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Summary

In monitoring and surveillance, localization and navigation is especially

important for underwater autonomous vehicles (AUVs) since GPS and ra-

dio signals are not accessible in most of the missions. A cooperative team

formed by multiple autonomous vehicles has gained increasing interests as

it offers more efficiency and reliability than a single vehicle. Much work

has been done in the area of underwater localization and navigation with

the aids from beacons with known positions. This dissertation focuses on a

team of low-cost AUVs where no one has precise position. With the ability

to communicate and make relative measurements from each other, vehi-

cles share information across the team and cooperate to complete complex

missions. The information shared among vehicles helps improve the overall

performance. However, unlike terrestrial communication links, underwa-

ter acoustic channel has inherent constraints such as high latency, limited

bandwidth and low reliability. In such a case, a distributed processing

architecture with minimum inter-vehicle communications is preferred. At

the same time, the severe underwater communication issues also impose

challenges on the distributed processing. We show the benefit introduced

through cooperation and the issue imposed by communication constraints

on the distributed processing. We propose a feasible design of the dis-

tributed localization for a team of cooperative AUVs. The algorithm is

robust to packet loss, outperforms single-vehicle localization and requires

minimum communications.

In the next step, we look at a simplified näıve assumption in underwa-

ter multi-sensor tracking and multi-vehicle localization. This assumption

näıvely assumes information from different sources are independent of each
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other. We justify the assumption and answer when the assumption is good

to use. With the justification, we move on to single-vehicle bathymetry-

aided navigation as it can be safely extended to cooperative multi-vehicle

navigation with bathymetric aids.

Bathymetry map indicating the water depth offers an attractive tool

to reduce the localization error of the submerged vehicles. With bathy-

metric measurements incorporated, we study the a posteriori description

of the localization uncertainty using probabilistic methods. An informa-

tion theoretical approach is used to describe the localization uncertainty.

With this information theory measure, we build information entropy map

and demonstrate how the bathymetry helps with different localization pri-

ors. Subsequently, a bathymetry-aided navigation is proposed to ensure a

good localization at the destination. We formulate the path planning and

solve it as an optimization problem. The algorithm is tested using real-

world bathymetric data. Simulations show that near-optimal paths with

good localization accuracy at the destination are generated within a few

iterations.
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Chapter 1

Introduction

1.1 Motivation

The past decade has seen a significant increase in interest in the use of

autonomous underwater vehicles (AUVs) for maritime operations. AUVs

reach shallower water than boats, and greater depths than human divers or

tethered vehicles. Once deployed and submerged, AUVs are safe from bad

weather and heavy traffic on the surface. Extensive research has been con-

ducted on AUVs and several commercial AUVs have been developed and

tested [21, 48, 50]. One of the challenges that all AUVs have to contend

with is that of underwater localization and navigation, since GPS signals

cannot be received underwater. For missions such as mapping, target iden-

tification, sensing and surveying, underwater localization and navigation

1
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are the key components that determine the performance of an autonomous

mission.

Traditionally an AUV localizes itself using the vehicle’s own sensor

data, such as GPS (whenever available), compass and depth sensor. In

order to obtain good localization, AUVs are often equipped with high-end

navigation systems such as Doppler velocity log (DVL) and inertial nav-

igation system (INS). Packed together with other sensors for the mission

(for example, sensors for monitoring and surveying), AUVs become bulky

in size and high in cost. Another way to achieve the vehicle’s localiza-

tion accuracy is to utilize the communication with beacons with known

positions. The distance from AUV to a beacon can be measured by the

time-of-flight (TOF) of the acoustic signals. The relative orientation of the

AUV can be computed from a set of equations consisting of distances to all

available beacons [91] or the phase shift measured from the beacon array

[78]. Long Baseline (LBL) uses a sea-floor baseline transponder network

as navigation reference. It gives very high positioning accuracy and posi-

tion stability, but incurs high effort and cost to deploy and support this

substantial infrastructure. Other techniques such as Short Baseline (SBL),

Ultra Short Baseline (USBL) [57] and GPS Intelligent Buoys (GIB) [2] are

placed on sea surface. Localization with these setups can only be achieved

in certain restricted and designated areas due to the installation of these

external beacons. Some systems also assist the localization and navigation
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with moving beacons such as those mounted on surface vessels [41, 64, 86]

or even other AUVs [72]. The operation of additional surface vessels is

not trivial; the horizontal coverage is also limited. The positions of beacon

AUVs need to be calibrated precisely.

In these respects, AUVs which are able to navigate without aids from

external setups or beacons and yet still maintain good localization with the

use of low-grade sensors, are preferred. This has motivated multi-vehicle

localization and navigation [20, 54, 72], and the use of bathymetric aids.

Multi-vehicle operation offers robustness to single-vehicle failure and

reduces the overall time and cost of acquiring data over large areas. We fo-

cus on a team of low-cost AUVs where no single AUV functions as a beacon

possessing accurate position. The team is able to outperform single-vehicle

operation, through sharing information among the team members. How-

ever, as compared to terrestrial communication links, underwater commu-

nication links typically are encumbered by limited bandwidth, high latency

and significant packet loss. It is impractical for a team of AUVs to collate

all sensor data centrally, and therefore a decentralized processing architec-

ture is preferred. However this opens up new challenges to team members

working in cooperation.

The first challenge lies in the limited communication bandwidth. As
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mentioned, the multi-vehicle localization problem consists of a team of vehi-

cles cooperating and estimating their own positions. If the local sensor data

are accessible to a central processing unit, a central filtering yields the opti-

mal estimation on all vehicle positions. However, with limited bandwidth,

the size of underwater transmission packets is constrained. The information

shared between members is usually processed estimates rather than the raw

sensor data. A distributed filtering where members only process their local

sensor data and information communicated from others is commonly used.

An empirical study [80] showed that the available bandwidth in underwater

communication severely limits the performance of cooperative localization.

The second challenge pertains to tracking of the inter-vehicle correla-

tion. In the presence of unstable, irregular and lossy channels, the informa-

tion exchange between two vehicles may not be known to other members

in the team. Therefore the inter-vehicle correlation tends to be underes-

timated. A common practice is to näıvely assume independence during

information fusion between cooperative members. This assumption is not

always good. Overconfidence in estimation has been reported as a result

of double counting the common information [43]. This overconfidence pre-

vents utilization of subsequent useful measurements. To prevent informa-

tion double counting, author in [9] selectively incorporated information and

avoided the fusion of correlated data while keeping the positions of all vehi-

cles decorrelated. Other works assumed maximum correlation in the whole



Chapter 1. Introduction 5

state [15, 84, 92] or separated states [51]. These methods are conserva-

tive in handling the unknown inter-vehicle correlation, and typically yield

pessimistic estimates as the independent information is not fully utilized.

Based on the way that vehicles cooperate, a less conservative distributed

localization could be designed to record the correlated terms and require

minimum communications. Meanwhile, the näıve assumption which simply

ignores the correlation, has been used as a common practice as it imposes

minimum requirements on the processing and communication. One would

be interested to know how information double counting happens and when

the correlation in fusion can be ignored. The dangerous and safe regions of

näıve filtering should be quantified.

Incorporating information sensed from the natural environment helps

improve the localization without the need to establish extra physical infras-

tructure. Bathymetry map indicating the water depth offers an attractive

tool to reduce the localization error of the submerged vehicles. Reference

[80] presents a cooperative bathymetry-based localization approach for a

team of low-cost AUVs. It presents empirical analysis on the factors that

affect the filter performance. However, vehicle estimates are assumed to be

independent of each other as the author claims that the effect of correla-

tion is alleviated with bathymetry measurements. The amount of common

information fed back through the cooperation in the team is not addressed.

In our work, we justify this assumption through a careful analysis of the
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effect of bathymetry aids in navigation. The advantage of bathymetric

aids is path dependent. It makes sense if vehicles are able to plan a path

such that a good localization can be ensured. It is generally believed that

localization performance depends on the rugosity of the sea bottom. Au-

thors in [47] show that the bathymetry variation is closely related to the

localization performance. Bathymetry variation is commonly used to guide

vehicles towards maximizing the bathymetric aids on localization. In [37],

heuristics were used to visit salient points (locations with more bathymetric

variation) for better localization. In [62], terrain dispersion, roughness and

terrain entropy were evaluated. However, the waypoints along the path

were selected manually. In [35], trajectories were generated by guiding ve-

hicles to avoid areas with smooth sea floor. In order to plan a path to

maximize the effect of bathymetric aids, we need to understand what kind

of bathymetry make good localization first. Is the bathymetry variation the

sufficient condition? How does one define a good localization? With these

answers, we propose a path planning algorithm to optimize the localization

performance with bathymetric aids.
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1.2 Thesis Contribution and List of Publi-

cations

This thesis presents our work on cooperative localization and bathymetry-

aided navigation of autonomous marine systems, with AUVs being the

particular focus. The key contributions of this thesis are listed below:

1. Distributed localization is explored using a cooperating team of small-

sized, low-cost, sensor-limited AUVs. In the presence of underwater

communication challenges, we found that localization easily deterio-

rate when communication loss is high.

2. A new cooperative multi-vehicle localization algorithm using distributed

extended information filter (DEIF) is proposed. The proposed method

is effective in recording the correlated information in light of con-

strained underwater communication.

3. We answer the question as to when the correlation can be safely ig-

nored. The safe and dangerous regions for implementation of näıve fil-

tering in decentralized architecture are derived for multi-sensor track-

ing problem and multi-vehicle localization problem. The link between

these two problems is explained with formulations.

4. We formalize a concept of an information entropy map to quantify

the effectiveness of bathymetry measurements on localization.
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5. A path planning algorithm is proposed for navigation with bathy-

metric aids. The algorithm generates near-optimal paths based on

bathymetric maps, with good localization accuracy generated at the

destination.

1.3 Related Publications

[1] R. Gao and M. Chitre, “Bathymetry-aided Navigation of Autonomous

Underwater Vehicles (AUVs)”, Manuscript in preparation for IEEE

Journal of Oceanic Engineering

[2] R. Gao and M. Chitre,“Path Planning for Bathymetry-aided Under-

water Navigation,” in Autonomous Underwater Vehicles (AUV 2018),

(Porto, Portugal), November 2018.

[3] R. Gao and M. Chitre, “On distributed processing for underwater

cooperative localization,” in 14th International Conference on Ubiq-

uitous Robots and Ambient Intelligence (URAI 2017), (Jeju, South

Korea), July 2017. (Invited).

[4] R. Gao and M. Chitre, “Cooperative Multi-AUV localization using

distributed extended information filter,” in Autonomous Underwater

Vehicles (AUV 2016), (Tokyo, Japan), pp. 206–212, November 2016.
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1.4 Thesis Layout

This thesis is organized as follows.

Chapter 2 provides a brief discussion of related works in cooperative

localization and bathymetry-aided navigation. Chapter 3 presents the de-

centralized processing when vehicles cooperate with communication con-

straints. A novel distributed localization method is proposed. Chapter 4

answers the question of when the correlation can be safely ignored when

fusing estimates from different sources. The safe and dangerous regions

of implementing näıve filtering (ignoring correlation) are derived in two

applications. The bathymetry-aided localization is justified to be safe if

correlation is ignored in cooperation.

Chapter 5 illustrates localization with bathymetric aids using an in-

formation theoretic approach. In light of the entropy measure and the

relation to localization introduced in Chapter 5, a path planning algorithm

is proposed and tested through simulation in Chapter 6.

Chapter 7 summarizes the key findings in the research and makes sug-

gestions for future works.



Chapter 2

Background

2.1 AUVs and Localization

The words Positioning and localization are often used interchangeably in

literature. Positioning, although similar to localization, also has the con-

nection of placing the vehicle in a particular place. In this thesis, we will

use the word localization to mean the process of locating the vehicle, with

or without the reference of a map.

The sensors for underwater localization are categorized into two groups.

The first group of sensors do not require external infrastructure for localiza-

tion. For example, DVL measures vehicle speed relative to the seabed. A

microelectromechanical system (MEMS), usually called as compass, mea-

sures the vehicle’s 3-axis orientation. An inertial measurement unit (IMU)

10
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provides the vehicle’s acceleration and angular rate with respect to the ve-

hicle’s body-frame. Other examples include depth sensor, altimeter, sides-

can sonar, and forward looking sonar (FLS). Localization by these sensors

usually observe the natural environment as external references and can be

performed in any environment. However these sensors often do not give

full information about vehicle’s location. The most common localization

method of localization with these sensors is dead reckoning (DR). It calcu-

lates the vehicle’s position by integration of velocity over time. Accurate

DR systems tend to be expensive as high-grade sensors are needed. Even

though, any small bias or offset leads to an unbounded increase in error

over time while AUV remains submerged. The second group are sensors

which require additional infrastructure setup. Acoustic positioning sys-

tems measure vehicle’s range and/or angle to the beacons and therefore

provide direct estimates of the position relative to beacons. The beacons

can be fixed to sea bottom, or the surface vehicles, or even other AUVs.

These sensors give good localization reference but often incurs high cost in

deployment and operation.

In a typical localization problem, the state to be estimated usually

consists of the vehicle’s position, depth, orientation (heading, pitch and

roll) and velocity. During a mission, the autonomous vehicle estimates its

own state and at the same time uses the estimated state for further actions.

Usually the depth of an AUV is specified in a mission and measured by the
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depth sensor directly. Therefore in this thesis we only focus on the vehicle’s

position in the 2-dimensional space, that is, the northing-easting position.

Let xk be the state vector to be estimated at time step k where xk ∈ Rn,

and let the estimate of xk be x̂k (In some illustration in this thesis, we also

use yk to denote the estimate of state xk). The general system evolution is

modeled as

xk+1 = f(xk, ak) + ωk (2.1)

where ak is the action that directs vehicle movement for the next step. The

behavior of the system is observed through measurement zk ∈ Rm. The

measurement model is

zk+1 = h(xk+1) + νk+1. (2.2)

The process noise ωk and measurement noise νk are Gaussian white-noise

sequences and are mutually independent. Their error covariances are Qk

and Rk+1 respectively.

Typically the vehicle carries a belief as to where it might be, and main-

tains the localization as a probability distribution over the space of all such

hypotheses. Knowledge of the probability density function (PDF) of the

state conditioned on all available measurement data Z1:k , {z1, z2, ..., zk}
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provides the most complete possible description of the state. Given a poste-

riori density function p(xk|Z1:k), estimate x̂k of the state is obtained from

some performance criteria, for example, maximum a posteriori (MAP).

Bayesian estimation [6] recursively determines the a posteriori density p(xk|Z1:k)

as

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k)

= αp(zk|xk)p(xk|Z1:k−1)

(2.3)

where

1

α
, p(zk|Z1:k)

=

∫
p(zk|xk)p(xk|Z1:k−1)dxk.

(2.4)

The simplification is based on Markov assumption [4] which states that if

one knows the vehicle location xk, future measurements are independent of

the past ones, that is

p(zk|xk,Z1:k−1) = p(zk|xk). (2.5)

The density p(zk|xk) is the a priori distribution describing the sensor

model. The state transition model is described by the prediction as

p(xk|Z1:k−1) =

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1. (2.6)
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When both evolution and measurement models are linear with addi-

tive Gaussian noises, and the a priori distribution is Gaussian, Kalman

filter (KF) [88] can be used to derive the closed-form solution by simply

using the estimated mean x̂ and estimated covariance P for this system.

The parametric description of the distribution is efficient in integrating the

motion and updating the estimates, and also easy to evaluate the local-

ization performance. However it is only suitable for linear systems with

Gaussian noises. Extended Kalman filter (EKF) [45] is the nonlinear ver-

sion of the KF which linearizes the nonlinear evolution and/or nonlinear

measurements. Only unimodal distributions can be modeled by KF and its

extensions. Nonparametric filters use numerical approaches to describe the

PDF and are particularly suitable for nonlinear and non-Gaussian system

estimation since their probability function evolves to better fit the data.

The most well-known nonparametric method is the Particle filter (PF) [7].

2.2 Beacon-Based Localization

In beacon-based localization, beacons are placed in the area where AUVs

navigate. For example, long baseline acoustic positioning system (LBL)

places the transponders on the seafloor, while short baseline system (SBL)

and ultra short baseline system (USBL) have the transponders mounted

on a ship that follows the vehicle. These methods differ in the distances
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between the transponders and the distance from each transponder to the

vehicle [90]. The GIB system uses buoys on the surface [2]. When fixed

beacons are used [63], AUVs are limited in their exploration area. The

deployment and setup of the infrastructure are tedious and expensive. Some

systems assist the localization with moving beacons. The moving beacons

can be mounted on vessels [28, 64, 86] or even other AUVs [8, 30, 72].

Surface vessels often encounter danger of collision with other traffic on

the surface. Beacon AUVs are usually assumed to have precise positioning.

Generally the beacon vehicle operates at the surface and has access to GPS,

or is equipped with high-accuracy sensors which enables it to estimate its

own position with minimum errors. A setup, which consists of beacon AUVs

with precise positioning, can form a cooperative team of heterogeneous

AUVs.

2.3 Cooperative Localization

The idea of cooperative localization with beacon AUV is not new. Authors

in [72, 81] presented a single-beacon vehicle providing range-only measure-

ment to support the localization of other AUVs. The supported AUVs are

survey AUVs equipped with sensors for mission purposes. For example,

LEDIF sensor [59] was installed on STARFISH AUVs [49] for chemical

sensing. With these sensing units, survey AUVs are often equipped with
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poor navigation sensors. The distance between the survey AUV and the

beacon vehicle is measured to impose a limit on the position drift of the

survey AUV. This approach has been explored by several works which use

observability analysis [5, 76], and position determination algorithms [3, 36].

However, these works pay little attention to the path planning of the beacon

vehicle. For example, [3] assumed a circular path for the beacon vehicle,

[33] used a zigzag path during experiments and [85] adopted a diamond

shaped path.

It is acknowledged that the relative motion between the beacon vehicle

and the survey AUVs is key to having single beacon range-only naviga-

tion perform well. The path of the beacon vehicle should be planned in

such a way that it improves the position estimate of the survey AUVs. In

[25], the path planning of the beacon vehicle aimed at minimizing the ac-

cumulated localization errors in the supported survey AUVs. In [10], the

optimal beacon point targeted at minimizing the position uncertainty of

the survey AUV, but it was determined by brute-force searching approach.

Later [81] proposed the cooperative path planning algorithm using dynamic

programming and Markov decision process formulations.

In the waters of Singapore, heavy maritime traffic makes it dangerous

and inconvenient for AUVs to surface for GPS fix. Consequently, even bea-

con AUVs with high-grade sensors suffer from position drift. We look at

this problem and propose a solution whereby no single AUV functions as
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a beacon possessing accurate position information in the team. In terms

localization capability, the team of AUVs is a homogeneous team, whereas

a heterogeneous team includes a beacon AUV with precise position. The

relative position or range between these AUVs can be considered as a rel-

ative geometry constraint in localization. This cooperative localization is

easier to be understood if we treat the group of AUVs as one identity.

The individual AUVs are the multiple “limbs” while the distances between

AUVs are the multiple virtual “joints”. Each limb moves on its own path,

and from time to time, when the distance between two AUVs is measured,

the position estimates of all the AUVs are adjusted accordingly. Cooper-

ative multi-AUV localization has the potential to outperform single-AUV

localization, by taking advantage of data sharing among the team mem-

bers. However, it should be noted that many factors affect the communi-

cation and subsequently the cooperation performance. Water temperature,

salinity, underwater noise, Doppler phase shift, reflection and scattering of

seabed and sea surface are relevant contributing factors to be considered.

Underwater communications have limited bandwidth and are less reliable

compared with terrestrial communication links. Full communication with

every member of the team at any one time of instant is often not practical.

In such a case, decentralization in processing and navigation becomes

necessary. One example of decentralized processing comes from the self-

organized behavior, namely Swarm Intelligence (SI). SI system consists of
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a population of simple agents, which interact locally with one another fol-

lowing simple rules. There is no centralized unit or individual who knows

the full details or dictates how each member should behave. Interactions

between agents lead to an ordered or “intelligent” global behavior. The

phenomenon is often referred to as ‘emergence’. The inspiration often

comes from nature, especially biological system behavior like ant colonies,

bird flocking, animal herding and fish schooling. The application of SI to

robotics is called ‘swarm robotics’, a method of coordinating large numbers

of simple robots, which interact with one another to give rise to a desired

collective behavior [58, 60, 61]. In ocean studies, the use of swarm AUVs

for data gathering purposes has emerged as an attractive and alternative

solution to the tedious and manual process of deploying sensor probes, for

example beacons installed on surface vessels. Swarm AUVs are able to

gather more data than the traditional approach, operating at lower overall

cost, and can be deployed to function in harsh environment. It is also ro-

bust to individual failure, compared with the single-AUV system. Swarm

AUVs coordinate their behavior in a distributed way to achieve a particular

goal, such as resource sharing, synchronized motion [74], localization [53],

a specific swarm pattern or coverage [77], etc.

The concept of SI can be visualized in the tutorial about self-propelled

particles (SPP) in [74]. In this tutorial, each particle has its own random-

ness in movement and follows the average heading when it meets other
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particles within its vicinity. It introduces order parameters and other crit-

ical values to visualize how the order or phase change with respect to the

variation of randomness, number of particles, vicinity range etc. In SI, the

communication and coordination among members is usually minimal. The

observation on other members also comes with more randomness.

2.4 Dealing with Unknown Correlation

In this thesis, we focus on a small team of AUVs. These AUVs locally

estimate their own positions, and gather observations to update the position

estimates. The distributed processing architecture has many advantages

over centralized architecture. It is reliable in the sense that the loss of any

individual AUV or links does not necessarily prevent the rest of the team

from completing the mission. It is flexible in the sense that AUVs can be

added or deleted from the team by making only local changes.

The most challenge arising from distributed processing in a cooperative

team is the effect of redundant information [39]. To be specific, the infor-

mation from different vehicles cannot be combined straightforward unless

they are independent or have a known degree of correlation. Many years

ago authors in [13] recognized that local estimates have correlated errors.

If between local estimates the correlation is näıvely assumed to be zero,

estimation overconfidence comes with the fused estimate, and may lead
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to filter divergence [42]. Therefore dealing with unknown correlation in

the cooperative localization becomes important. With smaller number of

AUVs in a group, common information flowing around the team is more

influential. This is because the common information easily cycles with less

independent information input from other AUVs.

A simple parametric localization filter like Kalman filter [46] and its

extensions [38, 45, 46] gives estimated position x̂ and the corresponding

estimated error covariance P. At each time step, a vehicle predicts its own

position and updates the estimate if local measurement is available. They

keep their local estimate x̂(·),P(·) where (·) denotes the vehicle’s identity.

There is a time when two vehicles (Vehicle i and Vehicle j) in the group

communicate, exchange their information (for example, the estimated po-

sition and estimated error covariance, x̂(i),P(i) and x̂(j),P(j)), and update

their respective position estimates. The other members in the group may

not know this cooperation due to the loss of transmission packets. There-

fore, to those members, the correlation between information provided by

vehicles i and j is unknown. This is essentially a data fusion problem deal-

ing with unknown correlation in distributed network. The estimation can

be visualized as an estimation network where the nodes are the vehicles

and the edges connecting the nodes denote the information flow within the

network.
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For one-step cooperation, we drop the time step k for simplicity. As-

suming both estimates are consistent, that is that E[(x̂(i) − x(i))(x̂(i) −

x(i))>] � P(i) and E[(x̂(j) − x(j))(x̂(j) − x(j))>] � P(j), the fused estimate

(x̂(f),P(f)) at Vehicle i should satisfy the following fusion principles [67, 84]:

1. Performance improvement: P(f) � P(i),

2. Estimation consistency: E[(x̂(f) − x(i))(x̂(f) − x(i))>] � P(f).

An optimal fusion is derived in [23] if correlation is known. To fuse esti-

mates with unknown correlation, [43] proposed a Covariance Intersection

(CI) method, which essentially provides an upper bound on the error covari-

ance of the fused estimate. It leads to various approaches for determining

the weight w [24, 40]. Although the estimation consistency is maintained,

the estimated error covariance is no smaller than the individual error co-

variance at any direction. The expression of the fused estimate is derived

by assuming independent errors between x̂(i) − x(i) and x̂(j) − x(j), which

is contradictory to the problem formulation. Reference [75] proposed El-

lipsoid Intersection (EI), which essentially picks the estimate with smaller

error covariance. It fulfills the first fusion principle but the consistency

is not proved. Along the same line as CI, the author in [52] and his re-

lated work proposed Split Covariance Intersection (SCI), which uses split

form to represent the dependent and independent parts in the estimate.

However, in the state update with relative position estimates and states of
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other vehicles, only the relative measurement is separated as independent

information.

Instead of overestimating the intersection region, authors in [15] pro-

posed a largest ellipsoid algorithm which leads to a tighter estimate but

the fused estimate is slightly underestimated. In place of CI, [67] proposed

Bounded Covariance Inflation (BCInf), a mechanism for creating conser-

vative covariance matrices for which the bounds on the cross correlations

are known. The key is the book keeping messages (the coupling scalar) to

interpret the correlated part and uncorrelated part. The decentralization

was demonstrated by using only two-vehicle SLAM.

2.5 Bathymetry-Aided Navigation

Bathymetry is the submerged equivalent of an above-water topographic

map. It is obtained by prior survey and recorded in a geographical map.

Bathymetry-based localization and navigation, is also known as terrain

relative navigation (TRN) [55], terrain based navigation (TBN) [22, 56],

terrain-aided navigation (TAN) [22], and bathymetry-aided navigation (BAN)

[47]. The key idea is to match the local bathymetry as seen by an under-

water vehicle against the reference map, and estimate the location of the

vehicle on that map. Bathymetric SLAM is a well-recognized concept of

navigation and map building [14, 18] using a multibeam sonar in high-end
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AUVs. Multibeam sonar measures the bathymetry in a small patch of area.

The measured information is rich as it consists of multiple measurements in

a geographical formation. In terms of localization, rich bathymetry infor-

mation from multibeam sonar gives high localization accuracy. However,

multibeam sonar is costly and take up space in AUVs. As we focus on

small-sized and low-cost AUVs, bathymetry measurements can be simply

managed with a single echo-sounder [73] or altimeter. Observations from

the depth sensor and altimeter lead to the observed bathymetry where the

vehicle is located. Although the bathymetry is a single-point measurement,

works in [47, 80] have showed the feasibility. It is fused with the odomet-

ric estimation to get the best possible update about the vehicle position.

Therefore bathymetry map indicating the water depth offers an attractive

tool to reduce the localization error of the submerged AUVs, without ad-

ditional cost on hardware or external infrastructure.

In [47], the authors showed a strong correlation between localization

accuracy and variation of bottom topography. The conclusion was that a

reasonable localization could be made with a single beam altimeter, as long

as sufficient bathymetric variation was available along the AUV path. In

[35], bathymetry variation was characterized by the depth gradient and a

path was generated to avoid regions where the terrain has small variations.

In [37], salient points (locations with more bathymetry variations) are vis-

ited when the localization uncertainty surpasses a user-provided threshold.
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Various terrain statistic information was listed in [62], including standard

deviation, roughness, correlation coefficient and entropy. However the au-

thors did not demonstrate these terrain information metrics and the set-

points (planned points along the path) were manually selected. The relation

between the bathymetry information and localization performance has not

been systematically studied. This relation first requires a quantification of

localization uncertainty, which is important in relating localization perfor-

mance to the bathymetry information. Generally, the undulating topology

of the underwater terrain yields non-Gaussian or multi-modal distributions

in localization. Traditional parametric filters such as Kalman filter are not

suitable in describing such distributions or quantifying the localization per-

formance. Secondly, the bathymetry information need to be defined prop-

erly. Information entropy map turns out to be a suitable idea matching the

localization uncertainty and bathymetry information. The idea of entropy-

based map has been used as an efficient method of portraying terrain data

[32]. Author in [89] also provided an information theory framework for the

analysis of spatial uncertainties. Particle filter based entropy was derived in

[17] to characterize the uncertainty of a running particle filter. Up to what

we know, no one has used the information theoretic measure to evaluate

the navigation with bathymetric aids.
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Distributed Localization in a

Cooperative Team

3.1 Problem Statement

In presence of limited bandwidth and lossy channels, the information com-

municated between vehicles may not be raw information; cooperation in

a team may not be acknowledged by all the members as well. We show

that the cooperation under constrained communication still helps improve

individual performance. However the cooperation may yield worse local-

ization than single-vehicle operation without cooperation. This is mainly

due to the lossy channel which makes vehicles treat correlated information

as independent. We illustrate these problems with simple examples and

25
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propose a decentralized localization algorithm. This algorithm is able to

handle unknown correlation, requires small transmission packets and pro-

vides consistent position estimates when fusing correlated data.

The work in this chapter was published in [69].

3.2 Decentralized Cooperation with Limited

Communication

Many natural behaviors have shown that simple interactions among a pop-

ulation of simple agents improve the overall performance with decentralized

processing. Examples are birds flocking, ant colonies, animal herding, bac-

terial growth, fish schooling, etc. The collective behavior of decentralized,

self-organized systems is called Swarm Intelligence (SI). We show the im-

provement through simulations of the two common SI behaviors. Next we

simulate a small team of AUVs, cooperating at various loss rate of the

communication packets. We highlight the problems and challenges of the

distributed localization with underwater communication constraints.

3.2.1 Self-Propelled Particles (SPP) and Swarm AUVs

Self-propelled particles (SPP) is a swarm modelled by a collection of parti-

cles that move with a constant speed but respond to a random perturbation
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[29]. The simple interactions with each other lead to the emergence of col-

lective behavior. Two examples of SPP models - group heading alignment

and aggregation, are applied to a simulation with 7 AUVs. We show that at

various loss rate of the communication, the AUV swarm still outperforms

the individual.

3.2.1.1 Group Heading Alignment

The group of AUVs are simulated with random noises added to the vehicle

heading direction and heading speed. Each vehicle shares its heading quasi-

periodically, that is, periodically with some noises. Other vehicles have

a probability to hear the broadcast and turn to the angle bisector with

the broadcaster’s heading. Vehicles are deployed randomly in an area of

1000× 1000 meters squared with random initial headings.

The standard deviation of all AUV headings indicates the alignment

of the group. We plot the alignment with different the update interval

δT at a loss rate 50%. In Figure 3.1(a), the update interval δT varies 1

minute apart from 30 seconds to 4 and half minutes, with a varying noise

N (0, 22) in seconds. It can be seen that the standard deviation of vehicle

headings is smallest for δT = 30 seconds. With shorter update interval,

the heading information spreads faster and the group headings get aligned

within 3 minutes. In the other hand, longer update interval gives slower
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(a) At 50% packet loss: Smaller update interval yields faster convergence and smaller
variation in group heading.

(b) With update interval δT = 30 seconds: Smaller packet loss yield better group
heading alignment.

Figure 3.1: Smaller update interval and less packet loss lead to better
group heading alignment.
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heading alignment. Update intervals of 210 seconds and 270 seconds show

little convergence in vehicle headings. The standard deviation is near π
2

radius, which means vehicles are heading in almost all directions.

Figure 3.1(b) shows the group heading alignment at update interval

δT = 30 seconds, with different loss rate. With higher loss rate, the group

headings align to a lesser degree.

The group heading alignment can be used to lead the group heading

with one vehicle sticking to its planned heading. Similar application is

the group search and tracking, where team members follow the heading

combined between target-driven and group-coherent rules.

3.2.1.2 AUV Aggregation

Another commonly seen swarm intelligence is the aggregation, where enti-

ties, particularly animals, of similar size which aggregate together, perhaps

milling about the same spot or moving or migrating in some direction. We

model this aggregation using AUVs. In the aggregation, at each time, one

vehicle broadcasts its own position estimates. Other vehicles that success-

fully pick up the broadcast will head towards the broadcaster, or the center

of the broadcasting vehicles if they received two broadcasts within 1 second.

An aggregation circle is drawn to cover all the vehicle locations. We use

the maximum pairwise distance to evaluate the group coverage. Vehicles
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are initialized to head straight away from each other. They only update

their headings if they receive the broadcasted position from other team

members. We show that AUVs aggregation performance highly depends

on the communication rate.

Figure 3.2 shows that if the communication breaks down totally (pL =

1), vehicles move further and further from each other and group cover-

age increases linearly. When the communication has less packet loss, the

group coverage converges faster, to a minimum coverage. Group coverage

converges to around 100 meters with loss rate 0 and 0.2.

Figure 3.2: AUV aggregation at update interval δT = 30 seconds:
smaller packet loss results in faster convergence of the group coverage.
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3.2.2 Small Team of AUVs

We look at 3 AUVs cooperating through acoustic ranging. 3 AUVs is

considered the smallest number. The reason is that 2-AUV group has

common information directly returned; it is not complete to understand the

information flow and the effect of unknown correlation in a third member

with a 2-AUV group.

The distance between vehicles is calculated based on the time-of-flight

of the acoustic signals. Compared with swarm AUVs, the cooperative net-

work is smaller and the cooperation is specified to localization with aids of

acoustic ranging.

From time step k to the next time step k + 1, vehicle’s position x

propagates in a way such that

x
(i)
k+1 = F(i)x̄

(i)
k + B

(i)
k uik + ω(i) (3.1)

where i is the vehicle number and w(i) is propagation additive noise. The

propagation noises are independent zero-mean Gaussian processes with co-

variances Q(i). B(i) and u(i) are the control matrix and control input.

When AUVs send acoustic signals for ranging, they also encapsulate

the information in the acoustic signals during the exchange. With a non-

linear range measurement, Extended Kalman filter (EKF) [45] is firstly
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formulated for the centralized system with 3 vehicles (Vehicle i, j and

m). The centralized system assumes all the local propagation, local mea-

surements and relative measurement are known to a central unit. Then

a simple decentralization is used to show the problem of communication

issues. A decentralized system is closer to the realistic: each vehicle only

knows what happens locally; the local propagation, local measurement, and

relative measurement when it happens to this vehicle. Therefore, the filter

has to be designed as to what are kept locally and what are communicated.

We discuss the possibility and simulate scenarios using the decentralized

EKF.

The centralized EKF predicts the positions of 3 vehicles as

x̂k+1|k = Fkx̂k|k + Bkuk
x̂(i)

x̂(j)

x̂(m)


k+1|k

=


F(i) 0 0

0 F(j) 0

0 0 F(m)


k


x̂(i)

x̂(j)

x̂(k)


k|k

+


B(i) 0 0

0 B(j) 0

0 0 B(m)


k


u(i)

u(j)

u(k)


k|k

(3.2)

where 0 is zero matrix in proper size. The centralized control input u and

control matrix B are formulated in the same way as the centralized state

vector x and propagation matrix F. The propagation of ith AUV error

covariance is

P
(i)
k+1|k = F

(i)
k P

(i)
k|kF

(i)>
k + Q

(i)
k (3.3)
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while the error propagation of the cross-correlation term between AUV i

and j is

P
(ij)
k+1|k = F

(i)
k P

(ij)
k|k F

(j)
k

>
. (3.4)

If the propagation model of every AUV is known to all, each AUV can

keep its respective row of the centralized covariance matrix and make full

propagation for the cross-correlation term. However this only applies for

missions with predefined control input. In [68], authors split the cross-

correlation term such that

P
(ij)
k+1|k =

√
P

(ij)
k+1|k

√
P

(ji)
k+1|k

>

= F
(i)
k

√
P

(ij)
k|k (F

(j)
k

√
P

(ji)
k|k )>.

(3.5)

According to [68], when AUV i and AUV j meet, they exchange their

distributed cross-correlation terms and get the full picture by multiplying

them. Therefore vehicles do not need communicate about their respective

propagation model. However the local measurement should update the

correlation as well as the correlated terms of other members. Meanwhile,

due to the communication packet loss, for example, AUV i may not know

the information exchange happening between Vehicle j and Vehicle m.
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The range measured between AUV i and m at time step k + 1 is rk+1

and is observed as

rk+1 = h(xk+1) + vk+1

= ‖x(i)
k+1 − x

(m)
k+1‖+ υk+1

(3.6)

where ‖ • ‖ is a norm operation and vk+1 ∼ N (0,Rr,k+1) is the ranging

measurement error. Rr is the error covariance. The observation matrix for

range between AUV i and m is the Jacobian

Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k

=

[
H(im) 01×2 −H(im)

]
k+1|k

(3.7)

where position state is in size 2× 1 and H(im) = (x̂(i)−x̂(m))>

‖x̂(i)−x̂(m)‖ . The residual

covariance matrix is

Sk+1 = Hk+1Pk+1|kH
T
k+1 + Rr,k+1

= [H
(im)
k+1 (P

(i)
k+1|k −P

(mi)
k+1|k −P

(im)
k+1|k + P

(m)
k+1|k)H

(im)
k+1

>
] + R

(im)
r,k+1.

(3.8)

We can see that the observation matrix and the residual covariance matrix

are derived solely from the information related to the two vehicles. The
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Kalman gain is

Kk+1 = Pk+1|kH
>
k+1S

−1
k+1

K(i)

K(j)

K(m)


k+1

=


(P

(i)
k+1|k −P

(im)
k+1|k)Hk+1

>

(P
(ji)
k+1|k −P

(jm)
k+1|k)Hk+1

>

(P
(mi)
k+1|k −P

(m)
k+1|k)Hk+1

>

Sk+1
−1.

(3.9)

The state estimate is updated as

x̂k+1|k+1 = x̂k+1|k + Kk+1ỹk+1

=


x̂(i)

x̂(j)

x̂(m)


k+1|k

+


K(i)

K(j)

K(m)


k+1

(rk+1 − ‖x̂(i)
k+1 − x̂

(m)
k+1‖).

(3.10)

We can see that the Kalman gain for each AUV is proportional to the dif-

ference between the cross-correlations with the exchanging pair. If vehicle

j picks up the ranging and communicated information from the exchanging

pairs, it can also update locally.
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The covariance update is

Pk+1|k+1

=(I−Kk+1Hk+1)Pk+1|k

=Pk+1|k −∆Pk+1

∆Pk+1

=Kk+1Hk+1Pk+1|k

=


K(i)Hk+1(P(i) −P(mi)) K(i)Hk+1(P(ij) −P(mj)) K(i)Hk+1(P(im) −P(m))

K(j)Hk+1(P(i) −P(mi)) K(j)Hk+1(P(ij) −P(mj)) K(j)Hk+1(P(im) −P(m))

K(m)Hk+1(P(i) −P(mi)) K(m)Hk+1(P(ij) −P(mj)) K(m)Hk+1(P(im) −P(m))

 .

(3.11)

With a ranging between Vehicle i and Vehicle m, the terms highlighted

in red and blue are the updates on the cross-correlations with AUV j.

If vehicles keep each row locally, the cross-correlation terms need to be

updated together such that they are the same (in transpose) as the one kept

at the counterpart. If all the exchanged information is not acknowledged

by AUV j and yet the exchanging AUVs still update their correlation with

AUV j, the terms highlighted in red and blue are not same (in transpose).

There are two options when exchanging packet is lost to AUV j:

• Total ignorance: AUV j does not pick up the communications be-

tween AUV i and j and has no idea about this cooperation afterwards.
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The packet gets lost completely.

• Delay and relay: The communications between AUV i and m at time

k + 1 is logged by the exchanging AUVs and other AUVs (if there

are more vehicles which pick up the cooperation). It will be used

to update AUV j later when they meet. It is an ‘Out Of Sequence

Measurement’ (OOSM) problem.

Three filters are tested in the simulation of cooperative localization.

They are:

• DR - Dead reckoning without any ranging and cooperation among

the AUVs.

• CEKF - the centralized EKF with ranging. It tracks the full er-

ror covariance matrix of the team, gives the optimal estimation and

therefore serves as a baseline for comparison.

• DEKF - the decentralized EKF with some packet loss rate to other

AUVs. Each vehicle keeps its respective row in the CEKF. The cen-

tralized filter is represented as

Pk+1 =


P

(i)
row,k+1

P
(j)
row,k+1

P
(m)
row,k+1

 . (3.12)
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In the simulation, for each AUV, the heading direction and heading

speed (between 0.5 and 2 m/s) are randomly generated, with a low proba-

bility (1.4%) to change to a new direction and speed at each time step. The

propagation noise comes from the zero-mean Gaussian noise of the velocity

with 0.1 m/s standard deviation for all AUVs. At every 10 seconds, a pair

of AUVs exchange their information for ranging. No local measurement is

made.

3.2.2.1 Distributed EKF with Packet Loss

The advantage of cooperative localization using ranging over the group

of AUVs is shown by CEKF in Figure 3.3. When DR has drifting error,

the aid received from ranging information during the first 100 seconds is

significant. After 100 seconds, ranging still helps by making the overall

drifting slower.

When the loss rate pL = 0 (Figure 3.3(a)), DEKF has the same per-

formance as CEKF. When the loss rate increases to 40% (Figure 3.3(b)),

we see that the average error by DEKF is larger than the average error

given by CEKF. When pL goes up to 50% (Figure 3.3(c)), there is a jump

in estimation error observed. When pL is even larger (Figure 3.3(d) and

Figure 3.3(e)), the positioning error grows rapidly and the performance is

much worse than DR. This result agree with the statement in [42]: when
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(a) pL = 0

(b) pL = 0.4 (c) pL = 0.5

(d) pL = 0.55 (e) pL = 0.75

Figure 3.3: Average Error in Distance of 3 AUVs with various loss
rate pL: When packet loss is less, DKF improves localization through
cooperation. When packet loss is higher, DKF improves localization at

first but later deteriorates fast.
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the correlation is ignored, estimation overconfidence arises with the fused

estimate, and may lead to filter divergence.

3.2.2.2 Delay and Relay with a Simplified Model

Equations (3.10) and (3.11) show that the update of the estimate and er-

ror covariance are additive. If AUV j misses the update from the ranging

between AUV i and m at time step k+1, it will continue predicting its esti-

mate without the additive terms. If the propagation matrix F is an identity

matrix, the error covariance matrix propagates with additive process noise

Q only; the correction term for the missing update can be simply added

to the current state estimate. If the propagation matrix is not an identity

matrix, the propagation in the delayed duration has to be re-calculated

to obtain the current state (this is called retrodiction or backward predic-

tion). This becomes especially hard for nonlinear propagation model as the

inverse model depends on all the past status.

We test on a simplified model with the following assumptions:

Assumption 1. The propagation model of every AUV has identity matrix

F and is known to all.

Assumption 2. Ranging is the only available measurement.
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Let each AUV keep the details of a limited number Np of the past

updates (let Np = 5 for example). The procedures and required information

are as follows:

1. Check : When 2 AUVs communicate for ranging update, they com-

pare and check the logs of the counterpart for the past Np exchanges.

2. Delayed measurement : If any missing logs in the past are found,

the current state estimate x̂row and error estimate Prow are updated

with the delayed measurement(s).

3. Ranging : The two AUVs then exchange information for ranging,

and log the current update. At the same time, the other AUVs who

successfully pick up the ranging update will also get updated and log

the update.

The information exchange and update is kept at the communicating

AUV i and m and other AUVs if they successfully pick up the communi-

cation. They are:

• Ranging time ke.

• Exchangers’ identity (for example, AUV i and m).

• Exchangers’ position estimates x̂
(i)
ke

and x̂
(m)
ke

.

• The row of exchangers’ error covariance P
(i)
row,ke

and P
(m)
row,ke

.
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• The acoustic ranging rke .

• The error covariance Rr,ke of the acoustic ranging.

We simulate 4 AUVs with vehicle ID as 1, 2, 3 and 4. We schedule the

communication of the AUV pairs in Table 3.1. Figure 3.4 shows a special

case where only AUV 4 has a loss rate L4 = 1. This means AUV 4 gets the

delayed ranging update of other pairs of AUVs only when it communicates

with others for ranging. The DEKF of AUV 1 to 3 are the same as CEKF

and is not shown here. We are only showing the RMSE of AUV 4 over 1000

runs. It can be seen that the estimation of AUV 4 gets corrected after 30

seconds once it reconnects with the other AUVs.

Table 3.1: Pairing Sequence for Ranging Update

Time Pair
(δT = 10 seconds) i j

10 1 2
20 2 3
30 3 4
40 4 1
50 1 2
60 2 3
...

...
...

Figure 3.5 shows the result when all AUVs have loss rate pL = 0.4. It

can be seen that the logs of past Np = 5 rangings are able to correct the

DEKF and give an estimate which is very close to the one given by CEKF.
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(a) RMSE of AUV 4 with pL = 1

(b) Zoom-in: RMSE of AUV 4 with pL = 1

Figure 3.4: Estimation error of AUV 4 gets corrected once it recon-
nects with the other AUVs after 30 seconds.
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(a) RMSE of 4 AUVs with pL = 0.4

(b) Zoom-in: RMSE of 4 AUVs with pL = 0.4

Figure 3.5: Logs of past Np = 5 rangings are able correct the DEKF
and give similar result to CEKF.
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In fact, the pairing sequence is critical in the delay and relay. As long

as Np ≥ N − 2 where N is the number of AUVs in the team, the controlled

pairing sequence can guarantee the circulation of the information among

the team over a cycle.

Compared to terrestrial communication, underwater communication

uses acoustic waves instead of electromagnetic waves. It has problems

such as multi-path propagation, time variations of the channel, small avail-

able bandwidth and strong signal attenuation especially over long ranges.

Therefore the communication has low data rates. In such a case, successful

ranging has irregular time interval and random pairing sequence. It is pos-

sible that AUVs miss the past ranging update without any relay. It is also

possible that an AUV gets ‘out of sequence measurement’ (OOSM). The

whole communication scheme (time and sequence) becomes complicated

and unpredictable.

Meanwhile, only the pre-planned missions are known to each vehicle.

The actual paths and activities change with respect to the situation and

may not be updated to every other member. Vehicles can also make local

measurement to update their position estimates. All these possibilities

make the correlation untrackable in the distributed processing .
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3.3 Information Loss in Distributed Process-

ing

In the previous section, each member keeps a row of the centralized state

vector and error covariance. Vehicles may still lose track of the exact cor-

relation with each other. In this section, each vehicle only keeps estimates

about itself and we assume the inter-vehicle correlation is known exactly.

Examples show that compared with centralized processing, the distributed

processing has some information loss even when the correlation is tracked

precisely.

The simplest example consists of two vehicles estimating their locations

in 1-dimensional space. Their initial correlation coefficient ranges from

[0 : 0.1 : 0.9]. Both vehicles follow the 3 steps: 1) propagate with noise, 2)

make local measurements about their positions, and 3) communicate their

positions along with range measurements. Figure 3.6 shows the centralized

Kalman filter (CKF) and decentralized Kalman filter (DKF) estimation

architectures. The positions of Vehicle 1 and 2 are considered as random

variables as they evolve at each succeeding moments with random process

noise. Each vehicle makes a local measurement, followed by a relative
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(a) Central processing (CKF)

(b) Decentralized processing (DKF)

Figure 3.6: Central processing architecture vs. distributed processing
architecture. CKF fuses the raw measurements directly while DKF fuses

the local processed data.

measurement

z(1) = x(1) + ν(1),

z(2) = x(2) + ν(2),

r = h(x(1),x(2)) + υ.

(3.13)
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A central estimation (Figure 3.6(a) uses the aggregated state and ag-

gregated measurements. The centralized error covariance is

PCKF = (

 P(1) P12

P>12 P(2)


−1

+ H>CKF


R(1) 0 0

0 R(2) 0

0 0 Rr



−1

HCKF)−1

(3.14)

where HCKF = ∂z
∂x̂

. DKF (Figure 3.6(b)) only sends over the processed

estimate and error covariance after local updates. We assume the initial

correlation is exactly known. Therefore, both filters trace the correlation

and therefore estimation are strictly consistent. Figure 3.7 shows the esti-

mated error covariance after the two processing architectures in Figure 3.6.

The initial error covariances are P(1) = 4,P(2) = 4 respectively. The rela-

tive measurement has an error covariance R = 1. We can see that DKF has

larger error covariance except when the initial correlation coefficient is 0.

With a larger initial correlation, the processing of the local measurements

before fusion results in a larger gap in the estimation error compared with

CKF.

We use information entropy to explain the performance of DKF. En-

tropy refers to the uncertainty associated with a probability distribution,

and is a measure of the descriptive complexity of a PDF. Mathematically
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(a) R(1) = R(2) = 10,Q = 1 (b) R(1) = R(2) = 1,Q = 1

(c) R(1) = R(2) = 25,Q = 1 (d) R(1) = R(2) = 10,Q = 10

Figure 3.7: Estimation error squared versus initial correlation coeffi-
cient. DKF has larger error covariance than CKF except when initial

correlation coefficient is 0.

it is expressed as

h{F (x)} , E{− ln p(x)} (3.15)

where x is a random variable. With the measurement z, the entropy of the

conditional probability is

E{− ln[p(x|z)]} = E{− ln[p(x)]} − E{ln[
p(z|x)

p(z)
]}

h(x|z) = h(x)− I(z; x).

(3.16)
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It states that the entropy following an observation is reduced by an amount

equal to the information inherent in the observation [1].

CKF gives

hCKF = h(x|z)

= h(x)− I(z; x)

= [h(x(1)) + h(x(2))− I(x(1); x(2))]− [I(z(1); x(1)) + I(z(2); x(2)) + I(r; x)].

(3.17)

DKF gives

hDKF = h(x(1),x(2)|z(1), z(2))− I(r; x(1),x(2))

= [h(x(1)|z(1), z(2)) + h(x(2)|z(1), z(2))− I((x(1); x(2)|z(1), z(2)))]− I(r; x)

= [h(x(1)|z(1)) + h(x(2)|z(2))− I((x(1); x(2)|z(1), z(2)))]− I(r; x)

= [h(x(1))− I(z(1); x(1))] + [h(x(2))− I(z(2); x(2))]− I((x(1); x(2)|z(1), z(2)))− I(r; x).

(3.18)

The difference between these two expressions is I(x(1); x(2)) ≥ I(x(1); x(2)|z(1), z(2)),

and makes hCKF ≤ hDKF. The equality happens only when I(x(1); x(2)) = 0.

The mutual information between the states is reduced by conditioning on

local measurements. There is information loss in only transmitting the

processed up-to-date estimates, instead of raw sensor data.
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In another way, we elaborate this in the context of multivariate distri-

bution. Assuming the cross-correlation can be tracked, the mutual infor-

mation I(x(1); x(2)) is expressed as

I(x(1); x(2)) = −1

2
ln |Σρ| (3.19)

where Σρ is the correlation matrix constructed from the covariance matrix

P =

 P(1) P(12)

P(12)> P(2)

. The entries of the correlation matrix records the

Pearson product-moment correlation coefficients between the random vari-

ables. In 1-dimensional space, I(x(1); x(2)) = −1
2

ln(1 − ρ2) where ρ is the

correlation coefficient. After local measurement update, the new central

error covariance is given as

P̄ = (

 P(1) ρ
√

P(1)P(2)

ρ
√

P(1)P(2) P(2)


−1

+

 R(1) 0

0 R(2)


−1

)−1. (3.20)

The new correlation coefficient for P̄ is

ρ̄ =
ρ√

(1 + P(2)

R(2) (1− ρ2))(1 + P(1)

R(1) (1− ρ2))

≤ ρ.

(3.21)
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Therefore we have

I(x(1); x(2)|z(1), z(2)) ≤ I(x(1); x(2))

hCKF ≤ hDKF.

(3.22)

It means CKF ends with less uncertainty in the state [x(1)>,x(2)>]>, or

equivalently smaller estimation error. We can understand this problem as

information loss in pre-processing of the raw data. If we want DKF to

achieve CKF performance, we need to transmit all the past local propaga-

tion and measurement data.

3.4 Distributed Extended Information Fil-

ter

In Section 2.4, we have defined the fusion principles. It means that informa-

tion fusion through cooperation must improve the individual performance

and consistent estimation is preferred. Existing method either ignores the

correlation from different sources or overestimate the correlation. The for-

mer is called näıve filter. The later such as covariance intersection method

[44] and its related [52, 67], ellipsoid intersection method [75] and largest

ellipsoid algorithm [15] assume maximum correlation when dealing with

information from unknown sources.
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We use extended information filter (EIF) - an inverse covariance form of

the Kalman filter, to separate the independent part of the local information.

The reason is that the local prediction and measurement information can

be encapsulated into a single message and acoustically transmitted with

bounded size. The decentralized EIF was first implemented in a single-

beacon cooperative localization in [31] where the server (an surface vehi-

cle) sends the encapsulated information while performing ranging with the

client (underwater vehicle). It can handle asynchronous broadcasts from

the server but the information flows in one direction only, that is, from

server to clients. To accommodate more AUVs operating over very large

operational areas without surface beacons, we propose a new cooperative

multi-AUV localization algorithm using distributed EIF (DEIF). We de-

scribe the detailed design and implementation for a team of cooperative

AUVs, where no single AUV functions as a beacon possessing accurate

position information. The proposed method is designed to record the cor-

related information from the most recent cooperation, providing consistent

position estimates in event of packet loss.

3.4.1 Illustrative Examples

In this section, we use some simple examples to illustrate the problems with

traditional approaches and show how our proposed DEIF overcomes these

problems.
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3.4.1.1 Limited Bandwidth

The estimation result of EIF for the 3-step problem (Figure 3.6) is shown

in Figure 3.8.

Figure 3.8: Traditional distributed processing (DKF) performs poorly
as compared to centralized processing (CKF), but our proposed dis-

tributed method (DEIF) is able to perform well.

As discussed, there is information loss in the traditional DKF even

if the correlation is precisely known. To maintain the same performance

as the centralized estimation, traditional DKF requires a full storage and

transmission of the historical information. If there are n steps of local

propagation and measurements before the cooperation, the packet size for

transmission will increase as O(n). Our proposed method using DEIF is

able to avoid the information loss that DKF suffers, and perform as well as

the CKF using transmissions of fixed, small-sized packets.
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Figure 3.9: Estimation error of AUV 1 using various filters in a 3-AUV
cooperative localization example. DEIF is close to CKF.

3.4.1.2 Inter-Vehicle Correlation

We demonstrate the danger of ignoring the correlation in a 3-AUV coop-

erative localization. Let AUVs broadcast their state estimates in a round-

robin fashion. The estimation error of AUV 1 is shown in Figure 3.9. At

10 seconds, all AUVs submerge and lose GPS position measurements, but

continue to communicate with each other. At 90 seconds, AUV 2 obtains a

high-quality position measurement (say, by surfacing and obtaining a GPS

fix). AUV 1’s localization is improved by fusing estimates from AUV 2. A

näıve Kalman filter (NKF) simply ignores the correlation among vehicles;

it assumes an improvement in estimate by fusing data from ‘independent’

sources, while in fact there is no improvement from double counting the

shared information. The estimated error covariance of NKF appears to be
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very low, but the actual estimation error diverges quickly. Its performance

can be even worse than single vehicle localization (SKF). Our proposed

method (DEIF) performs well, and produces results that are quite close to

the ideal (but impossible) CKF.

3.4.2 Formulation and Design

The vehicle propagation and measurement models follow Equation (2.1)

and Equation (2.2).

In the multi-vehicle cooperation, a vehicle encodes its information into

acoustic packets and broadcasts as a Peer Vehicle (PV). Other vehicles in

the team receive the packets as Receiving Vehicles (RVs). When the team

is synchronized, the one-way travel time of the acoustic signals is simply

the difference between the time-of-launch and time-of-arrival. The distance

from the PV with position xP to an RV with position xR is obtained, given

the propagation speed of underwater signals. The observation model is

rk = ||xk,R − xk,P||+ υk (3.23)

where the operator ||·|| denotes the Euclidean norm, and υk is the zero-mean

Gaussian noise with covariance Rk. To minimize the effect of nonlinearity,

we assume the vehicles are far away from each other so that the error in

position estimation can be modeled as a 2-dimensional zero-mean Gaussian
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random variable, after the relative measurement update. We assume all the

noises are independent Gaussian noise.

The Gaussian-distributed position state vector x with error covariance

P has the associated information matrix and information vector in an EIF

as

Λ = P−1

η = Λx.

(3.24)

At time step k, each vehicle keeps an information set (xk,Pk,Λp, ηp). xk

is the combined 3-state vector xk = [x>k , x
>
t , x

>
c ]> = [x>k ,x

>
p ]> where xp =

[x>t , x
>
c ]>. xk is the current position state. t denotes the time step when

the most recent cooperation is made. During this cooperation, if a broad-

cast from a PV with position state xc is received, this vehicle’s position

is updated as xt. If this vehicle broadcasts as a PV, xc is dummy and xt

is considered fully correlated with the team. (Λp, ηp) is the corresponding

information pair (information matrix and vector) of xp by Equation (3.24).

3.4.2.1 Initialization

At time step k = 0, the initial position x0 is assigned to xt. We assume

that all vehicles are deployed independently, the initial position has no

correlation with the team and xc is dummy.
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3.4.2.2 Local Prediction

Let (Λk, ηk) be the information pair for xk = [x>k ,x
>
p ]>, and xk+1 be the pre-

dicted state from xk according to the propagation model. We augment the

state vector with the predicted state and we have x̃k+1 = [x>k+1, x
>
k ,x

>
p ]>.

The augmented state vector has an associated information pair given by

Λ̃k+1 =


Q−1
k −Q−1

k Fk 0

−F>k Q−1
k F>k Q−1

k Fk 0

0 0 0

+


0 0 0

0

0

Λk



η̃k+1 =


Q−1
k (f(x̂k, ak)− Fkx̂k)

−F>k Q−1
k (f(x̂k, ak)− Fkx̂k)

0

+

 0

ηk

 .

We can see that in an EIF, the prediction information is contained in the

first term of the addition, with zeros padded accordingly. Meanwhile, we

only see non-zero entries in the off-diagonal blocks between states at con-

secutive time steps. This agrees with Markov process assumption stating

that prediction for the future state solely depends on the most recent state.

The 3-state vector xk+1 = [x>k+1, x
>
t , x

>
c ]> and associated covariance

Pk+1 are predicted as
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x̂k+1 = f(x̂k, ak)

Pk+1 =


Fk 0 0

0 I 0

0 0 I

Pk +


Qk 0 0

0 0 0

0 0 0


(3.25)

where I is the identity matrix in proper size.

3.4.2.3 Local Measurement Update

The measurement matrix Hk is sparse as it only affects a few subblocks

within the corresponding entry for xk in the information pair. It allows an

additive update to the delta information as

Λ+
k = Λk + H>k R−1

k Hk

η+
k = ηk + H>k R−1

k (zk − h(x̂k)−Hkx̂k)

(3.26)

where the superscript “+” means the observation is given up to and in-

cluding time step k. It is noted that the local measurement may not be

available at every time step.

The local measurement updates xk and Pk in a standard Kalman filter

way.
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3.4.2.4 Cooperative Localization with Relative Measurement

We denote the information set kept at the PV as (xk,Pk,Λp, ηp)P. Similarly,

the subscript to the information set is R for the RV. It should be noted

that in a team containing more than two vehicles, the time step t recorded

at PV and RV may not be the same.

Delta information for cooperation

Both PV and RV form their delta information such that

∆Λk = Λk −

 0 0

0 Λp



∆ηk = ηk −

 0

ηp


(3.27)

The PV broadcasts the delta information (∆Λk,∆ηk)P together with (xk,Pk)P

in a packet. The RV receives the packet and obtains the acoustic ranging

as well.

Incorporating the delta information

When the broadcast from PV is received, the RV firstly forms a information

pair corresponding to the combined state vector [x>k,R, x
>
t,R, x

>
t,P, x

>
k,P]>. The
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information matrix consists of three parts: the delta information from the

PV ∆Λk,R, the delta information from the RV ∆Λk,P, and the information

matrix Λ̄t corresponding to [x>t,R, x
>
t,P]>. Λ̄t is corresponding to [x>t,R, x

>
t,P]>.

Assuming the states xc,R and xc,P are from the same source and fully

correlated, a bounding joint covariance for states xt,R and xt,P can be de-

rived. We use split covariance intersection (SCI) [52] to form the bounding

covariance. (In a comparative study later, we show the benefit introduced

by the delta information in DEIF over a pure SCI filter.) At both PV

and RV sides, given the covariance matrix

 Pt Ptc

Pct Pc

 (corresponding to

[x>t , x
>
c ]>), the split form for xt is

Pt = PIND. + PDEP.

PIND. = Pt −PtcP
−1
c Pct

PDEP. = PtcP
−1
c Pct.

(3.28)

The reason is that xt−PtcP
−1
c xc and xc are independent, and xc represents

the source of information shared from the team.

The split covariance matrix for [x>t,R, x
>
t,P]> is therefore

 PIND.,R +
PDEP.,R

κ
0

0 PIND.,P +
PDEP.,P

1−κ


t

, (3.29)



Chapter 3. Distributed Localization in a Cooperative Team 62

and κ ∈ [0, 1]. The value of κ is obtained by minimizing the error co-

variance of RV after the relative measurement update. The corresponding

information pair for [x>t,R, x
>
t,P]> is formed as

Λ̄t =

 PIND.,R +
PDEP.,R

κ
0

0 PIND.,P +
PDEP.,P

1−κ


−1

t

η̄t = Λ̄tE([x>t,R, x
>
t,P]>).

(3.30)

The information pair (Λ̄k, η̄k) corresponding to the combined state vec-

tor [x>k,R, x
>
t,R, x

>
t,P, x

>
k,P]> is formed in Equation (3.31), where ∆η∗k,P and

∆Λ∗k,P are the rearranged ∆ηk,P and ∆Λk,P, according to the reversed se-

quence [x>t,P, x
>
k,P]>. Zeros are padded before and after where needed. The

zero padding and addition are illustrated in Figure 3.10.
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Λ̄k =


∆Λk,R · · · 0

...
. . .

...

0 · · · 0

+



0 · · · 0 · · · 0

...
...

...
...

...

0 · · · Λ̄t · · · 0

...
...

...
...

...

0 · · · 0 · · · 0


+


0 · · · 0

...
. . .

...

0 · · · ∆Λ∗k,P



η̄k =


∆ηk,R

...

0

+



0

...

η̄t

...

0


+


0

...

∆η∗k,P



(3.31)

Figure 3.10: Illustration of incorporating delta information in simple
addition.
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Relative measurement update

With the information pair (Λ̄k, η̄k), a measurement update can be made in

the same way as Equation (3.26).

Information set update

After broadcasting out its information set, PV considers its state xk as fully

correlated with the team, and assigns it to xt. States at time steps prior

to k are discarded. The RV assigns the updated xk,R to xt. The received

xk,P is recorded as xc. At both sides, the most recent cooperation time t

is assigned the value of k. The corresponding information pair (Λp, ηp) is

recorded.

3.4.3 Simulation Studies Using Field Experiment Data

We compare the performance of the proposed DEIF with several other

methods using both simulated data and experimented data for a team of

three vehicles. The experimented data was collected from a team of three

vehicles executing lawnmower surveys in Singapore waters (Figure 3.11).

While executing the planned path, vehicles experience propagation noise
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introduced by choppy water, system hardware and so on. Local measure-

ments such as GPS positions (if the vehicle is on the surface), or bathymet-

ric measurements (for submerged vehicles in a known terrain), are fused to

improve localization. Vehicles may not get good local measurements about

their positions all the time. For example, vehicles may submerge through-

out the mission, or the sea bottom is smooth without much variation to

provide rich bathymetry information. The cooperation happens when one

vehicle broadcasts and the other two vehicles receive the information set.

Figure 3.11: Cooperative localization results with field data.

When the inter-vehicle correlation is unknown due to packet loss, we

show that DEIF performs better than the filter ignoring the correlation

or overestimating the correlation. The effectiveness and advantages will

be demonstrated by illustrative examples and comparative results from

simulated and experimented data as follows.
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3.4.3.1 Simulated Data

The simulated data mimics the experimented data, using identical sensor

characteristics and the same trajectories. In this simulation, vehicles take

turns to broadcast their information every 10 seconds. The transmission

packets are lost at a rate of pL. All vehicles cruise on surface and have GPS

fixes in the first 100 seconds. Only Vehicle 2 re-surfaces at 420 seconds

for 50 seconds. The results are evaluated in two metrics: the normalized

estimation error squared (NEES) and root mean square error (RMSE). The

NEES provides a measurement of estimation consistency [12]. Under ideal

conditions, the NEES has a degree-of-freedom (DoF) equal to the dimension

of the state (in our case, DoF is 2). The RMSE records the estimated error

in distance, compared with the true position. Figure 3.12 shows the NEES

and RMSE over 10 runs for Vehicle 3 at different packet loss rate. The

arrows indicate the successful reception of the broadcast.

SKF stands single Kalman filter. NKF stands for näıve Kalman filter.

It claims to have the lowest RMSE but has severe problem with estimation

consistency. This is especially the case when vehicles communicate at high

frequency (with lower packet loss rate). The estimation error given by

NKF is in fact much higher than the error it claims to be. When vehicles

seldom communicate and are mostly independent of each (Figure 3.12(d)),

the näıve assumption by NKF is almost met, and therefore a consistent
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(a) (b)

(c) (d)

Figure 3.12: Simulation results for Vehicle 3 at packet loss rate (a)
pl = 0 (b) pl = 0.3 (c) pl = 0.6 and (d) pl = 0.9. The vertical arrows
show the time when Vehicle 3 receives broadcast. DEIF has smaller
estimation error than SKF and SCI filters, and better consistency than

NKF.

estimation is given.

We also compare the proposed method with SCI filter from [52]. In

the SCI filter, assuming each state consists of correlated component and
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independent component, whose covariances are

PPV = PIND.,P + PDEP.,P

PRV = PIND.,R + PDEP.,R.

(3.32)

As the range-only measurement is not enough to formulate a full estimate

of the RV position, SCI filter in [52] can not be applied directly for the

cooperation. We follow the idea of SCI and form a consistent covariance P̄

for the combined state vector [x>RV, x
>
PV]>. The P̄ is therefore

P̄ =

 PIND.,R +
PDEP.,R

κ
0

0 PIND.,P +
PDEP.,P

1−κ


= P̄IND. + P̄DEP..

(3.33)

The range measurement is used to update the combined state vector in stan-

dard Kalman filter way. The independent component for RV is obtained in

the corresponding entries of the combined independent component

P̄+
IND. = (I−K)

 PIND.,R 0

0 PIND.,P

 (I−K)> + KRK>. (3.34)

We can see that with more frequent cooperation (lower packet loss rate),

SCI tends to be over conservative about its estimation. In the other hand,

EIF estimation maintains good consistency and performs better than SCI
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on all occasions.

3.4.3.2 Experiment Data

The navigation data is used in the offline processing to compare different

estimation filters. In the experiment, GPS logs are used as the benchmark

to compute positioning errors. The arrows in Figure 3.13 indicate the time

when the broadcasts are sent and successfully received by other vehicles.

In the first 100 seconds, Vehicles 1 and 3 have good local measurements.

Vehicle 2 exhibits a slow position drift with the information shared by Ve-

hicles 1 and 3. Vehicle 2 obtains good local measurements from 200 to

300 seconds, and from 600 seconds onward. The proposed DEIF success-

fully improves estimation accuracy of all vehicles. In the two highlighted

boxes, we can see that Vehicles 1 and 3 get position improvements from

the broadcast given by Vehicle 2. Meanwhile, Vehicle 2 also benefits from

the information sharing (at 400 seconds). On the other hand, the localiza-

tion improvement for Vehicle 1 is less using an NKF. For Vehicles 2 and 3,

the localization by NKF is even worse than the single vehicle localization

(SKF).
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Figure 3.13: Cooperative localization results with field data. The
arrows indicate the time when the broadcasts are sent and successfully
received by other vehicles. NKF estimation sometimes is worse than

SKF. DEIF improves estimation accuracy of all vehicles.

3.5 Summary

Although underwater communication is difficult, natural behaviors such

as fish schooling have shown that limited communication still helps im-

prove the overall performance. We have shown that cooperation under

constrained communication make the distributed localization outperform

the single-vehicle localization. However, the estimation may degenerate

when the packet loss is beyond some point. This is due to the information

double counting when the correlation is ignored. We also showed that dis-

tributed processing has some information loss even the correlation is exactly

known. The reasons of these two will be explored in the next chapter.

With the challenges imposed by the underwater communication, we
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reported the design and implementation of a distributed extended informa-

tion filter for cooperative multi-AUV localization. This DEIF is especially

suitable for underwater vehicles where the communication links have the

problems of limited bandwidth and lossy packets.

Multi-vehicle cooperative localization is essentially a type of data fusion

in cooperative intelligent vehicles. Data fusion, which aims at integration

of data and knowledge from multiple sources, is an important process to

achieve a better estimation in various applications. The proposed filter

can also be used for cooperative object tracking, cooperative environment

sensing or map building.

When vehicles have precise local measurements and/or infrequent com-

munications, the inter-vehicle correlation may become trivial. In such a

case, ignoring correlation in fusion might be able to work. We will discuss

this in the next chapter.



Chapter 4

When Can One Ignore the

Correlation?

4.1 Problem Statement

In the previous chapter we offer a distributed localization method dealing

with unknown correlation due to lossy underwater communication. How-

ever, a näıve assumption which simply ignores the correlation when fusing

data from different sources, was adopted in [80, 82]. It is simple in complex

cooperation applications and seems to be working fine in existing works.

We want to understand when this assumption is reasonable, and when is

detrimental.

72
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There are two types of cooperative localization problems: the multi-

sensor tracking problem and the multi-vehicle localization problem. The

multi-sensor tracking problem is concerned with a team of cooperative

nodes tracking a common target, whereas the multi-vehicle localization

problem deals with a team of cooperative vehicles estimating their own po-

sitions. In both problems, individual nodes or vehicles have no idea about

the whole team; they also do not share every detailed local observation.

Information is shared across the team and estimation is improved over the

ones with single sensor tracking or single vehicle localization (without co-

operation). We illustrate the idea by exploring the information flow in the

decentralized system. We quantify the situation where the correlation can

be safely ignored. We would like to ensure the estimation consistency when

bathymetry information is incorporated into cooperative localization.

The work in this chapter was published in [70].

4.2 Multi-Sensor Tracking Problem

We present a simple example where two sensor nodes are tracking a com-

mon target. The central filter (CF) and single filter (SF) are used as the

performance benchmarks. We answer the following questions:

• What is the optimal distributed filtering?
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• Is there any gap between the optimal distributed filtering and the

central filtering? If so, what is the gap?

• When can one ignore the correlation in fusion? When does the näıve

assumption in filtering fail?

These answers give us a clear understanding about the pros and cons

of implementing näıve filtering (NF) in the distributed localization.

Figure 4.1: Multi-sensor tracking: a recursive two-step flow chart.
The target propagates from previous position xk to current position
xk+1 with some propagation noise ωk. At each step, each node makes

an observation (z(1) or z(2)) about the target position.

Figure 4.1 shows a recursive two-step process where two sensor nodes

(node 1 and 2) track a target with position state x of size n×1. The target

propagates from previous position xk to current position xk+1 with some
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propagation noise ωk. At each step, each node makes an observation (z(1)

or z(2)) about the target position. The propagation model and observation

models are

xk+1 = xk + ωk

z
(1)
k = xk + ν

(1)
k

z
(2)
k = xk + ν

(2)
k

(4.1)

where the propagation noise ω and observation noises ν(1) and ν(2) at all

steps are independent zero-mean Gaussian processes with covariances Q,

R(1) and R(2). Without loss of generality, we assume det R(1) ≤ det R(2).

The problem is to find the best estimate yk+1 about the target position

xk+1. We assess the filters’ one-step and asymptotic performances. With

the knowledge about target position at the previous step xk, one-step per-

formance is the filter performance at the next step. When filters continue

to be implemented over many steps, the estimation reaches a stable state

where asymptotic performance can be derived.

Assuming a central unit with access to the local sensor data in real time,

the central filtering (CF) simply stacks the local observations made at two

nodes and follows the Kalman filtering to update the predicted estimate

about the target. Similarly, single filtering (SF) follows Kalman filtering

and uses the sensor data at node 1 only without cooperation from the other

node.
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Let the error covariance of the position estimate about state xk be Pk.

The estimate about the state xk is yk = E[xk]. The one-step SF gives

estimate with error covariance

PSF =
(
I− (Pk + Q)(Pk + Q + R(1))−1

)
(Pk + Q) (4.2)

and one-step CF gives

PCF =
(
I− (Pk + Q)HCFS−1

CF

)
(Pk + Q) (4.3)

where

SCF = H(Pk + Q)H>CF +

 R(1) 0

0 R(2)



HCF =

 I

I


(4.4)

and I is the identity matrix of size n× n.

When the target keeps moving and observations are made at every

step at the two nodes with the same settings, the filters reach stable states

in which the estimation and performance approach constant values. The

stable state estimation error covariances for both filters are derived by

setting PSF = Pk and PCF = Pk. In 1-dimensional space where n = 1,
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they are

PSF,ss =
−Q +

√
Q2 + 4QR(1)

2

PCF,ss =
−Q +

√
Q2(R(1)+R(2))+4QR(1)R(2)

R(1)+R(2)

2
.

(4.5)

The CF result is similar to SF but at each time the observation data is

fused by the two sensor data. This ‘fused’ observation therefore has error

covariance (R(1)−1
+ R(2)−1

)−1.

It should be noted that the estimates by CF and SF are consistent in

that the actual error covariance of the estimate E[(y − x)(y − x)>] equals

the estimated error covariance P. Therefore we only state one of them here.

The performances of CF and SF are shown in the subsequent sections.

4.2.1 Optimal Distributed Filtering

4.2.1.1 Deriving the Optimal DF

The recursive two-step distributed filtering is shown in Figure 4.2. At the

previous step k, sensor nodes exchange their local estimates and obtain

a fused estimate y
(f)
k = yk with error covariance P

(f)
k = Pk. This fused

estimate about the previous position xk is adopted by both nodes. After

that, the target position is predicted at each node locally, and updated

with local sensor data following the standard Kalman filtering method. At
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Figure 4.2: Multi-sensor tracking: distributed filtering using weighted-
sum fusion.

the current step k + 1, again sensor nodes exchange their local estimates

y
(1)
k+1 and y

(2)
k+1 and obtain the fused estimate y

(f)
k+1. We use weighted sum

to fuse the two estimates with weight λ

y
(f)
DF = f(y

(1)
k+1,y

(2)
k+1)

= (1− λ)y
(1)
k+1 + λy

(2)
k+1.

(4.6)
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With the fused estimate y
(f)
k and estimated error covariance P

(f)
k , the local

estimates are for nodes i = 1, 2

y(i) = P(i)(P
(f)
k

−1
y

(f)
k + R(i)−1

z
(i)
k+1)

P(i) = (R(i)−1
+ P

(f)
k

−1
)−1

(4.7)

The optimal weights λ∗ is derived by minimizing the error covariance E[(y
(f)
DF−

xk+1)(y
(f)
DF − xk+1)>] and in 1-dimensional space we obtain

λ∗ = arg minE[(y
(f)
DF − xk+1)2]

=
R(1)

R(1) + R(2)
.

(4.8)

With this optimal weight, the error covariance E[(y
(f)
DF−xk+1)(y

(f)
DF−xk+1)>]

of the fused estimate turns out to be identical with Bar Shalom’s state

vector fusion (SVF) [13]

P
(f)
SVF = P

(1)
k+1−(P

(1)
k+1−P

(12)
k+1)(P

(1)
k+1+P

(2)
k+1−P

(12)
k+1−P

(12)
k+1

>
)−1(P

(1)
k+1−P

(12)
k+1

>
)

(4.9)

where the cross-correlation P
(12)
k+1 =E[(y

(1)
k+1−xk+1)(y

(2)
k+1−xk+1)>] between

the two estimates is required. Although P
(12)
k+1 is not required for optimal

fusion of the estimate in DF, it is required for a consistent estimation on

the error covariance P
(f)
DF

∗
which can be used for the subsequent steps. The

stable state error covariance of optimal DF can also be derived by setting
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P
(f)
DF

∗
= Pk.

4.2.1.2 The Gap between the Optimal DF and CF

Figure 4.3: One-step error covariances of DF, SF, CF and SVF, against
the weight λ used by DF. There is a gap between CF and optimal DF

(SVF).

Figure 4.3 shows an example of the one-step performance comparing

the error covariances of the estimates by DF, SF, CF and SVF, against the

weight λ used by DF. The optimal weight λ∗ is obtained at the lowest point

of the DF curve, which gives identical performance as SVF. There is a gap

between the optimal DF (or SVF) and CF. The same idea was stated by

Bar-Shalom in [11]
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The sufficient statistics for the global data set Dij = Di
⋃
Dj

cannot be expressed in terms of the sufficient statistics of the

local data sets Di and Dj (the local estimates x̂i and x̂j).

We have discussed the similarity information loss in distributed localization

in Chapter 3. There is information loss when processed data (estimates)

are transmitted instead of raw data (observations). This is because the

CF is a Maximum a Posteriori (MAP) estimation which estimates the un-

observed target position state x with two observations z(1) and z(2). The

prior distribution is known as N (x,Pk + Q). In the other hand, DF treats

the two local estimates y
(1)
k+1 and y

(2)
k+1 as two ‘observations’. The fusion

is a Maximum Likelihood (ML) estimation without using the prior knowl-

edge about the state [23]. This is the best that distributed estimation can

achieve when only local estimates are available for fusion. Therefore it is

optimal only in the ML context. We take SVF as an example, since it is

identical to the optimal DF. Let the error covariance of the two estimates

from the nodes be

PSVF =

 P
(1)
k+1 P

(12)
k+1

P
(12)
k+1

>
P

(2)
k+1

 (4.10)
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where

P1 = E[(y
(1)
k+1 − xk+1)(y

(1)
k+1 − xk+1)>]

P2 = E[(y
(2)
k+1 − xk+1)(y

(2)
k+1 − xk+1)>]

P
(12)
k+1 = E[(y

(1)
k+1 − xk+1)(y

(2)
k+1 − xk+1)>]

(4.11)

The target position xk+1 is to be determined based on the two ‘observations’

y
(1)
k+1 and y

(2)
k+1. The logarithm of the likelihood function L(xk+1; y

(1)
k+1,y

(2)
k+1)

is

lnL(xk+1; y
(1)
k+1,y

(2)
k+1)

= ln 2π − 1

2
ln
(

det(PSVF)

+ (

 y
(1)
k+1

y
(2)
k+1

−
 xk+1

xk+1

)>P−1
SVF(

 y
(1)
k+1

y
(2)
k+1

−
 xk+1

xk+1

)
)
.

(4.12)

It is maximized by setting
∂L(xk+1;y

(1)
k+1,y

(2)
k+1)

∂x
= 0. The optimal estimate for

position state x in 1-dimensional space is

y∗ML = arg maxL(xk+1; y
(1)
k+1,y

(2)
k+1)

=
P

(2)
k+1y

(1)
k+1 + P

(1)
k+1y

(2)
k+1 −P

(12)
k+1(y

(1)
k+1 + y

(2)
k+1)

P
(1)
k+1 + P

(2)
k+1 − 2P

(12)
k+1

.

(4.13)

The volume ratio of the error covariances compared with CF is

det P
(f)
SVF

det PCF

=
det P

(f)
DF

∗

det PCF

. (4.14)
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Figure 4.4 shows that the ratio is always less than one for n = 1. The axes

are R(1) and R(2) normalized by Pk + Q .

Figure 4.4: Ratio of error covariances - optimal DF (SVF) to CF is
no larger than one.

4.2.2 When Can One Ignore the Correlation?

The näıve filter (NF) simply fuses the two estimates assuming no correla-

tion between them. The procedure is similar to DF in Figure 4.2 but the

weight of fusion is calculated by the estimated error covariances, that is,

λNF = P
(1)
k+1P

(f)−1
. The fused estimate is

y
(f)
NF = (I− λNF)y

(1)
k+1 + λNFy

(2)
k+1

P
(f)
NF = (P

(1)
k+1

−1
+ P

(2)
k+1

−1
)−1.

(4.15)
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The resulting error covariance of the fused estimate is E[(y
(f)
NF−xk+1)(y

(f)
NF−

xk+1)>].

By ignoring the correlation, the common information from the two

estimates is double counted in the fusion, which leads to estimation over-

confidence. The estimated error covariance P
(f)
NF is smaller than the actual

error covariance, that is det(P
(f)
NF) < detE[(y

(f)
NF − xk+1)(y

(f)
NF − xk+1)>].

In fact, the estimated error covariance is even smaller than the estimated

covariance by CF. The overconfidence prevents utilization of subsequent

useful information and therefore the actual error covariance of NF estimate

is sometimes even worse than that of SF. In such a case, cooperation using

NF is no longer advantageous. We call it the ‘dangerous ’ region. Näıve

assumption fails here, that is when

detE[(y
(f)
NF − xk+1)(y

(f)
NF − xk+1)>] > det PSF. (4.16)

When the above inequality is not met, we consider that it is safe to use NF

and one can ignore the correlation.
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4.2.2.1 One-step Performance

We calculate the one-step dangerous region when the inequality in Equa-

tion (4.16) is met. For n = 1 the dangerous region is derived as

R̄(2) > 1

R̄(1)

R̄(2)
+ R̄(2) + 3R̄(1)R̄(2) ≤ R̄(2)

(4.17)

where R̄(1) and R̄(2) are the normalized error covariances and R̄(i) =

R̄(i)/(Pk + Q), i = 1, 2. It is plotted in Figure 4.5. We can see that it

is safe to use the one-step NF only if both local observations have very

small errors compared with the sum of the estimation error and propa-

gation error, or when the two local sensors have comparable observation

errors.

0 2 4 6 8 10
0

2

4

6

8

10

R
(1)/(Pk+Q)

R
(2
) /
(P
k
+
Q
)

Figure 4.5: One-step performance: the dangerous region of imple-
menting NF (assuming R(1) < R(2)).
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4.2.2.2 Asymptotic Performance

(a)

(b)

Figure 4.6: Näıve filter in stable state: (a) Actual error covariance
is smaller than SF. (b) Actual error covariance eventually gets worse
than SF. In both cases, NF is overconfident about its estimation. The

estimated error covariance by NF is even lower than the one by CF.

After the first step, if we continue to ignore the correlation and fuse the

estimates with weights calculated from the estimated error covariances, the

actual estimation error is likely to diverge and degrade further. Figure 4.6

shows two cases in stable state. The blue dots are the actual (by Monte

Carlo simulation) error covariances of the NF estimates. The horizontal
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line is the calculated asymptotic error covariances for NF estimates. The

blue dashed line shows the estimated error covariances given by NF. We can

see that NF is overconfident about its estimates. In Case (b), even though

in the first step (Step 2) NF gives improvement over SF, its estimation

error becomes larger than SF from Step 4 onward.

Case (a)

Case (b)

0 5 10 15 20 25
0

5

10

15

20

25

R
(1)/Q

R
(2
) /
Q

Figure 4.7: Asymptotic performance: the dangerous region of imple-
menting NF (assuming R(1) ≤ R(2)).

We calculate the stable state error covariances of NF estimates. Com-

pared with stable state SF error covariances, the asymptotic dangerous

region is plotted in Figure 4.7. It should be noted that the asymptotic

performance does not depend on initial error covariance, and therefore the

axes are R(1) and R(2) normalized by the process noise error covariance Q.

The two cases in Figure 4.6 are located in the plot. We can see that if the
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two local sensors have small measurement errors (compared with process

noise), one can ignore the correlation.

4.2.3 Summary

In this section, we examined the performances of distributed processing

in underwater multi-sensor tracking problem. We showed that the optimal

distributed filter is achieved only when correlation is exactly tracked. How-

ever, there is still information loss due to transmission of the processed data

instead of the raw data. We also showed the consequence of ignoring the

correlation - the estimation overconfidence and estimation divergence. The

actual estimation is worse than it is belived to be in the filter, and could be

worse than the single filter without cooperation. We derived the danger-

ous regions of implementing näıve filter. This can be used as a guideline

for conditions under which one can ignore the correlation for underwater

cooperative tracking.

4.3 Multi-Vehicle Localization

Multi-vehicle localization can be viewed as cooperative network where each

node estimates its own state. Different from multi-sensor tracking problem,

there are many states to be estimated (one for each node), and there is a
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relative measurement relating the states of the cooperating nodes. Fig-

ure 4.8 shows the Bayesian network of two cooperating vehicles (Vehicle i

and Vehicle j). The unobserved position state variables are x
(i)
k and x

(j)
k .

The observed variables are the observations z
(i)
k or z

(j)
k made at Vehicle i

or j locally about their positions and relative distance rk between them.

k = 0, 1, 2, . . . denotes the discrete time step.

Figure 4.8: Bayesian network for cooperative localization of two ve-
hicles: shaded nodes are observations and white nodes are unobserved

position state variables.

The position of Vehicle i (so as Vehicle j) propagates as

x
(i)
k+1 = f(x

(i)
k ) + ω

(i)
k

= x
(i)
k + v

(i)
k + ω

(i)
k

(4.18)
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where v is the known speed. The observations are

z
(i)
k = h(x

(i)
k ) + ν

(i)
k

= x
(i)
k + ν

(i)
k

z
(j)
k = h(x

(j)
k ) + ν

(j)
k

= x
(j)
k + ν

(j)
k

rk = x
(i)
k − x

(j)
k + υk

(4.19)

4.3.1 Information Flow when Ignoring Correlation

Assuming all the noises and priors are Gaussian distributed, the joint Gaus-

sian distribution of state x and observations z is given by

Prob(

 x

z

) = αe
1
2 (

 x

z

− µ)>Λ(

 x

z

− µ) (4.20)

where µ =

 µx

µz

 =

 E(x)

E(z)

 and Λ is the precision matrix (or inverse

covariance matrix). Λ has the following blockwise structure:

Λ =

 Λxx Λxz

Λzx Λzz

 = P−1 (4.21)
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where P is the covariance matrix for

 x

z

 and P =

 Pxx Pxz

Pzx Pzz

. It

should be noted that the subscripts of the subblocks Λxx, Λxz = Λ>zx and

Λzz are denote the sizes corresponding to x and z. Λ−1
xx is the conditional

covariance of x given all the observations z. It describes the covariance of

the Gaussian probability p(x|z). We define the conditional covariance as

Cx|z = Λ−1
xx

= Pxx −PxzP
−1
zz Pzx.

(4.22)

This is also the result of block matrix inversion. We also have

P−1
xx = Λxx −ΛxzΛ

−1
zz Λ>xz. (4.23)
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When z are linear observations about x, z = Hx + ν, we have z ∼

N (Hx,R) and

Pxz = P>zx = PxxH
>

Pzz = HPxxH
> + R

Λxx = H>R−1H + P−1
xx

Λxz = −ΛxxPxzP
−1
zz

= −(H>R−1H + P−1
xx)PxxH

>(HPxxH
> + R)−1

= −(H>R−1HPxxH
> + H>)(HPxxH

> + R)−1

= −(H>R−1HPxxH
> + H>R−1R)(HPxxH

> + R)−1

= −H>R−1(HPxxH
> + R)(HPxxH

> + R)−1

= −H>R−1

Λ−1
zz = R.

(4.24)

The probability distribution of x given z is given by Bayesian Theorem

p(x|z) =
p(z|x)p(x)

p(z)

= (2π)−
nz
2 R−

1
2 exp{−1

2
(z−Hx)>R−1(z−Hx)}

×(2π)−
nx
2 P

− 1
2

xx exp{−1

2
(x− µx)>P−1

xx(x− µx)}

×(2π)
nz
2 P

1
2
zz exp{1

2
(z− µz)

>P−1
zz (z− µz)}.

(4.25)

We examine the exponents and look for an estimated mean x̂ about x

given z, such that p(x|z) is maximized. The maximum ln p(x|z) is found
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by taking the derivative ∂ ln p(x|z)
∂x

= 0. Therefore in Equation (4.25) we are

only interested in the exponent terms involving x. We are now left with

− 1

2
(z−Hx)>R−1(z−Hx)− 1

2
(x− µx)>P−1

xx(x− µx)

=− 1

2
[z>R−1z + x>H>R−1Hx− z>R−1Hx− x>H>R−1z

+ x>P−1
xxx− x>P−1

xxµx − µ>x Pxxx + µ>x Pxxµx].

(4.26)

Again we drop the terms not involving x. We group the similar terms with

respect to x and denote it as a function of x, that is

g(x) = −1

2
[x>(H>R−1H + P−1

xx)x− (z>R−1H + µ>x Pxx)x− x>(H>R−1z + P−1
xxµx)]

= −1

2
[x>Ax− b>x− x>b]

(4.27)

where A = H>R−1H + P−1
xx = Λxx is symmetrical and b = H>R−1z +

P−1
xxµx = −Λxzz + P−1

xxµx. We can denote ln p(x|z) = B + g(x) where B
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groups all the terms not involving x. The solution of x̂ is found such that

∂ ln p(x|y)

∂x
=
∂(B + f(x))

∂x

=
∂f(x)

∂x

= −1

2
(
∂x>Ax

∂x
− ∂b>x

∂x
− ∂x>b

∂x
)

= −1

2
[x>(A + A>)− b> − b>]

= −(x>A− b>)

= 0

(4.28)

Therefore we have Ax̂ = b. Substituting everything back, we have the

exact inference about x given all observations z as a solution to:

Λxxx̂ = P−1
xxµx −Λxzz. (4.29)

The exact estimation can be obtained through Kalman filtering step by

step. We convert the Bayesian network in Figure 4.8 into Markov net

where only unobserved state variables are shown (Figure 4.9(c)).

A central filtering stacks the state variables and observations such that

x =[x
(i)
k

>
,x

(j)
k

>
, . . . ,x

(i)
1

>
,x

(j)
1

>
,x

(i)
0

>
,x

(j)
0

>
]>

z =[z
(i)
k

>
, z

(j)
k

>
, r>k , . . . , z

(i)
1

>
, z

(j)
1

>
, r>1 , z

(i)
0

>
, z

(j)
0

>
, r>0 ]>

(4.30)

with variables at the last (current) step k as the first elements. We are
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interested to know the estimated mean about state x
(i)
k . In the case of

1-dimensional space, we define the estimated error covariance correspond-

ing to x
(i)
k as σ2 and σ2 = Cx|z(1, 1). We define the error covariance of

the estimated mean for state x
(i)
k as δ2 and δ2 = E[(x̂

(i)
k − x

(i)
k )2]. The

central Kalman filter has all information about the state and observations.

Therefore we have an optimal filter which utilizes information fully and

gives exact estimation performance as the estimated error covariance, that

is σ2 = δ2.

A distributed näıve filter simply ignores the inter-vehicle correlation

and treats the information from the two vehicles as independent. We rep-

resent the estimation which ignores the correlation by unwrapping the full

graphic model. We show how the näıve filtering deviates from the central

estimator. The unwrapped network has all symbols with a tilde on top, for

example, estimated mean is µ̃, estimated covariance is σ̃2, and actual error

covariance is δ̃2 of the estimated mean.

We plot the unwrapped graphs in Figure 4.9 for k = 1, 2. It can be

seen that the unwrapping simply replicates the past nodes exponentially

with x
(i)
k and x

(j)
k being the root nodes. The unwrapped structure assumes

the duplicated nodes are from independent sources (independent priors and

observations). The exact inference for the unwrapped network is obtained

by

Λ̃xx
ˆ̃x = P̃−1

xxµ̃x − Λ̃xzz̃. (4.31)
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(a) Full graph (k=1). (b) Unwrapped graph (k=1).

(c) Full graph (k=2).

(d) Unwrapped graph (k=2).

Figure 4.9: Full graph vs. Unwrapped graph with information double
counting for k = 1, 2: the prime symbol indicates the replication of

nodes.
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The replication from the original full network is represented by the mapping

matrices Ox and Oz such that

x̃ = Oxx

z̃ = Ozz.

(4.32)

For example, for k = 1, the mapping matrices are

Ox =


1 0

0 1

0 1

 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1



Oz =


1 0

0 1

0 1

 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(4.33)
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where the bold zeros and ones are the block zero matrix and identity matrix

respectively, in appropriate sizes (2×2 for Ox and 3×3 for Oz). For k = 2,

we have

Ox =



1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

0 0 1

0 0 1



. (4.34)

In the mapping, state variables x̃i, x̃′i, x̃′′i and so on are copies of xi;

so are the observations. However, the unwrapped network enables a way

for the estimation not to count in the duplication. The independence as-

sumptions are reflected in the structure of Λ̃. The precision matrix (Λ

or Λ̃) describes the pairwise statistical relationship given all other nodes.

In a Markov network, the entries of precision matrix are only nonzero for

neighboring nodes. The relationship between the precision matrices Λ̃ and

Λ is listed below:

1. Λ̃xzOz = OxΛxz and ΛxzO
>
z = O>x Λ̃xz: as Λxz is block-diagonal and

the block diagonals of Λ̃xz are simply replicates of the block diagonals

of Λxz. Λxz and Λ̃xz are equal after partially being projected to each

other’s domain.
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2. Λzz and Λ̃zz are diagonal matrices and OzΛ
−1
zz = Λ̃−1

zz Oz: Λ−1
zz is the

diagonal observation error covariance matrix. Λ̃−1
zz replicates the

block diagonals (set of observations) of Λ−1
zz . Similarly, Λ−1

zz and Λ̃−1
zz

are equal after partially being projected to each other’s domain.

3. An error matrix E is defined such that Λ̃xxOx + E = OxΛxx: the row

of E consists all zeros for the nodes who have the same neighbors in

the unwrapped network as the original nodes in the full network.

4. E = −(P̃−1
xxOx −OxP

−1
xx): the property is proved by using block ma-

trix inversion and the relationship summarized above.

Proof. Using the block matrix inversions

P−1
xx = Λxx −ΛxzΛ

−1
zz Λ>xz,

P̃−1
xx = Λ̃xx − Λ̃xzΛ̃

−1
zz Λ̃>xz,
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we have

Ox(Λxx −P−1
xx)− (Λ̃xx − P̃−1

xx)Ox

=OxΛxzΛ
−1
zz Λ>xz − Λ̃xzΛ̃

−1
zz Λ̃>xzOx by block matrix inversion

=Λ̃xzOzΛ
−1
zz Λ>xz − Λ̃xzΛ̃

−1
zz OzΛ

>
xz by relationship between Λxz and Λ̃xz

=Λ̃xz(OzΛ
−1
zz − Λ̃−1

zz Oz)Λ
>
xz grouping the similar terms

=0. as OzΛ
−1
zz = Λ̃−1

zz Oz

The changes in the deviation are underlined, and explanations given on the

same lines. Meanwhile, as the error matrix is defined as E = OxΛxx −

Λ̃xxOx, we have

Ox(Λxx −P−1
xx)− (Λ̃xx − P̃−1

xx)Ox = E + (P̃−1
xxOx −OxP

−1
xx).

Therefore

E = −(P̃−1
xxOx −OxP

−1
xx).

The relationship and properties here will be used in the proofs in the

following sections.
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4.3.1.1 Estimated Covariance

The inference about the estimated covariance of node x̃
(i)
k was derived in

[87] but we restate it as there is some difference in the way of unwrapping.

Let e be a column vector with the first element valued as 1 and all other

elements, zero (e(1) = 1 and e(i) = 0, i 6= 1).

ΛxxCx|z = I (4.35)

ΛxxC
>
x(1)|z = e taking first column of each side (4.36)

OxΛxxC
>
x(1)|z = Oxe left-multiplied by Ox (4.37)

(Λ̃xxOx + E)C>x(1)|z = Oxe as Λ̃xxOx + E = OxΛxx (4.38)

Λ̃xxOxC
>
x(1)|z + EC>x(1)|z = Oxe. (4.39)

For the unwrapped network, we have similar equation

Λ̃xxC̃
>
x(1)|y = ẽ. (4.40)

We subtract Equation (4.40) from Equation (4.39) and get

Λ̃xxC̃
>
x(1)|z = Λ̃xxOxC

>
x(1)|z + EC>x(1)|z + ẽ−Oxe

C̃>x(1)|z = OxC
>
x(1)|z + Λ̃−1

xxEC>x(1)|z + Λ̃−1
xx(ẽ−Oxe).

(4.41)
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As the first row of Λ̃−1
xx is C̃x(1)|z, taking the first element (row) of both

sides gives the relationship between σ̃2 and σ2

σ̃2 = σ2 + C̃x(1)|zEC>x(1)|z + C̃x(1)|z(ẽ−Oxe)

= σ2 + C̃x(1)|zEC>x(1)|z.

(4.42)

The last term is dropped as our unwrapping contains no duplication of the

root node and therefore ẽ−Oxe = 0.

The difference C̃x(1)|zEC>x(1)|z in Equation (4.42) is actually the first

element (entry (1, 1)) of matrix multiplication C̃x|zEC>x|z. We have

C̃x|zEC>x|z = Λ̃−1
xx(OxΛxx − Λ̃xxOx)Λ−>xx

= Λ̃−1
xxOx −OxΛ

−1
xx .

(4.43)

The first element of these two terms in subtraction are just σ̃2 and σ2.

4.3.1.2 Estimated Mean

Using the relationship Λ̃xzOz = OxΛxz, Equation (4.31) is

Λ̃xx
ˆ̃x = P̃−1

xxµ̃x − Λ̃xzz̃

= P̃−1
xxOxµx − Λ̃xzOzz

= P̃−1
xxOxµx −OxΛxzz.

(4.44)
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We subtract the above equation from a left-multiplied Equation (4.29) by

Ox

OxΛxxx̂ = OxP
−1
xxµx −OxΛxzz (4.45)

and we obtain

Λ̃xx
ˆ̃x = OxΛxxx̂ + P̃−1

xxOxµx −OxP
−1
xxµx rearranging the subtraction

= (Λ̃xxOx + E)x̂ + (P̃−1
xxOx −OxP

−1
xx)µx by grouping similar terms

= Λ̃xxOxx̂ + Ex̂ + (P̃−1
xxOx −OxP

−1
xx)µx

ˆ̃x = Oxx̂ + Λ̃−1
xxEx̂ + Λ̃−1

xx(P̃−1
xxOx −OxP

−1
xx)µx.

Taking the first element (row) of the estimated mean, we have

ˆ̃x
(i)

= x̂(i) + C̃x(1)|zEµ+ C̃x(1)|z(P̃
−1
xxOx −OxP

−1
xx)µx

= x̂(i) + C̃x(1)|zEx̂− C̃x(1)|zEµx

= x̂(i) + C̃x(1)|zE(x̂− µx).

(4.46)

We now analyze the the performance of the estimated mean which

includes:

• The mean error of the estimated mean E[ˆ̃x
(i) − x

(i)
k ], and

• The error covariance of the estimated mean δ̃2 = E[(ˆ̃x
(i) − x

(i)
k )2].
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The mean error of the estimated mean is zero because

E[ˆ̃x
(i) − x

(i)
k ] = E[x̂(i) + C̃x(1)|zEx̂− C̃x(1)|zEµx − x

(i)
k ]

= E[x̂(i) − x
(i)
k ] + C̃x(1)|zEE[x̂− µx]

= 0.

(4.47)

The two expectations are zero because the estimation error of the original

full network is zero-mean. The error covariance of the estimated mean is

δ̃2 = E[(ˆ̃x
(i) − x

(i)
k )2]

= E[(x̂(i) + C̃x(1)|zEx̂− C̃x(1)|zEµx − x
(i)
k )2]

= E[(x̂(i) − x
(i)
k )2] + E[(C̃x(1)|zE(x̂− µx))2] + 2E[(x̂(i) − x

(i)
k )C̃x(1)|zE(x̂− µx)].

(4.48)

In the above equation, the first term E[(µ − xA,k)2] = σ2, the last term is

zero. The second term

E[(C̃x(1)|zE(x̂− µx))2] = E[C̃x(1)|zE(x̂− µx)(x̂− µx)>E>C̃>x(1)|z]

= C̃x(1)|zEE[(x̂− µx)(x̂− µx)>]E>C̃>x(1)|z

= C̃x(1)|zE(Pxx −Λ−1
xx)E>C̃>x(1)|z.

(4.49)

Therefore, the error covariance of the estimated mean is

δ̃2 = σ2 + C̃x(1)|zE(Pxx −Λ−1
xx)E>C̃>x(1)|z

= δ2 + C̃x(1)|zE(Pxx −Λ−1
xx)E>C̃>x(1)|z.

(4.50)
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It is easy to see that Pxx � Λ−1
xx and C̃x(1)|zE(Pxx − Λ−1

xx)E>C̃>x(1)|z ≥ 0.

We have δ̃2 ≥ δ2 = σ2.

4.3.1.3 Summary of the Relationship

σ̃2 = σ2 + C̃x(1)|zEC>x(1)|z

ˆ̃x
(i)

= x̂(i) + C̃x(1)|zE(x̂− µx)

E[ˆ̃x
(i) − x

(i)
k ] = 0

E[(ˆ̃x
(i) − x

(i)
k )2] = δ̃2 = δ2 + C̃x(1)|zE(Pxx −Λ−1

xx)E>C̃>x(1)|z

(4.51)

By constructing the unwrapped network of näıve filter, we derive the per-

formance of the näıve filter compared with central filter using the summa-

rized equations above. The estimation overconfidence can be explained by

the first relationship. The estimation divergence comes from the second

and fourth equations but it is not easy to visualize. We shall quantify the

divergence region in the next section.

4.3.2 Multi-Vehicle Localization with Bathymetric Aids

The multi-vehicle localization consists of vehicles estimating their own po-

sitions, and cooperating with an additional relative measurement relating

the two vehicles. When bathymetry map is used to assist the localization,

the local measurements consist of water depth measurements, and they
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are fairly accurate. We look at conditions under which correlation can be

ignored.

We consider the recursive two-step process where two vehicles (Vehicle

i = 1 and j = 2) localize themselves (position states x(1) and x(2)) respec-

tively. Similarly we denote previous time step k and current time step k+1.

At each step, each node makes a local observation (z(1) or z(2)) about their

respective positions. A range measurement r is made between vehicles.

The propagation model in Equation (4.18) is simplified as a random walk

process

x
(1)
k+1 = x

(1)
k + ω

(1)
k

x
(2)
k+1 = x

(2)
k + ω

(2)
k .

(4.52)

The propagation noises are independent of each other with the same error

covariance Q. The measurements z
(1)
k , z

(2)
k and rk in Equation (4.19) have

error covariance R(1), R(2) and Rr respectively. Without loss of generality,

we assume R(1) ≤ R(2).

Compared with multi-sensor tracking problem, there are two differ-

ences. The first difference lies in an additional variable called ranging r

at each step. It relates the two position variables. The second difference

comes from individual process noise on position of each vehicle. ω1 and ω2

are independent noises.
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In step k, the estimates at Vehicle i and j are y
(1)
k and y

(2)
k , with the

same error covariance Pk and correlation coefficient ρk. Central KF stacks

the two state variables and the centralized error covariance is therefore Pk ρkPk

ρkPk Pk

. Figure 4.10 and Figure 4.11 show two examples of cen-

tralized processing, with respect to different values of ρk and Rr. The

different settings of the two cases have a common extreme situation: when

the ranging error is 0, the two estimates are fully correlated (and therefore

have the same error covariance) after cooperation. When the ranging error

approaches zero, the two estimates are almost fully correlated with similar

error covariance after cooperation.

We also analyze the performance of SF, NF and DF (with a weighting

factor). A SF at Vehicle 1 has

y
(1)
k+1 = y

(k)
k + (Pk + Q(1))(Pk + Q(1) + R(1))−1(z

(1)
k+1 − y

(1)
k+1)

P
(1)
k+1 = (Pk

−1 + R(1)−1
)−1.

(4.53)

This is standard KF and Vehicle 2 obtains its estimation in the same way.

NF fuses the estimated position from Vehicle 2 about Vehicle 1 such that

y
(1)
NF = λNFy

(1)
k+1 + (1− λNF)(y

(2)
k+1 + rk+1), where the weight λNF = (P

(2)
k+1 +

Rr)(P
(1)
k+1 + P

(2)
k+1 + Rr)

−1.

DF fuses the estimated position from Vehicle 2 using a weight λ1 such

that y
(1)
DF = (1 − λ1)y

(1)
k+1 + λ1(y

(2)
k+1 + rk+1). At Vehicle 2, the DF fuses
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(a) Case 1: Correlation coefficient in one-step cooperation.

(b) Case 1: Error covariances of two vehicles in one-step cooperation.

Figure 4.10: Case 1: Pk = 5,Q = 10,R(1) = 1,R(2) = 2. When
ranging error approaches 0, the two estimates are about fully correlated

with similar error covariances after cooperation.
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(a) Case 2: Correlation coefficient in one-step cooperation.

(b) Case 2: Error covariances of two vehicles in one-step cooperation.

Figure 4.11: Case 2:Pk = 5,Q = 1,R(1) = 10,R(2) = 40. When
ranging error approaches 0, the two estimates are about fully correlated

with similar error covariances after cooperation.
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the estimated position from Vehicle 1 using a weight λ2 such that y
(2)
DF =

(1 − λ2)y
(2)
k+1 + λ2(y

(1)
k+1 − rk+1). The error covariances can be calculated

accordingly. The optimal weights can be obtained such that

λ∗1 = arg minE[(y
(1)
DF − x

(1)
k+1)2]

λ∗2 = arg minE[(y
(2)
DF − x

(2)
k+1)2].

(4.54)

When ranging error Rr = 0, we have λ∗1 +λ∗2 = 1 and the two estimates are

fully correlated after cooperation. When the ranging error Rr is very small,

λ∗1 + λ∗2 also approaches 1. In underwater communications, we do have the

ability to achieve very small ranging error, compared with positioning error.

For simplicity, we set Rr = 0 and therefore the correlation coefficient goes

to 1.

4.3.2.1 One-Step Performance

We calculate the one-step dangerous region, similar to the situation in

Equation (4.16), that is

detE[(y
(1)
NF − xk+1)(y

(f)
NF − xk+1)>] > det P

(1)
k+1. (4.55)

Firstly, we consider the extreme cases. When Q → 0, the inequality

is the same as Equation (4.17) except that the normalized R̄(i) = R(i)

Pk
.

It has the same region in the two-sensor tracking problem. This is easy
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to understand as the zero propagation noise makes the two states fully

correlated. In such a case, we can see that the DF has the optimal weight

λ∗DF = R(1)

R(1)+R(2) . The same result can be derived by minimizing the error

covariance in Equation (4.54).

When Q� Pk and R(i) � Q, NF approaches the performance of CF,

because the assumption of independence is almost valid. We can ignore the

correlation.

When the propagation noise is neither too small nor too large, we derive

the dangerous region shown in Figure 4.12 when Equation (4.55) is met.

This region tells us when the local propagation error is small, the states

are more correlated. Vehicle 2 maintains most of the correlated information

when R(2) > R(1). In such a case, if the correlation in the estimate from

Vehicle 2 is ignored, the fused estimate is worse than the estimate from SF.

4.3.2.2 Asymptotic Performance

Figure 4.13 shows the estimation performance in stable state. The cases are

located in Figure 4.14 using their parameter values. The normalized R̄(i) =

R(i)/Q. In the three cases, cooperative localization with bathymetric aids

is most similar to Case (b) and Case (c). The relative distance measured by

acoustic signals has small error (Rr is in the sub-meters range); the local

measurement, i.e., the water depth has much smaller errors compared with
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Figure 4.12: One-step Performance: The dangerous region of imple-
menting NF in multi-vehicle localization. (R̄(2) > R̄(1))

the propagation errors accumulated between cooperation. Even if any one

of the cooperative vehicles has little or none of the bathymetry aids (large

measurement error like Case (c)), it is still safe to ignore the correlation.

4.4 Summary

We demonstrated why there is information loss in distributed localization,

and how the information is double counted if one ignores the correlation.
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(a) Actual error covariance eventually grows larger than SF.

(b) It is safe to ignore correlation and the performance is close
to CF.

(c) Actual error covariance is smaller than SF but the estimation
is overconfident.

Figure 4.13: Näıve filter in stable state: One can ignore the correlation
in Case (b) and Case (c) but NF becomes detrimental in Case (a).
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Figure 4.14: Asymptotic Performance: The dangerous region of im-
plementing NF in multi-vehicle localization. The three cases in Fig-

ure 4.13are located in the regions.

For a cooperation method, when the actual localization is worse than

single-vehicle localization, we call it dangerous as this cooperation makes

the estimation worse. When the actual localization is better than single-

vehicle localization, we perceive it safe as this cooperation helps. For both

types of cooperative localization - multi-sensor tracking problem and multi-

vehicle localization problem, we quantified the safe and dangerous regions

when ignoring correlation during fusion. This can be used as a guideline

to justify the näıve assumption. The näıve assumption is justified safe to

use in cooperative localization with bathymetric aids in the next chapter.



Chapter 5

Localization with Bathymetric

Aids

5.1 Problem Statement

Chapter 4 shows that cooperative localization with bathymetric aids can

ignore the correlation when fusing information from range updates. With

this justification, we proceed to explore the bathymetry-aided navigation

on a single vehicle. This can be safely extended to cooperative naviga-

tion of multiple vehicles. The first work investigates how the bathymetric

terrain map benefits the localization. As many works have claimed that

the localization performance highly depends on the bathymetry variation

[35, 37, 47, 62], we justify this assumption through a careful analysis. It

115
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is again proved that the advantage of bathymetric aids is path dependent.

However the bathymetry variation is not a sufficient condition for a good

localization. A concept of information entropy map, is formulated and used

in Chapter 6 later as an evaluation metric in path planning.

The work in this chapter and Chapter 6 was published in [71].

5.2 Probability Map Based Localization

We denote the entire location space at time k as Xk. Bel(Xk = x) denotes

the vehicle’s belief that it is at the location x at time k. The action ak

denotes the action taken at time step k towards the next step k + 1, and

A1:k
.
= {a1, a2, ..., ak}. The same definition and notation apply to the

sensing data yk. Markov process assumes that given the present state, the

future and past states are independent. In formal terms, it is stated

P (xk|x0, ...,xk−1, a0, ..., ak−1, zS0, ..., zk, ) = P (xk|xk−1, ak−1). (5.1)

This only works if the environment is static and does not change with

time [83]. Kalman filter described in the previous chapter is one of the

common methods used. However, Kalman filter assumes Gaussian noises

in estimation and measurements. It does not perform well for situations

where the models are nonlinear or the belief is multimodal. For example,
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a vehicle moving along the ridge of a hill may arrive at a belief that has

two peaks at its two sides. In such situations, filters with non-parametric

representation can give better description.

Two types of localization methods are introduced in the subsequent

sections - grid-based Markove localization and particle filtering. We exam-

ine the effect of bathymetry aids on localization. This includes how the

bathymetry affects the localization belief, which estimation filter should be

used, and how the localization performance should be quantified.

5.2.1 Grid-Based Markov Localization

The grid-based localization uses a histogram to represent the belief distri-

bution in map grids. We use the algorithm in [34] to simulate the grid-based

Markov localization near St John’s Island, Singapore. We assume that we

have no idea where the vehicle is at the beginning, and hence we initialize a

uniform prior distribution in this area. The grid-based Markov localization

has the ability to represent situations where the position of the vehicle is

held by multiple, distinct beliefs. The probability could be any form in-

stead of single Gaussian. It also caters to the situation where the initial

position is unknown.

There are two steps in the Markov localization: action (propagation)

and sensing (observation). The corresponding estimation is to predict and
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update the belief. The uncertainty in the prediction smooths out the loca-

tion possibility while the observation for update reinforces the places which

have similar water depth (bathymetry) as measured. The resolution of the

surveyed bathymetry restricts the accuracy of positioning. The computa-

tion load is comparable to the grid map resolution and is fairly high. In the

St John’s map, for example, we have an area of 936 meters by 349 meters,

with 1 meter resolution, giving a total of 326664 grids, of which 192956

grids are underwater.

Figure 5.1: Bathymetry map near St. John Island, Singapore. Circles:
Path 1 (Speed 2 m/s). Crosses: Path 2 (Speed 1.41m/s).

Figure 5.1 shows two test paths on the bathymetry map. The simu-

lation assumes of odometric error of 1 meter per second in standard devi-

ation, and measurement error of 0.1 meters in standard deviation. There
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(a) Path 1.

(b) Path 2.

Figure 5.2: Grid-based Markov localization with measurement up-
dates. Yellow crosses: top 5 possible locations. Cyan circles: true path.

Green square: estimated locations with top possibility.
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(a) Path 1. (b) Path 2.

Figure 5.3: Depth measurements along two paths.

is a measurement every other 15 seconds. Both start with uniform be-

liefs on the vehicle location over the map. The decision of the position

by the top beliefs at initial few measurements is mostly incorrect as there

could be many locations with similar top probability. Multiple hypotheses

on the location appears. With more bathymetry measurements (from left

to right in Figure 5.2), the probability is updated from multiple peaks or

ridges to eventually a single peak. The decision on the estimated position

converges. However Path 2 localization converges from the second depth

measurement onward, whereas Path 1 localization only converges at the 4th

measurement. In terms of bathymetry variations along the path, Path 1

has more variations as shown in Figure 5.3. The underwater topology varia-

tions (richness of features) on the path are closely related to the positioning

performance. The sparser the underwater topology, the less effective are

bathymetry aids to localization. However bathymetry variation is not the

sufficient or necessary condition for a good localization. The uniqueness
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of the measured depth compared with the bathymetry in the prior belief

decides the localization performance. Multiple AUVs with cooperation are

able to extract more uniqueness in the feature space.

5.2.2 Particle Filtering and Multiple Hypotheses

At time step k the particle filter gives the particle set

{x(i)
k , q

(i)
k } (5.2)

where q
(i)
k is the weight for particle i at position x

(i)
k and

∑N
i=1 q

(i)
k = 1.

The computation of PF is determined by the number of particles used.

Figure 5.4 shows the corresponding PF estimation on Path 1. The density

of the particles cannot be seen due to the overlapping of the particles.

However it gives similar result as Figure 5.2(a) with less computation load

(5000 particles).

We model the particles with Gaussian mixture model (GMM) using

Expectation Maximization (EM) method [16]. Classifying the particles is

essentially a clustering problem. A Gaussian Mixture consists of a linear

superposition of Gaussians

p(x) =
K∑
i=1

λiN (x|µi,Σi) (5.3)
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Figure 5.4: Particle filter localization with measurement updates for
Path 1. Black circles: true path. Cyan regions: distribution of particles.

where
∑K

i=1 λi = 1 are the mixing coefficients and K is the number of

Gaussians. EM is a recursive method to maximize the likelihood function

with respect to the parameters comprising the means and covariances of the

Gaussians and the mixing coefficients. Considering the mixing coefficients

as prior probabilities for the particles, for a given value ‘x’, we evaluate the

corresponding posterior probabilities, also called responsibilities :

γi(x) = p(i|x)

=
p(i)p(x|i)
p(x)

=
λiN (x|µi,Σi)∑K
j=1 λjN (x|µj,Σj)

.

(5.4)

When Ni particles are assigned to the ithe particles, we have λi = Ni

N
.

In each iteration, γi(x) is evaluated and the parameters are re-estimated.

With the new estimated parameters, the log likelihood ln p(x|µ,Σ, λ) can
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be evaluated. The iteration stops when there is convergence or maximum

number of iterations is reached.

(a) Step 45.

(b) Step 60.

Figure 5.5: Gaussian mixture model estimated by EM method.

Figure 5.5 shows two examples of the Gaussian mixtures estimated by
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EM method. Each cluster is plotted in different colors, with the mean in

black square and error covariance in black ellipses. When particles form

multiple clusters, GMM is more representative. When particles form fewer

clusters, the number of particles affects the calculation and estimation per-

formance.

Generally, the Gaussian mixture model for multiple hypothesis increases

the computation in modeling. The individual Gaussian model is also not

very representative. Overally prediction and update with multiple Gaus-

sian does not give much advantage compared with particle filter itself.

5.3 Information Entropy Map

In the previous section, we have demonstrated that with bathymetric mea-

surements incorporated into localization, the a posteriori description of the

location uncertainty is often poorly described by a Gaussian distribution.

Multimodal distributions may arise when the location uncertainty is bifur-

cated at bathymetric ridges. Particle filter (PF) is used as a flexible tool

to represent general densities. However, the traditional evaluation mea-

sures such as error of estimated mean and estimated error covariance are

only suitable for single Gaussian-distribution cases [26]. Gaussian mixture

model has the problem with varying optimal number of Gaussians.
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We adopt information entropy measure to characterize the estimation

uncertainty, which does not require parametric estimation of the position.

This section introduces two types of information entropy measures for fil-

tering uncertainty - the grid-based discrete entropy and PF-based entropy.

Both display similar trends in describing the estimation uncertainty. We

will illustrate the entropy values along different paths.

5.3.1 Grid-based Discrete Entropy

From a mathematical perspective, the calculation of entropy is based on the

probability of all possible outcomes. However for particle filter localization,

simply counting the probability (weights) of particles for discrete entropy

will result in loss of location and dispersion information. Particles have to

be related to geographical location. One way is to count the number of

particles in the map grids. We calculate the discrete entropy of the vehicle

position estimation

H(X) = −
MN∑
i=1

P (xi) logP (xi) (5.5)

whereM andN are the number of grids in longitude and latitude directions,

i is the index of grid up from 1 to MN . P (xi) is the probability mass

function at ith grid centered at position xi and
∑MN

i P (xi) = 1. P (xi) is
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obtained by summing the weights of particles which fall into the ith grid.

In the case of P (xi) = 0 for some i, the value of 0 log 0 is defined to be 0.

The entropy value defines the uncertainty (or uniqueness in the other

way) of the localization on a grid map. When there are a few grids with

high probability while the rest of the grids have low probability, the entropy

value is small. Therefore the filter has less uncertainty about vehicle’s

location because the vehicle most likely falls into one of the few grids with

high probability. If most grids have equal probability, the filter is more

uncertain where the vehicle is located.

The next information for localization comes from the observed water

depth. As mentioned before, this is in fact a sum of two measurements -

the vehicle depth (the depth from the sea surface to the vehicle) and the

altitude (the depth from vehicle to sea bottom). The single-point water

depth measurement z is assumed to be corrupted with zero-mean Gaussian

noise zk = hk(xx) +νk and νk ∼ N (0,R). Comparing with the bathymetry

map in records, the localization can be refined.

Let the water depth variable be Z. With all the bathymetry map

readings, we can find P (Z|X) for all possible values (z,x), and subsequently

we obtain P (z) =
∑

x P (z|x). According to Bayes Theorem, we have

P (x|z) =
P (z|x)P (x)

P (z)
(5.6)
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and therefore the conditional entropy is

H(X|Z) =
∑
zi

p(zi)H(X|Z = zi). (5.7)

The conditional entropy H(X|Z) tells on average how much localization

uncertainly is left after observing the water depth within an area. The

reduced amount is the mutual information I(X; Z) provided by prior about

the location X and bathymetry information Z. We can also calculate the

conditional entropy when a single measurement is made, that is H(X|Z =

z).

It should be noted that the accuracy of discrete entropy depends on

the size of the map grid (map resolution). An extreme example is when

all particles fall into one grid in the map, the discrete entropy falls to a

minimum value - zero. Meanwhile, number of particles in the filter is also

critical to the accuracy of discrete entropy. To avoid the discretization error

from particle filter, bivariate kernel density [19] is first used to estimate the

distribution. Then the discrete distribution is interpolated and normalized

on the map grids.
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5.3.2 Particle Filter Based Entropy

For dynamic model and measurement model described in Equations (2.1) and (2.2),

the entropy in a running particle filter has been derived in [17] as

H (p(xk|Z1:k))) ≈ log

(
N∑
i=1

p(zk|xik)qik−1

)

−
N∑
i=1

log

(
p(zk|xik)(

N∑
j=1

p(xik|x
j
k−1)qjk−1)

)
qik,

(5.8)

where Z1:k = {z1, z2, . . . , zk} includes the measurements in history up

to time step k. p(xk|Zk) is the posterior distribution after the series of

bathymetry measurements.

As measurements may not be available at every step, we derive the

entropy in predicting vehicle position from time step k − 1 to k. xik|k−1

denotes the predicted position of the ith particle in particle set. qik|k−1 is

the associated particle weight. The probability distribution at the predicted

stage represented by PF is

p(xk|Z1:k−1) ≈
N∑
i=1

qik|k−1δ(x− xik|k−1). (5.9)

The weak convergence law for PF states that

lim
N→∞

N∑
i=1

g(xik|k−1)qik|k−1 =

∫
X
g(xk)p(xk|Z1:k−1)dxk. (5.10)
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Therefore the entropy is

H (p(xk|Z1:k−1)) = −
∫
X

log p(xk|Z1:k−1)p(xk|Z1:k−1)dxk

= − lim
N→∞

N∑
i=1

log p(xik|k−1|Z1:k−1)qik|k−1

= − lim
N→∞

N∑
i=1

log

(
lim
N→∞

N∑
j=1

p(xik|k−1|x
j
k−1)qjk−1

)
qik|k−1

≈ −
N∑
i=1

log

(
N∑
j=1

p(xik|k−1|x
j
k−1)qjk−1

)
qik|k−1.

(5.11)

It can be seen that this is equivalent to the PF-entropy approximation in

Equation (5.8) when p(zk|xik) = 1. It is equivalent to an observation which

provides no information updating the distribution.

5.3.3 Empirical Convergence and Contributing Fac-

tors

A simple random walk process is used to illustrate the grid-based entropy

and PF-based entropy. The measurement is observed position with addi-

tive Gaussian noise. A standard Kalman filter tracks the estimated co-

variance and therefore the theoretical entropy of the Gaussian distribution

H = 1
2

log{(2πe) det Σ} is calculated as benchmark. Figure 5.6 shows the

standard deviation error with two different initial errors.
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Figure 5.6: Gaussian random walk process: Estimation error is re-
duced at every measurement update.

Figure 5.7 shows PF-based entropy is almost identical to the theoret-

ical entropy, except when number of particle is only 1000 (Figure 5.7(a)

and 5.7(b)). Grid-based discrete entropy has different values but the same

trend as the estimation error. Both entropy values drop with the estima-

tion error reduction from measurement update. Resampling of particles

does not affect PF-based entropy. This is because PF-based entropy is

calculated based on the transition and weight update of each particle and

resampling happens after that if needed. Resampling of particles affect the

performance of Grid-based discrete entropy. This is because resampling is

necessary as the first step for the kernel density estimation for the discrete

entropy.

The advantage of grid-based discrete entropy is that it can be used to

calculate the average conditional entropy H(X|Z). H(X|Z) can be used

to describe the effectiveness of a bathymetry map based on a particular

prior knowledge. The drawback is that the accuracy depends on the grid

size as the bin weights are obtained by including particles which fall into
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Gaussian random walk process: PF-based Entropy and
grid-based discrete entropy, versus theoretical entropy. Vertical red lines:
time steps when measurements are available. Vertical green dashed lines:
time steps when particles are resampled. Grid-based entropy is more

sensitive to particle numbers and estimation error values.

the same grid. Under-estimation of entropy occurs when either the prior

or number of particle is small. For example, with the same initial error,



Chapter 5. Localization with Bathymetric Aids 132

grid-based discrete entropy values are different with different number of

particles (comparing each column of Figure 5.7). This is because a smaller

number of particles is insufficient to fully describe larger estimation error.

In the other hand, PF-based entropy only calculates the conditional entropy

H(X|Z = z) with a specific observation but it is generally more stable with

respect to particle numbers and prior knowledge. It is an approximation of

the entropy of probability density function (PDF) using probability mass

function (PMF). For PF-based entropy, the variation is only more obvious

when the estimation error is larger and number of particles is relatively

small (Figure 5.7(a) and 5.7(b)).

An example of the effect of particle number with bathymetry observa-

tions is shown in Figure 5.8. With particle numbers varying from 500 to

11000, the grid-based discrete entropy has larger variation of the median

value in red line than the PF-based entropy. It also gives more outliers.

This means grid-based entropy is more sensitive to the particle numbers.

5.3.4 Localization Performance

With the comparison from previous section, we use PF-based entropy as the

localization uncertainty measure. We examine the PF-based entropy along

two paths shown in Figure 5.9(a). Both paths have the same large initial
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(a) A non-Gaussian distribution after observation
(Particle Numbers = 11000): particle distribution
highly depends on the bathymetry map.

(b) Entropy Boxplot: PF-based entropy versus grid-based entropy in the same range. Grid-
based entropy has larger variation in the median of the entropy values.

Figure 5.8: PF-based entropy versus grid-based discrete entropy:
Grid-based discrete entropy varies more, with respect to particle num-

ber.
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(a) Two different paths (A and B) from the same starting point (SP) to
the destination point (DP).

(b) Entropy of the particle filter for paths A and B shown in (a).

Figure 5.9: The entropy of the particles in a bathymetric navigation
particle filter depends on the path taken from source to destination.
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uncertainty. Bathymetric measurements made at every 10 seconds help re-

duce the localization uncertainty initially for both paths. Straight-line path

A goes through a flat area with little bathymetry variation. The entropy of

localization uncertainty increases from roughly the 200th second. Path B

takes a detour and therefore longer time to reach the destination. Without

bathymetric information, the vehicle would incur a larger uncertainty for

longer missions due to error accumulation in pure dead reckoning. With

bathymetric information, the PF-based entropy decreases rapidly as the

vehicle moves along the area with significant bathymetric variability. The

significant variation along path B makes the measured bathymetry unique

and therefore improves localization accuracy. At the destination, Path B

has a smaller entropy compared with Path A.

In Figure 5.10(b), the root-mean-squared errors along Path A and B

over 50 runs are plotted. As the mission time for each run is different,

time is scaled to the percentage of the total mission time. The localization

error has the same trend of the PF-entropy in Figure 5.9(b). Figure 5.10(a)

shows the localization error when the vehicle reaches the destination.

With this example, we have shown that the localization performance

can be evaluated using information entropy measure. We also show that

paths with different bathymetry give different localization results.
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(a) When vehicle reaches the destination, the localization error and the
covariance are much larger for Path A than that for Path B.

(b) Localization error along Path A is also larger than that along Path B.

Figure 5.10: Although Path B takes a detour and therefore longer
time to reach the destination, the localization error of Path B is much

smaller than a that of a straight line by Path A.
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5.3.5 Information Entropy Map Based on Different

Priors

The intuitive way is to select the path with the most bathymetry variability

in the map. However, is bathymetry variability the sufficient condition for

optimal localization? we answer this question in this section by examining

the information entropy map.

Discrete conditional entropy is first used to evaluate the effect of the

information that the local bathymetry provides. Given a prior distribution,

the conditional entropy H(X|Z) and mutual information I(X; Z) of three

areas are calculated. Among the three areas in Figure 5.11(a), Square

3 has the smallest bathymetry variation. With uniform prior, Square 3

shows the smallest mutual information and largest conditional entropy. In

the other hand, Square 1 has the smallest conditional entropy. On average,

bathymetry measurements help improve the localization accuracy most for

Square 1.

If the prior is Gaussian-distributed and centered at top left (Figure 5.11(b)),

Square 2 outperforms Square 1 as the bathymetry variation at the top left

is larger for Square 2. Mutual information between the prior and mea-

surement is therefore the most in Square 2 compared with Square 1 and

3. When Gaussian prior is centered at bottom left, Square 2 gives smallest

mutual information as the bottom left topology is almost flat.
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(a) Conditional entropy of three different areas with uniform prior.

(b) Conditional entropy with different Gaussian priors.

Figure 5.11: Information entropy map for different areas: Different
prior distributions yield different conditional entropy values.
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The examples with different priors show that the effect of bathymetric

aids also depends on the priors - how localization information is known

before measurements. To be specific, the effect of bathymetric aids depends

on how the bathymetry matching helps in improving the prior knowledge of

localization. Figure 5.12) shows the conditional entropy maps with different

Gaussian priors (plots on the right for each row). For a Gaussian prior,

it is good to have more bathymetry variation in the direction of larger

uncertainty. For example in the first row of Figure 5.12, Gaussian prior has

more uncertainty in the north-south direction, and therefore bathymetry

valleys in east west direction give smaller entropy value. A simple extreme

case is when an AUV goes along a straight bathymetry valley (V-shape).

The lowest point along the path has the same water depth. The valley is

steep and therefore the bathymetry variation at the vehicle’s left and right

sides is high; the high variation bounds the localization error at the two

sides. However, the measured water depth along the path does not change

(zero variation), and the localization uncertainty in heading directions keeps

increasing as every point along the path has the same bathymetry topology

around it.
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Figure 5.12: Information entropy map based on different Gaussian
priors: It is good to have more bathymetry variation in the direction

where the larger uncertainty of the Gaussian prior lies.

5.4 Summary

We described the localization with bathymetric aids. Nonparametric fil-

ters show that localization distribution with bathymetry measurements is

neither Gaussian nor uniform. In terms of computational load, accuracy,

empirical convergence and sensitivity to various factors, Particle filter (PF)
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turns to be the best: it handles multimodal ambiguities, and is not com-

putationally heavy as long as the number of particles is large enough for

description of the localization.

Based on particle filters, we formulated PF-based entropy - an infor-

mation theoretical approach to quantify the localization uncertainty. We

built information entropy map to analyze how bathymetry maps benefit

localization.



Chapter 6

Navigation with Bathymetric

Aids

6.1 Problem Formulation

Chapter 5 has shown with examples, that the localization accuracy strongly

depends on the path that an AUV takes, if the AUV uses bathymetric aids

for navigation. So how does one select a path that yields good localization?

Given a starting point and a destination, we define our problem as how to

plan a path such that the localization uncertainty is minimized when vehicle

reaches the destination.

The optimal path is found using approximate dynamic programming

(ADP) introduced in Section 6.2. The Q-function of the ADP is obtained

142
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by a cycle of reinforcement learning in Section 6.3. The state value of the

ADP is obtained by Gaussian process regression (GPR) in Section 6.4. The

paths generated are evaluated in Section 6.5. Summary is made in the last.

The work in this chapter and Chapter 5 was published in [71].

6.2 Approximate Dynamic Programming

Rather than appeal to heuristics (bathymetry variation, terrain dispersion,

roughness, etc.), we pose the path planning as an optimization problem and

solve it by breaking the problem down into a collection of simpler subprob-

lems. This is the concept of dynamic programming. Due to the problem

of continuous state domain and “curse of dimensionality”, we approximate

the state value and optimize the path in the framework of reinforcement

learning and Gaussian progress regression.

We define the state S as the positions of particles in a particle fil-

ter, that is, Sk = {xik, qik}. For simplicity, particles are resampled to

have the same weights. Therefore the state space consists of the posi-

tions of all particles. Given a starting point and a destination, the path

is planned with policy π(Sk)The policy which contains a series of actions

π(Sk) = ak, ak+1, ak+2, . . .. The policy is chosen such that the localiza-

tion uncertainty is minimized when vehicle reaches the destination. It is
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formulated as,

π(Sk)← arg min
a∈A(Sk)

Q(Sk, ak)

Q(Sk, ak) =
∑
Sk+1

ptr(Sk
ak−→ Sk+1)V (Sk+1)

V (Sk) = min
ak∈A(Sk)

Q(Sk, ak)

(6.1)

where V (·) is the value function of a state. ptr(Sk
ak−→ Sk+1) is the transition

probability from state Sk to state Sk+1, due to the non-deterministic evo-

lution of vehicle position by taking action ak. This planning formulation

is essentially an optimization problem. Compared to standard Bellman’s

equation [65], the transition reward is zero and the discount factor is 1.

Therefore, the value of any given state S is the entropy value of state at

the destination. In other words, given an optimal path, all states along the

same path have the same entropy value.

In the subsequent sections, transition probability ptr(Sk
ak−→ Sk+1) is

set to 1 during path planning. This is because the performance evaluation

of the algorithm is run over Monte Carlo simulations to include the non-

deterministic evolution of vehicle position.

Equation (6.1) suffers from “the curse of dimensionality”. The state

space depends on the number of particles and the action is in a contin-

uous domain. It is not possible to use dynamic programming to solve

the sequential decision process problem. We resort to the techniques of
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approximate dynamic programming (ADP) in [65] and solve the optimiza-

tion problem using reinforcement learning and Gaussian process regression

(GPR). Q-function [79] Q(·) across all possible actions is obtained by a

cycle of reinforcement learning - policy generation and evaluation.

6.3 Iterative Path Planning Algorithm

Figure 6.1: Flowchart of iterative path planning algorithm.

Figure 6.1 shows the flowchart of the iterative path planning algorithm.

Each iteration consists of two major steps - policy generation and policy

evaluation. Every time a path is generated, localization along the path is

simulated to enforce the learning of the path values.
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The algorithm starts with randomly generated paths, given the starting

point and destination. The localization along the paths is simulated to

get the estimated values V ∗(S). A state-value table is constructed with

each entry recording a state S and corresponding value V ∗(S). In each

iteration, the policy is generated according to the estimated state value

from the table. At the end of each iteration, a path is generated and is then

evaluated from simulation. New state-value entries are used to update the

state-value table. The state-value table is refined over iterations.

6.3.1 Policy Generation

Given any state Sk, we approximate the continuous space using a discrete

system. We form an action space A(ak) containing all possible actions.

The possible actions are the headings linearly spaced within (−π
4
, π

4
) when

vehicle heads towards the destination (Figure 6.2(a)). To cover all the

bathymetry grids, the resulting positions after τ = 100 time steps need to

be roughly 10 meters apart from each other. Therefore, there are approxi-

mately 29 actions in the action space.

A resulting state is generated for each action such that (Sk, ak) →

Sk+1 (Figure 6.2(b)). The state value V (Sk+1) is estimated using Gaussian

process regression (GPR) [66]. We will explain the detailed GPR in the

next section. The policy is updated with the action that leads to the next
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(a) Given any state Sk, an action space is generated.

(b) A zoom-in plot of the action space and resulting state.

Figure 6.2: Action space for policy generation: The next waypoints
from action set include all possible map grids when looking at the des-

tination.
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state with minimum value. If the current position is within τ -step moves

to the destination, we navigate the vehicle to the destination and the path

planning is completed.

6.3.2 Policy Evaluation

After the path is generated, we evaluate the path by simulating the localiza-

tion along the planned path. The navigation follows waypoints generated

along the path at τ time steps apart. To follow the waypoints, the vehicle

compares its estimated position with the targeted waypoint, and generates

control and command accordingly. The details of path execution are pre-

sented in Section 6.5. The states along the path have the same value as the

state when vehicle reaches the destination. The path is evaluated at the me-

dian value over Monte Carlo simulations. This minimizes the discretization

error due to the limited number of particles. The new state-value entries

are added to the state-value table if their values are smaller than the values

of the nearby states. We also remove the nearby states with large values.

Instead of conventional Euclidean distance, the distance between state is

evaluated using Bhattacharyya Coefficient [27] and is explained in details

in Section 6.4.
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6.3.3 The Policy Iteration Algorithm

The algorithm is summarized below:

Algorithm 1 Policy iteration

Randomly generate a number of paths (e.g. 500) and construct the state-
value table
repeat

Start from starting point
while The destination is not reached do

Generate action space
for each action in the action space do

Estimate the value based on state-value table
end
Choose the action with the minimum value and move

end
Re-evaluate the value of the generated path
Update the state-value table

until Stabilized ;

It should be noted that this path planning algorithm plans path offline

to generate the state-value table. When AUV executes the path, a new

planned path can be generated if AUV detects itself away from the planned

path or carrying a new state in the localization filter. The refined state-

value table is used to generate the path. However, if the state or estimated

position is far away from the ones recorded in the state-value table, the

iterative path planning has to start over to optimize the state-value table.
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6.4 Gaussian Process Regression for Path

Planning

In the section of policy generation, the value function V (S) (the time step

subscript is dropped for simplicity of notation) of a state S is modeled

as a Gaussian process. The reason is that we only have limited number

of available data (the state-value table) to estimate the continuous value

in the high-dimensional state space (The state is in dimension of 2× 6000

where 6000 is the number of the particles). Therefore we perceive the states

with jointly Gaussian distribution, and infer the state value in a continuous

space with a Gaussian process prior.

To estimate V (S), we choose some nearby states with smaller values.

For example, we only use the nearby states whose values are below the 75th

percentile. This is because we know that the available value of the states in

the state-value table is larger than the optimal value as the paths are not

optimal. We purposely remove some state-value entries as it is obviously not

the optimal one. Let the chosen states and their values be D = {(Ti, vT,i)}.

The value function V (·) can be inferred using Bayes Theorem:

p(V (·)|D) =
p(V (·))p(D|V (·))

p(D)
. (6.2)
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The values are observations on the value function V (T ), which is a Gaussian

process (GP). We have

vT,i = V (Ti) + εi

V ∼ GP(·|0,K)

εi ∼ (N)(·|0, σ2).

(6.3)

K is kernel function defined by the covariance of the states. The prior on

V (·) is a GP and likelihood is Gaussian. Therefore the posterior on V (·) is

also a GP. We can make predictions on new state S

p(vS|S,D) =

∫
p(vS|S, V (·),D)p(V (·)|D)dV (·). (6.4)

Figure 6.3 illustrates GPR state estimation in an 1-dimensional exam-

ple. The value is to be estimated at the location indicated by the vertical

blue line. The red dash-dot line is the optimal value to be estimated. Ini-

tialization generates paths with state values larger than value of the optimal

path. Therefore, nearby states with smaller values are used to estimate the

state value. The state value is estimated as shown by the blue curve.

The distance between states in the illustration (Figure 6.3) is simply

the distance in the x-axis. In our path planning problem, the state variable

consists of positions of all particles. The state space is much larger. We

cannot simply use a Euclidean distance to measure the similarity between

states. To evaluate the distance between states S and T , the Bhattacharyya
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Figure 6.3: Illustration of Gaussian process regression in 1-dimensional
space.

Coefficient ρ(S, T ) [27] is used. Bhattacharyya Coefficient ρ(S, T ) measures

the level of overlapping between two distributions and therefore is suitable

to describe the similarity of the states (sets of particles). Let the discrete

densities of particle sets S and T be {ŝu}u=1,...m and {t̂u}u=1,...m respectively,

where m is the number of bins and
∑m

u=1 ŝu = 1,
∑m

t=1 ŝu = 1. We have

ρ(S, T ) =
∑m

u=1

√
ŝut̂u. The distance B(S, T ) between state S and state T

is

B(S, T ) =
√

1− ρ(S, T ). (6.5)
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6.5 Simulation and Performance

6.5.1 Underwater Vehicle Navigation

Navigation is the activity of ascertaining one’s position, planning and fol-

lowing a route. To evaluate how the path planning benefits localization,

the vehicle needs to follow the planned path. A series of waypoints are sam-

pled from the planned path, with the destination as the last waypoint. The

vehicle compares its estimated position x̂k with the targeted waypoint, and

gives an action that directs the vehicle to head towards the targeted way-

point. We set a 10-meter range to determine whether vehicle has reached

the waypoint. Once x̂k is within 10 meters of the waypoint, the vehicle

changes to target the subsequent waypoint. If the vehicle reaches a later

waypoint before the current one, it continues to follow the next waypoint.

The mission ends when vehicle reaches the destination (within a 10-meter

range) or the mission exceeds the maximum allowable duration.

Our bathymetry map has a resolution of 10 meters. The vehicle makes

a measurement at every 10 seconds when moving at 1 meter per second.

6.5.2 Mission 1

We tested our algorithm on bathymetry data collected at a test location

in Singapore waters. With the starting point (SP) and destination point
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(a) Iteration 1

(b) Iteration 2

(c) Iteration 3

Figure 6.4: Mission 1: As the algorithm iterates, the planned path
evolves to one with more bathymetric variation.
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(a) PF-based entropy at the destination: the value drops with iterations, and
is also smaller than the entropy of a straight-line path.

(b) Estimation error at the destination: the localization error drops with itera-
tion, and is smaller than the error of a straight-line path.

Figure 6.5: Mission 1: Performance at the destination.

(DP) being defined, Figure 6.4 shows that as the algorithm iterates, the

planned path evolves to one with more bathymetric variation.
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The navigation accuracy is estimated with 50 simulated runs. The en-

tropy at the destination (Figure 6.5(a)) drops with iterations, and is smaller

compared with the entropy at the end of a straight-line path. The localiza-

tion errors at the destination are shown in Figure 6.5(b) for straight-line

path and generated paths over iterations 1 to 3. With the same propaga-

tion and observation capability, routes through more bathymetric variation

have better localization accuracy. A good path is generated within a few

iterations.

6.5.3 Mission 2

We test another pair of starting and destination points. In contrast to

the pair in Mission 1, this pair has a small bathymetric basin (dark blue

region) between them. In the first three iterations in Figure 6.6, paths

are generated along the southwest side of the basin. From the fourth it-

eration, the generated path starts to move to the other side of the basin,

and comes back to the southwest side. The PF-based entropy values and

localization errors at the destination drop over iterations and have similar

trend (Figure 6.7). Looking at the bathymetry along the planned path in

Figure 6.8, we can see that paths from later iterations do have larger range

in bathymetry along their paths. However Path 4 with largest bathymetry

range does not give smallest localization error.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 6.6: Mission 2: In the first three iterations, planned path
evolves to one side of the bathymetry basin. From the fourth iteration,

the planned path evolves to the other side of the basin.



Chapter 6. Navigation with Bathymetric Aids 158

(a) PF-based entropy at the destination: The paths following the basin edge
with more bathymetric variation do not yield smallest entropy values. Entropy
values drops over iterations.

(b) Estimation error at the destination: The localization errors drops over iter-
ations. However the bathymetric variations along paths over iterations do not
increase.

Figure 6.7: Mission 2: Performance at the destination.
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Figure 6.8: Illustration of Gaussian process regression in 1-dimensional
space.

6.6 Summary

With the particle filter based entropy and the information entropy intro-

duced in Chapter 5, we presented a path planning algorithm. Given a start-

ing point and destination, the algorithm generates a sub-optimal path of-

fline, such that the localization accuracy is maximized when vehicle reaches

the destination. We showed that the entropy measure is consistent with the

localization performance. It is important to highlight that there are many

definitions on the bathymetry variation. It can be the change of bathymetry

(single-point water depth) along the path, or the bathymetry range within

the path (difference between maximum and minimum water depth). It can



Chapter 6. Navigation with Bathymetric Aids 160

also be the local bathymetry variation (over some area) along the path. The

last definition needs to define an area size to compute the variation. For

any of the definitions, paths along maximum bathymetric variation may

not always lead to the smallest positioning error. The bathymetry match-

ing performance depends on the prior knowledge about the location and

the exact bathymetry, specifically, how unique the measured bathymetry is

compared with the others in the prior. The conditional entropy measure

evaluates this performance and shows consistent trend with the localiza-

tion performance. Path planning with the information entropy measure

could be extended to other planning problem and eventually cooperative

localization of small team of AUVs.



Chapter 7

Conclusions and Future Work

A list of contributions in this thesis is summarized as:

• We focus on a cooperating team of small-sized, low-cost, sensor-

limited AUVs. We showed that the cooperation improves localization

but also easily aggravates the performance when communication loss

is higher.

• We proposed a new cooperative multi-vehicle localization algorithm

using distributed extended information filter (DEIF). It is effective

in recording the correlated information in light of constrained un-

derwater communication. Simulations show that DEIF gives better

performance compared with single-vehicle localization and existing

cooperative localization method.

161
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• As näıve filter is easy to implement in complex situation, we answer

the question as to when it is safe or detrimental to ignore the corre-

lation in cooperation.

• We formalize the concept of information entropy measure, to quantify

the localization performance, and the effectiveness of bathymetry on

localization. We concluded that the uniqueness of the measured depth

compared with the bathymetry in the localization prior decides the

localization performance.

• With the conclusion above, we proposed a path planning algorithm

for navigation with bathymetric aids. The algorithm generates near-

optimal paths based on bathymetry map, with good localization ac-

curacy at the destination.

In cooperative localization of underwater vehicles, one cannot assume

that the inter-vehicle correlations are available. This is because the con-

strained underwater communications prevent vehicles from keeping track

of all the estimates shared in the team. It may hamper the cooperation as

the fused information might be false or overconfident when correlation is

underestimated. We examined the problem and proposed a novel design of

the distributed localization method. The method is able to record the cor-

related information from the most recent cooperation and transmit with
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small packets, providing consistent position estimates in event of packet

loss.

However, ignoring correlation when fusing data seems working in some

work. This dissertation studied the conditions and provided the justifica-

tion where the correlation can be ignored. For multi-sensor tracking prob-

lem, the condition is when the local measurements have relatively small

errors such that the local estimates are nearly independent of each other.

For cooperative localization problem, besides having small local measure-

ment errors which validates the assumption of independence, the other

condition is where the local propagation is long enough such that the local

estimates are nearly independent.

With the assurance of the small local measurement errors, cooperative

localization with bathymetric aids can simply ignore the correlation. We

explored the bathymetry-aided localization and navigation of a single ve-

hicle. This can be extended to cooperative vehicles without the concerns

of tracking inter-vehicle correlation. The effectiveness of bathymetry aids

on localization is shown with an information entropy measure. It showed

that the localization improvement depends on how unique the bathymetry

map against a prior knowledge about the localization. With this idea, a

path planning algorithm is developed for a particle filtering localization.

Simulations show that the algorithm generates sub-optimal paths within a

few iterations.
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This research is open in applicability to other areas related to cooper-

ative positioning and navigation. For example, terrestrial swarm robotics

on land is one very popular topic where this research can be of relevance.

Mobile and distributed sensor networks have the potential to revolutionize

the way in which information is collected, fused and disseminated. It is

closely related to distributed data fusion network [42], which attracts inter-

est in many areas with its advantage of scalability, modularity and graceful

degradation of performance in case of failures.

There are a number of avenues for future work. Firstly, the path plan-

ning with information entropy measure should be used with different prob-

lem set up. A good localization along the path is also important in survey-

ing and environment sensing. Secondly, there is opportunity to extend the

planning by introducing the presence of peer vehicles. For example, the

goal can be changed to optimize the localization performance of the whole

team or a particular vehicle, or to maximize the communication quality

for information exchange. There could be some spatial correlation in the

measurements among the team, for example, due to the tidy changes. The

cooperative AUVs can be used for bathymetry map building. With knowl-

edge on partial bathymetry map, the paths can be planned adaptively, and

a fuller map can be developed from there.



Bibliography

[1] M. Ahmed and G. Pottie, Fusion in the Context of Information The-

ory, S. S. Iyengar and R. R. Brooks, Eds. CRC Press, 2004.

[2] A. Alcocer, P. Oliveira, and A. Pascoal, “Underwater acoustic posi-

tioning systems based on buoys with gps,” in Proceedings of the Eighth

European Conference on Underwater Acoustics, vol. 8, 2006, pp. 1–8.

[3] J. C. Alleyne, “Position estimation from range only measurements,”

Master’s thesis, Naval Postgrad. Schl., Monterey, CA, USA, Sep. 2000.

[4] D. Alspach and H. Sorenson, “Nonlinear bayesian estimation using

gaussian sum approximations,” Automatic Control, IEEE Transac-

tions on, vol. 17, no. 4, pp. 439–448, Aug 1972.

[5] G. Antonelli, F. Arrichiello, S. Chiaverini, and G. Sukhatme, “Ob-

servability analysis of relative localization for auvs based on ranging

and depth measurements,” in Robotics and Automation (ICRA), 2010

IEEE International Conference on, 2010, pp. 4276–4281.

[6] M. Aoki, Optimization of Stochastic Systems, Topics in Discrete-Time

Systems. Academic Press, New York, 1967.

[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial

on particle filters for online nonlinear/non-gaussian bayesian tracking,”

IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,

Feb 2002.

[8] P. Baccou, B. Jouvencel, V. Creuze, and C. Rabaud, “Cooperative

positioning and navigation for multiple auv operations,” in MTS/IEEE

165



Bibliography 166

Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat.

No.01CH37295), vol. 3, Nov 2001, pp. 1816–1821 vol.3.

[9] A. Bahr, “Cooperative localization for autonomous underwater vehi-

cles,” Ph.D. dissertation, the Massachusetts Institute of Technology

and the Woods Hole Oceanographic Institution, February 2009.

[10] A. Bahr, J. Leonard, and A. Martinoli, “Dynamic positioning of bea-

con vehicles for cooperative underwater navigation,” in Intelligent

Robots and Systems (IROS), 2012 IEEE/RSJ International Confer-

ence on, Oct 2012, pp. 3760–3767.

[11] Y. Bar-Shalom, “Comments on ”comparison of two-sensor tracking

methods based on state vector fusion and measurement fusion” by j.

roecker et al,” IEEE Transactions on Aerospace and Electronic Sys-

tems, vol. 24, no. 4, pp. 456–457, July 1988.

[12] ——, Multitarget-Multisensor Tracking: Principles And Techniques,

3rd ed. YBS Publishing, 1995.

[13] Y. Bar-Shalom and L. Campo, “The effect of the common process noise

on the two-sensor fused-track covariance,” Aerospace and Electronic

Systems, IEEE Transactions on, vol. AES-22, no. 6, pp. 803–805, Nov

1986.

[14] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “Bathy-

metric slam with no map overlap using gaussian processes,” in 2011

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, Sep. 2011, pp. 1242–1248.

[15] A. R. Benaskeur, “Consistent fusion of correlated data sources,” in

IEEE 2002 28th Annual Conference of the Industrial Electronics So-

ciety. IECON 02, vol. 4, Nov 2002, pp. 2652–2656 vol.4.

[16] C. Bishop, Pattern Recognition and Machine Learning. Springer-

Verlag New York, 2006.



Bibliography 167

[17] Y. Boers, H. Driessen, A. Bagchi, and P. Mandal, “Particle filter based

entropy,” in 2010 13th International Conference on Information Fu-

sion, July 2010, pp. 1–8.

[18] N. Bore, I. Torroba, and J. Folkesson, “Sparse gaussian process

slam, storage and filtering for auv multibeam bathymetry,” in 2018

IEEE/OES Autonomous Underwater Vehicles (AUV 2018), (Porto,

Portugal), Nov 2018.

[19] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density

estimation via diffusion,” Ann. Statist., vol. 38, no. 5, pp. 2916–2957,

10 2010. [Online]. Available: https://doi.org/10.1214/10-AOS799

[20] J. Busquets, J. V. Busquets, D. Tudela, F. Pérez, J. Busquets-
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