierarchy can monitor and com-

mand the behavior of the lower level C2 agents.

Once defined, C2 agents have to be added to a fjåge software container in order

to function. The fjåge container manages agents’ life cycle, delivers agents’ messages

and provides services and topics discovery. Inter-agent’s interaction is achieved through

service registration or topic subscription, using message passing mechanism. A mes-

sage in fjåge is tagged with “performative” that defines the purpose of the message, and

can be extended to carry relevant content fields for the receiving agent. Detailed doc-

umentations of available “performatives” can be found in fjåge. A list is provided in

Table. 5.1 for reference.

During the software initialization cycle, a C2 agent can register for the services

it provides, and subscribe to the topics of the agent’s interest. At anytime during an

agent’s life cycle, a message can be broadcast as a topic and forwarded by the container

to the agents who subscript to the topic. On the other hand, a C2 agent can request for a

particular type of service by sending a request message to the C2 agent that provides that

service. Results in the form of a message is replied by the servicing agent if the request

succeeded; otherwise, a failed message is returned. A list of available C2 services and

C2 topics can be found in Appendix B.

1https://github.com/org-arl/fjage
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TABLE 5.1: LIST OF PERFORMATIVES

Performatives Description
AGREE Agree to performing the requested action.
CANCEL Cancel pending request.
CONFIRM Confirm that the answer to a query is true.
DISCONFIRM Confirm that the answer to a query is false.
FAILURE Notification of failure to perform a requested or agreed action.
INFORM Notification of an event.
NOT UNDERSTOOD Notification that a message was not understood.
CFP Call for proposal.
PROPOSE Response for CFP.
QUERY IF Query if some statement is true or false.
REFUSE Refuse to perform the requested action.
REQUEST Request an action to be performed.

As an example, whenever a mission point is received from the Captain, the Execu-

tive Officer sends a request message (with “performative=REQUEST”) to the Nav-

igator to plan a path to that mission point, either from the vehicle’s current location, or

from the previous mission point if applicable. A message (with “performative=AGREE”)

containing an array of way points leading to that mission point will be returned by the

Navigator if a collision free path is successfully found; otherwise, an empty message

with “performative=FAILURE” can be returned, signifying failing to plan any fea-

sible path. A set of messages has been defined and implemented for the C2 system and

can be found in the Appendix B.

5.2.1.1 Backseat Driver Agent

In order to standardize the interaction between the Captain and the AS, as depicted

in Fig. 5.2, the BD agent base-class defines a set of abstract message-handler methods

that must be implemented in the inherited-class. These message-handlers are listed as

below:

1. Call-For-Participation

void handleCFPReq(Message::CFPReq)
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Handles the Call-For-Participation request (CFPReq) message from the Captain.

The implementing agent must check the MLeg type encoded in the message.

If the agent is capable of handling the request, a response message (CFPRes)

with “performative=PROPOSE” and the agent’s ID must be replied. Non-

participating BD agents can remain silent, and will be ignored by the Captain.

2. Mission Point Request

void handleMissionPtReq(Message::MissionPtReq)

If the BD agent is contracted as the mission point generator, mission point re-

quest (MissionPtReq) message will be sent by the Captain during mission

execution. Depending on the implemented algorithms and mission objectives,

the BD agent must reply with a mission point response (MissionPtRes) mes-

sage, containing a single mission point or an array of mission points, together

with “performative=INFORM”. The contracted BD agent can surrender its

mission point generator’s responsibility at any time when the mission objective

has been achieved, or failed. In either case, a MissionPtRes message can

be sent to Captain notifying completion or failure depending on the message’s

“performative”.

3. Abort

void onStop( )

This method is called by the a default message handler that handles abort mes-

sages sent by the Captain or the Safety Officer due to any vehicle abnormality.

It is provided such that the BD agent has the opportunity to cease the operation

of mission point generation, and performs necessary house-keeping routines to

prevent system crash.

By default, the BD agent base-class registers to BACKSEATDRIVER service and

subscribes to ABORTSIGNAL topic. This allows the Captain to broadcast a CFPReq

message to all the BD agents in the AS regardless of the number of BD agents that ex-

ist. A particular MLeg is considered executable or feasible when one or more CFPRes

messages are received by the Captain, otherwise the mission is deemed infeasible and
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FIGURE 5.4: The Model-View-Controller design pattern of the mission planning
component.

the mission is aborted. The same advantage applies to the default abort topic subscrip-

tion: regardless of the size of AS agent pool, all the BD agents will be put into the stop

state whenever an abort message is broadcast on the ABORTSIGNAL topic, preventing

further interaction from the BD agents, which may cause the C2 system to crash.

5.2.2 Mission Planning

Mission planning is an integral component of the Operator Mission Control (Fig. 5.1). It

adopts a simple Model-View-Controller (MVC) design pattern and provides a Graphical

User Interface (GUI) for the operator to plan, modify, delete, upload and download

missions to and from the AUVs. Fig. 5.4 shows the MVC classes built for the mission

planning component. The View class displays the mission information stored in the

Mission (model) class, and fires events according to the operator’s interaction with the

GUI. Depending on the event received, the MissionController class executes different

methods to update the Mission class.

Fig. 5.5 shows the GUI for mission planning. It allows the operator to plan

missions for all the vehicles within a single application. Whenever a vehicle is se-

lected (via Fig. 5.5-(a)), all the missions belonging to that particular vehicle, together

with their corresponding mission legs, will be displayed in the form of a Tree-view

panel, as shown in Fig. 5.5-(c). In the mean time, the selected (highlighted) mission’s
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a b

c

d
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FIGURE 5.5: The mission planning GUI. (a) Drop-down button for selecting vehicle
mission file. (b) Drop-down button for selecting mission task of a particular mission
leg. (c) Tree-view showing all the missions in the vehicle’s mission file, expanded to
show all the mission legs of a particular mission. (d). Canvas showing map of the
mission area. All the mission task icons support drag-and-drop interaction. (e). Tabs

showing mission leg’s related information.

planned path is also plotted in the map canvas (Fig. 5.5-(d)), while the individual mis-

sion leg’s information is displayed in a Tab-panel shown in Fig. 5.5-(e). A new mission

can be easily added by clicking the “Add Mission” button, while new mission legs

can be added by first choosing the MissionTask from the Drop-down button shown in

Fig. 5.5-(b), and then clicking the desired location in the map canvas. Besides, the

desired location of a particular mission leg can be modified simply by drag-and-drop

operations on the mission leg’s icons in the map canvas.

5.2.3 Mission Execution

After the mission is planned and saved, the mission file can be uploaded to the AUVs

for execution. Fig. 5.6 shows the mission execution panel which allows the operator

to send mission and vehicle commands to the AUVs. Depending on the number of
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a b c

d

FIGURE 5.6: The mission execution GUI. (a) Drop-down button for selecting mission
commands with available mission commands shown in the adjacent text box. (b)
Drop-down button for selecting the mission to execute. (c) Drop-down button for
selecting the destination of the mission command. It can be one of the assets listed in
the adjacent text box (d). Mission status panels, showing mission messages received

through acoustic communication.
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FIGURE 5.7: Communication diagram showing the message passing and interaction
among the C2 agents during mission execution.

missions planned (as shown in Fig. 5.5-(c)), once the mission file has been uploaded to

the AUV, the corresponding mission numbers will be shown in Fig. 5.6-(b). Whenever

acoustic communication is available between the AUV and the operator, mission status

of a particular AUV will be displayed in the mission status panel (Fig. 5.6-(d)).
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The communication diagram shown in Fig. 5.7 further illustrates the interactions

and message passings among the C2 agents during a mission execution. Whenever an

operator command is received by the Signaling Officer, it decodes the command and

relays it to the Captain. The Captain retrieves the mission legs from the commanded

mission and broadcasts a CFP request message to all the BD agents in the AS. The BD

agent that is developed to handle the particular mission leg translates the encoded mis-

sion objective into mission points and replies them to the Captain. After the mission

points are checked to ensure they are within the mission geo-fence, they are relayed to

the Executive Officer for execution. One at a time, the Executive Officer sends the mis-

sion points to the Navigator for path planning. If a collision-free path can be found, the

Navigator feeds back the path to the Executive Officer in an array of way points. These

way points are then sent to the Pilot for navigation. During navigation, the Lookout

agent process data from obstacle sensor and sends obstacle positions to the Navigator

whenever an obstacle is detected. The Navigator performs collision-detection using the

obstacle data and re-plan the vehicle’s path when necessary. The process is repeated

until all the mission legs are executed, or when the mission is aborted due to the failure

of the Navigator in finding a collision-free path.

5.3 Simulations

The C2 system described in the previous sections has been implemented using the fjåge.

The same C2 system can also be easily implemented using other popular middleware

such as the DSAAV [82], ROS [86] or MOOS [87]. An AUV simulator has also been

implemented in a separate fjåge agent, based on a simplified AUV’s dynamical model.

The simulator accepts actuator commands and produces simulated sensor data, as if they

were generated by a physical AUV. The agent-based design and inter-agent communi-

cation via message passing mechanism decouples the C2 system from the physical vehi-

cle’s Sentuators, and allows the resultant C2 system to be validated through simulation

by simply exchanging the Ethernet switch shown in Fig. 5.3 with the AUV simulator.

Once tested, the same C2 system can be loaded into a physical AUV for field experi-

ments without any modification. The simulation can be easily extended to simulate a
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FIGURE 5.8: Multi-AUV simulation can be easily implemented by simply passing the
message from one vehicle to another (dash-dotted line), or through the UnetStack [85]
software stack (dotted line) if more realistic underwater communication performance

is desired.

FIGURE 5.9: Simulation results show the resultant path generated by the positioning
AUV (blue dotted line) to minimize the position errors of the Survey AUV (red solid

line).

multi-vehicle cooperative mission by passing the message from one simulator directly

to another simulator, or through the UnetStack if more realistic underwater communi-

cation performance is desired (Fig. 5.8). This Simulation-In-The-Loop methodology

expedites the design and development of new C2 capabilities and shorten mission turn-

around time.

In the simulation, we demonstrate the C2 system’s capability in performing a co-

operative positioning mission. We refer the reader to Chapter 3 for detailed algorithms.
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The cooperative algorithm was implemented within a BD agent (BD Coop) in the posi-

tioning vehicle while the lawn mowing survey path was generated by another BD agent

(BD Lawnmower) in the survey vehicle. During the mission, the BD Coop generated

the mission points adaptively depending on the supported survey vehicle’s current posi-

tion, such that when range and position information were exchanged between the AUVs,

the position errors of the survey vehicle were minimized. Fig. 5.9 shows the resultant

path of the positioning vehicle (dotted blue line) to support a survey mission (red solid

line).

Even though the trajectories were generated based on a simplified dynamical

model, the simulation allows the developers to test and debug the agents’ behaviors

within a single or multiple vehicles mission scenarios. In fact, the cooperative position-

ing mission simulation has helped us tremendously in preparing and practicing for the

field experiment reported in Section 5.18.

5.4 Field Experiments

In this section, we present various field experiment scenarios which make use of the

C2 system outlined in the previous sections. The main objective of this section is to

illustrate the C2 system’s extendability and portability in coping with different mission

requirements, in both single and multiple AUVs mission scenarios. For each of the sce-

narios, we focus only on the C2 system’s configurations, field deployments and brief

snapshots of the experimental outcomes, and refer the interested readers to the respec-

tive publications for the detailed algorithmic developments and experimental results.

The experiments were conducted either in Pandan Reservoir, Singapore, or around

the Singapore coastal water. The STARFISH AUV shown in Fig. 1.1(c) was used for the

experiments, with different payload sections fitted depending on the mission objectives.

Whenever the AUV carries out a mission on the surface, GPS data are logged and used

as a ground truth, otherwise, the positions estimated by the onboard positioning system

is used during underwater navigation. To further illustrate the C2 systems’ portability,
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FIGURE 5.10: C2 agents and the BD SysIden agent for system identification mis-
sions. The BD SysIden agent can interact with the vehicle’s Sentuators directly
when performing the idenfication algorithms, while both the SafetyOfficer and Health-

Monitor agents can ensure the vehicle’s safety throughout the process.

we also showcase an experiment where the C2 system was ported and deployed onto

another type AUV for collective mission.

5.4.1 System Identification Mission

The AUV’s low-level vehicle control performance determines its capabilities in achiev-

ing mission objectives. In a modular AUV like the STARFISH AUV, payload sections

can be added or removed depending on the mission’s requirements. Different vehicle

configurations change the vehicle’s dynamics, and thus, affects the vehicle control per-

formance. System identification [88] mission aims to automatically identify the new

vehicle dynamic online, and retune the onboard controller.

A BD agent (BD SysIden) has been developed for the purpose of AUV’s sys-

tem identification and deployed in the AS as shown Fig. 5.10. Whenever the iden-

tification mission is underway, the C2 system stops its control of the vehicle so that

the BD SysIden can interact directly with the vehicle’s Sentuators and perform the

identification algorithms. System identification algorithms generally require excitation

signals to be injected to the vehicle’s controller, so that the vehicle’s dynamic response

can be monitored. Depending on the excitation level, the vehicle may exhibit dramatic

maneuvering behaviors.

Fig. 5.11 shows an example of the results obtained from a system identification

mission conducted in the reservoir. Performing system identification within the C2
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Online parameter estimation of yaw dynamics

rudderyaw

roll

depth x-y

FIGURE 5.11: Example of an experimental mission for the identification of yaw dy-
namics using STARFISH AUV. Plot of depth, x-y position, roll, yaw, rudder angles
and estimated parameters of the vehicle’s yaw dynamics. Images quoted from [88].

system’s mission setting, as compared to manual launching of vehicle from a platform

or vessel, has some operational advantages. First, for the safety of the vehicle, a mission

point can be planned to navigate the vehicle away from any man-made structure before

the process begins, while an end point for the vehicle to return after the process to

ease the vehicle’s retrieval. Second, the Safety Officer and the Health Monitor agents

continue to ensure the vehicle’s safety even during the identification mission. Thus, the

mission can be aborted if the vehicle is driven out of geo-fence or in any form of danger,

due to BD SysIden’s commands.

Unlike other mission-based C2 systems like MOOS-IvP [52] and Neptus [89],

where the system identification has to be performed manually and separately, at the

low-level vehicle level, the proposed C2 system incorporates the functionality as one of

the high-level mission objectives and allows it to be performed automatically within the

setting of an autonomous mission.

5.4.2 Surveying Mission

AUVs are commonly deployed for surveying missions due to their capabilities in carry-

ing various sensors onboard and to navigate to places where it is dangerous for human
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FIGURE 5.12: C2 agents and the BD Lawnmower agent for coastal thermal field
survey mission.

(a) (b)

FIGURE 5.13: (a) Planned (red dotted line) and executed (green solid line) survey
paths by the STARFISH AUV during the Tuas, Singapore field experiment in August

2012. (b) Thermal field sensed by the AUV.

surveyors. In this section, we showcase the extensibility of the C2 system in coping with

different mission requirements imposed by different payload modules in two separate

surveying missions.

5.4.2.1 Coastal Thermal Field Survey

The first mission was carried out at Tuas, Singapore in August 2012, where the C2 sys-

tem (Fig. 5.12) was asked to carry out a surveying mission at the outlet of the power

generator’s cooling tower. The mission reused the BD Lawnmower agent mentioned in

118



Chapter 5. Agent-based Command and Control Systems

Captain

Navigator

Pilot

BD_...

ExecutiveOfficer

SignalingOfficer

Lookout

BD_...BD_...
BD_LEDIF

AS
C2 Agents

Sentuators

...

LEDIF
Payload

FIGURE 5.14: C2 agents, the BD LEDIF and the LEDIF payload for chlorophyll
survey mission.

section 5.3 to generate the mission points in a lawn-mowing pattern within an area spec-

ified by the operator. The mission points were sent to the Mission level for waypoints

planning and then to Vehicle level for execution.

The resultant path from the surveying mission is shown in Fig. 5.13. Varying

water flow directions were observed in the mission area due to the interaction of the

south-east tidal current and the outlet’s water flow. Although this presents a challenge

for the low level vehicle navigational control, the achieved path has little overshot using

the path-following algorithm implemented in the Pilot agent. The decoupling of high-

level mission point planning and low-level vehicle control in separate agents made the

tasks more manageable. If desired, a new Pilot agent with different path-following

algorithms can be constructed to replace the current Pilot agent without interfering the

rest of the control system.

5.4.2.2 Chlorophyll Survey

The second mission was carried out at Pandan Reservoir, Singapore, where the C2 sys-

tem was instructed to perform three-dimensional subsurface mapping of Chlorophyll

concentration. In this experiment, the STARFISH AUV was fitted with the LEDIF [90]

payload section (Fig.5.14). The LEDIF payload contains a suit of sensors that are ca-

pable of measuring the fluorescence, absorbance, and turbidity of natural water. With-

out any modification to the overall control architecture, the proposed C2 system was
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FIGURE 5.15: Results of Chlorophyll survey in the reservoir [90].

able to accommodate these new sensing capabilities with an addition of a Scientist

agent, namely the BD LEDIF agent. At present, the operation of the BD LEDIF is pre-

programmed in the mission file during mission planning stage, where the BD LEDIF

agent can be instructed to turned on or off the LEDIF sensors via the “Payload” Tab

shown in the Fig. 5.5-(e). However, one could easily extend the capability of the

BD LEDIF agent for an adaptive sampling mission, in which mission points can be

generated in real time according to the data collected by the sensors.

Fig. 5.15 shows examples of the resultant trajectories executed by the C2 sys-

tem on the left, and the corresponding Chlorophyll concentration mapping on the right.

Through this simple experiment, we illustrated the extendability of the C2 system in

accommodating the new mission requirements introduced by a sensor payload.

5.4.3 Adaptive Mission

One of the advantages of adopting the back-seat driver paradigm described in Sec-

tion 5.1.2 is the C2 system’s ability in carrying out an adaptive mission. BD agents

with different adaptive algorithms can be developed to generate mission points in real

time during mission execution, and provide feedback to the Captain for execution. In

this section, we showcase how the C2 system can be easily extended to carry out adap-

tive missions with different BD agents.
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FIGURE 5.16: C2 agents, the BD SideScanner and the BD Lawnmower agents
for target revisit mission.

FIGURE 5.17: AUV path during the adaptive mission at Tuas, Singapore field exper-
iment in August 2012. Red dotted line shows the initial planned survey path. When a
simulated target is detected, the mission was interrupted and re-planned (green solid

line) to re-visit the target before proceeding to the end point.

5.4.3.1 Target Revisit

Fig. 5.17 shows another survey mission carried out by the C2 system at Tuas, Singa-

pore. The mission goal was to simulate a target of interest being detected during the

execution of a preplanned lawn-mowing survey mission (red dotted line), and to verify

the capability of the C2 system in re-adapting the current mission to re-visit the target

with a second fly-by path.

A Scientist agent (BD SideScanner) was developed and introduced into the

Agent Service to simulate continuous monitoring of the sensor data returned by the Side

Scan Sonar payload module throughout the surveying mission (Fig. 5.16). Whenever
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a target of interest is detected, it broadcasts a request to the BD agents within the AS

for new mission points that will navigate the AUV to re-visit the target position. Once

received, the BD Lawnmower replies with a set of mission points which results in a

second fly-by over the target position. The execution of the current surveying mission

is interrupted and replaced with the newly planned mission points. The AUV then

navigates through the target for the second time before completing the mission at the

end point.

The mission scenario demonstrated the underlying C2 system’s capability in han-

dling new payloads, and its flexibility in incorporating adaptive behaviors during an

autonomous mission. More importantly, the concept of Agent Service allows the devel-

oper to design different mission adaptivities at the C2 system’s Supervisory level, while

both the Mission and Vehicle level’s agents remain untouched.

5.4.3.2 Cooperative Positioning

In another field experiment conducted at Pandan Reservoir, Singapore, we carried out

a multi-vehicle cooperative mission similar the one mentioned in 5.3. We implemented

the cooperative positioning algorithm mentioned in Chapter 3, and deployed it into two

STARFISH AUVs, as shown in Fig. 5.19(a), with one being the Beacon vehicle and

another one being the Survey AUV. Detailed result analysis were presented in Sec-

tion 3.6.1. The objective of this section is to showcase the robustness of the C2 system

in multi-vehicle cooperative mission. The C2 system in both the AUVs were identical,

with the exception of a BD Lawnmower agent in the Survey vehicle, and a BD Coop

in the Beacon vehicle (Fig. 5.18). Since the water depth in the reservoir is too shal-

low, a geo-fence was defined for BD Coop so that the cooperative navigation could be

executed within a confined area, to reduce the risk of vehicle collision.

During the mission execution, the survey AUV broadcast its position acoustically

through the UnetStack. Upon receipt by the UnetStack of the beacon vehicle, the po-

sition information is forwarded to the Signaling Officer, who in turn broadcasts it to

the BD Coop agent as TeamInfo messages. The beacon vehicle’s path is planned adap-

tively based on the survey AUV’s position information. Fig. 5.19(b) shows an example
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FIGURE 5.18: C2 agents, the BD Lawnmower agent for the survey AUV and the
BD Coop agent for the beacon vehicle of the cooperative positioning mission. Inter-
vehicle communication and ranging are facilitated by the UnetStack and acoustic

modems.
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FIGURE 5.19: (a) Two STARFISH AUVs used for the cooperative navigation mission
at Pandan Reservoir, Singapore. (b) The trajectories executed by the beacon AUV

within the geo-fence (green box).

of the trajectories executed by the Survey vehicle (dotted blue line) and the Beacon

vehicle (red line) during the multi-vehicle cooperative mission.

Through this mission scenario, we demonstrated the robustness of the C2 system

to be deployed for multi-vehicle cooperative missions. The adoption of backseat driver

paradigm at the Supervisory level of the control hierarchy allows algorithm developers

to focus their efforts on designing the high-level, multi-vehicle mission behaviors, while

reusing the same low-level control architecture for the individual vehicles.
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5.4.3.3 Cooperative Source Localization

To further illustrate the portability of the C2 system, we present a mission scenario

where the C2 system is deployed onto a team of miniature marine vehicles called the

SWARMBOT (Fig. 5.21(a)), for a cooperative source localization mission. The experi-

ment aims to demonstrate the emergent behavior which arose from the implicit commu-

nication among a team of robotic systems. Fig. 5.21(b) shows a snapshot of the resultant

trajectories executed by a team of four SWARMBOTs in localizing a simulated target

source within the success zone, using only implicit communication among the team

members [91].

Rather than developing a new C2 system for the control of the SWARMBOTs,

we simply deploy the existing C2 system with only a minor modification to the over-

all control architecture. Since the SWARMBOT is equipped with different sensors and

actuators, compared to the STARFISH AUV, a new Sentuator module was developed

to replace the existing STARFISH Sentuator module. Again, the desired cooperative

behavior for the vehicle team can be incorporated within a new BD BIOCAST agent,

without any modification to the existing pool of the BD agents or the control architec-

ture. The final C2 system configuration for the SWARMBOT experiment is shown in

Fig. 5.20. All the vehicles were running identical copies of the C2 system, and their

collective interaction via implicit communication helps the team to achieve the mission

objective.

5.5 Discussion

Through various mission scenarios, we have showcased the robustness, extensibility

and portability of the proposed C2 system. The design of the C2 system promotes

“Separation of Concerns” as it clearly allocates different control responsibilities of an

autonomous vehicle into different self-contained software agents. Besides, the agents

are distributed over different levels of control hierarchies to further define their tasks

and response requirements. The hierarchical multi-agent based design also provides an

explicit view of control flow and message passing among the agents. This is important in
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FIGURE 5.20: Identical copies of the C2 system deployed on different SWARMBOT
vehicles. Besides introducing the new BD BIOCAST agent into the AS, the only mod-
ification to the existing C2 system is the new SWARMBOT Sentuator component for

interfacing with the vehicle’s sensors and actuators.

(a) (b)

FIGURE 5.21: (a) The SWARMBOT vehicles deployed for the collective localization
mission. (b) A snapshot of the resultant trajectories planned and executed by the C2

systems deployed onboard four SWARMBOTs [91].

terms of system maintainability as developers could identify specific sub-components of

the C2 system to be designed, developed and debugged in isolation without interfering

with the overall system’s integrity. Furthermore, the modular design that decouples the

C2 system from the vehicle’s Sentuator components also allows it to be ported into

other mission-based robotic systems. This can be achieved simply by replacing the

existing Sentuator component with one that interacts the targeted hardware system, as

demonstrated in cooperative source localization mission scenario in Section 5.4.3.3.
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The adoption of the back-seat driver paradigm also allows the C2 system’s mis-

sion capabilities to be extended easily to cope with new mission requirements or payload

modules. This can be done via the introduction of BD agents that implement the de-

sired mission behaviors, as illustrated by numerous scenarios in the previous section.

The interaction between the BD agents with the Captain in the form of mission points

provides an intuitive notion for designing mission behaviors, compared to computing

the IvP function in the MOOS-IvP [52] or designing the mission plan using declara-

tive language like the New Domain Description Language (NDDL) in the TREX [92].

Apart from deterministic behaviors, adaptive behaviors involving single or multiple ve-

hicles can be easily implemented in a BD agent by providing new mission points to the

Captain during the course of a mission, replacing the existing mission points. As illus-

trated by the adaptive mission scenarios (section 5.4.3), the ability to modify a mission

plan adaptively online is crucial since the C2 system has the flexibility to replan mis-

sion points that would better achieve the mission objectives, based on the latest sensor

measurements.

5.6 Summary

In this chapter, we described a hierarchical multi-agent C2 system and its implemen-

tation on the STARFISH AUVs in detail. The system architecture mimics the con-

trol structure of a submarine, where mission and vehicle tasks are clearly divided and

handled by individual agents organized at different levels in a control hierarchy. The

adoption of the backseat driver paradigm at the control system’s Supervisory level al-

lows new mission behaviors and capabilities to be introduced into the C2 system with

minimum modification to the overall architecture.

Although the C2 system was developed with the marine vehicles in mind and

implemented using an in-house agent platform, the architecture may also be used in

land or aerial vehicles, and implemented using other popular middleware. The agent-

based software design utilizing message passing mechanisms for agent communication

decouples the C2 system from the vehicle’s Sentuator. This allows the C2 system to
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be validated in simulation by simply diverting agent messages to a vehicle simulator,

and deployed directly into a physical robotic system when it is fully tested in simulation

mode.

Through simulation and field experiments around the Singapore’s costal water,

we demonstrated the capabilities of the C2 system in carrying out single and multiple

vehicle missions. Through different mission scenarios, we showed the robustness and

extendability of the C2 system in coping with new mission requirements.
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Conclusions and Future Research

6.1 Conclusions

Underwater navigation is a challenging problem for low-cost sensor-limited AUVs.

Commercially available underwater positioning systems offer a solution, but require

considerable operational effort and are generally costly. The accuracy of AUVs’ nav-

igation is crucial in determining the quality of collected data as well as ensuring the

vehicle safety.

The availability of low-cost modular AUVs, with different payload configura-

tions have driven researchers’ desire for autonomy in a team of vehicles. Multi-vehicle

missions offer several advantages over single-vehicle missions in terms of flexibility

and tolerance towards a single vehicle failure. Besides, the ability in inter-vehicle com-

munication using acoustic modems heralds a new age of team-based cooperation for

underwater vehicles.

In this thesis, we developed a cooperative path planning algorithm for a moving

beacon that takes into account inter-vehicle geometries and the position errors accumu-

lated by a team of AUVs. The algorithm allows the AUVs to estimate their positions

using an acoustic signal broadcast by the beacon. The path planning problem was for-

mulated within a MDP, with its policy “learned” using two optimization techniques: the

Cross-entropy methods and the Variable-length Genetic Algorithm. The algorithm was
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validated through a series of simulations and field experiments, and the performance

was compared against other position estimation techniques. Results showed that the

proposed algorithm kept the position errors of the AUVs small, and robust against some

degrees of communication and environmental uncertainties.

Given the bathymetry map of a mission area, a team of sensor-limited AUVs

equipped only with a single-beam altimeter, are able to perform cooperative localiza-

tion. We developed a decentralized position estimation for the AUVs based on particle

filtering technique. The localization of the individual vehicle depends solely on their

water depth measurements and the information obtained from inter-vehicle acoustic

communication. Given sufficient terrain information, the proposed localization tech-

niques avoid the need of a beacon signal or expensive sensors for underwater naviga-

tion, while still being capable of keeping the position errors of the AUVs relatively

small. Simulation studies showed the filter’s performance is comparable to that of a

centralized filter, with the benefit of much lower communication bandwidth. Offline

filtering with field experiment data demonstrated the feasibility of the cooperative lo-

calization technique and showed its robustness in handling communication uncertainties

and sensor bias.

Finally, a hierarchical agent-based C2 system was developed for a modular AUV.

In contrast with other mission controllers, mission, navigation and vehicle tasks were al-

located to individual self-contained software agents, each with their own responsibilities

and behaviors. The collective interactions among the agents enable the AUV to achieve

its mission objective autonomously. The adoption of backseat driver paradigm at the

mission level of the control architecture allows for easy expansion of the C2 system’s

capabilities in handling with new mission requirements. A carefully designed GUI was

developed to allow for intuitive multi-vehicle mission planning, while an agent-based

AUV simulator was also implemented for offline testing of agent behaviors before field

deployment. Numerous field experiments around the Singapore water, with the AUV

fitted with different sensor payloads for different mission objectives, showcased the ro-

bustness and extendability of the developed C2 system.
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6.2 Future Research

The cooperative algorithms and results presented have significantly expanded the appli-

cability of multi-vehicle missions using low-cost sensor-limited AUVs. However, there

are several natural extensions that can be pursued to improve their applications in the

AUVs:

• The path planning policies for beacon vehicles presented in Section 3.4.2 were

“learned” offline, with large number of Monte Carlo simulations. However, it

may not capture all the uncertainties that a field experiment may present. On the

other hand, learning the policies afresh online may not be the solution either, as

frequently visited states may dominate the learning process. One way to over-

come this problem is to initially deploy the policy that was learned offline, and

allow the candidate policies to continue to evolve using the information captured

from field experiments. The initial policy can be replaced whenever its fitness

score is lower than any of the candidates.

• Whenever a beacon vehicle is deployed to support multiple AUVs, different strate-

gies can be applied to choose the desired heading command for the beacon vehi-

cle. The decision making presented was ad-hoc at best. An interesting extension

would be to identify the strategy deciding factors and apply heuristic techniques

to learn the optimum mapping using data gathered from field experiments.

• The relative geometries among the vehicles and the amount of terrain information

within the vehicles’ mission area determine the performance of the cooperative

localization. Since the bathymetry map is given, and the acoustic communica-

tion among the vehicles can be scheduled before mission execution, multi-vehicle

motion planning algorithms can be designed with desired performance bound on

the vehicle localization. The algorithm would plan the vehicles’ waypoints per

communication slot, taking into account the terrain information attainable by re-

spective vehicles, such that the collective localization of the vehicle keeps their

position uncertainties bounded. This approach has the potential to be applied for

long-term underwater navigation using a team of sensor-limited AUVs.
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• In the C2 system, we adopted a simple priority-based look-up table for contracting

a BD agent to generate mission points if there are multiple competing BD agents

replying to the Captain’s Call-for-participation (see Section 5.1.2). To achieve

maximum benefit of the backseat driver paradigm, more sophisticated arbitration

rules have to be defined. Besides, automated planning tools can also be integrated

in the Captain to increase the level of autonomy in its interaction with the AS.
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Appendix A

Error Estimate Covariance Due to

Range Updates

Let the state vector x represents the vehicle’s position in 2-D space, that is, xl = [x,y]>l .

At time l +1, the beacon vehicle’s position is xB
l+1 = [xB,yB]>l+1. Let βl+1 be the angle

formed by the line joining the beacon vehicle and survey AUV, βl+1 = ∠(xB
l+1−xl+1),

the observation matrix with respect to the true position is

HHH l+1 =
[

cosβl+1 sinβl+1

]
. (A.1)

Assuming that the position error of the survey AUV can be described as an error

ellipse, the error estimate covariance PPPl can be written as:

ϒϒϒlPPP′lϒϒϒ
>
l = PPPl

ϒϒϒl

 ε2
l 0

0 ε̄2
l

ϒϒϒ
>
l =

 σ2
x σxy

σxy σ2
y


l

(A.2)

where rotation matrix ϒϒϒl is formed by the angle of the minor axis θl , counterclockwise

from x axis. σ ′2x,l = ε2
l and σ ′2y,l = ε̄2

l denote the length of the minor and major axis at

time step l after propagation.
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Let the measurement error∼N(0,σ2
z ), which includes the ranging error∼N(0,σ2

R)

and position error of the beacon vehicle ∼ N(0,σ2
B). We have σ2

z = σ2
R +σ2

B. The inno-

vation covariance is then derived as:

SSSl+1 = HHH l+1PPPlHHH>l+1 +σ
2
z

= HHH l+1ϒϒϒlPPP′lϒϒϒ
>HHH>l+1 +σ

2
z

= ε
2
l cos2(βl+1−θl)+ ε̄

2
l sin2(βl+1−θl)+σ

2
z .

(A.3)

The Kalman gain is

KKKl+1 = PPPlHHH>l+1SSS−1
l+1 (A.4)

and the error estimate covariance is updated as

PPPl+1 = PPPl−KKKl+1HHH l+1PPPl. (A.5)

PPPl+1 is a 3×3 symmetric matrix with the components in the upper triangle as:

PPP11,l+1SSSl+1 = ε
2
l ε̄

2
l sin2

βl+1 +(ε2
l cos2

θl + ε̄
2
l sin2

θl)σ
2
z

PPP12,l+1SSSl+1 =−
1
2

ε
2
l ε̄

2
l sin(2βl+1)+

1
2
(ε2

l − ε̄
2
l )σ

2
z sin2(2θl)

PPP22,l+1SSSl+1 = ε
2
l ε̄

2
l cos2

βl+1 +(ε2
l sin2

θl + ε̄
2
l cos2

θl)σ
2
z .

(A.6)

The angle of the minor axis by Pl+1 is θl+1. Thus,

tan(2θl+1) =
−ε2

l ε̄2
l sin(2βl+1)+ sin(2θl)(ε

2
l − ε̄2

l )σ
2
z

−ε2
l ε̄2

l cos(2βl+1)+ cos(2θl)(ε
2
l − ε̄2

l )σ
2
z
. (A.7)

With the assumption that σ2
z � ε2

l ≤ ε̄2
l , we have σ2

z
ε2

l ε̄2
l
→ 0,

lim
σ2z

ε2
l ε̄2

l
→0

tan(2θl+1) = tan(2βl+1)

lim
σ2z

ε2
l ε̄2

l
→0

θl+1 = βl+1.
(A.8)
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With γl = θl+1−θl , the minor and major axis of the error ellipse formed by PPPl+1 are:

lim
σ2z

ε2
l ε̄2

l
→0

σ
′2
x,l+1 = σ

2
z

lim
σ2z

ε2
l ε̄2

l
→0

σ
′2
y,l+1 =

ε2
l ε̄2

l

ε2
l cos2 γl + ε̄2

l sin2
γl
.

(A.9)

For a Kalman filter with an identity propagation matrix FFF :

PPPl+1|l = FFFPPPl|lFFF
>+QQQ

= PPPl|l +QQQ
(A.10)

where QQQ = diag(q,q) which includes the error growth q = ατ . The updated error esti-

mate covariance forms an ellipse with:

• The direction of the minor axis (minimum error) θl+1 is along the line joining the

beacon and survey AUV.

• The error in the minor axis has ε2
l+1 = σ2

R +σ2
B +ατ .

• The error in the major axis has ε̄2
l+1 =

ε2
l ε̄2

l
ε2

l cos2 γl+ε̄2
l sin2

γl
+ατ .
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Appendix B

Command and Control System

Software Specifications

B.1 C2 Services

B.1.1 Captain Service

The Captain starts, coordinates and controls the execution of a mission. Whenever an

Operator’s command is received, it broadcasts mission planning requests to the Agent

Services and assign the mission point generator. It also handles the different types of

mission point generation by the Agent Service.

Requests and Responses

Request Response Description
OperatorCmdReq AGREE Request to execute operator’s command
MissionPtOWReqExe AGREE,

REFUSE
Request to overwrite the current mission point

MissionPtHPReqExe AGREE,
REFUSE

Request to insert the mission point right after
the current mission point

MissionPtReqExe AGREE,
REFUSE

Request to append the mission point at the end
of all available mission points

PosReq PosRes Request position information where mission
started
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Topics and Notifications

Notification Topic Description
C2EventNtf C2EVENT Notification for C2 events
C2CommandNft ABORTSIGNAL Notification for abort signal commanded by

the Captain
MissionStatusNtf MISSIONSTATUS Notification for the latest mission status

B.1.2 SignalingOfficer Service

The SignalingOfficer acts as the AUV’s external communication node. It decodes the

mission commands received from the Operator and passes it to the Captain. It also

handles the requests from the GUI and notifies the GUI/Operator of critical C2 events.

Requests and Responses

Request Response Description
OperatorCmdReq AGREE Request to execute operator’s command
LogfilenameReq AGREE Request for the name of current logfile
C2EventReq DatagramReq Request for C2Event by Operator’s GUI

B.1.3 ExecutiveOfficer Service

The ExecutiveOfficer receives mission tasks in the form of mission points and passes

them to the Navigator for waypoints planning. Once waypoints are received, sends

them to the Pilot for execution. The mission and waypoints are received and passed

asynchronously to the Navigator and the Pilot to ensure the smoothness of mission

execution. For more details, please refer to Appendix C.

Requests and Responses

Request Response Description
C2CommandReq AGREE Request to execute command from Captain
MissionPtReqExe AGREE,

REFUSE
Request to execute mission point
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B.1.4 Navigator Service

The Navigator implements path planning algorithms to translate mission points to way-

points. Future extension will include collision detection and re-planning whenever an

obstacle is detected by the Lookout.

Requests and Responses

Request Response Description
C2CommandReq AGREE Request to execute command from Captain
WayPtReq WayPtRes Request to translate mission point to way

points

B.1.5 Pilot Service

The Pilot translates the waypoints into the vehicle control commands. During a mission

execution, it also broadcast the waypoints execution status periodically.

Requests and Responses

Request Response Description
C2CommandReq AGREE Request to execute command from Captain
WayPtReqExe AGREE,

REFUSE
Request to execute way points

StateReportReq StateReport Request Pilot’s current state

Topics and Notifications

Notification Topic Description
MissionPointStatusNtf MISSIONPOSITIONSTATUS Notification for status of the

current mission point execu-
tion

B.1.6 EngineRoom Service

The EngineRoom handles all the vehicle commands and passes them to the vehicle’s

actuators. Besides, it also pools the vehicle’s sensor status periodically and broadcast

them to all the agents in the C2 system.
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Requests and Responses

Request Response Description
DivingOfficerReq AGREE,

REFUSE
Request to dive to certain depth

HelmsmanReq AGREE,
REFUSE

Request to steer to certain bearing

EngineRoomReq AGREE,
REFUSE

Request to thrust at certain thruster level

VehicleStatusReq AGREE Request to report current engine room’s status
OperatorCmdReq AGREE,

REFUSE
Request to enable/disable thruster

Topics and Notifications

Notification Topic Description
C2EventNtf C2EVENT Notification for C2 events reported from ve-

hicle level
VehicleStatusNtf VEHICLESTATUS Notification of latest status of the vehicle

B.1.7 Backseat Driver Service

Depending on the algorithms implemented, the BackseatDriver generates mission points

and passes them to the Captain for execution. If necessary, the BackseatDriver can

interrupt the Captain for mission point modification, addition or cancellation.

Requests and Responses

Request Response Description
CFPReq CFPRes Request to Call-For-Participation for mission

leg
C2CommandReq AGREE Request to execute command from Captain
MissionPtReq MissionPtRes Request to generate mission point, if this is

the contracted agent

Topics and Notifications

Notification Topic Description
C2EventNtf C2EVENT Notification for C2 events
C2CommandNft ABORTSIGNAL Notification for abort signal commanded by

the Captain
MissionStatusNtf MISSIONSTATUS Notification for the latest mission status
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1 Overall Concept

1.1 Agent-based Command and Control (C2) System
The C2 system is developed based on the paper [1]. The overall framework is shown
in Fig 1.

Figure 1: Heirarchical Command and Control System.

This document aim to serve a few purposes:

1. Describe the interaction between the Captain and the BackSeat Driver (BD)
agents.

2. Explain the development of third party BD agents (programmatically) and its
compilation steps against the provided Java C2 (JC2) framework.

3. Performing simulations using the StarControl and some simple data analysis of
the result (like the vehicle’s planned and executed paths).

1.2 StarFish Missions and Mission Tasks
A StarFish mission consists of a sequence of mission tasks (MissionTask) arranged
in sequential order. During mission execution, each mission leg is executed in the
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same order. Each mission leg consists of 3 main components : (1) the Mission po-
sition (MissionPosition) that associate with this mission task (More about this
association later), (2) the payload (Payload) commands (Optional) and (3) the user-
defined properties. Every mission task comes with an unique ID (taskID) which is
automatically generated when the mission task class is initialized. This taskID will
be broadcasted to all the agents in the framework so that the issuing agent will be no-
tified when the task is being executed. It is up to the issuing agent to decide on the
activities/algorithms to perform during the task execution.

1.3 Mission Execution
The mission execution (between the mission point generation and execution) is asyn-
chronous. This means the mission point generated by the BDAgent may not be exe-
cuted immediately after being received by the Captain. There is a mission point queue
maintained by the Captain. Whenever the number of mission points are less than 2, the
Captain will start requesting for more mission points from the contracted BDAgent.
Fig. 2 further illustrated this.

This is to ensure the smoothness of mission execution so that the vehicle does not
have to stop while waiting for new mission points to be generated.

MP MP

MP

MP

...

Captain

BDAgent

ExecutiveOfficer

Figure 2: Asynchronous Mission Point Generation and Execution.
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2 BackSeat Driver Agent
Depending on the mission requirements, the Agent Service can consist as many agent
as desired. Each BD agent can response and handle to one or many Mission Tasks
depending on the implemented algorithms. Fig. 3 shows the agent services pool and
the Captain agent. The Scientist BDAgents is just our conceptual categorization of the
agents in the service pool. A BDAgent that interacts and controls the physical payload
module while generating mission points is called the Scientist, while a BDAgent who
merely generates mission points depending on the vehicle status, mission status and its
implemented algorithm is simply called the BDAgent.

Figure 3: Agent Services and Captain
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2.1 Captain and BD Agent Interaction

Figure 4: Interaction diagram between Agent Services and Captain

The interaction between the Captain and the BDAgents are divided into two stages:

2.1.1 Agent Discovery Stage

At this stage, the depending on the missions, the Captain broadcast a Call For Partic-
ipation Request (CFPReq) message to all the agents in the agent service pool. The
message contains the specific mission task for the particular mission leg. BDAgents
who are programmed to response to this particular mission task should response with
Call For Participation Response (CFPRes) message with their AgentID attached, and
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the option for the Captain to request for mission point immediately or until certain
condition is fulfilled.

Upon receiving all the responses (a simple time out on waiting implemented in the
Captain), The Captain will decide on which DBAgent to be contracted as the agent that
will be responsible for generating mission points for this particular mission leg.

2.1.2 Mission Execution Stage

Once the Captain has selected the DBAgent as the contracted Agent, the mission exe-
cution stage can happen in two modes:

2.1.3 Passive Interaction

In this normal mode, the Captain will started sending MissionPtReq message to
the contracted BDAgent. Upon receiving the message, the contracted BDAgent should
response with MissionPtRes message with the generated Mission Point. An empty
MissionPtRes with its State set to COMPLETED can be returned once the BDA-
gent has completed its tasks or given up the reponsibility.

2.1.4 Active Interaction

There may be scenarios when the BDAgent needs to generate the mission points adap-
tively and requires immediate execution of the mission points, the asynchronous mis-
sion point execution mentioned in the section 1.3 would not satisfy this requirement. In
such cases, the BDAgent should not wait for the MissionPtReq message, instead,
they should send the Captain either one of these two messages:

1. MissionPtReqExe
Mission Point Request for Execution, this message request the Captain to insert
extra mission point/points at the end of currently executing mission point queue.
The execution of the newly submitted points will only be executed after all the
mission points the queue have been executed.

2. MissionPtHPReqExe
Mission Point Request for Execution (High Priority), this message request the
Captain to stop the execution of the current mission point and execute the re-
quested mission point. Once the requested mission point is completed, the cur-
rent mission point execution will be resumed. Equivalent to push the HP mission
Point to the front of the queue.

3. MissionPtOWReqExe
Mission Point Request for Execution (OverWritten), this message request the
Captain stop and delete the the current mission point and replaced it with the
requested mission point. The mission point queue is cleared, this OW mission
point is put into the empty queue.

After the execution of either the HP or OW, the execution always falls back to the pas-
sive mode, until the contracted BDAgent return COMPLETED message as mentioned
before.
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2.1.5 Examples

In the following examples, a simple mission is planned navigating the vehicle from the
starting point through 3 mission points: MP1, MP2, MP3. As an example, another
BDAgent is programmed to monitor the progress of the execution and interrupt when
the vehicle reached the MP1. The interrupts were in the form of 1). Mission Point
Request for Execution Fig. 5, 2). Mission Point Request for Execution - High Priority
Fig. 6, and 3). Mission Point Request for Execution - OverWrite Fig. 7. This example
showcased the 3 different behaviors of active interaction between the Captain and the
BDAgents.
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Figure 5: Mission Point Request for Execution
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3 Programming Guide
A BD agent extends the base class Agent which belongs to the Framework for Java and
Groovy Agents (fjåge). The developers are allowed to use all the facilities provided by
the fjåge framework. Please refer to the online documentation fjåge for more details.
However, in order to interact with the JC2 framework, the developers must extend the
BDAgent class.

org.arl.jc2.BDAgent

org.arl.fjage.Agent

Figure 8: DBAgent extends the base class Agent from the org.arl.fjage
package.

Depending on the desired mission behaviors, new BD Agents can be added to the
C2 system to extend and handle different mission requirements. In this part of the
documentation, a simple template project which build a Loiter BDAgent on top of the
JC2 framework will be used as the example to demonstrate programing a BD agent that
generates mission position so that the vehicle will loiter around some given mission po-
sitions. The sample codes can be found in the attached folder called “JC2 aTemplate”.

3.1 Mission Task
The base class - MissionTask provides all the housekeeping methods required to inter-
act with the StaControl mission planning GUI as well as the JC2 for mission execution.
What left is for the developers to define the properties for the mission task. These prop-
erties can be assigned with the desired values during mission planning, and be applied
during mission execution. The code snippet shown in Listing 1 is a simple example
showing the desired duration for the LoiterMT task, specifying the duration the vehicle
should be loitering.

1 package org . s m a r t . censam . mt t

3 i m p o r t o rg . a r l . j c 2 . mt t . Miss ionTask ;

5 c l a s s LoiterMT e x t e n d s Miss ionTask {

7 / / d e c l a r e t h e d e s i r e d p r o p e r t i e s f o r t h i s t a s k .
/ / Only p r i m i t i v e t y p e s a r e s u p p o r t e d a t t h e moment .

9 f l o a t d u r a t i o n = 0

11 }

Listing 1: LoiterMT.groovy
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During the mission planning, this property will be shown in the GUI’s Property tab
when a MissionTask has been selected and a mission position has been dropped on the
map, as shown in Fig. 9. Currently, only the primitive types are supported !!

Figure 9: LoiterMT in StarControl GUI showing its position in the mission map as well
as the duration property defined in the source.

3.2 BDAgent
BDAgent.groovy is the base class of JC2 BD agent. All the third-party BD agent must
extend this class in order to interact with the Captain agent in the JC2 framework. An
example of BDAgent development is shown in Listing 2. It is the BD Loiter agent
that listens to the CFPReq for the mission task LoiterMT mentioned in section 3.1
and response with mission positions that exhibit loitering behavior. There are 4 IM-
PORTANT methods to be implemented and overrided from the DBAgent base class:

line 15: The base class super.init() method must be called in the inherited class’s
init() method.

line 51: The handleCFPReqmethod must be override to handle the incoming CFPReq
messages. If the message containing the mission task that this BD agent can/should
handle, it must reply with its own AgentID as shown in the listing.

line 73: The handleMissionPtReq method must be override to handle the incom-
ing MissionPtReq messages. The BDAgent will only receive this when it
has been contracted by the Captain agent as the mission position generator for
the particular mission leg. Depending on the implemented algorithms, the BDA-
gent must reply with its generated mission positions. Since the mission position
generation and execution are asynchronous, please read through the listing to
find out how one can be notified when the mission positions generated are being
executed.
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line 97: The onStop() method must be implemented by the inherited class to stop all
the operations when the method is called by the Captain agent. This method will
only be called if the mission is aborted for whatever reason.

1 c l a s s BD Loi t e r e x t e n d s BDAgent{

3 / / mp1 as t h e c u r r e n t p o i n t , mp2 i s 50 m e t e r s a p a r t d i a g o n a l l y .
M i s s i o n P o s i t i o n mp1 = n u l l , mp2 = n u l l

5

/ / b o o l e a n t o keep t r a c k which of t h e m i s s i o n p o i n t s has been s e n t
7 b o o l e a n isMp1Sent = t r u e

9 / / P o s i t i o n t o r e c o r d t h e c u r r e n t p o s i t i o n .
P o s i t i o n c u r Po s

11

13 / / Th i s method i s c a l l e d when t h e a g e n t i s i n i t i a l i z e d and added t o
t h e p l a t f o r m . The s u p e r c l a s s ’ s i n i t ( ) method must be c a l l e d .

@Override
15 vo id i n i t ( ) {

s u p e r . i n i t ( )
17

/ / s u b s c r i b e t o v e h i c l e s t a t u s f o r c u r r e n t p o s i t i o n
19 s u b s c r i b e ( t o p i c ( C2Topics . VEHICLESTATUS) )

21 / / msgHandler i s o f t y p e Map t h a t maps t h e message c l a s s t o i t s
h a n d l e r . Depending on t h e r e c e i v e d message , i t s c o r r e s p o n d i n g
h a n d l e r w i l l be c a l l e d .

t h i s . msgHandler << [
23 ( V e h i c l e S t a t u s . c l a s s ) : { h a n d l e V e h i c l e S t a t u s ( i t ) } ,

]
25

/ / New h a n d l e r s can be added as needed . I t i s o p t i o n a l f o r t h e
d e v e l o p e r s t o make use o f t h e s u p e r c l a s s ’ s msgHandler . I f
p r e f e r r e d , new h a n d l e r can be d e c l a r e d i n t h i s e x t e n d e d c l a s s ,
and new MessageBehav ior can be added t o l i s t e n t o t h e new and
d e s i r e d message t y p e s .

27

/ / add ( new MessageBehavior ( ) {
29 / / @Override

/ / vo id onRece ive ( Message msg ) {
31 / / i f ( msg i n s t a n c e o f V e h i c l e S t a t u s ) {

/ / / / h a n d l e V e h i c l e S t a t u s message h e r e .
33 / / }

/ / }
35 / / } )

}
37

/⇤ ⇤
39 ⇤ Hand le r f o r t h e V e h i c l e S t a t u s message . For t h e p u r p o s e o f t h i s

demo , t h e v e h i c l e ’ s c u r r e n t p o s i t i o n i s r e c o r d e d whenever a
V e h i c l e S t a t u s message i s r e c e i v e d .

⇤
41 ⇤ @param msg Message o f t h e t y p e V e h i c l e S t a t u s

⇤ /
43 vo id h a n d l e V e h i c l e S t a t u s ( V e h i c l e S t a t u s msg ) {

cu rP os = msg . g e t P o s ( )
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45 }

47 /⇤ ⇤
⇤ I m p l e m e n t a t i o n o f t h e a b s t r a c t method . S i n c e t h i s BDAgent i s

programmed t o h a n d l e LoiterMT m i s s i o n t a s k , whenever a CFPReq
message i s r e c e i v e d wi th t h e c o n t e n t LoiterMT , t h i s a g e n t s h o u l d

r e p l y wi th CFPRes message c o n t a i n i n g i t s own AgentID .
49 ⇤ /

@Override
51 p u b l i c vo id handleCFPReq ( CFPReq msg ) {

i f ( msg . getMt ( ) i n s t a n c e o f LoiterMT ) {
53 LoiterMT lmt = msg . getMt ( )

CFPRes r e p l y = new CFPRes ( msg )
55 r e p l y . se tConID ( ge tAgen t ID ( ) )

send ( r e p l y )
57

/ / Ass ign t h e m i s s i o n p o i n t f o r t h e v e h i c l e t o l o i t e r .
59 mp1 = new M i s s i o n P o s i t i o n ( c u rP o s )

mp2 = new M i s s i o n P o s i t i o n ( c u rP o s . x�50 , c u rP os . y�50)
61 }

}
63

65 /⇤ ⇤
⇤ I m p l e m e n t a t i o n o f t h e a b s t r a c t method . I f t h i s a g e n t i s c o n t r a c t e d

t o p r o v i d e t h e m i s s i o n p o i n t f o r t h e p a r t i c u l a r m i s s i o n leg ,
t h i s method w i l l be c a l l e d whenever a Miss ionP tReq message i s
r e c e i v e d from t h e C a p t a i n . I t i s t h e BDAgent ’ s r e s p o n s i b i l i t y
t o keep t r a c k of t h e m i s s i o n p o i n t s s e n t .

67 ⇤
⇤ Every M i s s i o n P o s i t i o n g e n e r a t e d comes wi th a u n iq u e mpID , t h i s

mpID w i l l be b r o a d c a s t e d as t h e M i s s i o n P o i n t S t a t u s N t f message
d u r i n g t h e m i s s i o n p o i n t ’ s e x e c u t i o n by t h e P i l o t . BDAgents whom

t h e implemented a l g o r i t h m s a r e m i s s i o n p o s i t i o n depended s h o u l d
s u b s c r i b e t o t h i s message and r e a c t a c c o r d i n g l y when t h e
s u b m i t t e d m i s s i o n p o s i t i o n i s b e i n g e x e c u t e d .

69 ⇤
⇤ A l t e r n a t i v e l y , t h e BDAgent can r e p l y wi th Miss ionTasksRes message

t y p e t o d e l e g a t e t h e m i s s i o n p o s i t i o n g e n e r a t i o n t o a n o t h e r
BDAgent ( Lawnmover p a t t e r n e t c . ) , i f t h e y e x i s t i n t h e a g e n t
s e r v i c e s poo l . Every Miss ion Task g e n e r a t i o n comes wi th a
un iq ue t a s k I D too , and t h i s t a s k I D w i l l be b r o a d c a s t e d t o g e t h e r
wi th t h e m i s s i o n p o s i t i o n s ’ s mpID g e n e r a t e d under t h e d e l e g a t e d
a g e n t ’ s e x e c u t i o n ( a l l i n t h e M i s s i o n P o i n t S t a t u s N t f message ) .
Thus , t h e BDAgent can l i s t e n t o t h i s message and a c t a c c o r d i n g l y

when t h e s u b m i t t e d t a s k i s b e i n g e x e c u t e d .
71 ⇤ /

@Override
73 p u b l i c vo id h a n d l e M i s s i o n P t R e q ( Miss ionP tReq msg ) {

75 / / BDAgent s h o u l d r e p l y wi th M i s s i o n P t R e s wi th t h e m i s s i o n p o s i t i o n ,
o r s e t t h e m i s s i o n p o s i t i o n ’ s s t a t e t o COMPLETED.

77 M i s s i o n P t R e s rm = new M i s s i o n P t R e s ( msg , P e r f o r m a t i v e . INFORM)
i f ( mp1 != n u l l && mp2 != n u l l ) {

79 i f ( i sMp1Sent ) {
rm . setMp ( mp2 )
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81 i sMp1Sent = f a l s e
} e l s e {

83 rm . setMp ( mp1 )
isMp1Sent = t r u e

85 }
} e l s e {

87 / / i n fo rm t h e C a p t a i n t h i s m i s s i o n t a s k has comple t ed .
rm . s e t S t a t e ( S t a t e .COMPLETED)

89 }
send ( rm )

91 }

93 /⇤ ⇤
⇤ Thi s method w i l l be c a l l e d whenever t h e m i s s i o n i s a b o r t e d by

w h a t e v e r r e a s o n . Upon r e c e i v i n g t h e c a l l , t h e BDAgent must s t o p
a l l t h e i r o p e r a t i o n s and re� i n i t i a l i z e t h e s t a t e s i f n e c e s s a r y .

95 ⇤ /
@Override

97 p u b l i c vo id onStop ( ) {
mp1 = n u l l

99 mp2 = n u l l
}

101

}

Listing 2: BD Loiter.groovy
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4 Software Compilation

4.1 JC2 Template Folder
The given template folder should at least consists of two sub-folders and an ant build
file as shown in Fig 10. The lib folder contains a jar file has all the base classes required
(both fjåge and JC2). The src folder, of course, contains the source codes of the BDA-
gent and the mission task that the agent is responsible for. The ant build file consists of
some generic compilation rules for the final jar compilation. As long as you have all
the source codes in the src directory and jars in the lib directory, you are fine !

Figure 10: Folder tree of the JC2 Template folder.

4.2 The little “Ant” - build.xml
In order for the StarControl GUI to be aware of all the available Mission Task Types
(mtt) during the mission planning, the developers must specify the package where their
Mission Task (in this case, it is the package that the LoiterMT belong to) resides.
From the listing shown in section 3.1, it is “ org.smart.censam.mtt”. A new at-
tribute tag must be added under the manifest tag with the name=‘‘ Mtt-Package"
and value=‘‘org.smart.censam.mtt" as shown in line 4 of Listing 3.

1 <m a n i f e s t f i l e =”MANIFEST .MF”>
<a t t r i b u t e name=” B u i l t�By” v a l u e =” ${ u s e r . name}”/>

3 <a t t r i b u t e name=” B u i l t�Timestamp ” v a l u e =” ${ t imes t amp }”/>
<a t t r i b u t e name=” Mtt�Package ” v a l u e =” org . s m a r t . censam . mt t ” />

5 </ m a n i f e s t >

Listing 3: build.xml

Once this has been taken care of, you can just “Ant” it !!!
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5 Simulation and Data Analysis

5.1 Mission Files Location
Once the StarControl GUI is opened, you will be presented with a FileDialog asking
for “Mission File Directory” as shown in Fig. 11. Choose the directory where all the
mission files are stored. For the purpose of this simulation demonstration, the mission
files are located at the same directory as the StarControl.app.

Figure 11: FileDialog for specifying the location of the mission files.

5.2 Add the Compiled Jar to StarControl
In order for the StarControl GUI to be aware of the newly developed LoiterMT mission
task (Refer to section 3.1), its compiled Jar file must be added to the GUI’s lib directory.
To do this, go to “StarCtrl2” menu bar, Administration>Add Jar menu to open the
“Select JarFile” FileDialog. Selected the compiled jar and hit the “open” button.

5.3 StarControl
The StarControl GUI is the main application used for mission planning and control.
The icons labelled in Fig. 12 show the core functionalities required to operate the sim-
ulation, and will be explained in the following sections.
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Mission Planning

Configurations

logviewer

Command and Control
Map Viewer

Connect

DisConnect

Figure 12: The StarControl GUI.

5.4 Mission Planning
The mission planning GUI is shown in Fig. 13. It allows the operator to select the
Vehicle to plan the mission for; adding, deleting and saving the planned missions and
specifying the values of the Mission Task properties. The Operator first select the
Vehicle, then select the mission number. The planned mission with the associated
mission number will be displayed in the map area. The operator can then interact
directly with the mission tasks.

For the purpose of this demonstration, if the LoiterMT and BD Loiter agent
have been compiled and the step mentioned in section 5.2 has been performed correctly,
the operator should be able to see the newly added mission task as one of the options
in the MissionTask dropdown combo box. If that particular mission task has been
selected and a mission point has been planned (by click on a location in the map area),
the operator should see the properties defined in section 3.1 being displayed under the
Property tab with their default values as shown in Fig. 13.
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Figure 13: The mission planning GUI.

5.5 Configurations
When the Configurations icon is clicked, the operator will be presented with the init
script (Assuming that TextWrangler is installed.). Listing 4 shows the content of the
init script for starting the simulated vehicle using the StarControl GUI. There are a few
important things to take note:

line 6: This is where you define the name for this simulated vehicle. Each vehicle
must have a qualified name (one of the entries in the enum file extending the
org.arl.jc2.enums.Vehicle interface). During the simulation, only the
command sent to this vehicle (Destination dropdown shown in section 5.8) will
be accepted.

line 9: There are two types of platforms can be started for the simulation. Please refer to
the JAF documentation for more details. Basically the DiscreteEventSimulator()
allows one to run the simulation as fast as the machine can support, thus, save
the developer’s time in obtaining the resultant/executed paths/patterns. However,
the live position feedback that will be shown in section 5.9 may not make sense.

line 22: This is where the simulated AUV is added to the simulation environment. The
user can specify the start locations and other properties that are defined in
org.arl.jc2.agent.AUVSim class. If observing the simulation live on the
map viewer is desired, one could start the simulation in RealTimePlatform(),
and speedy up the AUV by changing the thrustScale and the turnRate.
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Note ! the simulated AUV’s dynamic will change too, “hack” at your own risk
!!!

line 45: This is where the newly developed third party BD agent (BD LOITER) is added.

1

/ / i n i t r c s c r i p t t o s t a r t a l l t h e n e c e s s a r y c o n t a i n e r and s e t u p u d p l i n k
3

/ / ################################################ Conf ig
5 / / ####################################################### P a r a m e t e r s

d e f AUVName = org . a r l . j c 2 . enums . S t a r f i s h V e h i c l e s . SIMULATOR
7

/ / ################################################ P la fo rm
9 / / S t a r t i n g t h e RealTime p l a t f o r m and C o n t a i n e r

d e f p = new org . a r l . j a f . R e a l T i m e P l a t f o r m ( )
11 / / d e f p = new org . a r l . j a f . D i s c r e t e E v e n t S i m u l a t o r ( )

d e f c = new org . a r l . j a f . C o n t a i n e r ( p )
13

/ / ################################################ UdpLinkAgent
15 / / s e t t i n g up u d p l i n k a g e n t

d e f udp = new org . a r l . u n e t . l i n k . UdpLink ( )
17 udp . s e t M u l t i c a s t I f a c e ( ’ en0 ’ )

udp . s e t A d d r e s s (AUVName . g e t A d d r e s s ( ) )
19 c . add ” udp ” , udp

21 / / ################################################## auvSim
d e f auv = new org . a r l . j c 2 . a g e n t . AUVSim ( )

23 auv . xPos = 140
auv . yPos = 770

25 c . add ”AUVSim” , auv

27

/ / ################################################ C a p t a i n
29 d e f c a p t a i n = new org . a r l . j c 2 . a g e n t . C a p t a i n ( )

c a p t a i n . VEHICLEID = AUVName
31 c . add ”CAPTAIN” , c a p t a i n

33 c . add ”COOPMDP” , new org . a r l . j c 2 . a g e n t .BD COOPMDP ( )
c . add ”COOPAUVSIM” , new org . a r l . j c 2 . a g e n t . BD COOPAUVSIM ( )

35 c . add ”MISSIONGENERATOR” , new org . a r l . j c 2 . a g e n t . Mis s ionAgen tLoade r (
m i s s i o n D i r : ’ . / . . / . . / . . / m i s s i o n s / ’ )

c . add ”SIMPLEMP” , new org . a r l . j c 2 . a g e n t . BD SimpleMP ( )
37 c . add ”ABORTER” , new org . a r l . j c 2 . a g e n t . BD Aborter ( )

c . add ”STATIONKEEPING” , new org . a r l . j c 2 . a g e n t . BD Sta t i onKeep ing ( )
39 c . add ”LAWNMOWER” , new org . a r l . j c 2 . a g e n t . BD LawnMower ( )

c . add ”EXECUTIVEOFFICER” , new org . a r l . j c 2 . a g e n t . E x e c u t i v e O f f i c e r ( )
41 c . add ”NAVIGATOR” , new org . a r l . j c 2 . a g e n t . N a v i g a t o r ( )

c . add ”PILOT” , new org . a r l . j c 2 . a g e n t . P i l o t ( )
43 c . add ”SIGOFFICER” , new org . a r l . j c 2 . a g e n t . S i g n a l i n g O f f i c e r ( )

45 / / ################################################ Thi rdPar tyBDAgent
c . add ”LOITER” , new org . s m a r t . censam . a g e n t . BD Loi t e r ( )

47

49 / / ######################################## S t a r t t h e p l a t f o r m
p . s t a r t ( )
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Listing 4: initSim.groovy

5.6 Connect (Start Simulation)
When the Connect icon is clicked, the Connect window is shown as in Fig. 14. Check
the Use ICommsSim checkbox and hit the Connect button, the simulation should start
!

Figure 14: Start and connect to the simulation.

5.7 LogViewer
One way to check if the simulation is started correctly is to open the LogViewer win-
dow. If the JC2 agents are up and running, the Pilot agent should report that it is in
“Stop” state as seen in Fig. 15. When a C2 command is issued and the simulation is
running, this log window should be very active dumping out all the logs.

Figure 15: Simulated vehicle’s log.
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5.8 Command and Control (C2)
The C2 panel allows the operator to send different C2 command to the vehicle. The
Destination field must match to the name of the vehicle specified in Listing 4 line
number 6.

Figure 16: The command and control panel.

5.9 Map Viewer
The map viewer shows the current location of the vehicle during the simulation. The
trajectory of the vehicle is shown in yellow dot/lines in the map, while the vehicle’s
current location (x and y) is shown at the right top corner of the window.
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Figure 17: The map viewer showing the location of the vehicle (yellow dot/lines) and
the location of the vehicle in the map (two numbers on the right top corner of the
window).

5.10 LogFile Extraction
Once the simulation has completed, the user can copy the log files to their desired direc-
tory. This can be done by clicking on the Administration>Extract Logs menu. Once
the user has chosen the destination directory, all the files in the underlying “logs” di-
rectory inside the StarControl.app will be copied to the specified location. The content
of the simLog folder are :

1. c2log-⇤.log : The main log file of the JC2 Agents.

2. m⇤ : Folders containing all the logs extracted from the log-0.txt.

3. time.txt : file contains all the start and end time for each of the missions.

4. guilog-0.txt : The log from the GUI agent. Only used for debugging pur-
pose.

The format of the files in the m⇤ folder are as follows:

1. mPoints.txt : The planned mission points.
<timeStamp xPos yPos zPos >

2. waypt.txt : The planned way points.
<timeStamp xPos yPos zPos >
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3. AuvBearing.txt : The vehicle’s positions, bearings and distances to the next
way points.
<timeStamp xPos yPos zPos bearing distanceToNextWayPt >

4. m⇤.txt : The original c2 logs of the particular mission.

with the extracted data, one can easily plot the resultant trajectories using any plotting
programs.

Figure 18: Folder “simLog” contains the original log files and the extracted log files.
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