
DSAAV - A Distributed Software Architecture for
Autonomous Vehicles

Mandar Chitre

Acoustic Research Laboratory, Tropical Marine Science Institute,
National University of Singapore, 12A Kent Ridge Road, Singapore 119223.

Abstract- Autonomous Underwater Vehicle (AUV) technology
has matured over the past few decades but commercial AUVs
today remain complex, proprietary and expensive. Modularity in
AUVs at a software, electronics and mechanical level allows users
to configure AUVs for specific missions by only including the
required components. With multiple base AUVs, users may easily
configure heterogeneous teams of AUVs for collaborative
missions. Modular AUVs are also easier to maintain. We expect
that open-architecture AUVs with open software/hardware
interfaces, changeable modules and open source components will
become widely available in the future. However AUV
configuration management and module compatibility are issues
that arise with modularity.

An initiative at the Acoustic Research Laboratory (ARL) of
the National University of Singapore (NUS) has yielded an open-
architecture collaborative prototype AUV known as STARFISH.
The software components in this AUV are based on the DSAAV
architecture. DSAAV has been designed ground up with modular
AUVs in mind. In a DSAAV compliant AUV, each module
provides a uniform software interface that other AUV modules
can access. This interface allows configuration of the module,
logging of critical information, discovery of services, access to
sensor & actuator services, health monitoring and automated
software update functionality. The interface is rich in
functionality, yet light weight and portable to ensure that even
low power micro-controllers can easily implement it. DSAAV can
be implemented on any underlying communication backbone
such as Ethernet, UDP/IP, etc. The software components running
under DSAAV are independent of the underlying communication
backbone and function without change in various AUVs and
simulation environments.

In this paper, we describe the basic philosophy and concepts
behind DSAAV. We also outline the Application Programming
Interface (API) for DSAAV compliant systems and describe its
key functionality. It is our hope that DSAAV will be adopted and
extended by other AUVs in the future.

I. INTRODUCTION

Over the past few decades Autonomous Underwater Vehicle
(AUV) technology has matured from research prototypes to
commercial systems. However, commercial AUVs today
remain complex, proprietary and expensive. As AUVs mature
further, we expect that open-architecture AUVs with clearly
documented open software/hardware interfaces, changeable
hardware modules and open source components will become

widely available for research and commercial use. Some open
interfaces are already emerging in the field [1][2]. An
initiative at the Acoustic Research Laboratory (ARL) of the
National University of Singapore (NUS) has yielded an open-
architecture collaborative prototype AUV known as
STARFISH [3]. The software components in this AUV are
based on the DSAAV architecture described in this paper.
Although DSAAV was developed with AUVs in mind, it is
equally applicable to other autonomous vehicles such as
unmanned surface vessels (USVs).

Modularity in AUVs at a software, electronics and
mechanical level provides significant benefits to the user.
Changeable modules allow users to configure AUVs for
specific missions by only including the required components.
By adding optional AUV sensor modules to a set of basic
AUVs, users may easily configure heterogeneous teams of
AUVs for collaborative missions. When hardware failures
occur, modular AUVs are easier to maintain than monolithic
AUVs. Although modularity provides these benefits, it also
has some costs. AUV configuration management and module/
component compatibility are issues that any modular AUV
designer has to address. Additionally a robust communication
backbone is needed to ensure that all modules/components can
communicate effectively.

The Mission Orientated Operating Suite (MOOS) developed
at MIT addresses theses problems to some extent by the use of
a central database with a well-defined communication
protocol for client software components to access it [1].
MOOS adopts a “star” architecture with all components
connecting to a central database in order to deposit or retrieve
information. This can potentially lead to a single data
bottleneck and a single point of failure. DSAAV, in contrast to
MOOS, adopts a peer-to-peer communication architecture. By
being distributed, DSAAV spreads the load and traffic across
all processors in the AUV and avoids high load and
dependency on single processors and databases. However a
centralized system is easier to administer and monitor; for this
reason, DSAAV provides a central configuration database and
logging service. As the configuration database is required
primarily during start-up and the logging service is not
essential to the operation of the AUV, the advantages of a
distributed architecture are not lost by having these centrally
managed services. MOOS uses a TCP/IP as i ts
communications backbone. This limits the use of MOOS to

1

__
The work presented in this paper was supported through a project grant from
Singapore’s Defence Science & Technology Agency (DSTA).

processors and operating systems that can support a TCP/IP
stack (e.g. Linux, Windows NT and Windows 2000). DSAAV
can operate on a variety of communication backbones
including raw Ethernet; this makes it extremely lightweight
and suitable for implementation on micro-controllers without
a TCP/IP stack or multi-threading support as well as single-
board computers running Linux or Windows.

DSAAV has been designed ground up with modular AUVs
in mind. In a DSAAV compliant AUV, each module provides a
uniform software interface that other AUV modules can
access. This interface allows configuration of the module,
logging of critical information, discovery of services, access
to sensor & actuator services, health monitoring and
automated software update functionality. The interface is rich
in functionality, yet lightweight and portable to ensure that
even low power micro-controllers can easily implement it.
The interface is easily extensible through Remote Procedure
Call (RPC) constructs and therefore provides forward
compatibility.

DSAAV can be implemented on any underlying
communication backbone. In the STARFISH AUV, the
communication backbone used is Ethernet. By using raw
Ethernet packets and avoiding the overheads of TCP/IP,
DSAAV implementations on micro-controllers are small and
fast. In simulation environments, DSAAV can be implemented
over POSIX message queues or UDP/IP. The software
components running under DSAAV are independent of the
underlying communication backbone and function without
change in various AUVs and simulation environments. In fact
many STARFISH components achieve platform independence
using DSAAV and can be deployed on Linux, Windows, Mac
OS X systems or micro-controllers with no change in source
code. This provides immense flexibility for AUV deployment.

In this paper, we describe the basic concepts underlying
DSAAV. We then outline the Application Programming
Interface (API) for DSAAV compliant systems and describe
its key functionality. Through examples, we illustrate the use
of DSAAV in AUVs and provide guidance for
implementation. It is our hope that DSAAV will be adopted
and extended by other AUVs in the future.

II. ARCHITECTURE

A. Architectural Overview
DSAAV is a four-layer architecture as depicted in Figure 1.

The bottom-most layer (IComms) provides an implementation
of a unreliable messaging service over the communications
backbone available. The next higher layer is the “RPC” layer
which implements a remote procedure call semantic using the
IComms messaging service. The third layer consists of
framework and sensor/actuator services implemented using
the RPC framework. This includes core services for vehicle
configuration, logging and health monitoring. It also includes
hardware drivers for all the sensors and actuators (collectively
known as sentuators) as well as an external communications

(EComms) interface for communication to other vehicles and/
or the control center. The EComms interface may potentially
use CCL for the external communication [2]. The top layer
houses the command & control components which utilize the
services provided by lower layers to achieve the mission of
the vehicle.

Figure 1. DSAAV’s 4-layer architecture

B. IComms Layer
The IComms layer abstracts the underlying communications

infrastructure from the upper layers. It provides an API to send
and receive messages containing a set of key-value pairs. The
keys are predefined numeric constants, while the values may
be integers, single-precision floating point numbers, double-
precision floating point numbers of null-terminated strings.

The Unified Modeling Language (UML) [4] representation
of the API is shown in Figure 2. The API consists of a
ParamSet class which holds key-value pairs. A Message
extends this class to add in special keys for message id,
message type and reference id. The reference id is used for
messages which refer to other messages (such as replies and
acknowledgements). Messages can be sent and received using
the IComms interface class. If a destination is known, its
address is used to send the message. Alternatively, a channel
broadcast may be used to send the message to all clients
subscribing to the channel. The destination address is
represented by the MsgSvcAddr class and consists of a
hardware address and a logical port number. The port number
allows multiple services to run on the same hardware node.

Various implementations of the IComms interface may be
available for use. For example, in the STARFISH AUV, we
have Ethernet based IComms for Linux, Mac OS X and
STR912 micro-controller. We also have an IComms
implementation over UDP/IP for WiFi access to the AUV and
an IComms implementation using POSIX message queues for
a simulation environment on Linux / Mac OS X.

IComms

RPC

Core Services

Configuration
Logging

Health Monitoring

Sensor/

Actuator

Drivers

EComms

Vehicle Command & Control

2

Figure 2. The IComms API

C. RPC Layer
The RPC layer implements a procedure call semantic using

the unreliable messaging service provided by the IComms
interface. The procedure to be called is identified by a
destination address and a RPC operation id. A set of
parameters may be passed to a procedure call, and another set
of parameters may be optionally returned by the call. In cases
where the procedure call does not return any parameters, the
caller may choose a blocking reliable call or a non-blocking
unreliable call. The reliable mode is used for most calls and is
implemented through the use of acknowledgements and
retries. Unreliable calls may be useful in scenarios where
latency is important but reliability is secondary - for example,
logging of routine data in the AUV or sensor data notifications
for time-sensitive data streams.

Figure 3. The RPC API

3

Figure 4. Sequence diagram showing a typical reliable RPC call with return value

Figure 3 shows the API of the RPC layer. The RpcService
interface is implemented by software components providing
procedures to be called over RPC. The call method without a
destination address uses a RPC broadcast channel to discover
the service to be called. This is typically used to discover the
configuration server, which in turn provides information about
all other services in the AUV as explained in the next section.
Figure 4 shows a sequence diagram for a typical reliable RPC
call with return value.

D. Core Services
A set of core services are implemented using the RPC layer

described in the previous section. The core services provide a
common framework for managing all software components in
the vehicle. There are three core service - the configuration
service, logging service and health monitor. These are
described in the sub-sections below.
1) Configuration Service

The configuration service enables each component to be
initialized with appropriate settings. It also enables the
component to store persistent data (such as adaptive control
parameters, etc.) centrally, even if the component runs on a
micro-controller with no persistent storage. Finally, it
determines the service binding between components, thus
providing the “plumbing” between components for data to
flow.

Figure 5. The configuration API

The configuration API is shown in Figure 5. The central
configuration database consists of two parts - a user
administered configuration data and a software controlled
application data. The getString, getInteger and getFloat
methods provide access to the information in the both parts; if
the same key is present in both parts, the application data is
returned. The putString, putInteger and putFloat methods put
value in the application data, masking any value with the same
key in the configuration data. The remove method removes the
application data section and unmasks any configuration data
with the specified key. The getLogger, getEComms and

getMonitor methods provide access to the logger, external
communications interface and the health monitor respectively.
The getSentuator method provides access to sensor/actuator
services in the vehicle. The addresses of all services are
obtained from the configuration database.

The STARFISH implementation of the configuration
service reads the configuration data from a text file. It
maintains a separate text file database for the application data.
The configuration data file has sections for each software
component. These sections contain key-value pairs
representing each setting. The data file also has sections for
each service available. These sections have a “Server” key
providing the address of the service. The values in these
sections can be overridden by keys in the component’s
section, allowing a flexible way to control data flow. This best
illustrated through an example configuration file extract:

[Logging]
Server = 1:0 # running on node 1 port 0
LogLevel = LOG_INFO # default log level

[Elevators]
Server = 2:0 # driver on node 2 port 0

[Depth]
Server = 3:0 # depth from node 3 port 0

[DepthSensor]
Server = 4:0 # driver on node 4 port 0

[DepthFilter]
Server = 3:0 # filter on node 3 port 0
Depth.Server = 4:0 # get depth data from sensor

[MyDepthController]
ControlGain = 2.3 # gain control parameter
Logging.LogLevel = LOG_DEBUG # override log level

The scenario described by the above configuration file
extract is shown in Figure 6. The scenario includes five
software components running on different hardware nodes in
the AUV and communicating to control the depth of the AUV.

The configuration file starts off defining the address of the
logging server and the default log level as INFO for all
components. However, the MyDepthController component
overrides the log level to DEBUG for troubleshooting. The
address of the elevator actuator service is defined next; any
component requesting the “Elevators” sentuator will access
the service from this address. This is followed by the address
of the depth information service. In this example, we have a
DepthFilter which filters the depth data from the sensor to
provide a better estimate of real depth. Hence the depth
information service points to the DepthFilter service rather
than the DepthSensor service; when a component asks for the
“Depth” sentuator, it’ll receive data from the DepthFilter.
However, the depth information for the DepthFilter comes
from the DepthSensor as the “Depth.Server” key is overridden
in the DepthFilter section. Finally, the MyDepthController

4

section defines a ControlGain parameter which can be read by
the component to configure itself. This simple example
illustrates how the configuration file is used to provide “data
plumbing” between components.

Figure 6. Scenario described by the sample configuration file extract

1) Logging Service
The logging service provides a central store for logs from

all software components in the AUV. The logging API is
shown is Figure 7.

Figure 7. The logging API

The log level of each component can be set through the
configuration service or via software. This allows different
level of logging for each component, allowing the user to
control the details logged from the component. Five different
log levels are defined:

• ERROR - Used for logging critical/unrecoverable errors.
• WARNING - Used for logging potential problems and

warnings; the software component is expected to continue
operation.
• INFO - Used for logging informational messages such as

version information, state changes and other major events.
• DATA - Used for logging sensor data; these messages are

logged using unreliable calls to the logging server to avoid a
performance bottleneck when large volumes of data is
generated.

• DEBUG - Used for logging debug information; typically
enabled temporarily on components for troubleshooting.
A central logging server enables software components

running on micro-controllers without persistent storage to log
information. Additionally the logs from all components are
stored in a single place chronologically, allowing easy
analysis. The logging server may also provide additional
functionality such as log rotation, real-time monitoring and
archival.
2) Health Monitor

Fault-tolerance is important in autonomous vehicles. To
help the command & control system to achieve this, the
DSAAV architecture recommends a health monitor component
that keeps track of the health of all other components in the
vehicle. In addition it provides a overall system health status.
The health monitor API is shown in Figure 8.

Figure 8. The health monitor API

Each component in DSAAV provides a health status update
to the health monitor. This can be “active” i.e. provided on a
regular basis by the component or “passive” i.e. polled by the
health monitor. Based on the health updates, each component
status can be one of the following:

• HEALTHY - Component working as expected.
• UNAVAILABLE - Component is responding but no data is

available. An example of this state is a GPS driver with no
GPS fix or a DVL driver with no bottom-lock.
• MALFUNCTION - Component is responding but has

detected a malfunction in software or hardware.
• OFFLINE - Component is not responding (passive mode)

or has not sent a health update recently (active mode).
Based on the health of each component, the health monitor

computes a overall health status or problem severity level.
This information may be used by higher level command &
control algorithms for decision making. The severity level can
be one of the following:

• NONE - Normal operation.
• WARN - There is a problem with the vehicle, but it is not a

show-stopper. The mission can be continued.
• ABORT - There is a problem which requires the mission

to be aborted. The vehicle should stop the mission and return
to the recovery point.
• EMERGENCY - There is a problem which requires

emergency action. The mission should be aborted and the

5

emergency action should be taken. For an AUV, the
emergency action could be to rapidly surface by dropping
ballast weights and sending a radio SOS message to the
control center.
In STARFISH, the health monitor uses an eXtensible

Markup Language (XML) file to control the behavior of the
monitor. The file specifies the components to be monitored,
whether they are to be active/passive, the timeouts and the
severity levels as a function of the component health. This
diagnostic information is made available to the command &
control system as well as the diagnostic Graphical User
Interface (GUI) at the control center. A screenshot of the
diagnostic GUI is shown in Figure 9.

Figure 9. Screenshot of the diagnostic GUI

E. Sentuator Services
1) Sentuator Drivers

The sensors/actuators in the vehicle are accessed via the
sentuator drivers. In addition, several algorithms in the data
processing chains may also be implemented as sentuators. For
example, the depth sensor data from a depth sensor may be
noisy and require filtering. The depth filter component may
provide a sentuator interface so that all components requiring
depth information can access the depth filter’s sentuator
interface rather the depth sensor’s.

The sentuators are accessed via the Sentuator interface
obtained via the configuration service. Software components
providing sentuator services implement the SentuatorService
in ter face . These services are regis tered wi th a
SentuatorServer, which in turn processes the RPC requests
from client components. Sentuator services are identified

using predefined constants for measurement type or actuator
type. Measurements obtained from sentuators may contain
multiple quantities identified using predefined measurement
quantities constants. The API is shown in Figure 10.
2) Sentuator Notification

The sentuator service API provides for a notification option.
This enables components to be registered (via the
configuration database) as listeners for specific measurement
notifications. When data for these measurements becomes
available, the sentuator driver calls the notify() method to
deliver unsolicited unreliable notifications to all listeners. This
construct is especially useful for components such as
navigation computers which require a continuous stream of
data from navigation sensors. If not for the notification
construct, these components would have to resort to inefficient
polling.

Figure 10. The sentuator API

6

3) Sentuator Service Discovery
The sentuator server handles get, set and notification RPC

requests. In addition, it also supports health check RPC
requests from the health monitor. These response to a health
check request contains a list of sentuator services offered and
their health information. This feature can be used to discover
services available on the server. In STARFISH, we use this
feature to discover services automatically as display them on
the administration GUI. This could be extended in the future
to develop a graphical configuration tool to connect together
the software components in the vehicle and automatically
generate the configuration file for a mission.

F. EComms Interface
The external communications interface provides an API to

communicate with the external world - other autonomous
vehicles and manned control centers. The EComms API
defines the constructs for such communication, but it does not
define the external communication schemes or data formats.
Emerging standards such as CCL complement DSAAV by
providing a specification for the external messages [2].

The EComms API is shown in Figure 11. It consists of a
single method to send an external message. The parameters
specify the interface over which the message is to be sent (e.g.
acoustic communications, WiFi, etc.), the destination address,
the message class (e.g. CCL) and the message content.
Optional parameters include the priority and lifetime of the
message; these parameters help the network stack determine
how the messages are queued and processed. Incoming
messages are delivered using a RPC_ECOMMS_RECEIVE
message on the RpcService interface. Listeners are registered
via the configuration database in a similar manner as the
sentuator notification listeners.

G. Components & Containers
To promote portability of the software components

developed using the DSAAV architecture, we provide a
component-container construct. Every DSAAV software
component extends a Component class (see Figure 12). All
software components run in a container - each container
contains one or more components. Containers are deployed on
various hardware nodes in the vehicle. Micro-controllers with
no multi-tasking or multi-threading support run a single
container. Single-board computers with multi-tasking
operating systems can run multiple containers as separate
threads or processes.

The component-container construct allows single-threaded
systems to run multiple components. It also enables seamless
portability of components across hardware nodes and
containers provided the components have no hardware
dependency (such as access to serial ports or general-purpose
input-output pins). The container supports multiple
components by implementing a simple form of cooperative
(non-preemptive) multi-tasking. Each component in a
container receives RPC requests for the component. In
addition, it also receives timer ticks at regular intervals for
data processing and housekeeping tasks.

Figure 12. The component & container API

III. IMPLEMENTATION

So far in this paper we have presented the DSAAV
architecture with some comments on how its implemented in
the STARFISH AUV. In this section we further expand on the
implementation by giving a system-level overview of the
STARFISH AUV. We hope to illustrate practical use of the
architecture through this example.

A. Brief Overview of STARFISH
The STARFISH research program was started in 2006 and

aims to develop a research platform for exploring cooperation
within small teams of AUVs. The base AUV developed as part
of this program is modular at the mechanical, electronics and
software level. The modularity and open interfaces in the
AUV ensure that different research working groups can easily
develop and test their ideas simply by replacing software
components, and in some cases adding/changing hardware

7

Figure 11. The EComms API

sections to the AUV. The DSAAV architecture adopted in the
project helps achieve this goal.

The base STARFISH AUV is about 1.5 m long and 0.2 m in
diameter. It consists of 3 sections - the nose, the tail and a
command, control & communications (C3) section. The nose
section has a flooded nose cone with a depth sensor, an
altimeter, a forward looking obstacle avoidance sonar and an
emergency ballast drop mechanism. The tail section houses 4
servo motors which control 4 independent control fins. It also
has a DC thruster for forward propulsion. The C3 section
incorporates a compass, a low-cost inertial measurement unit
(IMU) and a GPS receiver. In addition it contains the
communications interfaces including an acoustic modem and a
WiFi bridge.

Additional payload sections can be added to the AUV. For
increased navigational accuracy, we have a Doppler velocity
log (DVL) section that is typically attached between the nose
and the C3 section. A side-scan sonar section is currently
under development. Other sections containing environmental
& chemical sensors, bow & heave thrusters for hovering, etc.
may be added in the future. A photograph of the STARFISH
AUV during one of the early field trials is shown in Figure 13.

Figure 13. STARFISH AUV

 A common bus connects all the sections in the STARFISH
AUV. This bus primarily supplies power and provides an
Ethernet communications backbone to all sections. Each
section has one or more micro-controller units (MCU) or
single-board computers in order to interface with the sensors/
actuators in the section. The nose, tail and DVL sections use a
STR912 MCU for this purpose. The C3 section contains one

STR912 MCU and one PC104+ format single-board computer
running Linux.

B. DSAAV implementation in STARFISH
The DSAAV implementation in STARFISH is based on an

IComms implementation using raw Ethernet packets. The
code is written in C++ and compiled for Linux as well as the
STR912 micro-controller using appropriate GNU tool-chains.
By restricting the code to use a subset of C++ without
template libraries and C++ standard library, the code is easily
portable to most platforms with a C or embedded C++
compiler. A Java interface to the RPC layer allows the control
center GUI (developed in Java) to make RPC calls. A UDP
bridge software component runs on the Linux node as a
gateway between RPC over UDP/IP (through the WiFi
connection) and RPC over Ethernet, allowing the control
center to access RPC services on the AUV for real-time
monitoring and diagnostics.

A core server consisting of the configuration service,
logging service, health monitor and the UDP bridge runs on
the Linux node in the C3 section. The node also runs the
EComms server. This node is connected via the WiFi bridge to
the a control center for administration. The mission file and
configuration file is uploaded to this Linux node at the start of
each mission. Log files may be downloaded at the end of the
mission.

The sensors and actuators in each section are connected to
the micro-controller in that section via an appropriate interface
(RS232, I2C, SPI, etc.) The micro-controller runs a single
container with all the appropriate sentuator drivers, thus
providing a common software interface for access by other
components in the AUV. In this way, each section is self-
contained in terms of hardware and the software drivers
associated with it.

Although each section contains the software drivers needed
for the sensors/actuators in the section, it is more convenient
to manage the settings of all sections centrally. This is done
via the common configuration file on the Linux node. All
sections also log their data and other messages at the central
logging server, making troubleshooting and data analysis easy.

The Linux node in the C3 section runs a command &
control (C2) system, a navigation & positioning system, a
depth/bearing/roll control system and a AUV safety monitor.
All these systems use the sensor/actuator services provided to
control high level operation of the AUV.

The high-level software architecture of the STARFISH
AUV is shown in Figure 14.

C. Simulation Environment
STARFISH development was greatly aided by a simulation

environment which allowed the researchers to test their
algorithms and implementations prior to field trials. The
simulator implements a physics-based model of the
environment, providing RPC services equivalent to all
sentuators in the AUV. As the simulated sentuator services are

8

available to all AUV software components, the components do
not require any changes between the simulation environment
and the actual AUV. A POSIX message queue based IComms
implementation is used in the simulator so that all components
can be tested on a single computer with no network
connection.

D. Benefits from the DSAAV Architecture
The DSAAV architecture has benefited STARFISH

immensely. The use of RPC has allowed distributed
deployment of software components in the AUV. Moreover,
re-deployment of components has been extremely easy. For
example, we initially used two PC104+ single board
computers in the AUV. The IMU and compass were connected
to one of these PC104s. However, due to space, power and
heat dissipation considerations, we eventually removed one of
the PC104s. The IMU and its driver were moved to the other
PC104 with no changes. The compass and its driver were
moved to the C3 MCU with very minor changes.

Data plumbing through the configuration file is extremely
easy. During actual AUV operation, we expect the command
& control system to use the position estimate by the
navigation & positioning system. However, during initial
testing, we wanted to decouple the testing of the two systems.
As the initial tests were conducted on/near the surface, we had
position estimates from GPS available. A small change in the

configuration file allowed us to direct the command & control
system to use the position service on the C3 MCU (where the
GPS is connected) rather than the position service from the
navigation & positioning system. Once both systems were
independently validated, the configuration file was reverted
back to resume normal operation. Another example of the use
of data plumbing is the optional DVL section. If the DVL is
present, the velocity estimates from the DVL are used through
out the AUV. If it is absent, the configuration file directs all
components who require velocity estimates to the navigation
& positioning system which estimates velocity based on
thrust. As the altitude data from the DVL is more accurate
than the altimeter, all components needing altitude
information are directed to use the DVL altitude if the DVL
section is attached. All of these changes in data sources can be
implemented without any change to the actual software
components.

A final example illustrates the flexibility offered by the RPC
construct. The MCUs are usually programmed through a
JTAG port. Re-programming the MCUs therefore requires
physical access to the MCU board inside each AUV section.
To avoid having to open up the AUV for each software
change, we wanted a software download facility that would
allow us to reprogram the MCU over Ethernet. This was easily
implemented using the RPC layer as follows. An update server
offering a RPC service for software download was

9

Ethernet

Nose MCU

IComms

RPC

Temperature
Depth

Altitude
Ballast Drop
Obstacles

DVL MCU

IComms

RPC

Temperature
Velocity
Altitude

C3 MCU

IComms

RPC

Temperature
Position
Attitude
Buzzer

Battery Info.

Tail MCU

IComms

RPC

Temperature
Fins

Thrust
RPM

Sentuator
Services

C3 PC104 (Linux)

IComms

RPC

Configuration
Logging

Health Monitor
UDP Bridge

IComms

RPC

IMU,
Navigation

&
Positioning

IComms

RPC

Command
&

Control

IComms

RPC

Safety
Monitor

IComms

RPC

Depth,
Bearing,

Roll
Control

Config.

File

Logs

Health

Monitor

Config.

Mission

File

IComms

RPC

Temperature
Time

Admin. Svc.

IComms

RPC

EComms

Control
Center

WiFi

Figure 14. STARFISH software component deployment in a typical AUV configuration

implemented at the control center. Each MCU was
programmed with a boot-strap code which made RPC calls to
check for new updates and optionally downloaded the updates
to the MCU using RPC. Although the DSAAV architecture did
not originally plan for such usage, the flexibility and
extensibility provided by RPC made this easily possible.

IV. CONCLUSIONS

In this paper, we have presented a distributed software
architecture for use in autonomous vehicles. The architecture
was implemented and tested on a research AUV and found to
provide many practical benefits during development and
operation. Being distributed, the architecture facilitates and
encourages modularity at a hardware and software level. It
also avoids single points of failure and load bottlenecks. The
distributed architecture can easily be extended for use across a
team of AUVs.

In summary, DSAAV provides the following key benefits
and is therefore well suited for use in autonomous vehicles:

• Distributed architecture with support for hardware and
software modularity.

• Robustness and load distribution through peer-to-peer
communications.

• Independence of communications back-bone available.
• Lightweight protocol for high speed implementation on

low-power micro-controllers.
• The RPC construct along with the component-container

architecture makes the distribution of components across
multiple nodes almost transparent to software
developers.

• Basic services such as configuration, logging and health
monitoring are defined and integrated as part of the basic
architecture.

• Automatic discovery of sensor/actuator services through
the health monitoring API.

• Easy “plumbing” of data flow between software
components via configuration files.

• Flexibility and extensibility provided through access to
the underlying messaging API and RPC API.

The author hopes that this architecture is adopted and
extended by others working on autonomous vehicles. The
author is happy to make detailed documentation and relevant
implementation available to interested researchers.

ACKNOWLEDGEMENT

The author would like to thank Mr. Shiraz Shahabudeen for
his comments and suggestions on the material presented in
this paper.

REFERENCES

[1] Newman P.M., “MOOS - Mission Orientated Operating Suite,” available
at: http://www.robots.ox.ac.uk/~pnewman/TheMOOS/index.html.
Accessed 16 July 2008.

[2] Stokey R.P., L.E. Freitag and M.D. Grund, “A Compact Control Language
for AUV acoustic communication,” OCEANS 2005 - Europe, Brest,
France, 2005.

[3] Deshpande P.D., M.N. Sangekar, B. Kalyan, M.A. Chitre, S. Shahabudeen,
V. Pallayil and T.B. Koay, “Design and Development of AUVs for
cooperative missions,” Defence Technology Asia 2007, Singapore, 2007.

[4] OMG, “Unified Modeling Language,” available at: http://www.uml.org/.
Accessed 16 July 2008.

10

