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ABSTRACT
Snapping shrimp are small marine animals that are typically
found in coastal regions with coral reefs. These crustaceans
live in droves and are the dominant source of high-frequency
ambient noise in their habitat. The noise generated by the
shrimp is impulsive and is detrimental to the performance of
sonar and underwater communication systems. In this pa-
per we use heavy-tailed symmetric ↵-stable (S↵S) distribu-
tions to model snapping shrimp noise. In conventional dig-
ital communication systems, most processing is done at the
baseband level. We investigate the characteristics of com-
plex baseband noise derived from passband additive white
symmetric ↵-stable noise (AWS↵SN) using linear passband-
to-baseband converters. The resulting baseband noise distri-
butions, although symmetric, are generally anisotropic with
dependent components. Further still, the geometric struc-
ture of the anisotropy may be controlled by varying certain
system parameters. We exploit this structure to enhance
error performance for the binary and quadrature phase shift
keying (BPSK/QPSK) schemes by rotating constellations.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Data communications; E.4 [Coding and Information The-
ory]: Formal models of communication; I.6.6 [Simulation
and Modeling]: Simulation Output Analysis

1. INTRODUCTION
Snapping shrimp are small crustaceans that live in large

droves typically inhabiting coral reefs in warm shallow wa-
ters. A unique characteristic of this species is their ability
to produce sharp snaps by cavitating bubbles [16]. These
snaps have been recorded to be as high as 189 dB re 1 µPa
@ 1 m and are loud enough to stun or even kill small prey [2].
In large groups, the cumulative e↵ect of these snaps creates
a crackling e↵ect which is detrimental for sonar and under-
water communication systems. The noise produced by the
shrimp is impulsive and non-Gaussian in nature [3, 9].
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Gaussian noise models are conventionally used to simulate
practical communication systems. This approximation is
motivated by the central limit theorem (CLT) [13, 14]. How-
ever, Gaussian distributions fail to adequately model chan-
nels corrupted by impulsive noise [11, 15]. Models based
on symmetric ↵-stable (S↵S) distributions are known to ap-
proximate practical impulsive noise very well [11]. The zero-
mean Gaussian distribution is a member of the S↵S family.
With the exception of the Gaussian case, all S↵S distribu-
tions are heavy-tailed, allowing modeling of impulses in a
more e↵ective manner. The motivation of using S↵S models
stems from the generalized central limit theorem (GCLT),
which in essence is the CLT with the power constraint re-
moved [11, 12, 15].

Though an S↵S model provides a good solution for simu-
lating impulsive noise, several issues arise with its use. With
the exception of the Gaussian and Cauchy cases, the prob-
ability density function (pdf) of an S↵S random variable
does not exist in closed form. One approach to circumvent
this problem is to work with the characteristic function (cf)
of a random variable which is the Fourier transform of its
pdf. Fortunately, the cf of an S↵S random variable exists
in closed form [11, 15]. Another obstacle associated with
non-Gaussian S↵S random variables is the non-existence of
second order moments. In digital communications, error
performance is typically analyzed by plotting against the
signal-to-noise ratio (SNR). In the literature, suitable SNR
measures have been proposed to bypass the issue that con-
ventional SNR calculation imposes on S↵S noise channels [7,
10].

Optimal and near-optimal filters, smoothers and predic-
tors have been designed for noise scenarios modelled under
the S↵S framework [1]. Themyriad filter and its variants are
examples of techniques that display optimality properties in
S↵S noise [4, 5, 6, 8]. Though superior in enhancing noise
error performance, these schemes introduce nonlinearities
in the received signal [1]. Practical communication channels
generally consist of several physical impairments besides ad-
ditive noise. Applying a nonlinear technique such as the
myriad filter would trigger a redesign of those elements in a
communication system that deal with other channel e↵ects.
By restricting our work to linear techniques, our ideas can be
easily accommodated within any existing practical system.
The work presented in this paper highlights characteristics
unique to impulsive noise baseband channels. These insights
provide an essential platform for future designing of robust
and rate-e�cient digital communication systems operating
in impulsive noise.



We illustrate key ideas using the Cauchy distribution,
which is a specific member of the S↵S family with very heavy
tails and a closed form pdf. The intuition gained from study-
ing the case of Cauchy noise is also applicable to other heavy-
tailed S↵S cases. In Section 2 we summarize the properties
of complex baseband noise derived from passband additive
white S↵S noise (AWS↵SN). The baseband noise is generally
anisotropic with star-like equiprobable density surfaces [10].
Further still, one may achieve di↵erent configurations of the
bivariate pdf of a baseband noise sample by tuning certain
system parameters. Motivated by these facts, in Section 3,
we propose e�cient placement of signal points on constella-
tion diagrams for the binary phase shift keying (BPSK) and
quadrature phase shift keying modulation (QPSK) schemes
with emphasis on the case with independent real and imagi-
nary components. In Section 4, we discuss how the suggested
solution may be practically implemented.

2. COMPLEX BASEBAND S↵S NOISE
We summarize important aspects of S↵S variables/vectors,

the AWS↵SN channel and complex baseband noise derived
from passband AWS↵SN.

2.1 S↵S Variables
A stable random variable X is symmetric if its pdf f

X

(x)
is an even function of x, i.e., f

X

(x) = f
X

(�x). The cf of X
is then of the following form [15]:

�
X

(✓) = exp (��↵|✓|↵) (1)

where � 2 (0,+1) is the scale parameter of the distribution.
The characteristic exponent ‘↵’ lies in (0, 2] and quantifies
the heaviness in the tails of the distribution. The tails con-
sistently become heavier as ↵ ! 0. For ↵ = 2 and ↵ = 1
the distribution is that of a Gaussian and a Cauchy ran-
dom variable, respectively [15]. Practical estimates of ↵ for
snapping shrimp noise typically lie within 1.5 ⇠ 1.9 [3].

The fact that �
X

(0) = 1 in (1) ensures that f
X

(x) is a
valid pdf. Further still, as �

X

(✓) is real and an even function
of the frequency domain variable ✓, we conclude from the
properties of the Fourier transform that f

X

(x) is real and
symmetric about X = 0. For the Gaussian case, the cf in
(1) corresponds to N (0, 2�2), i.e., the zero-mean Gaussian
distribution with variance 2�2. For the Cauchy case, the pdf
corresponding to the cf in (1) is

f
X

(x) =
�

⇡(x2 + �2)
(2)

The concept of symmetry may be extended to the multi-
variate ↵-stable case, i.e., if there exists an N -dimensional
S↵S random vector ~X with density function f

~

X

(~x), then

f
~

X

(~x) = f
~

X

(�~x). This implies that the cf of ~X is real

and an even function of the N -dimensional vector ~✓, i.e.,
�

~

X

(~✓) = �⇤
~

X

(~✓) = �
~

X

(�~✓). Here, ~✓ is a column vector with
elements ✓

i

8 i 2 {1, 2, . . . , N}, where ✓
i

is the frequency

domain variable corresponding to the ith element in ~X.

2.2 The AWS↵SN Channel
If there exists an S↵S noise process such that all samples

X(n) are IID, where n is the discrete-time index, then the
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Figure 1: The passband-to-baseband conversion
schematic.

joint-cf of any N samples may be evaluated using (1):
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where ~X
N

is an N -dimensional column vector whose ele-
ments X

i

8 i 2 {1, 2, . . . , N} consist of any combination of
N di↵erent samples of the noise process. The joint-cf in (3)
is multivariate S↵S. If the noise process X(n) is additive, it
is called AWS↵SN. For ↵ = 2, the cf in (3) reduces to that
of additive white Gaussian noise (AWGN). As the second
order moments of non-Gaussian ↵-stable variables do not
exist, the power spectral density (psd) of noise models based
on this family will always be infinite. The term ‘white’ then
highlights the independence of time samples rather than a
flat psd.

2.3 Baseband S↵S Noise
The relationship of a passband signal s(n) with its upsam-

pled baseband form z(n) is given by

s(n) = <
⇢
z(n) exp

✓
i2⇡

f
c

f
s

n

◆�
(4)

where f
c

and f
s

are the carrier and passband sampling fre-
quencies, respectively. Conversion from passband-to-baseband
is accomplished by shifting the spectrum of s(n) by f

c

/f
s

and passing the result through a low-pass filter. The output
is then downsampled by f

s

/B to generate the baseband sig-
nal z(f

s

n/B). The passband-to-baseband conversion block
is depicted in Fig. 1. If s(n) comprises of pure AWS↵SN
samples, the bivariate cf of any z(n) is [10]:
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where h(n) is the impulse response of the M -tap low-pass

FIR filter with normalized cuto↵B/f
s

and ~Z is a 2-dimensional
column vector whose elements are the real and imaginary
parts of z(n). Also,

R(n) = 2�2
"

cos2(2⇡ fc
fs
n) � 1

2

sin(4⇡ fc
fs
n)

� 1

2

sin(4⇡ fc
fs
n) sin2(2⇡ fc

fs
n)

#
(6)

where � is the scale parameter of the passband noise. Assum-
ing the Nyquist criterion f

s

> 2f
c

+B is met, the following
observations are drawn from (5):



(a) Case 1. (b) Case 2. (c) Case 3.

Figure 2: Probability density functions of complex baseband S↵S noise for the Cauchy case (↵ = 1) under
the assumption of white passband noise. The parameters that generate each of these plots are summarized
in Table 1.

Table 1: Parameter settings for generating the den-
sity functions in Fig. 2.

Case f
c

f
s

Number of Tails B �

1. 4 16 4 1 1

2. 4 20 10 1 1

3. 4 21 42 1 1

• �
~

Z

(~✓) is real and symmetric about ~✓ = 0, proving that
every complex sample z(n) is bivariate S↵S.

• The baseband samples z(f
s

/Bn) are mutually inde-
pendent if M  bf

s

/Bc. This condition ensures that
no passband noise sample s(n) is involved in creating
any more than one baseband sample. As all s(n) are
mutually independent, the baseband samples will be
independent as well.

• For M large enough to induce an e↵ective low-pass
filtering e↵ect, �

~

Z

(~✓) does not vary with time. This
implies that the statistics of individual baseband noise
samples are identical.

For the Gaussian case, (5) decomposes into the product of
its marginals, implying that the real and imaginary compo-
nents of any complex baseband noise sample are independent
[10]. It is also well known that the corresponding bivariate
distribution is isotropic [14]. These results cannot be ex-
tended as a general rule to all S↵S cases. For baseband
noise derived from non-Gaussian AWS↵SN, the statistical
properties depend entirely on the system parameters f

s

, f
c

and B. By altering these parameters one may attain dif-
ferent bivariate pdf configurations. The heavy-tailed phe-
nomenon associated with S↵S distributions will be observed
in the baseband noise, but only in specific directions in the
complex plane.

We present baseband noise pdfs for the Cauchy case in
Fig. 2. The system parameters used to generate these plots
are summarized in Table 1. The order of the filter was fixed
at 800 for each case. It is observed that most of the prob-
ability is directed along a certain number of ‘tails’ in the
complex plane. To be precise, the number of tails is given

by

fs
gcd(fc,fs)

if f
s

is an even multiple of f
c

2fs
gcd(fc,fs)

otherwise

)
(7)

where gcd denotes the greatest common divisor. The angu-
lar distance between adjacent tails is constant. Results from
Cauchy noise may be intuitively extended to other heavy-
tailed S↵S cases (↵ 6= 2).

To ensure independence of the real and imaginary com-
ponents of all baseband noise samples, f

s

has to be set to
4f

c

[10]. This setting allows R(n) to degenerate into a diag-
onal matrix, allowing the joint-cf in (5) to factor into a prod-
uct of its marginal cfs, thus implying independence. From
(7), we see that the number of tails for the independent case
is four, thus making it non-isotropic. Hence, for indepen-
dent components, the bivariate distribution of any complex
baseband sample is not isotropic with the only exception be-
ing the Gaussian case. It may also be observed that as the
number of tails tends to infinity, the distribution converges
to an isotropic one.

2.4 The Case of Independent Components
The case of baseband samples with independent compo-

nents is of special interest. This is due to the fact that for a
given ↵, the probability of error associated with this case will
be lower in comparison to all possible dependent cases. To
support this statement we propose the following argument:
The joint-entropy of the real and imaginary components of
any baseband noise sample may be written as

H(Z
R

, Z
I

) = H(Z
R

) +H(Z
I

)� I(Z
R

;Z
I

) (8)

where H(Z
R

) and H(Z
I

) are the entropies of the I and Q
components, respectively and I(Z

R

;Z
I

) is the mutual in-
formation between them. It is assumed that there is no
loss of information (unique mapping) in the passband-to-
baseband conversion process. Thus, H(Z

R

, Z
I

) will always
be the same, irrespective of any combination of system pa-
rameters. For the independent case the mutual information
will be zero, hence implying that the sum H(Z

R

) + H(Z
I

)
will be less than the corresponding sum in each and ev-
ery one of the dependent cases. Further still, H(Z

R

) and
H(Z

I

) will be identical for the independent case. Conven-
tionally, the real and imaginary components are separately
decoded. Due to the relatively lower entropies of the I and
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(b) BPSK-⇡/4
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(c) BPSK-⇡/8
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(d) QPSK-0
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(e) QPSK-⇡/4
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(f) QPSK-⇡/8

Figure 3: Optimum decision regions for the Cauchy case (↵ = 1) with independent baseband noise components
for various rotated versions of BPSK and QPSK.

Q components, the probability of error will be lower for the
independent case.

For the remainder of this paper we focus on the case
with independent baseband components as it delivers the
best error performance using linear decoders. The pdf in
Fig. 2a corresponds to baseband Cauchy noise with inde-
pendent components.

If the components of the resulting baseband noise are inde-
pendent, (5) may be factored into a product of its marginal
distributions

�
~

Z

(~✓) = �
ZR(✓1)�ZI (✓2) (9)

where
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ZR(✓) = exp
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ZI (✓) = exp

✓
�

M�1X

k=0

���2h(k) sin
⇣⇡
2
(n� k)

⌘
�
���
↵

| {z }
�

↵
b

|✓|↵
◆

(11)

Both Z
R

and Z
I

are individually and identically S↵S with
scale parameter �

b

[10].

3. EFFECTIVE SIGNAL CONSTELLATIONS
Decision regions optimized for the well known Gaussian

case (isotropic) will not be optimal for non-Gaussian S↵S
noise with independent components [10]. We limit our dis-
cussion to decision regions evaluated for various rotated BPSK
and QPSK schemes. By a rotated version, we imply that all
constellation points are equally rotated around the origin by
a certain angle. We denote these schemes by BPSK-� and
QPSK-� where � is the angle (in radians) of the signal point
in the first quadrant from the positive real axis.

In the Gaussian case, the symbol error rate (SER) is in-
dependent of � as the baseband noise is isotropic. Further



still, for any given �, the decision regions do not vary with
the signal-to-noise ratio (SNR). These results cannot be ex-
tended to the general S↵S case. This raises the question of
the existence of an optimal value for � that ensures mini-
mum SER. Further still, would this value of � depend on
the SNR?

For ↵ < 2, the cfs in (10) and (11) correspond to heavy-
tailed univariate S↵S distributions. For the Cauchy case,
the pdfs of the real and imaginary components will each be
of the form

f
Z

(z) =
�
b

⇡(z2 + �2
b

)
(12)

In Fig. 3 we present the optimum decision regions of a few
rotated BPSK and QPSK schemes with complex baseband
Cauchy noise with independent components. The regions
were evaluated using the maximum likelihood (ML) detec-
tion rule for �

b

= 1, with all constellation points lying on
the unit circle. We note that the regions in Figs. 3a and 3e
are the same as the isotropic case for the same �. These re-
gions do not vary with SNR. We prove this for the BPSK-0
scheme: Denoting the signal points by x

0

= 1 and x
1

= �1,
the ML decision for each point in the complex plane is eval-
uated by

argmax
x2{x0,x1}

f
Z

(z
R

� x) = argmin
x2{x0,x1}

(z
R

� x)2

=

⇢
x
0

if z
R

� 0
x
1

if z
R

< 0
(13)

where z
R

is the real component of a complex baseband noise
sample. This reasoning may be extended to the QPSK-⇡/4
scheme. However, for all other values of �, the ML decision
regions will depend on the SNR.
As a significant probability lies along the tails, one would

want to rotate the constellation in such a way that there
is minimal tail overlap. Due to symmetry of the bivariate
pdf, one would want to direct the tails away from the signal
points. This will ensure that the tails do not point towards
each other, hence avoiding complete tail overlap. This makes
BPSK-0, QPSK-0 and QPSK-⇡/4 undesirable.
For BPSK, an angle of ⇡/4 minimizes the error rate, since

this angle achieves the minimum tail overlap. This is shown
using the following approximation: First we note that due to
the rotational symmetry of the noise pdf and the placement
of constellation points, the optimum angle would lie within
[0,⇡/4]. Let the sent symbol be x = x

R

+ ix
I

where x
R

and x
I

are its real and imaginary components, respectively.
Denoting P

�

as the set of all coordinate points (z
R

, z
I

) in
the complex plane that fall in the incorrect decision region
given x is sent, the optimum angle is

�
opt

= argmin
�2[0,⇡/4]

X

(zR,zI )2P�

f
Z

(z
R

� x
R

) f
Z

(z
I

� x
I

) (14)

The expression in (14) may be numerically evaluated over a
finite set of coordinate points that lie in P

�

to give a suitable
approximation of �

opt

. Using this approach, the optimum
angle was evaluated to be ⇡/4.

For the QPSK case, the decision regions are more com-
plicated. Like BPSK, the optimum angle should lie within
[0,⇡/4] for precisely the same reasons. From the findings in
BPSK, one would want to direct the tails towards the gaps
between the constellation points. Intuitively, for high SNR,
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The Rotation angle for the Cauchy case with inde-
pendent noise components.
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one would expect the tails to align a little towards the oppo-
site constellation point as it is further away in comparison to
the adjacent points, i.e., �

opt

< ⇡/8. On the other hand �
b

is high at low SNR. This results in ‘thickening’ of the tails.
The small relative distance between the adjacent and op-
posite points becomes inconsequential allowing the tails to
bisect the spaces between the points equally, i.e., the QPSK-
⇡/8 case would be optimal. As the SNR increases, it was
numerically determined that �

opt

converges to 15.3 degrees.
Computing �

opt

in (14) can be computationally intensive.
To achieve accurate results one needs to select coordinate
pairs over a large range to compensate for the heavy-tails.
By choosing a small number of specific points, it is possible
to approximate �

opt

with significantly less computational
complexity (albeit with more estimation error). For BPSK
the coordinate set was chosen to consist only of the oppo-
site constellation point. For QPSK, the selected coordinates
were both the adjacent and the opposite constellation points.
This method gives good approximation at high SNR values.

Fig. 4 depicts how the cost function in (14) varies with �
for QPSK. The dash-dot curve was generated using a large fi-
nite set of equally spaced coordinate points, while the dashed
line was generated using the opposite and the adjacent con-
stellation points. The value for � at which both these curves
attain their minimum have been highlighted and denoted by
�
min

. The solid line depicts the variation of the SER against
� and was evaluated using a Monte Carlo simulation for at
least 10000 errors. All curves were generated at an SNR per
bit (E

b

/N
0

)1 of 40 dB. This SNR is of practical interest as

1In the Gaussian case, the SNR per bit (E
b

/N
0

) is equal
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the corresponding SER is approximately 10�4 for � equal or
close to �

opt

. It is observed that the SER is approximately
the same for a certain range of �, i.e., between 10 to 30 de-
grees approximately. Any � chosen from this interval would
give good results. We see that �

opt

– the angle at which the
solid line is at its minimum – is closely approached by the
approximation �

min

o↵ered by the other curves.
To appreciate the substantial increase in error performance

due to constellation point placement, we have plotted the
uncoded SER against E

b

/N
0

for various � in Fig. 5 for
BPSK and Fig. 6 for QPSK, for the Cauchy case with in-
dependent components using ML detection. The gain be-
tween the worst and optimum cases for both schemes is over
35dB at an error rate of 10�5. Estimates for ↵ within the
AWS↵SN framework for practical underwater ambient noise
have been recorded to be as low as ↵ = 1.5. In Fig. 7 we
present the uncoded SER for QPSK in an AWS↵SN channel
with ↵ = 1.5 with independent baseband noise components.
It is observed that the trends encountered in the Cauchy
case extend to this case as well. All curves were calculated
for a minimum of 3000 errors for high SER (> 10�3) and a
minimum of 1000 errors for low SER (< 10�3).

4. PRACTICAL CONSIDERATIONS
From a practical perspective, the rotation of a constella-

tion map can be accomplished at the receiver without ac-
tually transmitting the rotated constellation symbols them-
selves. This of course is only of interest if the baseband
noise components are anisotropic. We propose a mechanism
that not only incorporates constellation rotation at the re-
ceiver, but also generates baseband noise with independent
components assuming passband AWS↵SN.

Let us assume that a single-carrier scheme is to be imple-
mented over an impulsive noise channel and the transmit-
ted symbols are chosen from the QPSK-�

1

configuration.
Also, let the optimal constellation map for this particular
realization of the channel be QPSK-�

opt

. Each symbol in
QPSK-�

1

can be mapped on to a unique point in QPSK-
�
opt

by multiplying it with exp(i��) where �� = �
opt

��
1

.
This mapping corresponds to a rotation of the constellation
points in QPSK-�

1

to attain QPSK-�
opt

.

to d2/(4m�2
b

), where d2 is the average power of the con-
stellation points lying in the complex plane, �2

b

is the scale
parameter of the real and imaginary baseband noise compo-
nents and m is the number of information bits per symbol.
We extend this definition of E

b

/N
0

to the Cauchy case.
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Figure 7: Symbol Error Rate vs. E
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for the ↵ =
1.5 case with independent components for various
QPSK schemes.

The relationship between the transmitted passband signal
and its baseband counterpart is given by

s(t) = <{z(t) exp(i2⇡f
c

t)} (15)

Note that (15) is the continuous-time version of (4). As
z(t) is the baseband signal corresponding to (a sequence of)
symbols in QPSK-�

1

, z(t) exp(i��) will be the baseband
signal if the symbols are chosen from QPSK-�

opt

. We can
rewrite (15) as

s(t) = <
�
z(t) exp(i��) exp

�
i(2⇡f

c

t���)
�

| {z }
carrier

 
(16)

On comparing (15) with (16), it is observed that given s(t),
z(t) exp(i��) can be acquired if the carrier (or clock) at the
receiver lags that of the transmitter by ��. For example, if
QPSK-⇡/4 is the transmitted constellation and �

opt

= ⇡/8,
the QPSK-⇡/8 constellation map can be generated by letting
the receiver clock lag the transmitter clock by �� = �⇡/8.

Though we have concocted a mechanism that rotates the
constellation at the receiver, independence of baseband noise
components is only ensured if the received signal s(t) is sam-
pled at

t =
n

f
s

+
��

2⇡f
c

(17)

where f
s

= 4f
c

and n is the discrete-time index. The sam-
pling rule in (17) does not e↵ect the constellation rotation
at the receiver. On substituting (17) in (16) we get

ś(n) = <
⇢
ź(n) exp

✓
i2⇡

f
c

f
s

n

◆�
(18)

where

ś(n) = s

✓
n

f
s

+
��

2⇡f
c

◆

ź(n) = z

✓
n

f
s

+
��

2⇡f
c

◆
exp (i��)

In reality, ś(n) is a sampled version of s(t), which in turn
consists of the transmitted signal corrupted with impulsive
noise. As (18) is the same as (4), the additive noise in
ź(f

s

n/B) has independent I and Q components under the
AWS↵SN framework.

In Fig. 8 we present a schematic that depicts a practical
implementation of passband-to-baseband conversion with con-
stellation rotation at the receiver. By setting f

s

= 4f
c

, inde-
pendent baseband noise components are guaranteed. This



CLK

Carrier: fc
Phase: -ȴʔ

Phase-Locked
Loop -ȴʔ

ADC

2h(n)

ML Detection

( )s t
Carrier: fc
Phase: 0

e(ix)4× fc

Carrier: 4fc
Phase: -ȴʔ

Downsample:
fs / B

ANALOG

DIGITAL

Z(n)

Z( fsn/B)

ADC

Figure 8: Practical implementation of a single-
carrier rotated-constellation scheme.

scheme is applicable for any constellation map that requires
rotation while ensuring independence of noise components.
The analog and digital blocks of the receiver are also high-
lighted.

5. CONCLUSION
Ambient noise in shallow waters dominated by snapping

shrimp is known to be impulsive and has been modeled ac-
curately by S↵S distributions. We examined the structure
of complex baseband noise derived from AWS↵SN while
restricting ourselves to the linear system framework. By
changing certain system parameters, di↵erent statistical con-
figurations are achieved for the resulting noise. These base-
band noise distributions are bivariate S↵S and generally
anisotropic. With emphasis on the Cauchy case with inde-
pendent components, it is shown that by e�ciently rotating
constellation maps the noise anisotropy may be exploited to
achieve exceptional error performance in BPSK and QPSK.
This advantage can be extended to include other constella-
tion sets as well. Using simulation, we show that error per-
formance trends in the Cauchy case are also encountered in
other heavy-tailed S↵S cases that correspond to good practi-
cal estimates of snapping shrimp noise. We propose an inno-

vative but simple implementation of a single-carrier system
that takes advantage of the baseband noise anisotropy by
rotating constellations solely at the receiver side while also
ensuring independence of noise components. As the analysis
provided in this paper is restricted to linear decoders, the
provided mechanism can be incorporated within any practi-
cal system.
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