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Abstract—We measure the state of the ocean by exploring the
properties of acoustic propagation. One of the approaches, known
as acoustic scintillation, exploits the spatiotemporal fluctuation
of the propagation to infer information such as turbulent flow
within the water. The goal of this study is to investigate the
potential of acoustic scintillation by considering only underwater
ambient noise. Cross-covariance functions of the received noise
amongst the sensors are used to reveal the turbulent flow within
the water medium. This in turn describes the environment of our
oceans without the need of deploying powerful transmitters that
ensonify the underwater medium. Through tank experiments, we
demonstrate that acoustic scintillation using random signals can
be employed effectively for turbulent flow estimation produced
by an air-bubble plume. For comparison, we also employ deter-
ministic narrowband signals and find results in both cases to be
supported by video evidence.

I. INTRODUCTION

The idea of estimating the state of the ocean by transmitting
a known acoustic signal was first introduced by Munk and
Wunsch [1]. The approach, named ocean acoustic tomography
(OAT), compares the received signal with that projected by
a propagation model. By solving the corresponding inverse
problem, information about the intervening ocean such as
sound speed profile (SSP), water velocity, etc., can be ac-
quired. Instead of relying on active sound sources, recent
studies show that the travel time between two sensors can
be extracted solely based on the correlation function of ocean
diffuse noise [2], [3]. However, the presence of directional
sounds due to shipping and biological activities often results
in biased estimates [4]. SSP estimation through matched
field processing using unknown acoustic emissions from ships
passing within the detection range of the receiver is also shown
to be feasible [5]. The aforementioned techniques, passive or
otherwise, require an acoustic propagation model well-suited
to the measurement area, which may not be known in practice.

In the literature, astrophysicists have constructed atmo-
spheric parameter profiles such as wind motion, turbulent
strength, etc., by observing the radiance arriving from the
stars [6], [7]. Atmospheric fluctuations essentially cause the
stars to twinkle or scintillate. By employing a suitable scat-
tering model, an inverse problem may be solved to determine
atmospheric profiles. These concepts have been extended to
the underwater domain to measure ocean flow using acoustic
waves emitted from known sources [8], [9]. This technique is
known as acoustic scintillation. Like the OAT, the potential of

acoustic scintillation for long-term ocean monitoring is limited
by the high cost of having the signal source. Replacing the
active source with ocean ambient sources may be a possible
solution.

Ambient noise in the ocean consists of sounds produced by
marine organisms (snapping shrimp, marine mammals, etc.),
natural physical events (wave, wind, rain, etc.) and human
activities (shipping, reclamation, etc). Recent advances in the
study of underwater acoustics suggest that the ocean noise
can be useful for passive sensing. For example, snapping
shrimp noise has been regarded as a consistent and reliable
ambient noise source in warm shallow waters for imaging and
ecological monitoring [10], [11]. Employing ambient noise
as a source of opportunity for acoustic scintillation is still
an untapped problem. We perform a preliminary study and
investigate the feasibility of underwater flow estimation with
various deterministic and random signals over the course of
several tank experiments. Our results highlight the practicality
of acoustic scintillation in the ocean where ambient noise is
always prevalent.

In the rest of this paper, we present a propagation model
to describe an acoustic wave propagating through a turbulent
flow within the water medium in Section II. By observing the
fluctuations of the wave, we show that both the narrowband
signal and random signal can be used to estimate the velocity
of the turbulence. In Section III, experimental results are
shown to verify the findings. Finally, conclusions are drawn
in Section IV.

II. PROPAGATION MODEL

An acoustic wave is scattered when it traverses a medium
with random inhomogeneities. The scattered waves are su-
perimposed on the primary wave and lead to fluctuations of
the primary wave. In the underwater channel, turbulence stirs
water properties (such as temperature, salinity, etc.) and/or
mixes its contents (such as bubbles, marine biomass, etc.),
thus producing random inhomogeneities within. We assume
that the turbulence adheres to Taylor’s hypothesis, i.e., the rate
of change of an eddy is small compared to the velocity of the
mean flow. Consequently, the random inhomogeneities move
collectively and their relative spatial positions remain constant
in time. Theoretical models that explain this phenomena for
narrowband signals have been presented in [12], [7], [13].
In this study, through modeling and experimentation, we
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investigate the possibility of observing the same phenomena
for random signals.

To achieve this end, we now mathematically define our
problem. We set up a three-dimensional right-handed Cartesian
coordinate system with coordinate point denoted by (x, y, z).
Let an ambient noise source be present at the origin of the
coordinate system. The source emits an acoustic wave which
propagates through an infinite turbulent layer bounded by the
planes x = xl and x = xl + dx. The acoustic wave is
subsequently observed by a receiver on the plane x = L near
the x-axis. We assume an iso-velocity channel and a geometric
ray model. Fig. 1 illustrates the propagation of the acoustic
wave. The acoustic pressure due to the sound source recorded
at location (x = L, y, z) and time t can be modeled by [7]
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where S(ω) is the Fourier coefficient of the emitted acous-
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vy and vz are the mean flow velocities of the turbulence in
the y and z axes, respectively.

Since φxl
(ω, y, z, t) is small, (1) can be approximated by (3)

at the top of the page. The first term represents the primary
wave while the second term is the wave resulting from the
scattering of the primary wave due to the turbulence. Since
second-order statistics do not converge in several impulsive
noise scenarios such as snapping shrimp noise, we use log-
square function log(a(t)a∗(t)) to quantify the instantaneous
power of a(t) where ∗ is the complex conjugate and log(X)
is natural logarithm of X [14]. We represent the log-square of

Fig. 1. Acoustic wave propagating through a turbulent layer.

the received signal as
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Let l be a short time length such that the turbulence is static
within l or by definition µ(ω, y, z, t) = µ(ω, y, z, t + δt) for
0 ≤ δt ≤ l. We divide the signal into multiple fixed-length
segments with time length of l. Each segment is indicated by
a time index tn = nl for n ∈ {0, 1, 2, . . .}. The intensity of
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as the intensity of the scattered wave due to random inhomo-
geneities.

Let (L, y, z) and (L, y+ δy, z+ δz) be the 3-tuple location
coordinates of any two sensors. The temporal cross-covariance
function between the signal intensity recorded at the sensors
can be expressed as

C(τ) = E[Ĩ(y, z, tn)Ĩ(y + δy, z + δz, tn + τ)] (9)

where tilde denotes zero mean, i.e., Ĩ = I −E[I]. We expand
(9) to become
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+ E[Ĩ1(y, z, tn)Ĩ0(y + δy, z + δz, tn + τ)]
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Note that the cross-covariance function of the received signal
intensity is the summation of the cross-covariance functions of
the signal intensity without propagation through the turbulence
and the scattered signal intensity due to the turbulence. We
denote the two cross-covariance functions as C0(τ) and C1(τ)
respectively. For tonals with amplitude A0,
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where C tonals
0 (τ) = 0 and Im(X) is the imaginary part of X .

Note that maximum cross-covariance can be achieved if the
time lag τ satisfies δyxl

L − vyτ = 0 and δzxl

L − vzτ = 0. Con-
versely, we are able to estimate the velocities of the turbulence
(denoted by (vy , vz)) based on the time lag of the main peak
of the cross-covariance function. However, having only two
sensors does not allow us to satisfy both criteria. Instead of
revealing the 2-D mean flow of the turbulence, we can reduce
the (y, z) dimensions to r =

√
y2 + z2 dimension, and hence

we can write dr =
√
δy2 + δz2, and vr =

√
v2y + v2z . The

time lag of the maximum cross-covariance function indicates
the 1-D mean flow of the turbulence at the r dimension. The
2-D mean flow of the turbulence can be estimated if there
are more than two sensors. For random signals, C random(τ)
consists of two main peaks. The first peak, which has supports
near τ = 0, is caused by C random

0 (τ) 6= 0, an auto-covariance
function of I0(y, z, tn) as L � δy and L � δz. Like the
tonals, the second peak is due to the fact that same patterns
of signal fluctuations have been observed by the two sensors.
We construct an experiment to verify the findings.

III. EXPERIMENT

An experiment was conducted in a water tank to investigate
the idea of turbulent flow estimation using ambient noise. A
transmitter was deployed to mimic the ambient noise source.
We considered the following source waveforms:

1) 30 kHz, 60 kHz, and 90 kHz tonals to emulate narrow-
band noise.

2) bandlimited white Gaussian noise (WGN).
3) bandlimited α-sub-Gaussian noise (αSGN).

Note that αSGN is an efficient model for snapping shrimp
noise. Therefore, the corresponding results for this scenario
highlight potential results in warm shallow waters. Due to the
hardware limitation of the acoustic sensor, both WGN and
αSGN were bandlimitted to 10−100 kHz before transmission.
All signals were transmitted through an upward rising air-
bubble plume acting as a turbulent layer. The propagating
signals were received by a two-element vertical linear array.
Fig. 2 and 3 show a sketch and a photograph illustrating
the layout of the experiment, respectively. The values of the
parameters highlighted in Fig. 2, which describe the details
of the experimental layout, are stated in Table I. The acoustic
pressure recordings of the signals with and without the air-
bubble plume are plotted in Fig. 4. Since the characteristics of
the acoustic pressure recording of the tonals are similar, we
only present the recording of 30 kHz signal. On comparing
Fig.4a and 4b, the signal fluctuation due to the propagation
through the air-bubble plume is clearly visible. However, the
effect of the propagation through air-bubble plume is not
obvious for random signals such as WGN and αSGN. From
the acoustic pressure recordings, we can easily trace out the
intensity frame of the recordings.

The acoustic pressure recordings were preprocessed to sig-
nal intensity with the intention to extract the log-square am-
plitude fluctuations of the received signals. For all transmitted



Fig. 2. Schematic of the experimental setup.

Fig. 3. Photo illustrating the layout of the experiment.

TABLE I
PARAMETERS OF THE EXPERIMENTAL LAYOUT IN MILLIMETERS.

hr hb ht drb dbt ls lb

480.00 1430.00 470.00 500.00 300.00 50.00 18.75

signals, we consider a received sequence of 40 s. The resulting
cross-covariance functions are presented in Fig. 5. The cross-
covariance curves of each transmitted signal is plotted on the
same figure for both cases, with bubbles and without bubbles.
The rising speed of the air-bubble plume can be calculated as

vz =
lsdbt

(drb + dbt)τ
=
lb
τ

=
18.75

τ
(13)

in mm/s where τ (measured in seconds) is the time lag of
the main peak of the cross-covariance function. The τ of the
correlation functions corresponding to 30 kHz, 60 kHz and
90 kHz signals are 42× 10−3 s, 48× 10−3 s and 54× 10−3 s
respectively. According to (13), the estimates of bubble rising
speed based on 30 kHz, 60 kHz and 90 kHz signals are
approximately 446 mm/s, 391 mm/s and 347 mm/s. For the
sake of our study, we consider the average rising speed of
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Fig. 4. Acoustic pressure recordings.

the air-bubble plume. This can be interpreted as the average
over rise speeds of single bubbles with different sizes. Note
that the rise speeds of bubbles depend on their respective sizes.
Larger bubbles typically have faster rising speeds [15]. The set
of bubbles that weakly scatter the 90 kHz tonal also scatter
the 60 kHz and 30 kHz tonals. However, the latter two are
also scattered by an increasingly larger set of bubbles of larger
size. The estimate of rising speed of the air-bubble plume with
respect to the 90 kHz signal is slower because the scattering
is dominated by the smaller bubbles with slower rising speed.

For WGN and αSGN, the main peak of the cross-covariance
function appears at the zero time lag. This is probably due
to the fact that the processing operations are not able to
remove the effect from the cross-covariance function of the
signal intensity without propagating through the turbulence as
discussed in the previous section. By ignoring the nuisance
main peak at zero time lag, we notice that there exists a
second peak at 30 × 10−3 − 70 × 10−3 s time lag as shown
in Fig. 5d and Fig. 5e, respectively. This range corresponds
to the estimate of the average rising speed of the air-bubble
plume in the range of 268 − 625 mm/s. This range tends to
agree with the rising speed estimates based on the tonals.
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Fig. 5. Cross-covariance functions of the signal intensity without (blue lines)
and with (red lines) propagation through the air-bubble plume respectively.

For further verification, we deployed a camera to collect
a video of the flow of the air-bubble plume, recorded at
60 frames per second. A frame is shown in Fig. 6. Even
though a video frame provides a rough measurement on the
vertical displacement of the bubbles, calculating the rising
speed of the air-bubble plume based on a large number of
video frames is not easy without automated image processing
methods for bubble detection and segmentation in each video
frame. We computed an average 2-D cross-correlation function
of 1200 consecutive video frames as depicted in Fig. 7a.
From the 2-D correlation function, we extracted a 1-D cross-
correlation function with zero delay at the y-axis denoting the
vertical displacement of the air-bubble plume as illustrated
in Fig. 7b. The main peak of the 1-D correlation function is
positioned at 5.25 mm vertical space lag which is roughly
equivalent to the estimate of 315 mm/s the air-bubble plume
rising speed. This is consistent with the estimates based on
acoustic measurements using narrowband and random signals.
All the time lag measurements and the average rising speed are
summarized in Table II. The time lag for visual is calculated
based on the estimated flow speed of 315 mm/s and the
distance of 18.75 mm.

Fig. 6. One of the video frames capturing the flow of the bubbles. The
white curves indicate the trace of bubble flow in one frame. The vertical
displacement of the bubbles in the calibrated distance is denoted by red double
head arrow. The white PVC pipe shows the position of the transmitter.

(a) Average 2-D cross-correlation function of 1200 consecutive video
frames. The red dashed line indicates the 1-D cross-correlation func-
tion with zero delay at the y-axis.
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Fig. 7. Visual observation of the air-bubble plume.

IV. CONCLUSION

We have investigated the concept of acoustic scintillation
for random sources in an underwater scenario. Through several
tank experiments, we demonstrated that the idea of acoustic
scintillation with random signals for flow estimation is fea-
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TABLE II
SUMMARY OF THE TIME LAG MEASUREMENTS AND THE AVERAGE RISING

SPEED ESTIMATES.

30 kHz 60 kHz 90 kHz WGN αSGN visual

τ × 10−3 (s) 42 48 54 30− 70 30− 70 60
vz (mm/s) 446 391 347 268− 625 268− 625 315

sible. For comparison, experiments were also conducted for
deterministic narrowband signals. Rising speed estimates of
the air-bubble plume using narrowband and random signals
were consistent and also held up with observations recorded
by a video camera. For future work, we would like to deploy
an array of sensors in Singapore waters to study the perfor-
mance of flow estimation based on acoustic scintillation with
real snapping shrimp noise. As expected, the spatiotemporal
variations of snapping shrimp noise will deviate from the
random signals deployed in our tank experiment, which given
our success with the current work, is worth a study. For
instance, snapping shrimp noise is not only a point source
in practice but is due to multiple clusters of point sources
(snapping shrimp colonies) distributed randomly in space. The
collection of turbulent flow ground truth data will definitely be
a challenging task during sea trials. In summary, using random
signals such as snapping shrimp noise offers an exciting
new prospect of estimating the turbulent characteristics in
underwater scenarios. This opens up a new opportunity for
long-term passive sensing based on acoustic scintillation with
ambient noise underwater.
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