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Statistical Bit Error Trace Modeling of Acoustic
Communication Links Using Decision
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Abstract—Underwater network simulation and performance
analysis require accurate packet error models. The packet error
probability depends on the packet length and the temporal
distribution of bit errors. We analyze error traces from deci-
sion-feedback-equalized single-carrier acoustic communication
links from several shallow-water experiments and show that
clustering of bit errors occurs at several timescales. We propose a
two-part statistical error model consisting of a generalized Pareto
fractal renewal parent process that drives Bernoulli daughter
processes with generalized extreme value distributed lifetimes.
We present an algorithm to simulate communication errors using
this error process model and show that the simulated packet loss
probability accurately matches experimental observations.

Index Terms—Bit errors, generalized Pareto renewal process,
packet errors, underwater communications.

I. INTRODUCTION

U NDERWATER communication performance in terms of
data rate and robustness has improved significantly over

the past few decades. Underwater acoustic modem technology
has, therefore, matured to a level where underwater networks
can be deployed and tested. However, the cost, logistics, and
effort involved in deploying experimental underwater networks
remains high, and is beyond the reach ofmany researchers. Even
researchers who have access to resources for experimental re-
search in underwater networks prefer to test their networks in
simulation before experimental testing. Hence, the need for ac-
curate underwater network simulators is key to the future of un-
derwater networking research.
Some underwater networking researchers have customized

network simulators (e.g., Omnet++, Opnet, Qualnet, ns-2) while
others have chosen to develop their own discrete event sim-
ulators. More recently, the idea of simulating and experimen-
tally testing underwater protocols with identical implementa-
tions (source code) has become popular [1]–[4]. In all of the
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cases, an underwater physical layer performance model is re-
quired by the simulator tomodel the packet loss performance for
each link in the network. Although sophisticated physics-based
time-varying channel models can be used to determine the er-
rors in each transmitted packet, this approach is computationally
infeasible for large-scale simulation. Rather than compute the
errors for each packet, some simulators [e.g., world ocean sim-
ulation system (WOSS)] use acoustic propagation modeling to
estimate the packet loss probability [5]. The packet loss prob-
ability is then used to simulate packet errors. This provides a
feasible solution for static networks but the computational load
in case of mobile networks is prohibitively large as the acoustic
modeling has to be performed every time a node moves. In ad-
dition, the computationally feasible physical models may not
model all the factors affecting communication performance and,
therefore, may not be able to model the variability in the channel
accurately. To reduce complexity further, some researchers use
simple range-dependent packet loss probability to model the
performance of each link [1]. The computation of the packet
loss probability assumes independent bit errors and a constant
probability of bit error for a given range. Although useful as
a first-order approximation with very low computational com-
plexity, this approach fails to capture the time variability in the
channel and the consequent clustering of errors that occurs in
underwater channels. Statistical finite stateMarkovmodels have
been used to model time variability in packet loss rates [6], [7].
Hidden Markov models have been shown to model the packet
loss of the JANUS modulation scheme during a specific exper-
iment [7], yet it is not known if these models are generally ap-
plicable. Moreover, since the packet error rate (PER) depends
on packet size, distinct models are required for different packet
sizes.
To partially alleviate the problems described above, we

apply statistical modeling to bit errors rather than packet
loss. Specifically, we statistically characterize bit error traces
from a channel-estimate-based decision feedback equalizer
(CEB–DFE) by analyzing signals from the SPACE’08 experi-
ment. Using the data collected, we propose a statistical model
for the occurrence of errors in a data stream. We further validate
this model by using data from the RACE’08 and ROMANIS’10
experiments. This model can then be used to compute realistic
time-varying packet loss probability for use in analytical net-
work performance modeling and network simulation.
The rest of this paper is organized as follows. In Section II, we

describe the SPACE’08 experiment and data processing that led
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Fig. 1. Representative impulse responses from the (a) 80-m and (b) 1-km links during the SPACE’08 experiment. The horizontal axis represents multipath delay
and the vertical axis represents absolute time. The colorbar is in a linear scale. The snapshots are generated at the bit rate.

to the bit error traces. Using Fano factor analysis, a well-estab-
lished technique for measuring clustering [8], we show that the
error traces exhibit clustering at several scales and demonstrate
the effect of this on packet loss probability. We show that the
long timescale clustering can bemodeled using a fractal renewal
process, while shorter timescale clustering can be approximated
by a limited lifetime Bernoulli process. A renewal process is
characterized by independent intervals between events. We use
the serial correlation coefficient to demonstrate independence of
the measured intervals between errors. We use statistical tools
such as confidence intervals of the cumulative hazard function,
Berman’s test, and Kolmogorov–Smirnov test to show that the
long timescale process model fits the experimental data well.
The distribution of lifetime of the short timescale process is
characterized. In Section III, we integrate our findings into a
statistical model for the error process. We show that this model
predicts experimentally observed packet loss probability accu-
rately. We also show that second-order statistics can also be
predicted using the model. In Section IV, we validate the pro-
posed model using data from several experiments. Finally, in
Section V, we discuss the implications of this model as well as
some of its shortcomings. We also suggest directions for further
research in this area.

II. SPACE’08 DATA ANALYSIS

A. Data Collection

The first set of experimental data that we use in this paper
was recorded during the SPACE’08 experiment off the coast
of Martha’s Vineyard, MA, USA, in 2008. The transmitter and
the receiver were static and were located 4 and 3.25 m, respec-
tively, above the seafloor. The water depth was about 15 m. The
transmitted signal was a 6510.4-b/s binary phase-shift keying
(BPSK) pseudonoise (PN) sequence that was modulated onto a
12.5-kHz carrier. The source level was 185 dB re 1 Pa @ 1 m.
Data from two horizontal ranges (80 and 1000 m) were used in
the analysis presented in this paper.
The receiver employed CEB–DFE, namely, the intersymbol

interference (ISI) was canceled by combining previous channel

and symbol decisions before adaptive feedforward (FF) equal-
ization. Channel estimation was performed by employing a
novel sparse adaptive algorithm [9]. The FF equalizer was
adapted to channel variations via the recursive least square
(RLS) algorithm. Representative impulse responses for the
channels are shown in Fig. 1.
The demodulated data were compared with the transmitted

PN sequence to form error traces. Each error trace was gener-
ated from a 1-min data set with about 3.6 10 b. The error trace
was only collected once the equalizer switched to a decision-
directed mode after an initial training period of 500 b. Three
error traces (denoted by F38S2DD, F39S2DD, and F40S2DD)
were obtained for the 80-m channel, and another three error
traces (F38S6DD, F39S6DD, and F40S6DD) were obtained for
the 1-km channel. In the decision-directed mode, we expected
some error feedback leading to error propagation in the traces.
To guide our understanding of the underlying error generation
process with minimal error feedback, we also generated error
trace data for the equalizer running in training mode for the en-
tire data set. These training mode error traces corresponding to
F38S2DD, F39S2DD, and F40S2DD are denoted by F38S2TR,
F39S2TR, and F40S2TR, respectively.

B. Bernoulli Error Process Model

As a first-order approximation, the bit error trace can be mod-
eled as a Bernoulli process with a constant and independent
probability of bit error. In this model, the number of bit errors
in a window of size bits follows a Binomial distribution with
mean and variance . The ratio of the variance to the
mean of the finite interval count distribution of a point process is
known as the normalized variance or Fano factor [8]. The Fano
factor is a measure of clustering, and, therefore, a useful statistic
to identify data consistent with Poisson arrival, Bernoulli, and
fractal renewal processes. For a Binomial distribution, the Fano
factor is and, therefore, independent of the window
size . For small , the Fano factor is expected to be close to
1. The Fano factors for the six decision-directed error traces are
shown in Fig. 2. The Fano factors for all error traces are clearly
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Fig. 2. Fano factor plot of error traces in decision-directed mode.

dependent on . For large , the Fano factors are much larger
than 1 suggesting clustered occurrence of errors.
The error count distribution in a window is directly related

to the probability of packet error. A packet of length is suc-
cessfully received if there are no bit errors in the packet. For
a Bernoulli error process, the probability of packet error is,
therefore, given by

(1)

By dividing an error trace into nonoverlapping packets of bits
each and counting what fraction of the packets are error free,
we can obtain an estimate of the packet error probability . In
Fig. 3, we compare the estimated packet error probability with
the prediction from the Bernoulli model for two representative
error traces. The Bernoulli model for each of the error traces
uses a bit error probability estimate , where is the
total number of errors and is the total number of bits in that
trace. At short packet lengths, the model provides a good es-
timate of packet error probability, but as the packet length in-
creases, the predicted probability deviates from the observed
probability. This can be understood in terms of the Fano factor.
At short window sizes, the Fano factor is close to unity. This
is consistent with a Binomial distribution for the number of er-
rors in the window, and thus a Bernoulli model for the error
process at this packet length scale is a good approximation. As
the window size increases, the Fano factor grows rapidly. This
growth indicates a deviation from the Bernoulli model and re-
sults in a model mismatch with observations. The large Fano
factor at these window sizes is indicative of a clustering of er-
rors; the Bernoulli model, therefore, overestimates the packet
error probability.
From the above analysis, we see that the Bernoulli process is

a poor model for the errors in our data sets. The observed errors
are clustered more tightly than the Bernoulli model predicts.

Fig. 3. Probability of packet error for two decision-directed error traces (one
each from the 80-m and 1-km channels). The solid line shows the estimated
packet error probability from the error trace, while the dashed line shows the
corresponding packet error probability predicted by the Bernoulli error model
with an estimated bit error probability.

One possibility is that variations of the acoustic channel over
short timescales (our data set is only 1 min long) may give rise
to time-varying error probability. Another possibility is that the
decision feedback process in the decision-directed mode may
temporarily increase the error probability once an error occurs.
To differentiate between these two possibilities, next we study
the training mode error traces.

C. Training Mode Errors

In the decision-directed mode, erroneous decision feedback
in the receiver potentially leads to error clusters over short
timescales. To understand how much of the observed deviation
from the Bernoulli model is due to this effect, we study the
Fano factor plots for the training error traces (see Fig. 4). The
Fano factor curves significantly differ from those in Fig. 2. For
small values of , the Fano factor for the training error traces
stays close to 1. Thus, a Bernoulli process with a small bit error
probability seems to model our training error traces at very
short timescales, suggesting that erroneous decision feedback
is primarily responsible for the observed error clustering over
these timescales. The increase in Fano factors at larger
indicates clustering at longer timescales due to variability in
the acoustic channel.

D. Fractal Renewal Process Model

A renewal process is a point process where the interval
between adjacent events (errors) is independent and identically
distributed (i.i.d.). A fractal renewal process is a renewal
process where the interval distribution exhibits self-similarity
at different timescales. The concept of self-similarity for a
point process can be understood in terms of the scaling of the
statistics of the process [10], specifically, the statistics used
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Fig. 4. Fano factor plot of error traces in training mode.

to describe the process scale with the window size employed.
The shape of the Fano factor curves in Fig. 4 is characteristic
of Fano factor curves for fractal renewal processes [10], [11].
Inspired by this similarity, we next explore whether a fractal
renewal process is able to model the longer timescale error
clustering due to channel variability.
As this section focuses on the longer timescale clustering due

to channel variability, we start by filtering the decision-directed
error traces to remove short-term clustering due to erroneous de-
cision feedback. Let be the set of error locations
in the error trace, ordered such that . Let the interval

. The filtered error trace is then given by
for some threshold . From Fig. 4, we see that

the Fano factor scales with window size for large window sizes.
For window sizes of less than about 50 b, we see that the Fano
factor is constant and close to unity. Hence, a short section of er-
rors may be modeled as a Bernoulli process, but a longer section
requires a model that accounts for clustering. Since our interest
in this section is in understanding the longer timescale clustering
of errors, we proceed by filtering out the short timescale errors.
The rest of the analysis in this section is presented on the filtered
error traces with 50 b.
The interval serial correlation coefficient is a measure

of dependence between intervals at lag in a point process

(2)

where is the expectation operator over . For a renewal
process, and . Fig. 5 shows the
measured as a function of for the filtered error trace of
F38S2DD. The values of for are small. The fil-
tered process thus shows no significant dependency between
inter-error intervals as would be expected of a renewal process.
Similar results are obtained for all six error traces.

Fig. 5. Interval serial correlation coefficient for a filtered F38S2DD error
trace with 50 b. The serial correlation coefficient plots for other filtered
error traces look very similar.

The generalized Pareto (GP) distribution [12] has tail
probability with fractal scaling properties. The cumulative
distribut-ion function (CDF) of the GP distribution is given by

(3)

where is a shape parameter and is a scale parameter of the
distribution. We find that the GP distribution models the proba-
bility distribution of the interval length accurately. Fig. 6 shows
the estimated cumulative hazard function1 of the interval distri-
bution of the F38S2DD error trace along with a GP fit estimated
using the function in MATLAB. Similar results are ob-
tained for all six error traces.
We validate that the generalized Pareto renewal (GPR)

process accurately models the long timescale errors by using
the time transformation tests of Ogata [13]. The time transfor-
mation tests make use of the time-rescaling theorem [14, Th. 6].
If the model point process has an identical conditional intensity
function2 to the observed error process, then the transformed
point process will be consistent with a homogeneous Poisson
process with unity rate (Poisson parameter ). Ogata
uses the term “residual process” to describe the transformed
process. Testing on the residual process is, therefore, a test
for a homogeneous Poisson process with unity rate. Berman’s
test [13] compares modified intervals of the residual process
with a uniform distribution on . Testing requires that
parameters for the GP distribution be estimated from the data.
To partially alleviate the testing consequences of this estima-
tion, we partition the data into two processes of equal size,
estimate parameters from one partition, and test on the other
partition. We make use of the Spike Train Analysis with R

1For a random variable with CDF , the cumulative hazard function can
be expressed as .
2The intensity function of a point process at time is defined as

(one event occurs in time ) .
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Fig. 6. Interval cumulative hazard function for a filtered F38S2DD error trace
with 50 b, along with a GP fit ( , ) to the data. The dashed
lines are the 95% confidence interval guides. The cumulative hazard plots for
other filtered error traces have similar goodness of fit.

(STAR) package to perform the tests [15]. Fig. 7 shows the
result of Berman’s test for the residual of the filtered F38S2DD
process displayed using the style of a two-sided single sample
Kolmogorov–Smirnov test. Shown with the test results are
95% and 99% confidence intervals (two sets of outer dashed
lines). The test results are bounded by both of these confidence
intervals. In [13], it is observed that while Berman’s test is
passed, it is quite possible to have clustering in the residual
process. For this reason, we also show a Fano factor plot of the
residual process with 99% confidence intervals in Fig. 8. The
confidence intervals assume a distribution of uncertainty in
the Fano factor and are suitable for testing for a homogeneous
Poisson process [16]. The Fano factor plots show that there
is no significant clustering in the residual process. Ogata also
suggests testing using the empirical log-survivor function and
Pouzat and Chaffiol [17] suggest a Wiener process test. These
additional tests were performed and the results were consistent
with a GPR process.

E. Short-Term Clustering Due to Decision Feedback

Modeling of the short-term clustering due to the feedback of
erroneous decisions is more difficult. We assume that the long
timescale error process is a parent process that drives a short
timescale daughter process. Every time the parent process gen-
erates an error, a daughter process is instantiated. This process
generates a cluster of errors that lasts for a finite but random
length of time. The daughter process represents the effect of the
erroneous feedback in the receiver system. Although the gen-
eral parent–daughter process structure is likely to be generally
applicable, the exact model for the daughter process will depend
strongly on the receiver structure.
It is impossible to completely separate the errors from the

parent and daughter process in an error trace. However, we ob-
tain estimates of the daughter process corresponding to each
parent process event using the following technique: We mark

Fig. 7. Berman’s test applied to the residual process after time transformation
of the filtered F38S2DD error trace with 50 b. The distribution function
plotted as a function of modified intervals is expected to lie on a straight line.
Shown here are the empirical CDF (ECDF) of the intervals from the residual
process (solid red line) and the 95% and 99% confidence intervals from the
Kolmogorov–Smirnov test (dashed black lines).

Fig. 8. Fano factor plot for the residual of the filtered F38S2DD error trace with
50 b. This plot shows that there is no significant residual clustering in the

process after time transformation using a GP model; 99% confidence intervals
assuming a distribution are shown (dashed red lines).

the errors from the parent process using the filtering technique
outlined in the previous section. All remaining errors in the error
trace are then assigned to a daughter process corresponding to
the preceding parent process error. The length of each daughter
process is the number of bits between the corresponding parent
process error and the last error from the daughter process.
An averaged Fano factor plot for all daughter processes de-

rived from the F38S2DD error trace using the technique in the
previous paragraph is shown in Fig. 9. At short window sizes,
the Fano factor is close to unity, suggesting a Bernoulli process
model at short timescales. As the window size increases beyond
20, the Fano factor systematically grows; this may at least in part
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Fig. 9. An averaged Fano factor plot for all daughter processes derived from
F38S2DD error trace with 50 b. The plot is consistent with a Bernoulli
process at short timescales. Similar results are obtained for other error traces.

be attributed to contamination from the parent process and from
the truncation of the daughter process due to the filtering. Recall
that the filtering was performed with 50 b and, therefore,
one would expect significant deviation as the window size ap-
proaches 50. Similar results are obtained for all six error traces.
Although it is plausible that the errors of the daughter process
exhibit weak inherent clustering, we cannot test for this since
our estimated parent–daughter separation of observed data is not
perfect.
The probability distribution of the length of the daughter

process was empirically derived from the F38S2DD error trace.
By testing several common probability distributions, we found
that the generalized extreme value (GEV) distribution [18]
offered the best fit. The CDF of the GEV distribution is given
by

(4)

where is a shape parameter, is a scale parameter, and is
a location parameter. The survival function3 (also known as the
tail distribution or the complementary CDF) estimated from the
data and the best fit GEV computed using the function
in MATLAB are shown in Fig. 10. Similar results are obtained
for other error traces.
Although one may expect that the Bernoulli error probability
in a daughter process could be estimated by counting the

number of correct and erroneous bits in all daughter processes,
as a result of the contamination from the parent process, this
procedure overestimates by a factor of two to three. For the
SPACE’08 data sets, this procedure yielded but the
best model match is obtained for . To estimate

3For a random variable with CDF , the survival function
.

Fig. 10. Daughter length survival function (1-CDF) for a F38S2DD error trace
with 50 b, along with a GEV fit ( , , ) to the data.
Similar goodness of fit is obtained for other error traces.

Fig. 11. Block diagram of the overall error generation process model.

from a data set, we recommend that this counting procedure be
used for an initial estimate of . The value of should then be
iteratively decreased until the modeled packet error probability
versus packet length curve matches the measured curve from
the data set. One may further formalize this procedure to vary
to minimize the mean square error between the modeled packet
error probability curve and data.

III. ERROR PROCESS MODEL

A. Statistical Model

Based on the findings discussed in Section II, we propose a
statistical model for bit errors in an underwater communication
stream. The model consists of a parent process and a number
of daughter processes, as shown in Fig. 11. The parent process
is a GPR process that generates errors at intervals drawn from
a GP distribution. Each error due to the parent process addi-
tionally triggers a daughter process with a finite lifetime drawn
from aGEV distribution. During the life of the daughter process,
she generates additional errors in accordance with a Bernoulli
process.
The model is characterized by six parameters: and for

the GP distribution; , , and for the GEV distribution; and
the error probability for the Bernoulli distribution. A simple al-
gorithm to generate errors according to this error process model
is given in Algorithm 1.
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Algorithm 1: Algorithm to generate errors according to the
proposed error process model.

Require:Model parameters: , , , , ,
Require: is the number of events to simulate
Ensure: is a set of error locations
1:
2:
3: for do
4: random number drawn from GP( )
5:
6:
7: random number drawn from GEV( )
8: for do
9: uniform random number between 0 and 1
10: if then
11:
12: end if
13: end for
14: end for

To estimate the model parameters from an experimental data
set, we first filter the error process to obtain an estimate of the
parent process as described in Section II-D. We then estimate
and using MATLAB’s function on the interval

distribution of the filtered process. Next, we estimate daughter
lengths from the unfiltered error process, using the procedure
described in Section II-E. We then estimate , , and for
the GEV distribution using the empirical probability distribu-
tion of the daughter length and MATLAB’s function.
Finally, we estimate , using the procedure described at the end
of Section II-E.

B. Packet Error Statistics

To validate our model, we simulate error traces in a com-
munication stream with 10 b using Algorithm 1. By dividing
each bit steam into nonoverlapping packets of length , we
compute the packet error probability for the simulated error
trace as a function of . For the two data sets previously ana-
lyzed in Fig. 3, we compare the packet error probability curves
from the experimental error traces and two simulation runs. The
simulation for each of the data set uses model parameters es-
timated from the data set. As seen in Fig. 12, the simulated
packet error curves closely matched the measured curves. The
proposed error process model generates errors with appropriate
clustering to yield the observed packet error probability for any
packet length.

C. Second-Order Statistics

So far we have shown that, for a given packet length, the
PER from the model matches the experimentally measured PER
accurately. We next demonstrate that the model can also be used
to yield a good match in second-order statistics.
Let be the probability of packet error, i.e.,

packet is in error . Let be the prob-
ability that two consecutive packets are in error, i.e.,

Fig. 12. Probability of packet error for two decision-directed error traces (one
each from the 80-m and 1-km channels). The solid line shows the estimated
packet error probability from the error trace, while the dashed lines show cor-
responding packet error probabilities from two simulation runs of the proposed
error model.

packet is in error packet is in error ,
where packet is in error packet is in error .
We define a normalized dependency . If
packet errors are independent, then and . With
clustering of bit errors, one would expect that the packet errors
for closely spaced packets would not be independent, with

. Thus, for clustered packet errors, we would expect
.

For a given packet length , normalized dependency can
easily be estimated from an error trace by counting the occur-
rences of consecutive errors. We compare estimates of from
experimental and simulated error traces to check if this second-
order statistic of the error process is accurately captured by our
model. The result for data set F38S2DD is shown in Fig. 13.
There is a good match between simulation and experiment, ex-
cept in the case of extremely short packet lengths (few bits).
Similar results are obtained for the other data sets.

IV. FURTHER EXPERIMENTAL VALIDATION

The proposed model is intuitively appealing and provides a
good match for the data sets from the SPACE’08 experiment.
Yet, additional validation based on other experimental data
sets should be applied. We tested error traces from two other
shallow-water experiments: RACE’08 and ROMANIS’10.
We also processed the data from SPACE’08, using a different
receiver structure. In this section, we present the results from
these tests.

A. RACE’08 Data

The RACE’08 experiment took place in Narragansett Bay,
RI, USA, in March 2008. The transmitter was mounted on a
rigid tripod 4 m above the sea bottom in a 9-m water depth.
The transmitted signal was a 10-kb/s, 1-min-long, BPSK-mod-
ulated pseudorandom data with a carrier frequency of 13 kHz.
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Fig. 13. Normalized dependency for F38S2DD, RACE’08, and RO-
MANIS’10 error traces. The blue lines with round markers show the
experimentally obtained values of as a function of packet length . The
red lines with star markers show the simulated values of using the model
parameters appropriate for each data set.

Fig. 14. Representative impulse response from the RACE’08 experiment. The
horizontal axis represents multipath delay and the vertical axis represents abso-
lute time. The colorbar is in a linear scale. The snapshots are generated at the
bit rate.

The receiver was a 12-sensor vertical line array with 12-cm in-
tersensor spacing mounted on a 2-m-high rigid tripod in a water
depth of 10 m. The horizontal range between the transmitter and
the receiver was 1 km. Representative impulse responses for the
channel are shown in Fig. 14. Received data from channel 12
was processed using the CEB–DFE with RLS algorithm used
in Section II. The resulting error trace was 5.4 10 b in length.
We estimated the parent and daughter processes using 50

b. The interval distribution for the parent process was well mod-
eled by a GP distribution with and . The dis-
tribution, however, showed a slight interval serial correlation,
as shown in Fig. 15. Whether this correlation was due to con-

Fig. 15. Interval serial correlation coefficient for a filtered RACE’08
error trace with 50 b. The serial correlation coefficient shows slight residual
correlation near lag 15.

Fig. 16. Probability of packet error for RACE’08 and ROMANIS’10 error
traces. The blue solid lines show the estimated packet error probabilities from
the error traces, while the red dashed lines show the corresponding packet
error probabilities from a simulation run of the error process model. The blue
dashed–dotted lines show predicted packet error probabilities using a simple
Bernoulli error model for comparison.

tamination from the daughter processes is unclear. The daughter
process length distribution was well modeled by a GEV distri-
bution with , , and . The Bernoulli prob-
ability of the daughter processes was estimated to be 0.014.
A packet error curve generated through simulation using this
model follows the measured packet error curve from the data
closely, as shown in Fig. 16. The match between normalized de-
pendency curves for the measured and simulated data is shown
in Fig. 13.

B. ROMANIS’10 Data

The ROMANIS’10 experiment was conducted in the area of
Selat Pauh in Singapore waters on April 21, 2010. Both the
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Fig. 17. Representative impulse response from the ROMANIS’10 experiment.
The horizontal axis represents multipath delay and the vertical axis represents
absolute time. The colorbar is in a linear scale. The snapshots are generated at
the bit rate.

transmitter and the receiver were mounted on rigid tripods, 4
m above the seafloor. The water depth was 15 m and the hori-
zontal range of the link was 350 m. The transmitted signal was
a 5-kb/s rate, BPSK-modulated pseudorandom data with car-
rier frequency of 27.5 kHz. Representative impulse responses
for the channel are shown in Fig. 17. A notable feature of this
channel was a broadband interference from an unknown source
arriving every 10 ms at the receiver. The data were processed
using the CEB–DFE with the RLS algorithm.
We estimated the parent and daughter processes using

50 b. The interval distribution for the parent process was well
modeled by a GP distribution with and
with no significant interval serial correlation. We modeled the
daughter process by a GEV distribution with , ,
and , and Bernoulli probability . A packet
error curve generated through simulation using this model com-
pares well with the measured packet error curve from the data,
as shown in Fig. 16. Thematch between normalized dependency
curves for the measured and simulated data is shown in Fig. 13.

C. SPACE’08 Data With IPAPA

In Section II, we presented results for the SPACE’08 ex-
periment data processed with CEB–DFE using the RLS algo-
rithm. It is plausible to check if the proposed model is robust to
changes of the receiver structure. Next, we present results for
the F38S6DD data set processed with CEB–DFE using the im-
proved proportionate affine projection algorithm (IPAPA) [9].
Diversity combining was used to avail the spatial diversity from
two receivers in this data set.
As the Fano factor for error traces in trainingmode in this data

set showed deviation from 1 at smaller window sizes of about
20 b, we estimated the parent and daughter processes using
20 b. The interval distribution for the parent process was well
modeled by a GP distribution with and with
no significant interval serial correlation. The daughter process

Fig. 18. Probability of packet error for SPACE’08 CEB–DFE/IPAPA error
trace. The blue solid line shows the estimated packet error probability from
the error trace, while the red dashed line shows the corresponding packet
error probability from a simulation run of the error process model. The blue
dashed–dotted line shows predicted packet error probability using a simple
Bernoulli error model for comparison.

was well modeled by a GEV distribution with , ,
and , and Bernoulli probability . A packet
error curve generated through simulation using this model com-
pares well with the measured packet error curve from the data,
as shown in Fig. 18.

V. DISCUSSION AND CONCLUSION

We analyzed six different error traces derived from
1-min-long recordings at ranges of 80 m and 1 km during
the SPACE’08 experiment. We showed that packet error proba-
bility computations using an average bit error rate derived from
the error traces and a Bernoulli error process assumption were
inconsistent with experimentally measured PER. The mismatch
was found to be primarily due to clustering of errors that occurs
at several timescales. Based on the analysis of the clustering,
we proposed a two-part statistical error model. The model con-
sisted of a GPR parent process that drives Bernoulli daughter
processes with GEV distributed lifetimes. We presented an
algorithm to simulate communication errors using this error
process model and showed that the simulated PER accurately
matches the experimentally observed PER. We also showed
that second-order statistics of the simulated error traces agree
closely with experimental measurements. We conclude that the
error process model we proposed captures the important as-
pects of the error generation process for DFE-based underwater
communication systems.
The GPR process is a fairly general fractal renewal point

process. Although our error traces were obtained from a co-
herent single-carrier communication system using CEB–DFE,
we believe that this GPR process model is general enough for
use with other receiver structures as well. This belief is fur-
ther strengthened by noting that renewal processes with Pareto-
distributed intervals have previously been used to model other
channels and receivers [19], [20].



794 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 38, NO. 4, OCTOBER 2013

The Bernoulli daughter process with GEV distributed life-
times seems more empirical and perhaps specific to the receiver
structure or the experimental setup we used. However, since
the daughter process operates over very short timescales, the
errors generated by this process are often contained within a
single packet for typical packet lengths of interest. Since the
driving parent process already corrupts the packet that contains
the daughter process errors, the exact structure of the daughter
process error cluster becomes unimportant in the analysis of
packet error performance. Packet loss computations can, there-
fore, be expected to be relatively robust to model mismatch in
the daughter process.
In addition to the six error traces from the SPACE’08 ex-

periment that we initially analyzed, we validated the proposed
model using error traces from the RACE’08 and ROMANIS’10
experiments, and an error trace from the SPACE’08 experiment,
using a different receiver structure. Even when the experimental
data showed a small degree of statistical mismatch with the
parent or daughter process models, the simulation results using
the combined model closely approximated the observed packet
error probability curves. We believe that the observed mismatch
is caused by contamination of the filtered parent process by
some residual daughter errors. Nevertheless, the good match in
packet error probability suggests that the process model may
be usefully applied in wide variety of conditions. We have lim-
ited our exploration to DFE-based single-carrier communica-
tion systems in shallow waters. We anticipate that the method-
ology used in this paper is more widely applicable, and there-
fore plan to test the model in other environmental conditions
and receiver structures. The technique may also be applied to
modeling of errors from a communication system with forward
error correction (FEC) codes by letting in (1) be measured at
the output of the decoder, but we have not tested this. We plan
to include receiver structures with FEC in our future studies.
In our work, we assumed a stationary error process model.

This assumption is reasonable at short-to-medium timescales (in
the order of minutes); at much longer timescales, the channel
conditions may vary significantly. We observed hints of this ef-
fect in some of our longer error traces. The proposed process
model can be easily adapted for this situation by allowing the
parameters of the parent and daughter processes to vary over
time. Although such error traces are easy to simulate, one needs
amodel for the variation in process parameters. Long-term com-
munication measurements currently being undertaken will help
explore this idea further.
Finally, we note that it would be useful for researchers to

have representative parameter sets to use for simulation of var-
ious underwater channels (e.g., shallow water, deep water, etc.).
Comprehensive analysis of data from a large number of exper-
iments in various channels could be undertaken in the future to
tabulate such parameter sets.
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