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Summary

An object detection subsystem serves to detect obstacles that are in

the vicinity of an Autonomous Underwater Vehicle (AUV). Along with the

obstacle avoidance, command and control subsystems, it ensures that the

AUV can safely execute and complete its mission. The first challenge is

identifying a detection system. The sector scanning sonar was considered

over other acoustic alternatives such as echosounders and multibeam as a

means for object detection for STARFISH AUVs. The reasons are because

of its compact size, lower power consumption and lower data rates. Upon

successful hardware and software integration of the sector scanning sonar

with the AUV, the next challenge is to develop a reliable object detection

subsystem.

Experiments were planned to analyze the scanline measurements from

the sector scanning sonar. In addition, the datasets were used to analyze the

results of the detection and representation methodologies. Several operat-

ing environments with both static and dynamic setups are considered. Two

experiments were conducted where the sector scanning sonar was deployed

statically at Nanyang Technological University (NTU)’s diving pool and

Republic of Singapore Yacht Club (RSYC). In both of these experiments,

datasets were collected from the ensonification of static objects using the

Micron DST sector scanning sonar. An experiment with STARFISH AUV
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Summary

integrated with Micron DST sector scanning sonar was also conducted at

Pandan Reservoir. In this experiment, dataset was collected from the en-

sonification of the embankments and static buoys. Another experimental

dataset was made available online by University of Girona at the Fluvia

Nautic abandoned marina near St Pere Pescador (Spain) on 16 March 2007.

In this setup, a Tritech Miniking sector scanning sonar attached to a mov-

ing Autonomous Underwater Vehicle (AUV) was deployed to ensonify the

marina. The objects detected here were mainly the marina’s embankments.

The scanline measurements from the sector scanning sonar were ana-

lyzed to understand how each element in the scanline measurement corre-

sponds to the intensity return for a given bearing and range bin i. Then,

detection and representation methods were explored to determine suitable

approaches to represent both the operating environment and detection de-

cisions made from the sonar measurements. The detection methodologies

that were considered are Otsu thresholding and static thresholding. The

formulation of the static thresholding was based on an adaptive thresh-

old methodology with constant false alarm rate (CFAR). A mean statistic

of the binary detections was used to represent the result from the Otsu

threshold. Occupancy grid was used together with the static threshold to

represent the probabilistic result of object detection.

Both Otsu thresholding and static thresholding are employed for the

four experimental datasets. The Otsu threshold works well for the NTU,

xii
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RSYC and Girona datasets but failed drastically for the Pandan Reservoir

dataset. The static threshold works well across all the four experimental

datasets. The static threshold is more effective as the assignment of the

probability of a target given the sonar measurement is based on the deci-

sion statistic. Thus, measurement that marginally exceeds the threshold

does not yield high probability of an object. The probabilistic detection

decision was incorporated into the occupancy grid to attain the probability

of occupancy. The probability of occupancy for each grid cells can be in-

dependently updated as and when more measurements are attained. The

occupancy grid also proves to be an effective representation of the environ-

ment. The occupancy grid was also effective in localizing the AUV along

with the objects.
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Chapter 1

Introduction

The object detection subsystem plays a crucial role in supporting the opera-

tions of an AUV and it is the foundation that leads to an obstacle avoidance

subsystem. Along with the command and control (C2) subsystem, it en-

sures the safety of the vehicle by detecting objects in the vicinity of the

AUV.

1.1 Background and Motivation

The STARFISH AUVs [1, 2] are a team of modular and low-cost au-

tonomous underwater vehicles (AUVs) with a design that supports exten-

sions to add heterogeneous capabilities. An open-architecture framework
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that includes mechanical, electrical and software interfaces was incorpo-

rated into the design of STARFISH AUVs. This allows users to easily

integrate their proprietary modules with the AUV and also permits the in-

sertion and swapping of software subsystems within the vehicle to alter any

desired aspect of the vehicle. In Fig. 1.1, we have a view of 2 STARFISH

AUVs called Redstar and Bluestar during one of the open water trials at

Selat Pauh, Singapore.

Figure 1.1: Redstar & Bluestar

An object detection subsystem serves to detect obstacles that are in

the vicinity of the AUV. Along with the obstacle avoidance, command and

control subsystems, it ensures that the AUV can safely execute and com-

plete its mission. There are many challenges with the implementation of
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an object detection subsystem for an AUV. The first challenge is in identi-

fication of a detection system. Typically for an AUV, object detection can

be achieved through acoustic and/or video imaging means. Acoustic sens-

ing is more suitable for in-water operations as compared to video imaging

sensing. This is primarily because sound waves travel further in water, and

thus it allows for further sensing range.

There are various types of acoustic sensors such as echosounder, sector

scanning sonar, multibeam sonar and forward looking bathymetry sonar.

Current approaches mainly rely on the implementation of a multibeam

sonar as it is able to yield readily interpretable images. In the STARFISH

AUVs [1, 2], the considerations for implementing the sector scanning sonar

over a multibeam sonar are:

Data The data output for a sector scanning sonar for each bearing

ensonification is an array, with its array size dependent on a

configured range or resolution. A multibeam sonar typically

yields readily interpretable images but at much higher data

rate.

Size The sector scanning sonar is more compact in terms of me-

chanical dimensions and integrates comfortably in the nose

module of the STARFISH AUV.

Power The sector scanning sonar consumes less operating power.

3
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The next challenge is to develop a reliable object detection subsys-

tem. The object detection subsystem typically consists of detection and

representation methodologies. The detection methodology is responsible

to process and analyze the sonar data to determine whether an object is

present or absent. The representation methodology is firstly used to lo-

calize the position of the AUV. Secondly, it is used to map and represent

the environment. The motivation is to determine suitable detection and

representation methodologies that can be employed for an AUV using a

sector scanning sonar.

An AUV can be deployed in various types of operating environments

from a confined water facilities to an open water environment. Thus, an-

other motivation is to achieve an effective and reliable object detection

using a sector scanning sonar across as many operating environments as

possible.

1.2 Contributions

• We propose annular statistics instead of radial statistics and im-

plement the computation of background statistics based on annular

statistics. We introduce the decision statistic which represents the

difference between a measurement and its respective background es-

timate.
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• We adopt the formulation of a threshold based on an adaptive thresh-

olding methodology with constant false alarm rate (CFAR). We com-

pute the probability of a target as a function of the decision statistic.

We are then able to make probabilistic statement of object detection.

• We adopt the formulation of occupancy grid as a representation method-

ology. We use the occupancy grid to map and represent the environ-

ment along with the localization of the AUV and objects.

• We incorporate the probabilistic detection decision from the static

threshold into the occupancy grid to develop an object detection sub-

system.

• We analyze the results of object detection using a sector scanning

sonar from several experimental datasets at different operating envi-

ronments for both static and dynamic setups. We also benchmark

the results using static thresholding against Otsu thresholding and

median statistics.

1.3 Literature Review

The simplest sonar detection problem is to decide from the return of a

sonar ping whether an object is present or not. In a sonar measurement,
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the representation of an object is ideally a signal reading with an ampli-

tude higher than the background. However, the sonar measurement is also

riddled with noise from various sources (i.e. thermal noise, electrical noise,

acoustic noise and multipath reverberations).

The ability for any sonar to decide whether an object has been detected

or not begins with detection theory. It is in detection theory where binary

and/or probabilistic statements can be made about whether objects are

detected or not. The simplest approach to discriminate an object from its

background is using static thresholding. If the signal’s amplitude from the

sonar measurement exceeds the threshold value, it would be an indication

of an object. If the threshold is set to a low value, the thresholding method

potentially yields high false alarm. On the other hand, if it is set to a high

value, valid objects are easily missed. These are the drawbacks to static

thresholding.

A variant of static thresholding is the Otsu thresholding [3]. The

thresholding method is based on the zeroth-and the first-order cumula-

tive moments of the gray-level histogram. The numbers of gray-level can

be mapped to the dynamic range of the sonar measurements. Assuming

a bimodal histogram, this method attempts to determine a threshold, Z,

that can be used to discriminate the 2 modes; with one of the mode repre-

senting the background data while the other mode is of the foreground or

object(s). In [4], the authors indirectly implemented an algorithm similar
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to Otsu thresholding. The authors first create a smoothed histogram of the

data and attempt to determine the modes of the distribution. Depending

on the number of modes and their potential representation of low and high

echo return strength, a threshold value between the modes will be used for

static thresholding.

A double or 2-level thresholding can be employed to extend the concept

of static thresholding. Measurement above the high threshold and below

the low threshold are classified respectively as an object and background.

Measurement between the low and high thresholds can be classified as ob-

ject only if there adjacent measurement that are classified as object. In [5],

the author implemented a 2-level thresholding on the measurement data for

object detection. However, it suffers similar drawbacks of static threshold-

ing where there are potentially false alarms and missed targets. The other

approach is adaptive/dynamic thresholding [6, 7]. In addition, the concept

of constant false alarm rates (CFAR) [6] was introduced. The objective of

the adaptive thresholding is to attain a constant false alarm rate despite

varying interference power levels. In [6], the authors proposed an adaptive

threshold estimated based on the standard deviation of a background data

along with along a scaling constant. The scaling constant was estimated

based on a desired probability of false alarm.

Several other CFAR variants such as Cell Averaging CFAR (CA-CFAR),
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Smallest Of CFAR (SO-CFAR), Greatest Of CFAR (GO-CFAR) and Vari-

able Index CFAR (VI-CFAR) [8, 9, 10, 11] can be easily found. However,

most of the literature and applications of CFAR are inclined towards radar

processing rather than sonar processing. Radar easily has range detec-

tion from 10km to 100km while the sector scanning sonar used on the

STARFISH AUVs [1, 2] only has a maximum range of 75m. Radar then

has the opportunity for more measurements while approaching a target.

CFAR algorithms easily rely on more than 100 measurements for a good

approximation of background statistics. We can increase the resolution of

the sonar measurement to increase the number of measurements. However,

resolution of less than 1m would not provide any other advantages in the

interest of object detection and avoidance.

In [12], the authors firstly filtered the measurement data using a sliding

window algorithm, which is an algorithm similar to the CA-CFAR. This

was followed with a Otsu gray-level thresholding on an image sequence.

In a subsequent paper, [13] firstly filtered the measurement data using a

1-level intensity thresholding based on the mean and standard deviation

of the measurement data. Then, a fuzzy detector was applied on the pre-

processed measurement data for object detection. Image processing was

further applied on frame sequences. Image processing techniques for object

detection have been observed on several sonar-related literature [14, 12, 13].

Image processing techniques are employed on a sequential set of scanline
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measurements collated as an image. These techniques are computationally

expensive in terms of processing time and memory allocation. On top of

that, the collation of a sequential set of sonar pings decreases the real-

timeness of the object detection process.

In addition to the object detection subsystem, there should be means

to map and represent the operating environment. In [15], the author intro-

duced occupancy grid to represent a map of the environment in an evenly

spaced cell manner. Based on the location of the AUV, bearing and range

of sonar ensonification, the measurements are mapped to the respective

x-y positioning of the occupancy grid. In each cell, information pertain-

ing to occupancy is stored. Whenever a cell is ensonified by the sonar, its

probability of occupancy is updated based on the cell’s object detection

methodology.

1.4 Thesis Layout

Chapter 2 introduces the tools and methodology employed for the develop-

ment of an object detection system. In the first section, the Tritech Micron

DST sector scanning sonar [16] along with the acquisition mechanics of the

scanline measurement will be introduced. The subsequent sections will be

on detection and representation methodologies that can be employed.
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The Otsu threshold [3] and static thresholding based on an adaptive

thresholding methodology with constant false alarm rate (CFAR) [6] will be

introduced as possible detection methods. The representation methodology

will outline how the occupancy grid can be used to represent the operating

environment of the AUV along with its relations to the sonar measurement.

The probabilistic formulation of its grid cells to store the probability of

occupancy will also be presented.

Chapter 3 and Chapter 4 present a static experimental dataset collected

respectively at Nanyang Technological University (NTU) and Republic of

Singapore Yacht Club (RSYC). In this setup, a stationary sector scanning

sonar was deployed to ensonified potential static targets both at NTU and

RSYC.

Chapter 5 presents an experimental dataset collected with the sector

scanning sonar integrated on STARFISH AUV at Pandan Reservoir. In

this setup, the sector scanning sonar was ensonifying the embankments

and static buoys. Chapter 6 explores the experimental dataset collected by

University of Girona [17]. The Girona dataset consists of a dynamically

moving AUV scanning the marina’s embankment.

We discuss the findings and results comparing the implementation us-

ing the Otsu threshold and the adaptive threshold for the experimental

10



Introduction

datasets. There are also discussion on the background statistics, measure-

ment statistics, probability of a target given a single measurement, proba-

bility of occupancy given the current measurement, occupancy grid and the

effectiveness of the respective threshold. Lastly, conclusion and potential

future works are discussed in Chapter 7.

1.5 List of Publication

1. J. L. Chew and M. Chitre, “Object detection with sector scanning

sonar,” in OCEANS 2013 IEEE - San Diego, Sept 2013.
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Chapter 2

Tools and Methodology

2.1 Sector Scanning Sonar

We introduce the Micron DST sector scanning sonar [16] that is inte-

grated on STARFISH AUVs [1, 2]. The understanding of the scanline

measurement along with information pertaining to annular statistics, deci-

sion statistic and Receiver Operating Characteristic (ROC) are presented.

2.1.1 Micron DST

We are using the Micron DST sector scanning sonar by Tritech Interna-

tional on STARFISH AUVs. The experiments at NTU, RSYC and Pandan

Reservoir were also conducted using the Micron DST sector scanning sonar.
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Figure 2.1: Micron DST sector scanning sonar

It is more compact in terms of mechanical dimensions and requires less

operating power as compared to other sonars such as the multibeam and

forward looking bathymetry sonars. The specifications of the Micron DST

sector scanning sonar is as follows:

Frequency Chirping between 650kHz to 750kHz

Vertical beamwidth 35◦

Horizontal beamwidth 3◦

Range Settings from 2m (6 ft) to 75m (250 ft)

Power requirements 12V DC 50V @ 4VA (Average)

Data communication RS 232 (via modem up to 115kb/s)

Weight in air 324 g

Weight in water 180 g

Table 2.1: Specifications of the Micron DST sector scanning sonar
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2.1.2 Scanline Measurement

A sector scanning sonar ensonifies a sector of an area where the sonar is

directed at for a given bearing, range and resolution. The range and res-

olution of the sector scanning sonar is usually represented by the number

of range bins. Thus, each element in the scanline measurement, s(θ, i),

corresponds to the intensity return for a given bearing θ and range bin i.

Based on the location of the AUV, bearing and range of sonar ensonifica-

tion, we can determine the respective x-y positioning of the occupancy grid

cell and update it with the latest measurement. This approach is easily

implementable for a static setup and is also extensible to a dynamic setup

where the sonar is mounted on a moving platform or vehicle.

Figure 2.2: Methodology to determine annular statistics

Fig. 2.2 depicts a sector of grid cells for a statically deployed sector

scanning sonar. The Micron DST sector scanning sonar is mechanically

steered. Thus, scanline measurements are progressively acquired according

to bearing. The desired cell along with its neighbouring cells depicted

respectively as blue-colored grid cell and red-colored crosshatch dots cells in
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Fig. 2.2 form the scanline measurements acquired for a particular bearing.

Even though the scanline measurements are acquired with regards to a

particular bearing, the annular statistics according to range or bin are of

more statistical importance. This is primarily because the ensonification of

an area at a particular range or bin typically are of similar statistics. The

scanline measurements for a similar range or bin would suffer from the same

2-way propagation loss and similar processing gain would be applied. The

blue-colored grid cell and the green-colored checkerboard cells in Fig. 2.2

form the annular statistics for a particular range bin. The green-colored

checkerboard cells have been depicted to only extend across several bearings

to maintain clarity to the figure. The green-colored checkerboard cells

should extend across the bearings where the background sector is identified.

The annular statistics should be computed for a background sector free of

any objects. Otherwise, the background estimate for the computation of

the decision statistic in Section 2.1.3 might be higher.

2.1.3 Decision Statistic

The decision statistic S̃ is the difference between measurement s(θ, i) and

its respective background estimate sB(i) at range bin i. It is defined as

follows:

S̃ = s(θ, i)− sB(i) (2.1)
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The decision statistic S̃ is affected by the choice of dynamic range. The

Micron DST sonar can be configured for either a 4-bit or 8-bit dynamic

range that respectively yields measurements between 0 to 15 and 0 to 255.

We consider the 8-bit dynamic range as it provides more measurement

resolution. In addition, the 8-bit dynamic range potentially allows for a

higher S̃. The sonar measurements are logarithmic with the intensity return

where the lowest and highest measurement for either the 4-bit or 8-bit

dynamic range still map to 0 dB and 80 dB. Thus, the decision statistic is

effectively a ratio and therefore it is scale invariant.

The decision statistic S̃ is used to determine PT which is the probabil-

ity of a target given a single measurement. PT will be presented in Sec-

tion 2.2.2. If we consider annular statistics as in Fig. 2.2, the measurement

s(θ, i) would be the blue-colored grid cell while the respective background

estimate sB(i) could be the mean or median of the green-colored checker-

board cells. In this thesis, we consider the background estimate sB(i) to

be the median of the annular background statistics.

2.1.4 Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) or simply ROC curve is a graph-

ical plot that is used to assess the performance of a sonar detector for an

object. It is a plot of probability of detection, PD, against the probability
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of false alarm, PFA. A perfect detector will have an ideal ROC curve that

start at the origin (0,0), go vertically up the y-axis to (0,1) and then hori-

zontally across to (1,1). This means that we can attain unity PD for a zero

PFA. A good detector would be somewhere close to this ideal.

Firstly, we collect the measurements of an object at range bin i. We

then sequentially vary a threshold value from the lowest possible measure-

ment value to its maximum possible value and note the number of mea-

surements of the valid object that exceeds the threshold. The PD at each

threshold value is computed as the number of measurements that exceeds

the threshold value divided by the number of measurements of the valid

object. The computation of PFA is similar to the computation for the PD.

However, the measurements are from a non-object at similar range bin i.

Finally, we plot PD against PFA to obtain the ROC curve.

2.2 Detection Methodology

There are various methodologies that can be employed to decide whether

an object is present or otherwise. The idea is to be able to discriminate the

measurement against an estimated background noise. Examples with in-

creasing complexity include single/static thresholding, double thresholding

and adaptive thresholding. If single or double thresholding is considered,
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the difficulty lies with determining a threshold that adapts to the environ-

ment in accordance with a false alarm rate. An optimum threshold [8, 10]

can be achieved if only one is certain of the background noise. An exam-

ple of a single thresholding methodology that adapts to the environment is

the Otsu thresholding. However, Otsu thresholding is an image processing

methodology. In the implementation of an adaptive threshold, the back-

ground noise is typically estimated based on the neighbouring cells of the

measurement. On top of that, a scaling constant imbued with constant

false alarm is also incorporated.

2.2.1 Otsu Threshold

We introduce the Otsu thresholding [3] that attempts to determine a thresh-

old that discriminates the background and foreground modes. If a measure-

ment exceeds the threshold, a binary decision can be made stating that an

object is detected. Firstly, the measurements are represented in (L + 1)

levels. The number of measurements at each of the histogram bin, j, is

denoted by nj. Next, the probability distribution of the measurements are

determined from the normalized histogram as follows:

pj =
nj

L∑
j=0

nj

(2.2)
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where

nj is the number of measurements at the j-th level of the dy-

namic range

L is the maximum level of the dynamic range for the sonar

which is 255

Assuming that there is a threshold Z, the threshold divides the mea-

surements into background and foreground classes namely, C0 and C1.

Thus, C0 accounts for the measurements ranging from 0 to Z, while C1

accounts for measurements ranging from (Z + 1) to L. Then, the probabil-

ities of class occurrence can be determined as follows:

w0 =
Z∑

j=0

pj (2.3)

w1 = 1−
Z∑

j=0

pj (2.4)

The class mean levels can is determined as follows:

u0 =
Z∑

j=0

(j + 1)pj
w0

(2.5)

u1 =
L∑

j=Z+1

(j + 1)pj
w1

(2.6)

where
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w0 is the probability of occurrence for C0. It is also known as the

zeroth-order cumulative moment of the histogram up to the Z-

th level

w1 is the probability of occurrence for C1

u0 is the mean level for class C0

u1 is the mean level for class C1

The between-class variance is determined as follows:

σ2
B = w0w1(u1 − u0)2 (2.7)

Finally, the optimal threshold Z∗ is determined where the selected

threshold value would maximize the between-class variance.

Z∗ = arg max
0≤Z<L

σ2
B(Z) (2.8)

This thresholding method is typically used with an image processing

methodology where all the pixels of the given image are evaluated as a

whole. The data from a sector scanning sonar is only a scanline measure-

ment which is basically an array of measurements. Thus, we will need to

collate several adjacent and continuous scanline measurements to form a

sectorial image before we apply the Otsu thresholding methodology.
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2.2.2 Static Threshold

We introduce a threshold based on an adaptive threshold [6] methodology

incorporating a constant false alarm rate (CFAR). Firstly, we introduce

the formulation of the adaptive threshold. The adaptive threshold Z for

range bin i is constructed based on the estimate of the background statis-

tics, Xi, along with the number of background measurements, Ni, and a

threshold constant, K. If we were to consider the neighbouring bins as the

background statistics, it is assumed that the first order probability density

function of the background statistics Xi to be Rayleigh distributed. The

formulation of the adaptive threshold Z is as follows [6]:

Z = K

√√√√ 1

Ni

Ni∑
i=1

X2
i (2.9)

The threshold constant K can be computed based on a desired proba-

bility of false alarm, PFA as follows [6]:

K =

√[
(PFA)

− 1
Ni − 1

]
Ni (2.10)
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Assuming a Swerling III object model [18, 6], the probability of detec-

tion, PD can be determined as follows [6]:

PD =

(
X̄ + 2

X̄ + 2 + 2K2

Ni

)Ni
[

1 +

[
2K2X̄

(X̄ + 2)(X̄ + 2 + 2K
Ni

)

]]
(2.11)

where

X̄ is the average signal to noise ratio (SNR)

In [6], the authors considered the background statistics, Xi, to be from

neighbouring bins of the desired target bin and they are of similar heading

or bearing. This is illustrated with the desired bin being the blue-colored

grid cell while the neighbouring bins are the red-colored crosshatch dots

cells as depicted in Fig. 2.2. In this thesis, we consider annular statis-

tics where the desired target are compared with background statistics that

are of similar range bin. This is illustrated with the desired bin being

the blue-colored grid cell while the background bins are the green-colored

checkerboard cells as depicted in Fig. 2.2. We assume that the background

statistics Xi for our datasets to be Rayleigh distributed. Besides that, we

consider the median of the annular background statistics as the estimate of

the background noise. A higher number of background measurements, Ni,

improve the estimate of the background noise. This leads to an increase of

the probability of detection, PD. Based on the approach of annular statis-

tics, the size and the number of ensonifications of the background sector
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determine Ni. Thus, we can consider more ensonifications and a larger

background sector to improve the estimate of the background noise and

probability of detection. We use the background noise estimate to normal-

ize our decision statistic S̃ in (2.1).

We will not solely rely on the adaptive threshold Z to determine a

binary decision whether an object is indeed detected or not. We instead

compute PT which is the probability of a target given a measurement and

incorporate it into the formulation of occupancy grid which will be pre-

sented in Section 2.3. This allows us to make probabilistic statement of

object detection. We adopt the detection probability PD and X̄ in (2.11)

respectively as PT and the decision statistic S̃. This is because PD and PT

have similar formulation based on background statistics. In addition, we

also assume a Swerling III object model and Rayleigh distribution for the

background statistics. The advantage is that we will be able to compute

the PT of any target as a function of its detection statistic S̃. PT is defined

as follows:

PT =

(
S̃ + 2

S̃ + 2 + 2K2

Ni

)Ni
[

1 +

[
2K2S̃

(S̃ + 2)(S̃ + 2 + 2K
Ni

)

]]
(2.12)

PT is a function of the detection statistic S̃. The larger S̃ is, the higher

PT will be. As a larger dynamic range does not necessarily yield higher S̃

as explained in Section 2.1.3, PT might not be necessarily higher by merely
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increasing the dynamic range. In addition, the possible value for PT is

between 0 and 1 if we consider the 8-bit dynamic range.

The background sector can be identified during the preparatory stage

before the AUV executes the actual mission. Once we identify a background

sector and are certain of the desired PFA, the threshold constant K in (2.10)

can be pre-computed before the actual mission. PT in (2.12) can also be

pre-computed as a look-up table because we know that the possible values

for the decision statistic S̃ can only range from 0 to 255. The advantage is

that there is no need to store the measurement as the analysis of the static

thresholding can be made as soon as the measurement is acquired.

2.3 Occupancy Grid

An AUV subsystem for obstacle detection should include a means to map

and represent the operating environment of the AUV. This can for example

be done using occupancy grids [15] which represent the environment in an

evenly spaced cell manner. The representation of the environment with

grid cells is rather similar to how the elements in the scanline measurement

represent spatial information. In each cell, information pertaining to occu-

pancy is stored. Whenever a cell is ensonified by the sonar, the potential

of occupancy of the respective ensonified cells can be updated based on the

cell’s object detection methodology.
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We use the occupancy grid as a representation methodology for both

Otsu thresholding and static thresholding. However, the occupancy grid

for Otsu thresholding is of binary representation while it is of probabilistic

representation for static thresholding. There are many formulations for the

probability of occupancy. In this thesis, we adopt the formulation of the

log-odds ratio described in [19]. It is as follows:

l(t)x,y = log
P (mx,y|s(1:t)x,y )

1− P (mx,y|s(1:t)x,y )

= log
P (mx,y|s(t)x,y)

1− P (mx,y|s(t)x,y)
+ log

1− P (mx,y)

P (mx,y)
+ l(t−1)

x,y (2.13)

where

l
(t)
x,y is the log-odds ratio of P (mx,y|s(1:t)x,y ) at timestep t

s
(t)
x,y is the measurement of position x, y at timestep t

s
(1:t)
x,y is the measurements of position x, y from timestep 1 to

t

mx,y is the occupancy grid cell at position x, y

P (mx,y) is the probability of occupancy for position x, y

P (mx,y|s(t)x,y) is the probability of occupancy given the current mea-

surement for position x, y

P (mx,y|s(1:t)x,y ) is the probability of occupancy for position x, y condi-

tional on the measurements from timestep 1 to t

PO is the probability of an object present and we introduce

it as a simpler abbreviation for P (mx,y|s(1:t)x,y ) as in (2.14)

l
(t−1)
x,y is the log-odds ratio of the prior timestep t− 1

PO ≡ P (mx,y|s(1:t)x,y ) (2.14)
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The probability of occupancy P (mx,y) is set to a value of 0.5. This is

because we are unsure whether the grid cell is occupied or not. A value of

0.5 translates to a 50% chance of a grid cell being occupied. We adopt PT

in (2.12) as P (mx,y|s(t)x,y) because both of them are probabilities of a target

given a measurement. The initialization, l
(0)
x,y, is as follows:

l(0)x,y = log
P (mx,y)

1− P (mx,y)
(2.15)

2.4 Summary

The Otsu thresholding will require the collation of several scanline measure-

ments to form a sectorial image before the threshold can be determined.

We then obtain the detection results of the measurements as a binary value.

There are usually several iterations of Otsu thresholding as more sectorial

image are obtained. The result of the occupancy grid for Otsu thresholding

would be the mean of all the results.

We use the occupancy grid as a probabilistic representation method-

ology together with the static thresholding. The result of the occupancy

grid for static thresholding would be the most recent computed value of

PO. The sequence of steps and information that we use to compute PO are

as follows:

1. Initialize the occupancy grid.
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2. Determine a desired probability of false alarm, PFA.

3. Identify a background sector during the calibration or preparatory

stage of the mission.

4. Compute sB(i) which is the background estimate for range bin i. We

compute the median of Xi which is the annular background statistics

as explained in Section 2.1.3 and Fig. 2.2.

5. Compute threshold constant K in (2.10).

6. Attain a measurement s(θ, i).

7. Compute the decision statistic S̃ in (2.1).

8. Compute PT which is the probability of a target given a measure-

ment as in (2.12).

9. Adopt PT as P (mx,y|s(t)x,y) into occupancy grid as in (2.13).

10. Compute PO which is probability of an object present as in (2.14).
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Chapter 3

Experimental Data — Static

Setup at NTU

3.1 Experimental Setup

An experiment with the Micron DST sonar was conducted at NTU’s diving

pool to investigate the capability of the sonar in discriminating static ob-

jects of different elevations. The diving pool provides a structured and con-

trolled environment compared to typical environments where AUVs tend to

be deployed. The advantages are that we can have a controlled placement

of the objects and be certain of the dimension of the diving pool along with

the exact location of the sonar. The objects placed in the diving pool are

as follows:
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Object A An air tank placed at the pool bottom, with a sur-

face marker buoy (SMB) hovering 2 meters from

pool bottom.

Object B An air tank placed at the pool bottom.

Object C A buoy with a SMB hovering 3 meters from pool

bottom, anchored with a base plate.

The dimension of the NTU’s diving pool along with the experimental

setup is depicted in Fig. 3.1 while an actual photograph of the experimental

setup is in Fig. 3.2.

(a) Top view

(b) Side view

Figure 3.1: Experimental setup at NTU’s diving pool
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Figure 3.2: Photograph of the experimental setup at NTU’s diving
pool

Figure 3.3: Median result of the measurements at NTU’s diving pool

The boundary of the diving pool is depicted with black lines in Fig. 3.3.

A ring of artifacts is observed in front of the sonar. The specular returns

could be due to the reflections from the pool’s bottom as the sonar was

placed near the pool’s bottom. There are also numerous artifacts detected
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outside the boundary of the walls. It is suspected that these are due to

multipath reflections. The slope behind the objects is also detected. The

portion of the frontal slope that is parallel to the sonar has the highest

amplitude because the ping of the sonar is reflected directly back to the

sonar. As for other portion of the slope, the ping of the sonar might be

reflected at other directions. This is the reason for the decrease of amplitude

at other portion of the slope.

3.2 Measurement Statistics

The measurements of the objects identified from the experiment are pre-

sented in Fig. 3.4 and Table 3.1.

Figure 3.4: Measurements of the objects at NTU’s diving pool
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Object

A B C

Distance (m) 7.6 8.2 8.7 m

Bearing (◦) 113.5 127 94

Bin 15 16 17

Min 65 49 51

Median 92 85.5 81

Max 114 111 117

Table 3.1: Setup information and measurement statistics of the objects
at NTU’s diving pool

The measurements for all the objects are between 49 and 117. Object

A has a median measurement that is slightly higher than the median mea-

surement of object B. This is expected because object A has an additional

SMB that is filled with air. Although object B and C are of different tar-

gets, the median measurement for object C is at 81 which is rather similar

with object B. This could be because the disc is easily ensonified as it was

elevated from the pool’s bottom. Occasionally higher measurements were

also observed for object C due to the increase of surface area ensonified as

the disc rotates.

3.3 Receiver Operating Characteristic

Based on the measurements of the objects in Fig. 3.4, we can attain the

ROC curves for the objects as presented from Fig. 3.5 to Fig. 3.7. All the
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objects have desirable ROC curves where high probability of detection can

be achieved with rather low probability of false alarm.

Figure 3.5: ROC of object A at NTU’s diving pool1

Figure 3.6: ROC of object B at NTU’s diving pool2

1The fit used is PD = 1 + [−0.8031× exp(−1605× PFA)].
2The fit used is PD = 1 + [−0.6324× exp(−1259× PFA)].
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Figure 3.7: ROC of object C at NTU’s diving pool3

3.4 Otsu Thresholding

The Otsu threshold in (2.8) is computed based on the statistics of several

scanline measurements that were collated to form a sectorial image. We

collated 30 scanline measurements to form the first sectorial image with

a field of view of 90◦. This is because the sector scanning sonar begins

its ensonification looking ahead followed with a 90◦ rotation towards the

starboard. Subsequently, we collated 60 scanline measurements to form a

sectorial image with a field of view of 180◦ that spans all the way from

starboard of the sonar till its portside. There were 9 iterations and the

3The fit used is PD = 1 + [−0.7759× exp(−1234× PFA)].
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thresholds determined are presented in Fig. 3.8. The median threshold

determined is at the value of 62.

Figure 3.8: Otsu threshold for NTU dataset

3.4.1 Binary Occupancy Grid

The mean result of the binary occupancy grid is in Fig. 3.9. It is observed

that the surrounding walls are easily detected with mean result close to

100% detection. The mean detection of the object A, B and C respectively

are 100%, 94% and 68%. The portion of the frontal slope that is parallel

to the sonar is easily detected with mean detection close to 100%. There is

minimal detection for the slope towards the portside of the sonar although

it has mean detection ranging from 0% to 100%. The slope towards the

starboard has mean detection ranging from 20% to 100%. In addition, the
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artifacts between the sonar and the objects are filtered off by the thresh-

olding. Artifacts are also observed beyond the boundary of the diving pool.

The statistics of the binary detections are summarized in Table 3.2.

Figure 3.9: Mean result of the binary occupancy grid with Otsu thresh-
olding for NTU dataset

In Fig. 3.10 to Fig. 3.12, we analyze the measurements of the objects

against their respective Otsu threshold to understand the results of binary

detection.

Figure 3.10: Binary detection of object A at NTU’s diving pool
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Figure 3.11: Binary detection of object B at NTU’s diving pool

Figure 3.12: Binary detection of object C at NTU’s diving pool

Object

A B C

No. of Positive Detection 44 34 25

No. of Measurements 44 36 37

Percentage (%) 100 94 68

Table 3.2: Statistics of binary detection for the target points identified
for NTU dataset
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3.5 Static Thresholding

3.5.1 Background Statistics

Firstly, we analyze the statistics of the background noise that are free of

objects. The background statistics from bin 15 to 17 are of concern as these

are the bins where objects A, B and C lie. Note that from the 18th bin

onwards in the selected sector is the statistics of the diving pool’s left wall

and multipath reflections. In Fig. 3.13, we can identify the sector to the left

of the sonar image as a suitable sample dataset. The identified background

sector is labelled with a red-colored arc. In Fig 3.14, it can be observed

at bin 8 that there is a peak in the noise level. There is a ring of artifacts

observed between the sonar and the objects as in Fig. 3.13.

Figure 3.13: Background sector identified with the red-colored arc at
NTU’s diving pool
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Figure 3.14: Background statistics of NTU’s diving pool

Subsequently, assuming PFA is set for 1% with the number of back-

ground statistics, Ni, as 196, the threshold constant K in (2.10) can be

determined as:

K =

√[
(PFA)

− 1
Ni − 1

]
Ni

=

√[
(0.01)−

1
196 − 1

]
196

= 2.1586 (3.1)

3.5.2 Decision Statistic

The decision statistic S̃ of the objects at NTU’s diving pool is estimated

as in (2.1). In Fig. 3.15, we present the computed S̃ of all the objects.

40



Experimental Data — Static Setup at NTU

Figure 3.15: Decision statistic of the objects at NTU’s diving pool

The S̃ for objects A and B range from 40 to 102. Objects A and

B should have high PT . However, object C has its S̃ ranging from 2 to

114. Object C might have several measurements that lead to low PT . The

computed median S̃ of all the objects is around 70. These should generally

still lead to high PT . The S̃ of the objects is summarized in Table 3.3.

Target
S̃

Min Median Max

A 40 75.5 97

B 46 70 102

C 2 75 114

Table 3.3: Statistics of S̃ for the objects at NTU’s diving pool
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3.5.3 Probability of Target

Figure 3.16: PT for NTU dataset

Assuming PFA is set for 1% with the number of background statistics, Ni,

as 196, PT in (2.12) is computed as in Fig. 3.16. Based on S̃ of the objects

in Section 3.5.2, the measurements yield median PT of more than 98%.

These should lead to high PO. Only object C has its PT extending lower

towards 21%. If there is a significant number of continuous measurements

that lead to low PT , object C might have low PO. The PT for the objects

can be summarized as follows:

Target
PT

Min Median Max

A 0.9702 0.9905 0.9941

B 0.9767 0.9891 0.9946

C 0.2122 0.9904 0.9957

Table 3.4: Statistics of PT for the objects at NTU’s diving pool
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3.5.4 Occupancy Grid

The result of the occupancy grid is in Fig. 3.17. All the targets and the

walls of the diving pools are 100% detected. Most of the artifacts between

the sonar and the objects are filtered out using the static thresholding. The

slope behind the objects is partially detected as there is a portion of the

slope between the objects and the wall that is not detected. The portion

of the frontal slope that is parallel to the sonar is 100% detected. However,

the slope to portside of the sonar is not detected. In addition, the artifacts

between the sonar and the objects are filtered off by the thresholding. There

are also less artifacts observed beyond the boundary of the diving pool as

compared to the result using Otsu thresholding in Fig. 3.9.

Figure 3.17: Result of occupancy grid with static thresholding for
NTU dataset

We analyze the first 20 measurements of each objects against their

respective S̃, PT and PO from Fig. 3.18 to Fig. 3.20. The PT and PO for
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objects A and B are high throughout. The fluctuations of S̃ for object C

result in fluctuations of PT . However, their PO was high throughout as

most of its initial measurements result in high PT .

Figure 3.18: Plot of PT , S̃ and PO for object A at NTU’s diving pool

Figure 3.19: Plot of PT , S̃ and PO for object B at NTU’s diving pool
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Figure 3.20: Plot of PT , S̃ and PO for object C at NTU’s diving pool

3.6 Summary

The results and observations using Otsu thresholding and static threshold-

ing can be summarized in Table 3.5.

45



Experimental Data — Static Setup at NTU

Otsu Thresholding Static Thresholding

Threshold

The median threshold
determined over 9

iterations is at the value of
62.

Several spikes was observed
for the background

estimate. One of the initial
spike is due to the ring of
artifacts observed between
the sonar and objects. The
other spikes were near the

boundary of the pool.

Detection

Objects A, B and C
respectively have mean
detection of 100%, 94%

and 68%.

Objects A, B and C have
median PT of more than
98% that results in PO of

100%.

All the walls are detected.

The portion of the frontal slope parallel to the sonar
was 100% detected.

The artifacts between the sonar and the objects were
filtered off by the threshold.

Others

Several scanline
measurements have to be

collated to form a sectorial
image. In a static setup, it

is easy to collate the
scanline measurements.

Background sector was
difficult to identify. The
background sector might

have objects that can cause
inaccurate background

estimate.

Table 3.5: Summary of detection methods for NTU dataset
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Experimental Data — Static

Setup at RSYC

4.1 Experimental Setup

An experiment with the Micron DST sonar was conducted at Republic of

Singapore Yacht Club (RSYC) to investigate the measurement statistics of

objects detection. RSYC serves as a marina for vessels of various sizes. Al-

though it is situated next to a busy ferry port and an open-water anchoring

site with quite a busy waterway, the inner area of the marina should still be

rather calm for objects detection with the sector scanning sonar. Another

key consideration is that the marina truly serves as an environment where

AUVs can be operationally deployed. It is in such environments where
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objects detection and avoidance plays a critical factor in ensuring a safe

operation for the AUVs. An overlay of a sonar image on the satellite view

of the potential objects can be seen in Fig. 4.1.

Figure 4.1: Overlay of FLS image with satellite view of potential ob-
jects at RSYC

Objects with a prefix ‘S’ are vessels that are present at the marina

during the experiment. These are not objects intended to be ensonified.

However, the draft and bottom-hull of these vessels might be ensonified

and appear as significant objects in the measurements. Objects with a

prefix ‘P’ are pier structures at the marina. These pier structures are

of floating structures and should not appear as significant objects in the

measurements. These pier structures are actually supported by rigid beams

labelled with prefixes ‘L’ and ‘R’. The objects with a prefix ‘L’ and ‘R’ are
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respectively to the left and right of the sonar. These objects should easily

be ensonified and appears as significant objects in the measurements.

The sonar was placed at 3m depth with the estimated depth of the

test site is ∼6m. The ensonification range was configured for 75m with

65 measurement bins. Along with a vertical beamwidth of 35◦, the sonar

signal will hit the water surface or the bottom at the horizontal distance of

∼9.5m from the sonar or at the 11th measurement bin. It is expected that

the measurements will be affected by reverberations.

4.2 Measurement Statistics

The measurements of the objects with prefixes ‘L’ and ‘R’ are presented in

Fig. 4.2. As the objects are farther away from the sonar, their measure-

ments can be observed to be reducing in amplitude.

Figure 4.2: Measurements of the objects at RSYC
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4.3 Receiver Operating Characteristic

Based on the measurements of the objects in Fig. 4.2, we can attain the

ROC curves for the objects as presented from Fig. 4.3 to Fig. 4.6. Object

L1 to L6 along with R1, R2 and R3 have desirable ROC curves where high

PD can be achieved with rather low PFA. As objects are farther away, their

ROC curves become less desirable. This can be observed for R4 and R5

that have less desirable ROC curves compared to L1. L7 is farthest away

and has a linear ROC curve that implies a random guess of detection. All

objects except for L7 should have good performance with the detector.

Figure 4.3: ROC of object L1 at RSYC1

1The fit used is PD = 1 + [−0.7569× exp(−59.16× PFA)].
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Figure 4.4: ROC of object L7 at RSYC2

Figure 4.5: ROC of object R4 at RSYC3

2The fit used is PD = PFA.
3The fit used is PD = 1 + [−0.9282× exp(−17.48× PFA)].
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Figure 4.6: ROC of object R5 at RSYC4

4.4 Otsu Thresholding

The Otsu threshold in (2.8) is computed based on the statistics of several

scanline measurements that were collated to form a sectorial image. We

collated 30 scanline measurements to form the first sectorial image with

a field of view of 90◦. This is because the sector scanning sonar begins

its ensonification looking ahead followed with a 90◦ rotation towards the

starboard. Subsequently, we collated 60 scanline measurements to form a

sectorial image with a field of view of 180◦ that spans all the way from

starboard of the sonar till its portside. There were 18 iterations and the

4The fit used is PD = [0.7762× exp(0.2553×PFA)] + [−0.765× exp(−6.943×PFA)].

52



Experimental Data — Static Setup at RSYC

thresholds determined are presented in Fig. 4.7. The median threshold

determined is at the value of 47.

Figure 4.7: Otsu threshold for RSYC dataset

4.4.1 Binary Occupancy Grid

The mean result of the binary occupancy grid is in Fig. 4.8. Object L7 that

is farthest away from the sonar is not detected using Otsu thresholding

with a mean result of 0%. R5 is the second farthest object and it is barely

detected with a mean detection of 8%. All other objects are easily detected

with mean detection exceeding 50%. L1, R1, R2 and R3 have a mean

detection of 100%. The mean detection decreases as the object is farther

away. R4 and R5 that are farther away from R1, R2 and R3 have a mean

detection of 76% and 8%. L2 to L6 have mean detection ranging from

68% to 93%. The results of the mean detection described earlier for object
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L1 to L6 is based on a specific grid cell. In Fig. 4.8, we observe that

there is annular spreading of the measurements for the objects. Those

measurements are with mean detection at 100%. This implies that objects

can still be easily detected. However, objects L7 and R5 that are farther

away still have lower measurements that might impede their detection.

Figure 4.8: Mean result of the binary occupancy grid with Otsu thresh-
olding for RSYC dataset

In Fig. 4.9 to Fig. 4.13, we analyze the measurements of the objects

against their respective Otsu threshold to understand the results of binary

detection.
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Figure 4.9: Binary detection of object L4 at RSYC

Figure 4.10: Binary detection of object L5 at RSYC
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Figure 4.11: Binary detection of object L7 at RSYC

Figure 4.12: Binary detection of object R1 at RSYC
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Figure 4.13: Binary detection of object R5 at RSYC

The observations made on the binary detection of the objects are as

follows:

L1, L2, L3, L5 Most measurements are higher than the threshold

with some measurements being marginally close to

the threshold.

L4, L6, R4 Most measurements are higher than the threshold

but some measurements are lower than the thresh-

old.

L7 All the measurements are lower than the threshold.

L7 isn’t detected using the Otsu threshold.

R1, R2, R3 All the measurements exceed the threshold.

R5 Most measurements are lower than the threshold

with only several measurements exceeding the thresh-

old. R5 isn’t detected using the Otsu threshold.
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4.5 Static Thresholding

4.5.1 Background Statistics

Firstly, we analyze the statistics of the background noise that are free of

objects. In Fig. 4.14(a), we can identify the sector to the left of the sonar

image as a suitable sample dataset.

(a) Background sector

(b) Background statistics

Figure 4.14: Background noise of RSYC
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In Fig. 4.14(b), a spike corresponding to the transmission of the sonar

ping can be observed at bin 3. The amplitude of the measurement is grad-

ually increasing from the 9th bin until the 30th bin. This corresponds

to where reverberations are expected as the sonar was only placed at 3m

depth while the depth of the test site is ∼6m. After the 30th bin, the

background statistics is rather constant throughout. There are also some

spikes observed between bin 12 to 15. These are indications that there are

potential objects in those bins or there are higher intensity returns from

the noise clutter.

Assuming PFA is set for 1% with the number of background statistics,

Ni, as 8, the threshold constant K in (2.10) can be determined as:

K =

√[
(PFA)

− 1
Ni − 1

]
Ni

=

√[
(0.01)−

1
8 − 1

]
8

= 2.4952 (4.1)

4.5.2 Decision Statistic

The decision statistic S̃ of the objects at RSYC is estimated as in (2.1).

In Fig. 4.15, we present the computed S̃ of all the objects. R1, R2 and

R3 are objects that are less than 40m away from the sonar with median

detection statistic of more than 100. L1 is also less than 40m away but its
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median detection statistic is only around 60. These objects are expected

to easily have high PT . L2, L4, L5, L6 and R4 are objects with decision

statistic ranging between 0 and 61 with a median of around 30. These

objects should still have high PT .

Figure 4.15: Decision statistic of the objects at RSYC

L4 also has several decision statistic at 0 and negative decision statistic.

Since most of the decision statistic is more than 20, L4 should still have

high PT . R5 has several detection statistic nearing and at 0 while L4

and L7 have several negative detection statistic. This is because we were

conservative when we considered the median background statistics as the

background estimate. L3 and R5 are almost at the same distance but the

decision statistic for L3 is slightly higher than R5. This means that L3

is likely to have higher PT than R5. Besides that, the fluctuations for

L4 encompasses the fluctuations for R5. However, most of the detection
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statistic for L4 is more than 25 but it is mostly less than 25 for R5. This

means that L4 is still likely to have higher PT than R5. Since L4 have

several negative detection statistic, L4 might have lower PT than R5 if the

last few remaining detection statistic near 0 or becomes negative.

4.5.3 Probability of Target

Assuming PFA is set for 1% with the number of background statistics, Ni,

as 8, PT in (2.12) is computed as in Fig. 4.16.

Figure 4.16: PT for RSYC dataset

Based on the decision statistic of the objects as in Fig. 4.15, the PT for

all the objects can be summarized as in Fig. 4.17. The observations made

earlier in Section 4.5.2 about the PT for objects L1, R1, R2 and R3 are as

expected. All other objects have PT ranging from 1% to 90%. Objects L2,
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L3, L4, L5, L6 and R4 have most of the PT more than 75%. L7 and R5

that are farther away also have PT ranging from 1% to 78% even though

their decision statistic was generally less than 30. This is because PT goes

up rapidly with S̃ and then saturates. The distribution of their PT seems

rather spread out. All the objects except for L7 and R5 should then have

high PO. Objects L7 and R5 might have low PO.

Figure 4.17: PT of the objects at RSYC

4.5.4 Occupancy Grid

The result of the occupancy grid is in Fig. 4.18. All the objects are detected

with PO of 100%. However, there were more artifacts observed to the

starboard of the sonar.
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Figure 4.18: Result of occupancy grid with static thresholding for
RSYC dataset

We analyze the measurements of the objects against their respective S̃,

PT and PO from Fig. 4.19 to Fig. 4.25.

Figure 4.19: Plot of PT , S̃ and PO of object L1 at RSYC
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Figure 4.20: Plot of PT , S̃ and PO of object L4 at RSYC

Figure 4.21: Plot of PT , S̃ and PO of object L6 at RSYC
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Figure 4.22: Plot of PT , S̃ and PO of object L7 at RSYC

Figure 4.23: Plot of PT , S̃ and PO of object R1 at RSYC
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Figure 4.24: Plot of PT , S̃ and PO of object R4 at RSYC

Figure 4.25: Plot of PT , S̃ and PO of object R5 at RSYC

The observations made on the S̃, PT and PO are as follows:

L1 The detection statistic average more than 50. This

results in PT exceeding 80% and PO remains high

throughout.
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L2, L5, R4 The detection statistic fluctuates between 0 and slightly

more than 50. Although there is a slowly decreasing

trend with the decision statistic and PT , several of

the initial decision statistic already resulted in high

PO that subsequently remained high throughout.

L3 The detection statistic gradually increases nearing

40 and eventually fluctuates around 30. PO gradu-

ally increases and remains high throughout.

L4 The detection statistic initially increases but there

was a sudden decrease. The decrease resulted in

very low PT . After the 10th measurement, the de-

tection statistic gradually increases nearing 40. PT

and PO eventually became high.

L6 The detection statistic initially fluctuates between 1

and 50. These result in fluctuations for PT ranging

from 5% to 95%. The detection statistic gradually

increases nearing 50. Several initial decision statistic

resulted in high PO that subsequently remained high

throughout.

L7 The detection statistic range from marginally near

0 to 30. Several of the initial decision statistic were

close to 20 and these resulted in PT of more than

80%. PO remained high throughout because there

were subsequent decision statistic that results in high

PT .

R1, R2, R3 The detection statistic throughout was with a mean

of 100. PT and PO remain high throughout.

R5 The detection statistic fluctuates between 0 and 25.

After the 18th measurement, the decision statistic

was slowly increasing. These result in several high

PT and PO eventually became high.
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4.6 Summary

Both approaches were able to detect all the objects except for Otsu thresh-

olding that was unable to detect L7 and R5 that are farther away with mea-

surements marginally near the background noise level. The Otsu thresh-

olding yields a cleaner image compared to the result based on the static

thresholding. There were artifacts observed in the starboard of the sonar

using static thresholding. However, this was consistent with the statis-

tics of the actual measurements. The results and observations using Otsu

thresholding and static thresholding can be summarized in Table 4.1.

Otsu Thresholding Static Thresholding

Threshold

The median threshold
determined over 18

iterations is at the value of
47.

The background estimate
gradually increases with
several spikes before it

becomes constant
throughout.

Detection

The result is very clean
where there is almost no

artifacts.

Artifacts are observed to
the starboard of the sonar.

All the objects except for
L7 and R5 are detected.

All the objects are detected
with PO of 100%.

Others

Several scanline
measurements have to be

collated to form a sectorial
image. In a static setup, it

is easy to collate the
scanline measurements.

Background sector was
difficult to identify. The
background sector might

have objects that can cause
inaccurate background

estimate.

Table 4.1: Summary of detection methods for RSYC dataset
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Experimental Data —

Dynamic Setup at Pandan

Reservoir

5.1 Experimental Setup

An experiment with the Micron DST sector scanning sonar integrated on

STARFISH AUV was conducted at Pandan Reservoir. This experiment

involves a dynamically moving AUV scanning for static buoys and the

reservoir’s embankments. The sonar was configured for a 50m range with

44 bins. The AUV was operating at a constant depth of 0.5m while the

depth of operating area varies between 2m and 6m. The overlay of the
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sonar rendering on top of the satellite view of the reservoir can be seen in

Fig. 5.1. As the AUV is heading towards the embankments, there is an

area in front of the AUV with measurements of high amplitude. The first

measurement of ∼150 is the lower embankment wall of the reservoir. This

lower embankment wall is submerged and is not visible from the surface.

The second measurement of ∼150 is the upper embankment wall that is

near the surface and the walkway is visible on the satellite image. The

depiction of the embankments at Pandan Reservoir is in Fig. 5.2.

Figure 5.1: Overlay of the sonar rendering of Pandan Reservoir along
with the target points
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Figure 5.2: Depiction of the embankments at Pandan Reservoir

5.2 Measurement Statistics

We analyze the statistics of the target points in Fig. 5.1. Point 8 is the

lower embankment wall detected at the reservoir. All other points are static

demarcation buoys at the reservoir. Most of the measurements are exceed-

ing 50 except for Point 5 and 7 that have several measurements below 50.

The AUV was in motion throughout the mission and the ensonification of

the target points could occur from varying distances and bearings. The

measurements of the target points are categorized according to their re-

spective object as in Fig. 5.3. If we were to plot the measurements against

bin, the representation is inaccurate because measurements at different bins

have differing annular statistics, propagation loss and processing gain. The

statistic of the measurements are also summarized in Table 5.1.
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Figure 5.3: Measurements of the target points identified at Pandan
Reservoir

Measurement
Point

1 2 3 4 5 6 7 8

Min 63 51 65 57 0 70 6 100

Median 81.5 77 70.5 70 92 75 44.5 113.5

Max 121 95 74 82 165 84 116 129

Table 5.1: Measurement statistics of the target points identified at
Pandan Reservoir

5.3 Otsu Thresholding

The Otsu threshold in (2.8) is computed based on the statistics of several

scanline measurements that were collated to form a sectorial image. During

the start of the mission run till about the 1000th scanline measurement,

we collated 100 scanline measurements to form the sectorial image with
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a field of view of 90◦. This is because the AUV was still cruising at a

straight path from the start of the mission run till about the 1000th scanline

measurement. Subsequently, the AUV was making a turn towards the

embankments before maintaining a straight path heading again. We then

collated 50 scanline measurements to form the sectorial image with a field of

view of about 70◦. There were 44 iterations and the thresholds determined

are presented in Fig. 5.4. The median threshold determined is at the value

of 33. There is an increase of the threshold nearing the 40th iteration. This

is because the AUV was heading straight towards the embankments that

are of high amplitude.

Figure 5.4: Otsu threshold for Pandan Reservoir dataset
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5.3.1 Binary Occupancy Grid

The result of the median grid cells is in Fig. 5.5. The result is highly

undesirable as all the measurements are considered as objects. This is

because the most of the measurements evaluated for each sectorial image

exceed the Otsu threshold. The statistic of the measurements for each

sectorial image is depicted in Fig. 5.6.

Figure 5.5: Mean result of the binary occupancy grid with Otsu thresh-
olding for Pandan Reservoir dataset

74



Experimental Data — Dynamic Setup at Pandan Reservoir

Figure 5.6: Measurement statistic of the sectorial image using boxplot
against the Otsu threshold for Pandan Reservoir dataset

5.4 Static Thresholding

5.4.1 Background Statistics

Firstly, we analyze the statistics of the background noise that are free of

targets. In Fig. 5.7, we can identify the sector during the initialization of

the mission to understand the statistics of the background noise. In Fig. 5.8,

we can observe that the median statistics of the background sector is higher

than that of RSYC and NTU. The median statistics are significantly higher

from the bin 10 onwards. These could be due to the water surface’s wakes

that results in higher amplitude as the AUV was only operating at the

depth of 0.5m.
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Figure 5.7: Background sector identified for Pandan Reservoir dataset

Figure 5.8: Background noise of Pandan Reservoir

Subsequently, assuming PFA is set for 1% with the number of back-

ground statistics, Ni, as 50, the threshold constant K in (2.10) can be
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determined as:

K =

√[
(PFA)

− 1
Ni − 1

]
Ni

=

√[
(0.01)−

1
50 − 1

]
50

= 2.1963 (5.1)

5.4.2 Decision Statistic

The decision statistic S̃ of the target points at Pandan Reservoir is es-

timated as in (2.1). The computed S̃ of all the objects are depicted in

Fig. 5.9.

Figure 5.9: Decision statistic of the target points identified at Pandan
Reservoir

The decision statistic for all the target points are mostly between 0 and
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50. Only point 5 and 8 have several decision statistic with higher value.

Point 8 should easily have high PT as its S̃ ranges from 34 to 74. Point

8 is actually the reservoir’s embankment. Therefore, it is expected that it

should be detected. Point 5 might end up with a low PT because it also

has several S̃ that are of lower value. All other target points might be able

to attain PT with the value of around 80% as their median S̃ is around the

value of 25.

5.4.3 Probability of Target

Assuming PFA is set for 1% with the number of background statistics, Ni,

as 50, PT in (2.12) is computed as in Fig. 5.10.

Figure 5.10: PT for Pandan Reservoir dataset
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Based on the decision statistic of the targets as in Fig. 5.9, the PT for all

the target points can be summarized in Fig 5.11 and Table 5.2. Point 8 has

a concentration of PT of at least 95%. This is expected as the embankments

of the reservoir should be easily detected as their measurements should be of

high amplitude. Point 3 and 4 also have concentration of PT of at least 75%.

All other target points have PT ranging between 1% and 99%. However,

their median PT is at least 80%. The fluctuations with PT could be due to

the reason that these target points are buoys of a rather small size. These

buoys are of a diameter less than 0.5m. Their size and the motion due to

wind and current can result in measurements with lower amplitude when

they are partially ensonified by the sonar.

Figure 5.11: PT of the target points at Pandan Reservoir
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Target
PT

Min Median Max

Point 1 0.0100 0.6245 0.8801

Point 2 0.0969 0.7791 0.8651

Point 3 0.6079 0.6406 0.7055

Point 4 0.4660 0.5688 0.7670

Point 5 0.0100 0.8393 0.9540

Point 6 0.2113 0.7191 0.7597

Point 7 0.0449 0.6030 0.8532

Point 8 0.7927 0.8702 0.9089

Table 5.2: PT statistics of the target points at Pandan Reservoir

5.4.4 Occupancy Grid

The result of the occupancy grid is in Fig. 5.12. All the target points are

detected. However, there are artifacts observed at the extreme end of the

sonar ensonification. This is because measurements that are farther away

are more susceptible to noise and this results in higher false alarm. We

analyze the measurements of the objects against their respective S̃, PT and

PO from Fig. 5.13 to Fig. 5.16.
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Figure 5.12: Result of occupancy grid with static thresholding for
Pandan Reservoir dataset

Figure 5.13: Plot of PT , S̃ and PO of Point 1 at Pandan Reservoir
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Figure 5.14: Plot of PT , S̃ and PO of Point 5 at Pandan Reservoir

Figure 5.15: Plot of PT , S̃ and PO of Point 7 at Pandan Reservoir
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Figure 5.16: Plot of PT , S̃ and PO of Point 8 at Pandan Reservoir

The observations made on S̃, PT and PO are as follows:

Point 1 Its S̃ fluctuate between 0 and 50. The initial S̃ re-

sulted in high PT and PO. However, its S̃ decreases

and this also resulted in the decrease of PT and PO.

At the 4th measurement till the 6th measurement,

its S̃ increases gradually. Then, its PO also increases

and remain high throughout even when there were

subsequently decision statistic that were of lower

value.

Point 2, 5, 6, 7 The initial few S̃ result in high PT with a high value

of PO throughout. Subsequently, its S̃ decreases but

that did not reduce PO.

Point 3, 4, 8 Its S̃ were of high value throughout. These result in

high value of PT and PO throughout.
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5.5 Summary

The embankments and all the target points are easily detected with both

thresholding methods. However, the Otsu thresholding failed to filter out

non-objects as the entire image is filled with artifacts. The result using

static thresholding is more positive as there were only patches of artifacts

observed in the occupancy grid. These artifacts however correspond to

the high amplitude measurements observed in the raw measurements. The

results and observations using Otsu thresholding and static thresholding

can be summarized in Table 5.3.
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Otsu Thresholding Adaptive Thresholding

Threshold

The median threshold
determined over 44

iterations is at the value of
33. There is an increase of

the threshold when the
AUV was already heading

straight towards the
embankments that are of

high amplitude.

The background estimate is
higher than the estimate

made for NTU and RSYC.

Detection

Embankments are detected.

All target points are identified.

The entire image is
basically filled with

artifacts although all the
target points are identified.

There are patches of
artifacts observed at the
extreme end of the sonar
ensonification. However,

these artifacts also
correspond to the high

amplitude measurements
observed in the raw

measurements.

Others

Several scanline
measurements have to be

collated to form a sectorial
image. In a dynamic setup,

it is easy to collate the
scanline measurements

when the AUV is travelling
in a straight path. When
the AUV is making a turn

at high speed, it is not easy
collating adjacent and

continuous scanline
measurements.

Background sector was
easy to identify as it was

identified during the
initialization of the mission.

Table 5.3: Summary of detection methods for Pandan dataset
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Chapter 6

Experimental Data —

Dynamic Setup by University

of Girona

6.1 Experimental Setup

An experiment with the Tritech Miniking sonar was conducted by Univer-

sity of Girona [17] at the Fluvia Nautic abandoned marina near St Pere

Pescador (Spain) in 16 March 2007. This experiment involves a dynami-

cally moving AUV scanning the embankments of the marina. The AUV was

equipped with a Tritech Miniking sector scanning sonar which is similar to
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the Micron DST. In this experiment, the sector scanning sonar was config-

ured for a 50m range with 500 bins. A satellite view along with the sonar

rendering of the marina can be seen in Fig. 6.1 and Fig. 6.2. In Fig. 6.2,

there are artifacts observed at the extreme end of the sonar ensonification.

This is because measurements that are farther away are more susceptible

to noise and this results in higher false alarm. A similar observation was

also made for the dataset at Pandan Reservoir in Chapter 5.

Figure 6.1: Satellite view of the Fluvia Nautic marina
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Figure 6.2: Sonar rendering of the Fluvia Nautic marina

6.2 Measurement Statistics

We analyze the measurement statistics of the detected embankment at the

marina. Fig. 6.3 depicts several of the target points identified to repre-

sent the sides of the embankment. The AUV was in motion throughout

the mission and the ensonification of the target points could occur from

varying distances and bearings. The measurements of the target points are

categorized according to their respective object as in Fig. 6.4. If we were to

plot the measurements against bin, the representation is inaccurate because
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measurements at different bins have differing annular statistics, propaga-

tion loss and processing gain. The statistic of the measurements are also

summarized in Table 6.1.

Figure 6.3: Target points identified for Girona dataset

Figure 6.4: Measurements of the target points identified for Girona
dataset
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Measurement
Point

1 2 3 4 5 6 7 8 9

Min 92 74 109 74 96 28 91 91 22

Median 106.5 85 115 99.5 107 73.5 99 95 67

Max 109 96 109 125 112 113 101 110 126

Table 6.1: Measurement statistics of the target points identified for
Girona dataset

6.3 Otsu Thresholding

The Otsu threshold in (2.8) is computed based on the statistics of several

scanline measurements that were collated to form a sectorial image. We

collated 100 scanline measurements with a field of view of 180◦. There were

323 iterations and the thresholds determined are presented in Fig. 6.5. The

threshold ranges from 22 to 53 with a median value of 31. The threshold is

slightly lower between the 50th till the 150th iterations. This is because the

AUV was heading into the large area without any objects in the middle of

the marina located at the upper left region of Fig. 6.2. The measurements

attained are of lower value as there are less ensonifications of the embank-

ments. At other times, there were more ensonifications of the embankments

that result in more measurements with high value.
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Figure 6.5: Otsu threshold for Girona dataset

6.3.1 Binary Occupancy Grid

The result of the median grid cells is in Fig. 6.6. The embankments are

easily detected. There are a lot of artifacts detected in the upper region

of the marina that are also observed in Fig. 6.2. Based on satellite view

of the marina as in Fig. 6.1, we cannot ascertain whether there are objects

at that location. Nonetheless, as these measurements exceed the Otsu

threshold, these artifacts are considered as objects. There are also artifacts

observed at the extreme end of the sonar ensonification. This is similar to

the observation in Fig. 6.2.
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Figure 6.6: Mean result of the binary occupancy grid with Otsu thresh-
olding for Girona dataset

In Fig. 6.7 to Fig. 6.9, we analyze the measurements of the objects

against their respective Otsu threshold to understand the results of binary

detection.

Figure 6.7: Binary detection of Point 1 for Girona dataset
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Figure 6.8: Binary detection of Point 6 for Girona dataset

Figure 6.9: Binary detection of Point 9 for Girona dataset

The statistics of the binary detections are summarized in Table 6.2. All

the measurements for the target points exceed the Otsu threshold except

for Point 6 and 9 that have several measurements below the threshold.

However, all the target points can be identified with mean statistics.
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Point No. of Positive Detection No. of Measurements Percentage (%)

1 4 4 100

2 2 2 100

3 2 2 100

4 2 2 100

5 3 3 100

6 2 4 50

7 3 3 100

8 3 3 100

9 3 5 60

Table 6.2: Statistics of binary detection for the target points identified
for Girona dataset

6.4 Static Thresholding

6.4.1 Background Statistics

Firstly, we analyze the statistics of the background noise that are free of

targets. We identify a sector located at the top right area within the orange-

colored boundary in Fig. 6.10 that are free of objects as a suitable sample

dataset for background statistics processing. The background statistics

gradually increases from around bin 100 to bin 400 before it becomes rather

constant subsequently. There are several spurious spikes observed. These

spikes could be due to to the water surface’s wakes that results in the

measurements having higher amplitude.
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Figure 6.10: Background sector identified within the orange-colored
boundary for Girona dataset

Figure 6.11: Zoom in on the background sector identified for Girona
dataset
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Figure 6.12: Statistics of the background sector identified for Girona
dataset

Subsequently, assuming the PFA is set for 1% with the number of back-

ground statistics, Ni, as 41, the threshold constant K in (2.10) can be

determined as:

K =

√[
(PFA)

− 1
Ni − 1

]
Ni

=

√[
(0.01)−

1
41 − 1

]
41

= 2.2077 (6.1)

6.4.2 Decision Statistic

The decision statistic S̃ of the target points for Girona dataset is estimated

as in (2.1). The computed S̃ of the objects are depicted in Fig. 6.13.
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Figure 6.13: Decision statistic of the target points identified for Girona
dataset

Point 1, 3, 5, 7 and 8 have decision statistic of at least 60. These targets

are expected to easily have high PT . Point 2 and 4 have median decision

statistic of at least 60 but their minimum decision statistic is around 30.

These targets might also have high PT . Point 6 and 9 have the most

extreme fluctuations. The decision statistic for Point 6 ranges from 6 to

around 100 while Point 9 ranges from negative decision statistic to around

100. However, Point 6 and 9 also have median statistic of around 60. Point

6 and 9 might also have high PT .

6.4.3 Probability of Target

Assuming PFA is set for 1% with the number of background statistics, Ni,

as 8, PT in (2.12) is computed as in Fig. 6.14.
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S̃
Point

1 2 3 4 5 6 7 8 9

Min 86 33 81 35 64 7 79 67 -13

Median 98 63 93.5 74.5 99 67 89 71 55

Max 103 93 106 114 109 102 94 107 118

Table 6.3: Decision statistic of the target points identified for Girona
dataset

Figure 6.14: PT for Girona dataset

Based on the decision statistic of the targets as in Fig. 6.13, the PT

for all the targets can be summarized as in Fig. 6.15 and Table 6.4. The

observations made earlier in Section 6.4.2 about the PT for the all target

points are as expected. Point 6 and 9 respectively have minimum PT of

62% and 1%. However, all the target points have median PT of at least

97%. These implies that all the target points are easily detected.
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Figure 6.15: PT of the target points identified for Girona dataset

Point
PT

Min Median Max

1 0.9919 0.9937 0.9943

2 0.9552 0.9741 0.9930

3 0.9910 0.9928 0.9946

4 0.9595 0.9774 0.9953

5 0.9861 0.9938 0.9948

6 0.6251 0.9791 0.9942

7 0.9906 0.9924 0.9932

8 0.9872 0.9885 0.9947

9 0.01 0.9817 0.9956

Table 6.4: PT of target points identified for Girona dataset
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6.4.4 Occupancy Grid

The result of the occupancy grid is in Fig. 6.16. All the target points and

embankments are detected. There are also less artifacts observed within the

marina and beyond the embankments. The artifacts that were observed in

the upper region of the marina in the median statistics were not observed

based on the static thresholding methodology. We analyze the measure-

ments of the objects against their respective S̃, PT and PO from Fig. 6.17

to Fig. 6.20.

Figure 6.16: Result of occupancy grid with static thresholding for
Girona dataset
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Figure 6.17: Plot of PT , S̃ and PO of Point 1 for Girona dataset

Figure 6.18: Plot of PT , S̃ and PO of Point 2 for Girona dataset
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Figure 6.19: Plot of PT , S̃ and PO of Point 6 for Girona dataset

Figure 6.20: Plot of PT , S̃ and PO of Point 9 for Girona dataset

The observations made on S̃, PT and PO are presented as follows:

Point 1 All the measurements resulted in PT of at

least 95% because the detection statistic was

103



Experimental Data — Dynamic Setup by University of Girona

nearing 100 throughout. P0 was easily high

throughout.

Point 2, 3, 4, 5, 7, 8 Their S̃ decreased and this resulted in a slightly

decreasing PT . However, P0 was already high

due to the initial S̃ that was high. P0 re-

mained high throughout.

Point 6 Its S̃ decreased and this resulted in decreas-

ing PT that was more steep as compared to

the observations for Point 2, 3, 4, 5, 7 and 8.

The decrease of PT was steep because S̃ was

nearing 0. However, P0 was already high due

to the initial S̃ that was high. P0 remained

high throughout.

Point 9 Its S̃ was decreasing throughout except at the

4th measurement where it did increased once.

PT follows the trend of S̃ but was less steep

and responsive. However, the last S̃ was neg-

ative. This caused PT to drop from near 95%

to almost 0%. However, P0 remained high

throughout because the initial few measure-

ments already resulted in high P0.

6.5 Summary

The embankments and all the target points are easily detected with both

thresholding methods. The result based on Otsu thresholding yields a lot of

artifacts as compared to the result using static thresholding. The detection

of the embankments based on static thresholding was more effective than

Otsu thresholding. The results and observations using Otsu thresholding

and static thresholding can be summarized in Table 6.5.
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Otsu Thresholding Adaptive Thresholding

Threshold

The threshold ranges from
22 to 53 with a median

value of 31 over 323
iterations.The threshold is

slightly lower when the
AUV was heading into the

large empty area

The background estimate
gradually increases with
several spikes observed

throughout.

Detection

Embankments are detected.

All target points are identified.

There are a lot of artifacts
detected.

There are also less artifacts
observed within the marina

and beyond the
embankments.

The binary detection of the
embankments were not all

at 100%. There were
binary detections of 0%.

However, median detection
was still at 50%.

The detection of the
embankments were mostly

at 90%.

Others

Several scanline
measurements have to be

collated to form a sectorial
image. In a dynamic setup
when the AUV is travelling
at a slow speed, it is easy

to collate the scanline
measurements.

Background sector was
easy to identify as it was

identified during the
initialization of the mission.
However, the difficulty was

in ensuring whether the
background sector is indeed

free of any objects.

Table 6.5: Summary of detection methods for Girona dataset
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Detection methodologies with Otsu thresholding and static thresholding

were analyzed on four experimental datasets spanning from statically de-

ployed sector scanning sonar to a dynamic setup involving a moving AUV.

In addition, the concept of occupancy grid also was analyzed as a means

for a representation methodology. Although Otsu thresholding [3] was able

to detect the background and foreground modes to obtain the threshold to

discriminate them, a lot of artifacts were observed. It lacks the ability to

discount measurements that were marginally higher than the threshold as

non-objects. The Otsu thresholding was effective for the NTU, RSYC and
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Girona datasets but it failed drastically for the dynamic setup using the

AUV at Pandan Reservoir.

The static thresholding was effective in detecting objects across the

four experimental datasets. In addition, there were significantly less arti-

facts observed. The assignment of PT which is the probability of a target

given a measurement was considered based on the S̃ which is the detection

statistic of the measurement. The higher the S̃, the higher the probability

PT was accorded. It was then effectively able to progressively discount mea-

surements that were marginally higher than the threshold as non-objects.

Occupancy grid also proved to be an effective representation of the envi-

ronment. We adopt PT into the formulation of occupancy grid to attain

probabilistic statement of object detection. Each grid cell can be indepen-

dently updated as and when more measurements are attained.

7.2 Future Work

Firstly, one of the observations made consistently across the NTU, RSYC,

Pandan and Girona datasets was that it was difficult to identify a sector to

estimate the background’s noise statistics. We can attempt to determine a

sector with an assumption that there are no objects but this is only to the

best of our knowledge and understanding of the operating environment. We

can also attempt to ensure that there are no objects in the sector during

108



Conclusion

calibration. However, this approach is not cost and time effective when

there are a lot of unknown environments where the AUV can be deployed.

An efficient and accurate estimation of the background statistics allows for

a more refined probability of detection. Future efforts here would entail

investigating into various methods of noise level estimation and potentially

a real-time calibration algorithm.

Secondly, the NTU and RSYC datasets are with a static sector-scanning

sonar. The Girona dataset [17] was with a slow-moving underwater vehicle

while the Pandan dataset was conducted with the STARFISH AUV in a

confined water environment. The next step would be to analyze datasets

from an operational STARFISH AUV [1, 2] in open waters and various other

confined water environments. In addition, analysis would be extended to

moving targets. Future efforts would entail developing software(s) capable

of real-time processing of the sonar data along with real-time object(s)

detection within the processing unit of the AUV.

Thirdly, in a real-world scenario, the operating environment can vary

from one extreme to another. The expected probability of objects in an

open water environment can be very low while a high probability can be

expected when operating in a marina. Prior information pertaining to

the operating environment can be advantageously used as an initialization

parameter (2.15) for the occupancy grid [Section 2.3].
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