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Abstract—In a number of scenarios, detecting the presence or
absence of a known signal may be of practical interest. One such
example lies in a communication setting, where packet detection
is a vital first step to decode transmitted data. The detection
problem can be formulated as a binary hypothesis test within
the Neyman-Pearson (NP) framework. Our scenario of interest is
warm shallow waters, where the sea floor is inhabited by colonies
of snapping shrimp. The ambient noise in such a case is impulsive
and exhibits memory. We investigate the performance of optimal
detectors corresponding to four additive noise models in snapping
shrimp noise. In the literature, proposed detectors typically take
only the amplitude statistics of the noise process into account. By
also considering the memory, we show that there is substantial
improvement in detection performance. The detector in the
latter case is based on the recently introduced stationary α-sub-
Gaussian noise with memory order m (αSGN(m)) model, which
effectively characterizes the temporal amplitude statistics of the
snapping shrimp noise process.

I. INTRODUCTION

In shallow tropical waters, snapping shrimp noise dominates

the acoustic ambient noise spectrum at frequencies greater

than 2kHz [1]. As the noise process is impulsive, it is mod-

eled well by heavy-tailed (non-Gaussian) distributions [2]–[4].

Moreover, the process also has memory. This results in the

clustering of impulses, thus making the noise process bursty
as well [3], [5]. If not mitigated, snapping shrimp noise can be

severely detrimental to communication and signal processing

schemes operating in such environments [6], [7].

Signal detection is an integral part of an underwater acoustic

communications receiver. In a typical scheme, data is broken

down into symbols and is transmitted over several packets [8].

At the receiver, each packet needs to be accurately detected

before one can process the data within. If not, this results

in a miss or false alarm, both of which translate to loss of

throughput. In the latter case, the receiver starts accepting

garbage values and may therefore be unable to detect any

transmissions made during this time. To aid detection, a

preamble is added to a packet, which is essentially a signal

of large time-bandwidth product that is known to the receiver.

Thus, the problem may be modeled as a binary hypothesis
test, i.e., detecting the presence or absence of a known signal

in noise [9].

In [6], [10], the authors highlight the performance of various

detectors in snapping shrimp noise. The Neyman-Pearson (NP)

framework was employed and results were compiled for a

binary hypothesis test for synthetic data. The authors observed

that the amplitude statistics of snapping shrimp noise were

tracked well by a heavy-tailed symmetric α-stable (SαS)

distribution. By modeling the noise process as white SαS noise

(WSαSN), detection performance of the maximum-likelihood

(ML) estimate of signal strength was shown to significantly
outperform the linear correlator (LC) in snapping shrimp noise.

The latter is the ML estimate of signal strength in white

Gaussian noise (WGN) [6], [9]. However, the WSαSN model

is still sub-optimal as it assumes independent and identically

distributed (IID) samples and does not take into account the

memory of the snapping shrimp noise process [3], [5]. To

address this, the stationary α-sub-Gaussian noise with memory

order m (αSGN(m)) model was introduced in the literature

[5]. The latter effectively characterizes both amplitude and

temporal statistics of the snapping shrimp noise process.

The contribution of this work is as follows: we investigate

the performance of the log-likelihood ratio (LLR) detector for

αSGN(m) in actual snapping shrimp noise. Following [6],

we synthesize data by immersing a known signal in recorded

snapping shrimp noise samples and compile results for binary

hypothesis testing within the NP framework. For comparison,

we also highlight the performance of the LLR detectors

corresponding to WGN, WSαSN and colored Gaussian noise

(CGN). The CGN model characterizes only the memory and

is unable to track the amplitude statistics of snapping shrimp

noise. Our results clearly highlight the relative improvement

between detectors that exploit increasingly more information

about the noise process. Moreover, we show that the LLR

detector for αSGN(m) offers substantial improvement over

its WSαSN counterpart, thus highlighting the added potential

of exploiting memory of the snapping shrimp noise process as

well as its amplitude statistics.

This paper is organized as follows: In Section II we summa-

rize key concepts of univariate stable distributions and outline

the binary detection problem. We then discuss conventional

additive noise models and their LLR detectors in Section III.

The αSGN(m) model is presented and its LLR detector derived

in Sections IV & V, respectively. Finally, we wrap up our

discussion in Section VI by evaluating the performance of all

detectors in snapping shrimp noise.

II. PROBLEM DEFINITION & CONCEPTS

A. Univariate Stable Distributions

A univariate stable distribution can be expressed in terms of

four parameters, namely the characteristic exponent α ∈ (0, 2],
the skew parameter β ∈ [−1, 1], the scale δ ∈ R

+ and

location μ ∈ R [2], [11]. It may therefore be represented978-1-5090-2696-8/16/$31.00 c©2016 IEEE



by the abridged notation S(α, β, δ, μ). Stable distributions are

generally heavy-tailed. Moreover, the degree of heaviness is

exclusively controlled by α. The lower the value of α, the

heavier the tails of the distribution [2], [11]. Similarly, as

α → 2, the tails become increasingly lighter. In fact, for

α = 2, the distribution is no longer dependent on β and is

equivalent to a Gaussian distribution with mean μ and variance

2δ2, i.e., S(2, β, δ, μ) d
= N (μ, 2δ2), where

d
= implies equality

in distribution [2], [11]. The Gaussian distribution is the only

member of the stable family to have light (exponential) tails.

A special subclass of the stable family is the SαS dis-

tribution. A univariate SαS distribution is stable but with

β = μ = 0 [2], [11]. It may therefore be denoted by S(α, δ).
As highlighted by its name, the probability density function

(PDF) of a SαS random variable is symmetric in its argument.

Moreover, from the discussion on stable random variables,

we have S(2, δ) d
= N (0, 2δ2). Thus, the zero-mean Gaussian

distribution is a member of the SαS family. One disadvantage

of working with SαS distributions (and stable distributions in

general) is the lack of closed-form expressions for their PDFs.

The only exceptions to this are the Gaussian (α = 2) and the

Cauchy (α = 1) cases. Therefore, one must revert to numerical

routines when dealing with most SαS PDFs [2], [11].

The concepts and notation presented in this section are

sufficient to understand the noise models considered in this

text. The binary detection problem is discussed next.

B. The Binary Detection Problem

Within the NP framework, the binary detection problem can

be formulated by selecting one of two possible hypotheses,

H0 : xn = wn

H1 : xn = θsn + wn

(1)

∀ n ∈ {1, 2, . . . , N}, where xn, sn and wn represent time

samples of the received signal, transmitted signal and noise

process, respectively [6], [9]. The parameter θ ∈ R
+ is a

measure of signal strength and is known [6]. It is sometimes

convenient to express (1) in vector form, i.e.,

H0 : x = w

H1 : x = θs+w
(2)

where xn, sn, and wn are the nth elements of x, s and w,

respectively. We consider the signal to have finite energy, i.e.,

sTs = E for some E ∈ R
+.

According to the NP Lemma, the LLR detector is optimal in

the sense that it maximizes the probability of detection (PD)

for a given probability of false alarm (PFA) [9]. Mathemati-

cally, the LLR detector is given by

L(x) = log
f �W (x− θs)

f �W (x)
, (3)

where f �W (w) is the PDF of the random vector �W ∈ R
N with

outcome w. For some γ ∈ R, the detector decides in favor

of H1 if L(x) > γ and H0 otherwise [9]. The threshold γ
is determined from a given PFA, which in turn is expressed

as PFA = P (L(x) > γ;H0). The notation P (L(x) > γ;H0)

is read as the probability of L(x) > γ given H0 is true. The

subsequent detection performance may then be evaluated from

PD = P (L(x) > γ;H1). As θ is assumed known, the resulting

detector is essentially a clairvoyant detector and offers the best

possible performance in a practical setting [9].

It is clear from (3), that the performance of an LLR detector

in snapping shrimp noise depends greatly on the adopted noise

model. These are summarized next.

III. CONVENTIONAL NOISE MODELS & LLR DETECTORS

In the literature, LLR detection in WGN and CGN is a

well-investigated subject [9]. If �W are samples of WGN, then

the joint-densities in (3) can be broken down in a product

of univariate zero-mean Gaussian PDFs. Given that Wn ∼
N (0, 2δ2), the WGN LLR detector with known sn and θ is

L(x) = (2θxTs− θ2E)/4δ2,
or equivalently [9],

L′(x) = xTs. (4)

In CGN, �W is a zero-mean Gaussian random vector with an

arbitrary covariance matrix Σ ∈ R
N×N , i.e., �W ∼ N (0,Σ).

The simplified LLR statistic is thus [9]

L′(x) = xTΣ−1s = x′Ts′, (5)

where x′ = Σ−1/2x and s′ = Σ−1/2s. The matrix Σ−1/2

stems from the Cholesky decomposition of Σ, i.e., Σ−1 =
(Σ−1/2)TΣ−1/2. With this choice of variables, we observe

that (5) results from a left multiplication operation of (2) by

the whitening matrix Σ−1/2 and subsequently invoking (4).

For WSαSN, the noise samples are IID SαS random vari-
ables. Therefore, if �W consists of samples of WSαSN, then

Wn ∼ S(α, δ) ∀ n ∈ {1, 2, . . . , N}. The corresponding LLR

detector can then be written in the general form

L(x) = log

∏N
n=1 fW (xn − θsn)∏N

n=1 fW (xn)
, (6)

where fW (·) is a univariate PDF corresponding to S(α, δ) [6].

Empirical amplitude distributions of snapping shrimp noise are

tracked well within 1.5 ≤ α < 2 [3], [6]. Therefore, (6) cannot

be further simplified due to fW (·) being unavailable in closed-

form [2], [12].

In retrospect, we see that the CGN and WSαSN models are

able to track the memory and amplitude statistics, respectively,

of the snapping shrimp noise process. However, the WGN

model is unable to do so.

IV. THE αSGN(m) MODEL

In [5], it was observed that scatter plots of closely-spaced

samples of snapping shrimp noise followed near-elliptical
geometries. The αSGN(m) model was then shown to not only

track the amplitude statistics of the noise process, but also the

dependency between adjacent samples. The model is based

on the multivariate α-sub-Gaussian (αSG) distribution, which

is a member of the SαS family (α �= 2) with the added

characteristic of being elliptic as well [13].



More precisely, the αSGN(m) model is based on a sliding-

window framework and constrains any immediately adjacent

m+1 samples to be αSG [5]. Moreover, as the marginals of a

multivariate SαS distribution are SαS [11], [12], a sample of

αSGN(m) is essentially a heavy-tailed SαS random variable.

Thus the amplitude distribution of an αSGN(m) process is

heavy-tailed SαS. Let Wn ∼ S(α, δ) (for α �= 2) be samples

of αSGN(m) and �Wn,m = [Wn−m,Wn−m+1, . . . ,Wn]
T be a

random vector in R
m+1 whose elements are the current sample

(at index n) and m immediately previous samples. Then

�Wn,m
d
= A1/2

n
�Gn,m, (7)

where An ∼ S(α2 , 1, 2(cos(πα4 ))2/α, 0) is a right-skewed

stable random variable, �Gn,m = [Gn−m, Gn−m+1, . . . , Gn]
T

and �Gn,m ∼ N (0,Rm) ∀ n ∈ Z [5], [13]. We note that

Rm ∈ R
(m+1)×(m+1). Moreover, both An and �Gn,m are

independent of each other and their statistics do not vary with

time [13]. Consequently, αSGN(m) is a stationary process.

Due to the sliding window framework, the distribution of

Wn depends on the immediately previous m samples, i.e.,
�Wn−1,m−1. This implies that the αSGN(m) process is Markov

of order m. From the sliding window framework and station-

arity of αSGN(m), Rm = [rij ] is essentially a symmetric
Toeplitz matrix [5]. Therefore, to satisfy Wn ∼ S(α, δ), the

main-diagonal elements of Rm need to be equal to δ2, i.e.,

rii = δ2 ∀ i ∈ {1, 2, . . . ,m+ 1} [13]. One may also express

Rm in the block form

Rm =

[
Rm−1 rm

rTm r(m+1)(m+1)

]
, (8)

where rm = [r1(m+1), r2(m+1), . . . , rm(m+1)]
T [5].

The αSGN(m) model offers a more general framework

compared to its WSαSN counterpart. In fact, αSGN(0) and

heavy-tailed WSαSN are equivalent processes. In general, for a

given m, the αSGN(m) process depends on m+2 parameters,

i.e., α and the m+1 elements that construct Rm. On the other

hand WSαSN only depends on the two parameters α and δ.

V. THE LLR DETECTOR FOR αSGN(m)

We exploit the Markovity and stationarity properties of

αSGN(m) to achieve a simpler form of the LLR detector in

(3). This corresponds to expressing f �W (·) in a suitable form. In

probability theory, the chain rule allows breaking a joint PDF

into a product of univariate conditional densities [14]. Let us

define the random vector �Wn = [W1,W2, . . . ,Wn]
T and its

outcome wn = [w1, w2, . . . , wn]
T. From the chain rule, we

have

f �W (w) = f �Wm
(wm)f �W | �Wm

(w|wm)

= f �Wm
(wm)

N∏
n=m+1

fWn| �Wn−1
(wn|wn−1).

On invoking the Markovity and stationary properties of

αSGN(m), the conditional density can be expressed as

fWn| �Wn−1
(wn|wn−1) = fWn| �Wn−1,m−1

(wn|wn−1,m−1),

= fWm+1| �Wm
(wn|wn−1,m−1).

where wn,m = [wn−m, wn−m+1, . . . , wn]
T. This results in

f �W (w) = f �Wm
(wm)

N∏
n=m+1

fWm+1| �Wm
(wn|wn−1,m−1)

= f �Wm
(wm)

N∏
n=m+1

f �Wm+1
(wn,m)

f �Wm
(wn−1,m−1)

. (9)

On substituting (9) in (3), the LLR detector takes on the form

L(x) = log
f �Wm

(xm − θsm)

f �Wm
(xm)

+ log

∏N
n=m+1

f �Wm+1
(xn,m−θsn,m)

f �Wm
(xn−1,m−1−θsn−1,m−1)∏N

n=m+1

f �Wm+1
(xn,m)

f �Wm
(xn−1,m−1)

. (10)

We note that �Wm+1 is an (m+ 1)-dimensional αSG random

vector as it consists of m + 1 immediately adjacent samples

of αSGN(m). Similarly, as �Wm is a marginal of �Wm+1, it is

αSG as well. Moreover, from (8), the underlying covariance

matrix of �Wm is Rm−1. Like its univariate counterpart, a

multivariate αSG PDF needs to be numerically evaluated. One

notes that (10) requires 4(N−m)+2 calls to multivariate αSG

distributions.

VI. RESULTS & DISCUSSION

A. Simulation Setup

From (7), we note that the αSGN(m) model depends on the

underlying samples Gn ∀ n ∈ Z. This in turn is essentially

a stationary autoregressive process of order m (AR(m)) with

Gaussian innovations [15]. Consequently, any immediate N
samples of Gn is a Gaussian random vector and will thus

be elliptically distributed [16]. Recalling that the dependence

between adjacent snapping shrimp noise samples is near-

elliptic, the Gaussian AR(m) process is able to track this.

Therefore, we consider this for our CGN model. Moreover,

Σ = [σij ] also has a symmetric Toeplitz structure, with its

first row determined by σ1k = 2r1k for 1 ≤ k ≤ m+ 1 and

σ1k = 2rTmR−1
m−1[σ1(k−1), σ1(k−2), . . . , σ1(k−m)]

T,

for m+2 ≤ k ≤ N [16, pg. 59]. The remaining matrix can be

constructed using properties of a symmetric Toeplitz matrix.

Note that the main-diagonal elements of Σ are equal to 2δ2.

Thus, this implies Wn ∼ N (0, 2δ2), as is in the WGN case.

In our simulations, we process a synthetic linear frequency

modulated (LFM) signal immersed in snapping shrimp noise.

The noise data sets are sampled at 180kHz and were recorded

off the coast of Singapore by the Acoustic Research Laboratory

of the National University of Singapore. For the SαS models,

α and δ are estimated via the ML method [17]. We consider

m = 4 for the αSGN(m) model, as this is adequate to capture

the temporal statistics in snapping shrimp noise sampled at 180

kHz [5]. Thereafter, R4 is estimated from the noise samples

by the sample-covariation method discussed in [5], [18]. This

is then used to construct Σ for the CGN LLR detector.



In our simulations we plot detection performance against the

measure Eθ2/(2δ2). We note that 2δ2 is the per-sample vari-

ance in WGN and CGN. Therefore, Eθ2/(2δ2) is essentially

the energy-to-noise ratio (ENR) in these cases [9]. On the other

hand, second-order moments are nonexistent for heavy-tailed

stable distributions. However, by expressing the variance in

terms of δ, the ENR can be used for heavy-tailed SαS models.

Similar measures are adopted in [2], [4], [6].

B. Results

We consider two different snapping shrimp data sets, namely

D1 and D2. For D1, the estimated parameters (with obvious

notation) are α̂ = 1.56, δ̂ = 12.524 and

R̂4 = δ̂2

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.5804 0.2140 0.1444 −0.0135

0.5804 1.0000 0.5804 0.2140 0.1444

0.2140 0.5804 1.0000 0.5804 0.2140

0.1444 0.2140 0.5804 1.0000 0.5804

−0.0135 0.1444 0.2140 0.5804 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The LLR detection performance is plotted in Fig. 1. For D2,

α̂ = 1.54, δ̂ = 12.062

R̂4 = δ̂2

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.6369 0.2704 0.1624 0.0396

0.6369 1.0000 0.6369 0.2704 0.1624

0.2704 0.6369 1.0000 0.6369 0.2704

0.1624 0.2704 0.6369 1.0000 0.6369

0.0396 0.1624 0.2704 0.6369 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and results are presented in Fig. 2. The parameters were

estimated from the first 33 seconds of D1 and D2. Detec-

tion performance was then evaluated for at least the next

1500 seconds. Results are compiled for PFA = 10−4 and

N = 1000. From the sampling rate, this implies a preamble of

length ∼ 5.6ms. Moreover, a LFM signal that sweeps between

18− 36kHz is employed for sn. The signal is thus centered at

27kHz and is of bandwidth 18kHz.

In Fig. 1, the LLR detectors for WGN, CGN, WSαSN and

αSGN(4) get increasingly better (in that order) in D1. This

is due to the ability of the respective models to effectively

characterize increasingly more information of the snapping

shrimp noise process. We note that the LLR detector for CGN

performs almost at par with its WGN counterpart. On the other

hand, the LLR detector for WSαSN clearly outperforms that

of CGN. This implies that exploiting the amplitude statistics of

snapping shrimp noise is significantly more advantageous than

just considering the noise memory. However, if both of these

physical attributes are jointly exploited, then the performance

increases further by ∼ 1.8dB as highlighted in Fig. 1. The

trends seen for D1 are in consensus with those observed in

Fig. 2 for D2. In the latter case, the LLR detector for αSGN(4)

offers ∼ 2dB gain over its WSαSN counterpart.

Lastly, for D1, we present another set of performance

curves in Fig. 3. All parameters are the same as before, but

the signal now sweeps between 63 − 81kHz, i.e., sn still

has a bandwidth of 18kHz, but is centered at 72kHz. Note

that all detectors actually perform better than their respective

counterparts in Fig. 1. This is understood by noting that the
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Fig. 1. LLR detection performance in D1 for the signal centered at 27kHz.
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Fig. 2. LLR detection performance in D2 for the signal centered at 27kHz.
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Fig. 3. LLR detection performance in D1 for the signal centered at 72kHz.

power spectral density (PSD) of snapping shrimp noise is

influenced by its memory. The PSD is strong at the lower end

of the spectrum but starts tapering off at higher frequencies

[1]. In comparison to 27kHz, the in-band noise power is

actually lower at 72kHz [1] and therefore results in the overall

improved performance in Fig. 3. More striking though is that

the gain of the LLR detector for αSGN(4) has now increased

to ∼ 6.5dB over that of WSαSN. This is attributed to the

fact that the WSαSN model assumes a flat spectrum [4],

while the power of snapping shrimp noise is concentrated

towards lower frequencies. Though not illustrated here, the

PSD of D1 at 27kHz is approximately at par with that of the

correspondingly tuned WSαSN process. However, at 72kHz,

the former decreases while the latter remains the same. On

the other hand, the tuned αSGN(4) model is able to track the

PSD of D1 effectively over its entire spectrum. Consequently,

the performance of the LLR detector for αSGN(4) further
outperforms its WSαSN counterpart if the signal’s spectrum

is placed away from the frequency bands where the models’

spectra coincide.
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distributions,” in Lévy Processes, O. Barndorff-Nielsen, S. Resnick, and
T. Mikosch, Eds. Birkhuser Boston, 2001, pp. 379–400. [Online].
Available: http://dx.doi.org/10.1007/978-1-4612-0197-7 17

[18] S. Kring, S. Rachev, M. Hchsttter, and F. Fabozzi, “Estimation of α-
stable sub-gaussian distributions for asset returns,” in Risk Assessment,
ser. Contributions to Economics. Physica-Verlag HD, 2009, pp. 111–
152.


