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Abstract- Autonomous Underwater Vehicle (AUV) technology 
has  matured over the past few decades but commercial AUVs 
today remain complex, proprietary and expensive. Modularity in 
AUVs at a software, electronics and mechanical  level allows users 
to configure AUVs for specific missions by only including the 
required components. With multiple base AUVs, users may easily 
configure heterogeneous teams of  AUVs for collaborative 
missions. Modular AUVs are also easier to  maintain. We expect 
that open-architecture AUVs with open software/hardware 
interfaces, changeable modules and open source components will 
become widely available in the future. However AUV 
configuration management and module compatibility are issues 
that arise with modularity.

An initiative at the Acoustic Research Laboratory (ARL) of 
the National University of  Singapore (NUS) has yielded an open-
architecture collaborative prototype AUV known as STARFISH. 
The software components in this  AUV are based on the DSAAV 
architecture. DSAAV has been designed ground up with modular 
AUVs in mind. In a DSAAV compliant AUV, each module 
provides a uniform software interface that other AUV modules 
can access. This interface allows configuration of  the module, 
logging  of  critical information, discovery of  services, access to 
sensor & actuator services, health monitoring and automated 
software update functionality. The interface is rich in 
functionality, yet light weight and portable to  ensure that even 
low power micro-controllers can easily implement it. DSAAV can 
be implemented on any underlying communication backbone 
such as  Ethernet, UDP/IP, etc. The software components running 
under DSAAV are independent of the underlying communication 
backbone and function without change in various AUVs and 
simulation environments.

In this paper, we describe the basic philosophy and concepts 
behind DSAAV. We also outline the Application Programming 
Interface (API) for DSAAV compliant systems and describe its 
key functionality. It is our hope that DSAAV will  be adopted and 
extended by other AUVs in the future.

I. INTRODUCTION

Over the past few decades Autonomous Underwater Vehicle 
(AUV) technology has matured from research prototypes to 
commercial systems. However, commercial AUVs today 
remain complex, proprietary and expensive. As AUVs mature 
further, we expect that open-architecture AUVs with clearly 
documented open software/hardware interfaces, changeable 
hardware modules and open source components will become 

widely available for research and commercial use. Some open 
interfaces are already emerging in the field  [1][2]. An 
initiative at the Acoustic Research Laboratory (ARL) of the 
National University of Singapore (NUS) has yielded an open-
architecture collaborative prototype AUV known as 
STARFISH [3]. The software components in this AUV are 
based on the DSAAV architecture described in this paper. 
Although DSAAV was developed with AUVs in mind, it is 
equally applicable to other autonomous vehicles such as 
unmanned surface vessels (USVs).

Modularity in AUVs at a software, electronics and 
mechanical level provides significant benefits to the user. 
Changeable modules allow users to configure AUVs for 
specific missions by only including the required components. 
By adding optional AUV sensor modules to a set of basic 
AUVs, users may easily configure heterogeneous teams of 
AUVs for collaborative missions. When hardware failures 
occur, modular AUVs are easier to maintain than monolithic 
AUVs. Although modularity provides these benefits, it also 
has some costs.  AUV configuration management and module/
component compatibility are issues that any modular AUV 
designer has to address.  Additionally a robust communication 
backbone is needed to ensure that all modules/components can 
communicate effectively.

The Mission Orientated Operating Suite (MOOS) developed 
at MIT addresses theses problems to some extent by the use of 
a central database with a well-defined communication 
protocol for client software components to access it [1]. 
MOOS adopts a “star” architecture with all components 
connecting to a central database in order to deposit or retrieve 
information. This can potentially lead to a single data 
bottleneck and a single point of failure. DSAAV, in contrast to 
MOOS, adopts a peer-to-peer communication architecture.  By 
being distributed, DSAAV spreads the load and traffic across 
all processors in the AUV and avoids high load and 
dependency on single processors and databases. However a 
centralized system is easier to administer and monitor; for this 
reason, DSAAV provides a central configuration database and 
logging service. As the configuration database is required 
primarily during start-up and the logging service is not 
essential to the operation of the AUV, the advantages of a 
distributed architecture are not lost by having these centrally 
managed services. MOOS uses a TCP/IP as i ts 
communications backbone. This limits the use of MOOS to 
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processors and operating systems that can support a TCP/IP 
stack (e.g. Linux, Windows NT and Windows 2000). DSAAV 
can operate on a variety of communication backbones 
including raw Ethernet; this makes it extremely lightweight 
and suitable for implementation on micro-controllers without 
a TCP/IP stack or multi-threading support as well as single-
board computers running Linux or Windows.

DSAAV has been designed ground up with modular AUVs 
in mind. In a DSAAV compliant AUV, each module provides a 
uniform software interface that other AUV modules can 
access.  This interface allows configuration of the module, 
logging of critical information, discovery of services,  access 
to sensor & actuator services, health monitoring and 
automated software update functionality. The interface is rich 
in functionality, yet lightweight and portable to ensure that 
even low power micro-controllers can easily implement it. 
The interface is easily extensible through Remote Procedure 
Call (RPC) constructs and therefore provides forward 
compatibility. 

DSAAV can be implemented on any underlying 
communication backbone. In the STARFISH AUV, the 
communication backbone used is Ethernet. By using raw 
Ethernet packets and avoiding the overheads of TCP/IP, 
DSAAV implementations on micro-controllers are small and 
fast. In simulation environments, DSAAV can be implemented 
over POSIX message queues or UDP/IP. The software 
components running under DSAAV are independent of the 
underlying communication backbone and function without 
change in various AUVs and simulation environments. In fact 
many STARFISH components achieve platform independence 
using DSAAV and can be deployed on Linux, Windows, Mac 
OS X systems or micro-controllers with no change in source 
code. This provides immense flexibility for AUV deployment.

In this paper, we describe the basic concepts underlying 
DSAAV. We then outline the Application Programming 
Interface (API) for DSAAV compliant systems and describe 
its key functionality. Through examples, we illustrate the use 
of DSAAV in AUVs and provide guidance for 
implementation. It is our hope that DSAAV will be adopted 
and extended by other AUVs in the future.

II. ARCHITECTURE

A. Architectural Overview
DSAAV is a four-layer architecture as depicted in Figure 1. 

The bottom-most layer (IComms) provides an implementation 
of a unreliable messaging service over the communications 
backbone available. The next higher layer is the “RPC” layer 
which implements a remote procedure call semantic using the 
IComms messaging service. The third layer consists of 
framework and sensor/actuator services implemented using 
the RPC framework. This includes core services for vehicle 
configuration, logging and health monitoring.  It also includes 
hardware drivers for all the sensors and actuators (collectively 
known as sentuators) as well as an external communications 

(EComms) interface for communication to other vehicles and/
or the control center.  The EComms interface may potentially 
use CCL for the external communication [2]. The top layer 
houses the command & control components which utilize the 
services provided by lower layers to achieve the mission of 
the vehicle.

Figure 1. DSAAV’s 4-layer architecture

B. IComms Layer
The IComms layer abstracts the underlying communications 

infrastructure from the upper layers. It provides an API to send 
and receive messages containing a set of key-value pairs.  The 
keys are predefined numeric constants,  while the values may 
be integers, single-precision floating point numbers, double-
precision floating point numbers of null-terminated strings.

The Unified Modeling Language (UML) [4] representation 
of the API is shown in Figure 2. The API consists of a 
ParamSet class which holds key-value pairs. A Message 
extends this class to add in special keys for message id, 
message type and reference id. The reference id is used for 
messages which refer to other messages (such as replies and 
acknowledgements). Messages can be sent and received using 
the IComms interface class. If a destination is known, its 
address is used to send the message. Alternatively, a channel 
broadcast may be used to send the message to all clients 
subscribing to the channel. The destination address is 
represented by the MsgSvcAddr class and consists of a 
hardware address and a logical port number. The port number 
allows multiple services to run on the same hardware node.

Various implementations of the IComms interface may be 
available for use. For example, in the STARFISH AUV, we 
have Ethernet based IComms for Linux, Mac OS X and 
STR912 micro-controller. We also have an IComms 
implementation over UDP/IP for WiFi access to the AUV and 
an IComms implementation using POSIX message queues for 
a simulation environment on Linux / Mac OS X.
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Figure 2. The IComms API

C. RPC Layer
The RPC layer implements a procedure call semantic using 

the unreliable messaging service provided by the IComms 
interface. The procedure to be called is identified by a 
destination address and a RPC operation id. A set of 
parameters may be passed to a procedure call,  and another set 
of parameters may be optionally returned by the call.  In cases 
where the procedure call does not return any parameters, the 
caller may choose a blocking reliable call or a non-blocking 
unreliable call. The reliable mode is used for most calls and is 
implemented through the use of acknowledgements and 
retries. Unreliable calls may be useful in scenarios where 
latency is important but reliability is secondary - for example, 
logging of routine data in the AUV or sensor data notifications 
for time-sensitive data streams.

Figure 3. The RPC API
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Figure 3 shows the API of the RPC layer. The RpcService 
interface is implemented by software components providing 
procedures to be called over RPC. The call method without a 
destination address uses a RPC broadcast channel to discover 
the service to be called. This is typically used to discover the 
configuration server,  which in turn provides information about 
all other services in the AUV as explained in the next section. 
Figure 4 shows a sequence diagram for a typical reliable RPC 
call with return value.

D. Core Services
A set of core services are implemented using the RPC layer 

described in the previous section. The core services provide a 
common framework for managing all software components in 
the vehicle. There are three core service - the configuration 
service, logging service and health monitor. These are 
described in the sub-sections below.
1) Configuration Service

The configuration service enables each component to be 
initialized with appropriate settings. It also enables the 
component to store persistent data (such as adaptive control 
parameters, etc.) centrally,  even if the component runs on a 
micro-controller with no persistent storage. Finally, it 
determines the service binding between components, thus 
providing the “plumbing” between components for data to 
flow.

Figure 5. The configuration API

The configuration API is shown in Figure 5. The central 
configuration database consists of two parts - a user 
administered configuration data and a software controlled 
application data.  The getString, getInteger and getFloat 
methods provide access to the information in the both parts; if 
the same key is present in both parts, the application data is 
returned. The putString,  putInteger and putFloat methods put 
value in the application data, masking any value with the same 
key in the configuration data. The remove method removes the 
application data section and unmasks any configuration data 
with the specified key. The getLogger, getEComms and 

getMonitor methods provide access to the logger,  external 
communications interface and the health monitor respectively. 
The getSentuator method provides access to sensor/actuator 
services in the vehicle. The addresses of all services are 
obtained from the configuration database.

The STARFISH implementation of the configuration 
service reads the configuration data from a text file. It 
maintains a separate text file database for the application data. 
The configuration data file has sections for each software 
component.  These sections contain key-value pairs 
representing each setting. The data file also has sections for 
each service available. These sections have a “Server” key 
providing the address of the service. The values in these 
sections can be overridden by keys in the component’s 
section, allowing a flexible way to control data flow. This best 
illustrated through an example configuration file extract:

[Logging]
Server = 1:0  # running on node 1 port 0
LogLevel = LOG_INFO # default log level

[Elevators]
Server = 2:0  # driver on node 2 port 0

[Depth]
Server = 3:0  # depth from node 3 port 0

[DepthSensor]
Server = 4:0  # driver on node 4 port 0

[DepthFilter]
Server = 3:0  # filter on node 3 port 0
Depth.Server = 4:0 # get depth data from sensor

[MyDepthController]
ControlGain = 2.3 # gain control parameter
Logging.LogLevel = LOG_DEBUG # override log level

The scenario described by the above configuration file 
extract is shown in Figure 6. The scenario includes five 
software components running on different hardware nodes in 
the AUV and communicating to control the depth of the AUV.

The configuration file starts off defining the address of the 
logging server and the default log level as INFO for all 
components. However,  the MyDepthController component 
overrides the log level to DEBUG for troubleshooting. The 
address of the elevator actuator service is defined next; any 
component requesting the “Elevators” sentuator will access 
the service from this address. This is followed by the address 
of the depth information service. In this example, we have a 
DepthFilter which filters the depth data from the sensor to 
provide a better estimate of real depth.  Hence the depth 
information service points to the DepthFilter service rather 
than the DepthSensor service; when a component asks for the 
“Depth” sentuator, it’ll receive data from the DepthFilter. 
However, the depth information for the DepthFilter comes 
from the DepthSensor as the “Depth.Server” key is overridden 
in the DepthFilter section. Finally, the MyDepthController 
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section defines a ControlGain parameter which can be read by 
the component to configure itself. This simple example 
illustrates how the configuration file is used to provide “data 
plumbing” between components.

Figure 6. Scenario described by the sample configuration file extract

1) Logging Service
The logging service provides a central store for logs from 

all software components in the AUV. The logging API is 
shown is Figure 7.

Figure 7. The logging API

The log level of each component can be set through the 
configuration service or via software.  This allows different 
level of logging for each component,  allowing the user to 
control the details logged from the component. Five different 
log levels are defined:

• ERROR - Used for logging critical/unrecoverable errors.
• WARNING - Used for logging potential problems and 

warnings; the software component is expected to continue 
operation.
• INFO - Used for logging informational messages such as 

version information, state changes and other major events.
• DATA - Used for logging sensor data; these messages are 

logged using unreliable calls to the logging server to avoid a 
performance bottleneck when large volumes of data is 
generated.

• DEBUG - Used for logging debug information; typically 
enabled temporarily on components for troubleshooting.
A central logging server enables software components 

running on micro-controllers without persistent storage to log 
information. Additionally the logs from all components are 
stored in a single place chronologically, allowing easy 
analysis. The logging server may also provide additional 
functionality such as log rotation, real-time monitoring and 
archival.
2) Health Monitor

Fault-tolerance is important in autonomous vehicles. To 
help the command & control system to achieve this, the 
DSAAV architecture recommends a health monitor component 
that keeps track of the health of all other components in the 
vehicle. In addition it provides a overall system health status. 
The health monitor API is shown in Figure 8.

Figure 8. The health monitor API

Each component in DSAAV provides a health status update 
to the health monitor. This can be “active” i.e. provided on a 
regular basis by the component or “passive” i.e. polled by the 
health monitor. Based on the health updates, each component 
status can be one of the following:

• HEALTHY - Component working as expected.
• UNAVAILABLE - Component is responding but no data is 

available. An example of this state is a GPS driver with no 
GPS fix or a DVL driver with no bottom-lock.
• MALFUNCTION - Component is responding but has 

detected a malfunction in software or hardware.
• OFFLINE - Component is not responding (passive mode) 

or has not sent a health update recently (active mode).
Based on the health of each component, the health monitor 

computes a overall health status or problem severity level.  
This information may be used by higher level command & 
control algorithms for decision making. The severity level can 
be one of the following:

• NONE - Normal operation.
• WARN - There is a problem with the vehicle, but it is not a 

show-stopper.  The mission can be continued.
• ABORT - There is a problem which requires the mission 

to be aborted.  The vehicle should stop the mission and return 
to the recovery point.
• EMERGENCY - There is a problem which requires 

emergency action. The mission should be aborted and the 
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emergency action should be taken. For an AUV, the 
emergency action could be to rapidly surface by dropping 
ballast weights and sending a radio SOS message to the 
control center.
In STARFISH, the health monitor uses an eXtensible 

Markup Language (XML) file to control the behavior of the 
monitor. The file specifies the components to be monitored, 
whether they are to be active/passive, the timeouts and the 
severity levels as a function of the component health. This 
diagnostic information is made available to the command & 
control system as well as the diagnostic Graphical User 
Interface (GUI) at the control center.  A screenshot of the 
diagnostic GUI is shown in Figure 9.

Figure 9. Screenshot of the diagnostic GUI

E. Sentuator Services
1) Sentuator Drivers

The sensors/actuators in the vehicle are accessed via the 
sentuator drivers.  In addition,  several algorithms in the data 
processing chains may also be implemented as sentuators. For 
example, the depth sensor data from a depth sensor may be 
noisy and require filtering. The depth filter component may 
provide a sentuator interface so that all components requiring 
depth information can access the depth filter’s sentuator 
interface rather the depth sensor’s.

The sentuators are accessed via the Sentuator interface 
obtained via the configuration service. Software components 
providing sentuator services implement the SentuatorService 
in ter face .  These services are regis tered wi th a 
SentuatorServer, which in turn processes the RPC requests 
from client components. Sentuator services are identified 

using predefined constants for measurement type or actuator 
type. Measurements obtained from sentuators may contain 
multiple quantities identified using predefined measurement 
quantities constants. The API is shown in Figure 10.
2) Sentuator Notification

The sentuator service API provides for a notification option. 
This enables components to be registered (via the 
configuration database) as listeners for specific measurement 
notifications. When data for these measurements becomes 
available, the sentuator driver calls the notify() method to 
deliver unsolicited unreliable notifications to all listeners. This 
construct is especially useful for components such as 
navigation computers which require a continuous stream of 
data from navigation sensors. If not for the notification 
construct,  these components would have to resort to inefficient 
polling.

Figure 10. The sentuator API
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3) Sentuator Service Discovery
The sentuator server handles get, set and notification RPC 

requests. In addition, it also supports health check RPC 
requests from the health monitor. These response to a health 
check request contains a list of sentuator services offered and 
their health information. This feature can be used to discover 
services available on the server. In STARFISH, we use this 
feature to discover services automatically as display them on 
the administration GUI. This could be extended in the future 
to develop a graphical configuration tool to connect together 
the software components in the vehicle and automatically 
generate the configuration file for a mission.

F. EComms Interface
The external communications interface provides an API to 

communicate with the external world - other autonomous 
vehicles and manned control centers. The EComms API 
defines the constructs for such communication, but it does not 
define the external communication schemes or data formats. 
Emerging standards such as CCL complement DSAAV by 
providing a specification for the external messages [2].

The EComms API is shown in Figure 11. It consists of a 
single method to send an external message. The parameters 
specify the interface over which the message is to be sent (e.g. 
acoustic communications, WiFi, etc.), the destination address, 
the message class (e.g. CCL) and the message content. 
Optional parameters include the priority and lifetime of the 
message; these parameters help the network stack determine 
how the messages are queued and processed. Incoming 
messages are delivered using a RPC_ECOMMS_RECEIVE 
message on the RpcService interface. Listeners are registered 
via the configuration database in a similar manner as the 
sentuator notification listeners.

G. Components & Containers
To promote portability of the software components 

developed using the DSAAV architecture, we provide a 
component-container construct. Every DSAAV software 
component extends a Component class (see Figure 12). All 
software components run in a container - each container 
contains one or more components. Containers are deployed on 
various hardware nodes in the vehicle. Micro-controllers with 
no multi-tasking or multi-threading support run a single 
container. Single-board computers with multi-tasking 
operating systems can run multiple containers as separate 
threads or processes.

The component-container construct allows single-threaded 
systems to run multiple components. It also enables seamless 
portability of components across hardware nodes and 
containers provided the components have no hardware 
dependency (such as access to serial ports or general-purpose 
input-output pins).  The container supports multiple 
components by implementing a simple form of cooperative 
(non-preemptive) multi-tasking.  Each component in a 
container receives RPC requests for the component. In 
addition, it also receives timer ticks at regular intervals for 
data processing and housekeeping tasks.

Figure 12. The component & container API

III. IMPLEMENTATION

So far in this paper we have presented the DSAAV 
architecture with some comments on how its implemented in 
the STARFISH AUV. In this section we further expand on the 
implementation by giving a system-level overview of the 
STARFISH AUV. We hope to illustrate practical use of the 
architecture through this example.

A. Brief Overview of STARFISH
The STARFISH research program was started in 2006 and 

aims to develop a research platform for exploring cooperation 
within small teams of AUVs. The base AUV developed as part 
of this program is modular at the mechanical, electronics and 
software level. The modularity and open interfaces in the 
AUV ensure that different research working groups can easily 
develop and test their ideas simply by replacing software 
components, and in some cases adding/changing hardware 
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sections to the AUV. The DSAAV architecture adopted in the 
project helps achieve this goal.

The base STARFISH AUV is about 1.5 m long and 0.2 m in 
diameter. It consists of 3 sections - the nose, the tail and a 
command, control & communications (C3) section. The nose 
section has a flooded nose cone with a depth sensor, an 
altimeter, a forward looking obstacle avoidance sonar and an 
emergency ballast drop mechanism. The tail section houses 4 
servo motors which control 4 independent control fins. It also 
has a DC thruster for forward propulsion.  The C3 section 
incorporates a compass, a low-cost inertial measurement unit 
(IMU) and a GPS receiver. In addition it contains the 
communications interfaces including an acoustic modem and a 
WiFi bridge.

Additional payload sections can be added to the AUV. For 
increased navigational accuracy, we have a Doppler velocity 
log (DVL) section that is typically attached between the nose 
and the C3 section. A side-scan sonar section is currently 
under development. Other sections containing environmental 
& chemical sensors, bow & heave thrusters for hovering, etc. 
may be added in the future. A photograph of the STARFISH 
AUV during one of the early field trials is shown in Figure 13.

Figure 13. STARFISH AUV

 A common bus connects all the sections in the STARFISH 
AUV. This bus primarily supplies power and provides an 
Ethernet communications backbone to all sections. Each 
section has one or more micro-controller units (MCU) or 
single-board computers in order to interface with the sensors/
actuators in the section. The nose, tail and DVL sections use a 
STR912 MCU for this purpose. The C3 section contains one 

STR912 MCU and one PC104+ format single-board computer 
running Linux.

B. DSAAV implementation in STARFISH
The DSAAV implementation in STARFISH is based on an 

IComms implementation using raw Ethernet packets. The 
code is written in C++ and compiled for Linux as well as the 
STR912 micro-controller using appropriate GNU tool-chains. 
By restricting the code to use a subset of C++ without 
template libraries and C++ standard library, the code is easily 
portable to most platforms with a C or embedded C++ 
compiler. A Java interface to the RPC layer allows the control 
center GUI (developed in Java) to make RPC calls. A UDP 
bridge software component runs on the Linux node as a 
gateway between RPC over UDP/IP (through the WiFi 
connection) and RPC over Ethernet, allowing the control 
center to access RPC services on the AUV for real-time 
monitoring and diagnostics.

A core server consisting of the configuration service, 
logging service, health monitor and the UDP bridge runs on 
the Linux node in the C3 section.  The node also runs the 
EComms server. This node is connected via the WiFi bridge to 
the a control center for administration. The mission file and 
configuration file is uploaded to this Linux node at the start of 
each mission. Log files may be downloaded at the end of the 
mission.

The sensors and actuators in each section are connected to 
the micro-controller in that section via an appropriate interface 
(RS232, I2C, SPI, etc.) The micro-controller runs a single 
container with all the appropriate sentuator drivers, thus 
providing a common software interface for access by other 
components in the AUV. In this way,  each section is self-
contained in terms of hardware and the software drivers 
associated with it.

Although each section contains the software drivers needed 
for the sensors/actuators in the section, it is more convenient 
to manage the settings of all sections centrally. This is done 
via the common configuration file on the Linux node. All 
sections also log their data and other messages at the central 
logging server, making troubleshooting and data analysis easy.

The Linux node in the C3 section runs a command & 
control (C2) system, a navigation & positioning system, a 
depth/bearing/roll control system and a AUV safety monitor. 
All these systems use the sensor/actuator services provided to 
control high level operation of the AUV.

The high-level software architecture of the STARFISH 
AUV is shown in Figure 14.

C. Simulation Environment
STARFISH development was greatly aided by a simulation 

environment which allowed the researchers to test their 
algorithms and implementations prior to field trials. The 
simulator implements a physics-based model of the 
environment,  providing RPC services equivalent to all 
sentuators in the AUV. As the simulated sentuator services are 
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available to all AUV software components, the components do 
not require any changes between the simulation environment 
and the actual AUV. A POSIX message queue based IComms 
implementation is used in the simulator so that all components 
can be tested on a single computer with no network 
connection.

D. Benefits from the DSAAV Architecture
The DSAAV architecture has benefited STARFISH 

immensely.  The use of RPC has allowed distributed 
deployment of software components in the AUV. Moreover, 
re-deployment of components has been extremely easy. For 
example, we initially used two PC104+ single board 
computers in the AUV. The IMU and compass were connected 
to one of these PC104s. However, due to space, power and 
heat dissipation considerations,  we eventually removed one of 
the PC104s. The IMU and its driver were moved to the other 
PC104 with no changes. The compass and its driver were 
moved to the C3 MCU with very minor changes.

Data plumbing through the configuration file is extremely 
easy. During actual AUV operation, we expect the command 
& control system to use the position estimate by the 
navigation & positioning system. However, during initial 
testing, we wanted to decouple the testing of the two systems. 
As the initial tests were conducted on/near the surface,  we had 
position estimates from GPS available. A small change in the 

configuration file allowed us to direct the command & control 
system to use the position service on the C3 MCU (where the 
GPS is connected) rather than the position service from the 
navigation & positioning system. Once both systems were 
independently validated, the configuration file was reverted 
back to resume normal operation. Another example of the use 
of data plumbing is the optional DVL section. If the DVL is 
present, the velocity estimates from the DVL are used through 
out the AUV. If it is absent, the configuration file directs all 
components who require velocity estimates to the navigation 
& positioning system which estimates velocity based on 
thrust. As the altitude data from the DVL is more accurate 
than the altimeter, all components needing altitude 
information are directed to use the DVL altitude if the DVL 
section is attached. All of these changes in data sources can be 
implemented without any change to the actual software 
components.

A final example illustrates the flexibility offered by the RPC 
construct.  The MCUs are usually programmed through a 
JTAG port. Re-programming the MCUs therefore requires 
physical access to the MCU board inside each AUV section. 
To avoid having to open up the AUV for each software 
change, we wanted a software download facility that would 
allow us to reprogram the MCU over Ethernet. This was easily 
implemented using the RPC layer as follows. An update server 
offering a RPC service for software download was 
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Figure 14. STARFISH software component deployment in a typical AUV configuration



implemented at the control center. Each MCU was 
programmed with a boot-strap code which made RPC calls to 
check for new updates and optionally downloaded the updates 
to the MCU using RPC. Although the DSAAV architecture did 
not originally plan for such usage, the flexibility and 
extensibility provided by RPC made this easily possible.

IV. CONCLUSIONS

In this paper, we have presented a distributed software 
architecture for use in autonomous vehicles. The architecture 
was implemented and tested on a research AUV and found to 
provide many practical benefits during development and 
operation. Being distributed, the architecture facilitates and 
encourages modularity at a hardware and software level. It 
also avoids single points of failure and load bottlenecks. The 
distributed architecture can easily be extended for use across a 
team of AUVs.

In summary, DSAAV provides the following key benefits 
and is therefore well suited for use in autonomous vehicles:

• Distributed architecture with support for hardware and 
software modularity.

• Robustness and load distribution through peer-to-peer 
communications.

• Independence of communications back-bone available.
• Lightweight protocol for high speed implementation on 

low-power micro-controllers.
• The RPC construct along with the component-container 

architecture makes the distribution of components across 
multiple nodes almost transparent to software 
developers.

• Basic services such as configuration,  logging and health 
monitoring are defined and integrated as part of the basic 
architecture.

• Automatic discovery of sensor/actuator services through 
the health monitoring API.

• Easy “plumbing” of data flow between software 
components via configuration files.

• Flexibility and extensibility provided through access to 
the underlying messaging API and RPC API.

The author hopes that this architecture is adopted and 
extended by others working on autonomous vehicles. The 
author is happy to make detailed documentation and relevant 
implementation available to interested researchers.
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