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Abstract—The ability to detect the direction of arrival and
time of arrival (DoA-ToA) of propagating signals generated
by underwater sources using array of sensors is crucial for
passive sensing. This is a challenging task especially for transient
and impulsive signals which have similar acoustic signature.
We consider these signals, received by each sensor in a sensor
array over an observation period. We assume that only a small
number of these signals exist in the observation window, and
that they have distinct direction of arrival (DoA) and time
of arrival (DoA). The sensor array data of these signals can
be transformed into a DoA-ToA space and we should expect
this to be sparse. We show that this transformation can be
written as an underdetermined linear system. We suggest robust
methods to recover the DoA-ToA of the signals by enforcing
sparsity in the DoA-ToA space. Through receiver operating
characteristic (ROC) analysis, we show in numerical simulations
that our methods outperform conventional practices such as
cross-correlation-based time difference of arrival (TDoA) and
beamforming. We present a scatter plot of the detected DoA-
ToA based on the acoustic pressure sensor array recording in
Singapore waters to show that the sparse DoA-ToA technique
is robust and produces imaging results that match the known
underwater man-made structures at the experimental site.

I. INTRODUCTION

Collapse of the cavitation bubble generated by rapid closure
of snapping shrimp claw produces a transient impulsive signal
ranging from few Hertz to more than 200 kHz [1]. This
episodic loud sound or “snap” can be found mostly in warm
shallow waters [2] [3] [4]. The acoustic signature of a snap
can be characterized by a precursor pulse triggered by the
full closure of the shrimp claw, followed by the rapid growth
and collapse of the cavitation bubble to create a main peak.
A reverberation time ensues, allowing the oscillations of the
main peak to return to rest [5]. Figure 1 illustrates a time series
acoustic pressure recording of a snap in Singapore waters.
Theoretical model predicts that the width of the main peak
of a shrimp snap is in the order of 100 ps [1]. However, in
practice, the measured peak width is probably in the order of
few µs because of the low pass filtering effect of the ocean as
well as the limited sampling rate [6]. Au and Banks show that
the reverberation of a snap is within 100 µs while Legg et al.
calculate the reverberation time of a snap as 1.2 ms [7] [8].
The difference could be attributed to the impulse response of
the environment and the recording system.

Detecting the DoA-ToA of the snaps not only facilitates
the study of underwater ambient noise but also allows these
ambient sources to be the sources of opportunity for several
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Fig. 1: An acoustic pressure recording of a snap in Singapore
waters.

potential applications in underwater acoustic sensing. The
depth of autonomous underwater vehicle (AUV) can be pas-
sively estimated using snapping shrimp noise [9]. Density
of shrimp might indicate the ecological state of coral reefs
[10] [11]. The mapping of low density clusters on known
coral reefs might suggest dead reefs. Passive ranging of silent
submerged objects underwater using solely the DoA-ToA of
snaps has been shown to be feasible [12]. Spatial distribution
of snapping shrimp can provide rough visualization on man-
made structures [13]. We explore a method to detect the DoA-
ToA of impulsive transient signals such as those originating
from the snapping shrimp.

II. SIGNAL MODEL

To formally introduce the problem, we present a signal
model to describe the acoustic pressure sensor array data of
the impulsive transient signals. Let the acoustic center of an
array be the origin of a Cartesian coordinate system. Let J
be the number of transient impulsive signals arriving from the
far-field, i.e., the signals are represented by {(φ∗j , θ∗j ,Γ∗j )}Jj=1.
Each signal is associated with a 3-tuple (φ∗j , θ

∗
j ,Γ
∗
j ), consisting

of the azimuth angle, elevation angle, and the ToA. The
acoustic pressure data of sensor m of the array at time



tn = n
Fs

, n ∈ Z≥0 can be written as

xm(tn) =

J∑
j=1

sj(tn − (Γ∗j + τm(φ∗j , θ
∗
j ))) + vm(tn) (1)

where Fs is the sampling rate and Z≥0 denotes non-negative
integer. sj(tn) is the acoustic pressure of signal j at time
instance tn. τm(φ, θ) is the time delay associated with the
additional time needed for a source signal to reach the sensor
m, and is given by τm(φ, θ) =

pT
mq(φ,θ)
c , where q(φ, θ) ∈ R3

is the unit vector in the signal propagating direction, pm ∈ R3

is the sensor location, c is the speed of sound in water and
transpose is denoted by superscripts T. vm(tn) is the noise
of the sensor, and is assumed to be spatially and temporally
white, and uncorrelated to the signals.

The discrete Fourier transform (DFT) of the T collected
snapshots of the sensor data can be written as

xm(fk) =

J∑
j=1

exp(−j2πfkτm(φ∗j , θ
∗
j )) exp(−j2πfkΓ∗j )sj(fk)

+ vm(fk) (2)

for fk = k
T Fs, k = {0, 1, · · · , T − 1} where j =

√
−1. Let

the matrices and column vectors be represented in bold upper-
case and bold lower-case letters, respectively. The DFT of M -
sensor array data can be expressed as

x = Ac + v (3)

where A = [A1, · · · ,A|B|] is an overcomplete array response
matrix represented as a partitioned matrix, with column sub-
matrices of the form: [14]

Ab =


a(f0, φb, θb) 0 · · · 0

0 a(f1, φb, θb) · · · 0
...

...
. . .

...
0 0 · · · a(fT−1, φb, θb)


(4)

where a(fk, φb, θb) = [exp(−j2πfkτ1(φb, θb)), · · · ,
exp(−j2πfkτM (φb, θb))]

T, and b = 1, 2, · · · , |B| where
B is the discrete space of all possible DoA and
the cardinality of a set is denoted by | |. x =
[x1(f1), x2(f1), · · · , xM (f1), x1(f2), . . . , xM (fT−1)]T is the
column vector of the Fourier coefficients of the array sensor
data. c = [c1, · · · , c|B|]T is the column vector with J non-
zero blocks denoting the phase shifted Fourier coefficients of
the arrivals. v represents the DFT of sensor noise. Note that
the ToA functions are non-linear. The next step is to extend
the overcomplete sensing matrix to include the discrete space
occupied by all possible ToAs. This extended formulation does
not scale well as the size of the sensing matrix increases
exponentially with the number of possible ToAs.

III. DOA-TOA POWER MAP

The discrete space of all possible DoA-ToA is denoted by
S. The DoA-ToA power map z is a vector indexed by S such
that the amplitude of the element indicates the power of the

snap. Based on the aforementioned signal model, we outline
the cross-correlation-based and beamforming-based method in
generating DoA-ToA power map. Following that, we discuss
the recent development of high resolution beamforming based
on sparse DoA and further extend the idea to sparse DoA-ToA.

A. Cross-correlation-based TDoA (XCorr)

We can find the ToA of a snap at the sensor by cross-
correlating the snap with the time-series sensor data. Since a
snap is a random process, we do not know a priori the acoustic
signal structure of the snap. In existing literature, snaps are
usually approximated by segments of the time-series sensor
data, which consists of distinct peaks [5] [15]. Let sensor m′

be the reference sensor. In order to find the main peaks of the
snaps in data of sensor m′, the data is preprocessed to form
an enveloped sensor data such as

x̃m′(tn) =
√
x2
m′(tn) + H[xm′(tn)]2 (5)

where H is the discrete Hilbert transform operator. N peaks
exceeding a selected threshold, denoted by u, of the enveloped
sensor output are identified as snaps with the ToA at sensor
m′ indicated by ζm′,i for snap i = 1, 2, · · · , N . Let snap i be

s′i(tn) =

{
xm′(tn) if |tn − ζm′,i| ≤ ls

2

0 otherwise
(6)

where ls is the time length of a snap. The process of iden-
tifying snaps from the sensor array data is named as snap
detection. TDoA of snap i between sensor m′ and m 6= m′

can be obtained by solving

arg max
−ll≤t≤ll

∣∣∣∣∣∑
n

xm(tn)sref
i (tn − t)

∣∣∣∣∣ (7)

where the TDoA is bounded by the maximum time lag ll which
is dependent on the size of the array. The DoA-ToA detection
i, denoted by (φ′i, θ

′
i,Γ
′
i), maximizes the number of consistent

DToAs of snap i. Hence, we have {(φ′i, θ′i,Γ′i)}Ni=1 and with-
out loss of generality, we can construct the DoA-ToA power
map of this method, denoted by zXCorr, such that the non-zero
elements are indexed by {(φ′i, θ′i,Γ′i)}Ni=1 with amplitude 1
and other elements are zeros. Snap detection is sensitive to
the threshold value u. A large u would result in the detector
failing to pickup weak signals, whereas a small u would result
in detecting too much noise. Furthermore, the use of cross-
correlation for TDoA estimation is susceptible to error. This is
due to the fact that multiple transient impulsive signals, which
include snaps and the corresponding multipath signals, can be
found within the maximum time lag of a particular snap. The
acoustic signature between different arrivals cannot be easily
distinguished. Interested readers can refer to [16] [17] [18] for
further details regarding a variety of XCorr implementations.

B. Beamforming

1) Delay and sum (DAS): The time domain DAS beam-
former estimates the propagating signals using coherent and



incoherent sum [19]. Formally, the time domain DAS beam-
formed output can be written as

αDAS(φ, θ,Γ) =
1

M

M∑
m=1

xm(Γ− τm(φ, θ)) (8)

where (φ, θ,Γ) ∈ S . The vectorization of αDAS(φ, θ,Γ) for
all the elements in S is denoted by αDAS and the DoA-ToA
power map of the DAS beamforming-based method is simply
zDAS = |αDAS|2. In fact, zDAS is noisy due to the high sidelobe
of the DAS beamformer.

2) Hough: To reduce the noise in the power map, the sensor
array data can be preprocessed such that peaks of enveloped
sensor data, exceeding the threshold u, are set to ones while
others are set to zeros across all the sensors. Subsequently, the
time domain beamformed output of the preprocessed sensor
array data yields the power map denoted by zHough. We use
superscript Hough for the annotation because it is analogous to
finding multiple planes in the preprocessed sensor array data
[12]. Like the cross-correlation-based DToA method, choosing
threshold u is non-trivial. This method resembles the DAS-
based method for small u, while at large u, it suppresses
weaker snaps. The original idea of the Hough-based method
is proposed in [15] [12].

C. Sparse DoA-ToA

1) Block-sparse (BS): With the assumption that only a
small number of wideband signals arrive at the array in the
observation window, a high resolution beamformer based on
sparse DoA has been proposed [20] [14]

ĉBS = min
c

1

2
‖Ac− x‖22 + λ

|B|∑
b=1

‖cb‖2 (9)

and a more intuitive form of this beamformer based on basis
pursuit denoising (BPDN) is given by [21]

ĉBS = min
c

|B|∑
b=1

‖cb‖2

s.t. ‖Ac− x‖2 ≤ ε. (10)

The frequency domain beamformed output ĉBS is an estimate
of c in Equation 3 based on the objective function, L1/L2-
norm. This mixed norm enforces block sparsity on the fre-
quency domain beamformed output which promotes spatially
sparse wideband signal reconstruction [22]. ε2 denotes the
upper bound on the noise power ‖v‖22. λ controls the tradeoff
between model misfit and block-sparsity of the frequency
domain beamformed output. Let

V =
1√
T

 exp(−j2πf0t0) · · · exp(−j2πf0tT−1)
...

. . .
...

exp(−j2πfT−1t0) · · · exp(−j2πfT−1tT−1)


(11)

be the discrete Fourier transform matrix and W be the block
diagonal matrix of V. The DoA-ToA power map of the BS
beamforming-based method can be computed such as zBS =
|WHĉBS|2. However, wideband signal is a necessary but not a

sufficient condition for a snap. For instance, Equation 10 can
be rewritten as

α̂BS = min
α

|B|∑
b=1

‖Vαb‖2

s.t. ‖AWα− x‖2 ≤ ε (12)

where cBS
b = VαBS

b is the time domain beamformed output
in direction b. Since V is a unitary matrix, minimizing
‖VαBS

b ‖2 = ‖αBS
b ‖2 does not impose sparsity on the time

domain beamformed output signal in direction b. This is in
contrast with the prior knowledge of the transient impulsive
signal which has sparse support in the time domain.

2) Sparse (S): The time domain beamformed output of the
transient impulsive signal should be sparse in both DoA and
ToA. We can reformulate Equation 3 as

x = AWα + v (13)

and a sparse solution of α can be recovered via

α̂S = min
α
‖α‖0

s.t. ‖AWα− x‖2 ≤ ε. (14)

The time domain beamformed output α̂S is an estimate of
the inverse DFT of c in Equation 3 based on the objective
function, L0-norm, which calculates the total number of non-
zero elements of a vector. Minimizing L0-norm yields the
sparsest solution of Equation 13 and also the sparsest DoA-
ToA power map. However, there is no efficient algorithm to
solve Equation 14 to obtain the optimal solution. The closest
possible convex relaxation of the problem is

α̂S = min
α
‖α‖1

s.t. ‖AWα− x‖2 ≤ ε (15)

which can be solved efficiently using either second-order cone
program or first order method.

3) Reduced-sparse (rS): To minimize the effect of steering
and model mismatch, a very large sensing matrix A has to be
constructed so that all the array responses of the signals can be
accurately represented by linear combination of the columns
of A. This leads to a computationally expensive optimization
problem in Equation 14. An intuitive way to improve the
efficiency of this method is to reduce the size of A. Energy
of the DAS beamformed output defined by

yb =
∑

Γ

|α(φb, θb,Γ)|2 (16)

can serve as an indicator to eliminate the obvious redundant
DoAs and hence only a subset of B are retained to generate a
reduced-size A. Formally, this subset can be written as B̃ =
{(φb, θb) ∈ B|yb > Pp[y]} where Pp[y] refers to pth percentile
of the value in vector y. To avoid any confusion, the method of
using the complete A and reduced-size A are coined as sparse
method (S) and reduced-sparse method (rS) respectively. The
sparse DoA-ToA intensity maps can be denoted as zS = |α̂S|2
and zrS = |α̂rS|2.



IV. DISCUSSION

A. DoA-ToA detection

We discuss a process to extract the DoA-ToA detection
{(φi, θi,Γi)}Ni=1 from the DoA-ToA power map z. This is
obvious for zXCorr as the non-zero element of zXCorr is exactly
the DoA-ToA of the snaps. Other methods tend to recover
the DoA-ToA power map of snaps based on different criteria.
Since the acoustic signal of the snaps spans more than one
sample and the array responses of the adjacent DoAs are
highly correlated, zHough, zDAS, zBS, zS, and zrS, to some ex-
tent, comprise multiple high amplitude elements (main peak of
the snaps) surrounded by low amplitude elements (oscillation
of the main peak and spatial leakage of the snaps, sensor noise,
etc.). Locating these high amplitude elements gives the DoA-
ToA detection.

Let4φ,4θ, and4Γ be the threshold distances of the DoA-
ToA detection. Let4z be the threshold amplitude of the DoA-
ToA detection. The DoA-ToA detection D can be obtained
using peak finding algorithm in a 3-dimensional space. This
can be done firstly by setting the small value elements in z to
zeros based on the threshold amplitude and then selecting local
maximums among the adjacent non-zero elements. Closely
located peaks are eliminated based on the threshold distance
because these peaks are probably due to the acoustic variability
of snap or spatial leakage through highly correlated array
response in DoA. We summarize the peak finding algorithm
in Algorithm 1. We present a simple example in Figure 2 to
further illustrate the algorithm. For convenient visualization,
we display z in a 1-dimensional form.

Algorithm 1 Peak finding

Require: z, S, D = ∅, 4z, 4φ, 4θ, 4Γ

1: S̃ contains the indexes of local minimum of the thresh-
olded z using 4z

2:

(φ′, θ′,Γ′) = arg max
(φ,θ,Γ)

z(φ,θ,Γ) s.t. (φ, θ,Γ) ∈ S̃

3: Q = {(φ, θ,Γ)||φ′ − φ| > 4φ, |θ′ − θ| > 4θ, |Γ′ − Γ| >
4Γ, (φ, θ,Γ) ∈ S̃}

4: S̃ = S̃ ∩ Q, D = D ∪ (φ′, θ′,Γ′)
5: repeat 2, 3, 4 until S̃ = ∅

B. Practical considerations

The transient signal is sparse in time since it has very
few non-zero samples within T . Stable recovery from the
frequency domain to time domain transient signal is possible
using partial knowledge of Fourier coefficients. By randomly
choosing a set of frequencies such that index of frequency k ∈
Ω ⊂ {0, 1, · · · , T−1} we can reduce the memory requirement
for storing huge A. Within the observation period, the DoA
of the signals is sparse in B which corresponds to a widely
spread wavenumber (spatial frequency). High-resolution DoA
estimation can be achieved by having a random sample of the
spatial information using a sparse array.

Fig. 2: The two filled squares are the DoA-ToA detections.
Both filled squares and filled circle are the selected peaks.
The horizontal dashed line illustrates the threshold amplitude
and the vertical lines show the threshold distances.

Assuming a known ‖v‖2 is impractical since the arrival of
a snap is random. We can identify the main peaks of the snaps
using simple thresholding and peak finding as described in the
previous section. Then, we define the trimmed data of sensor
m as

xtm(tn) =

{
0 if tn ∈ {ζm,i}Nm

i=1

xm(tn) if otherwise
(17)

where ζm,i is a ToA of detected snap i at sensor m and Nm is
the number of detected snaps at sensor m. We can estimate ε =
‖xt‖2 where xt is the Fourier coefficient vector of the trimmed
sensor array data. As snaps are highly impulsive compared to
sensor noise, the bounds play an important role in eliminating
the main peaks of the snaps in the sensor data.

V. NUMERICAL SIMULATIONS

We study the detection performance of the aforementioned
methods based on the simulated sensor array data of the
impulsive transient signals in 3 different cases as shown
in Table I. The impulsive transient signal j was generated
according to an exponentially damped sinusoid represented as

sj(t) =

{
βj exp(−btn) cos(2πf stn), if tn ≥ 0

0, otherwise
(18)

where βj is the amplitude of the main peak of signal j, b is the
decay constant, and f s is the frequency of the sinusoid. b =
10000 and f s = 30000 Hz were chosen to imitate the transient
and wideband behaviour of the snaps. Figure 4 shows the unit
amplitude simulated signal in time domain. Two signals were
generated in case 1 and case 2. The signals were purposely
simulated with DoA-ToAs close to each other in case 2. Case
3 is similar to case 2 with the additional three weak signals.
ROMANIS, a 2D planar array measuring 1.3 m in diameter
and comprising 508 sensors, was used to record all of these
signals which were contaminated by IID Gaussian noise of



zero mean and variance σ2, with the peak signal to noise ratio
(PSNR) defined by

PSNR = 10 log

(
1
J

∑
j β

2
j

σ2

)
. (19)

Figure 3 shows the sensor placement of ROMANIS. Let
S = Sφ ∪ Sθ ∪ SΓ where the set of azimuth angles
Sφ = {−20◦,−19.5◦, · · · , 20◦}, the set of elevation angles
Sθ = {−20◦,−19.5◦, · · · , 20◦} and the set of time of arrivals
SΓ = {0, 1, · · · , 499}. We set the threshold u to 1st percentile
of the sensor data for snap detection. The typical maximum
time lag of XCorr is the diameter of the receiver divided by
speed of sound which gives 0.844 ms. Array response A was
generated by randomly selecting 64 frequency points while
the reduced-size A was based on 90th percentile of the energy
of the DAS beamformed output. We computed zXCorr, zHough,
zDAS, zBS, zS, and zrS accordingly. Optimization toolbox,
SPGL1, was used to solve for zBS, zS, and zrS [23] [24].
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Fig. 3: Sensor placement of ROMANIS. Each gray cell rep-
resents a sensor.

TABLE I: Simulation setup.

Case Signal β φ (degree) θ (degree) ΓFs (sample)

1 s1 1 −6.3◦ −8.1◦ 49.2
s2 1 −6.1◦ 5.2◦ 249.3

2 s1 1 −6.3◦ 3.4◦ 49.2
s2 1 −6.1◦ 5.1◦ 72.3

3 s1 1 −6.3◦ 3.4◦ 49.2
s2 1 −6.1◦ 5.2◦ 72.3
s3 0.8 5.8◦ 4.2◦ 125.7
s4 0.8 11.1◦ −3.8◦ 230.3
s5 0.8 2.4◦ 9.6◦ 400.8

Given the power maps, DoA-ToA detections were obtained
based on the approximate resolution of ROMANIS 4φ = 1◦,
4θ = 1◦ while 4Γ = 0.510 ms which is the reverberation
time of the simulated snap. The detected DoA-ToA is true
positive (TP) if it is within the threshold distance of the actual
DoA-ToA. The true positive rate (TPR) is the number of TP
divided by the number of actual DoA-ToA. False positive
count (FPC) is defined by the number of detections which
is beyond the threshold distance of the actual DoA-ToA. By
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Fig. 4: Time domain simulated s1.

varying the threshold amplitude, the TPR vs FPC curves were
plotted based on the average of 100 realizations.

As the amplitudes of the non-zero elements of zXCorr are the
same, there is only one point in all of the TPR vs FPC plots for
XCorr regardless of the threshold amplitude. In case 1, DAS,
S, and rS methods achieve optimal detection performance, i.e.,
TPR=1, FPC=0, by choosing the right threshold amplitude.
Others are close to optimum with a small number of FPC.
Similar results can be obtained from case 2 except that the
detection performance of XCorr and Hough are observed to
degrade extensively. When the DToA of two signals is less
than the maximum time lag of XCorr, the method fails to
identify the snap across sensors using cross-correlation. When
two signals are close in DoA and ToA, Hough suffers from
a large number of false positive detections. In case 3, XCorr,
Hough, and BS have poor detection performance compared to
the other methods.

Using the complete set of 508 sensors of ROMANIS, we
noticed that DAS, S and rS are able to achieve optimal
detection in all the simulated cases. To differentiate the
performance among these methods, we reduced the effective
diameter of ROMANIS by considering sensors within the
radius of 0.3 m as shown in Figure 6 and recomputed case
3. A small aperture receiver is always preferable provided
the detection performance can be maintained. However, this
effectively decreases the resolution and PSNR of the receiver.
The detection performance of S and rS outperform DAS when
using the scaled-down array in case 3. One of the reasons
is that DAS seems to be easily susceptible to false positive
detection at 10 dB and 20 dB PSNR. In general, the detection
performances of S and rS are fairly consistent and are reliable
in a variety of circumstances such as the simulated cases.
Even though rS uses the reduced-size A, it does not suffer
performance degradation in detecting the DoA-ToA of snaps.
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Fig. 5: Simulations at 10 dB PSNR.
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Fig. 6: Sensor placement of scaled-down ROMANIS. The gray
colored cells represent the sensors used in the simulation.

VI. EXPERIMENTAL RESULTS

An experiment was conducted at Selat Pauh anchorage in
Singapore waters. ROMANIS was deployed from a barge
at 1◦12.967′N, 103◦44.382′E with average water depth of
15 m. The DoA-ToA detection performance of all the methods
are compared based on the 5-second acoustic pressure data
collected during the experiment. There were two long term
mooring buoys in the field of view of ROMANIS, buoy 1 and
2 being at a range of about 135 m and 246 m respectively from
ROMANIS. These buoys present interesting targets because
snapping shrimp attach themselves to the anchor lines to form
colonies that are structurally different from those lodging on
the seabed.

We define the set of azimuth angles Sφ =
{−50◦,−49.5◦, · · · , 50◦}, the set of elevation angles
Sθ = {−30◦,−29.5◦, · · · , 40◦} and the set of time of arrivals
SΓ = {0, 1, · · · , 3920} for S. We set the threshold u to 1st

percentile of the sensor data for snap detection. We consider
a full-sized ROMANIS (1.3 m diameter) and a scaled-down
ROMANIS (0.6 m diameter). This corresponds to 0.844 ms
and 0.390 ms maximum time lag for XCorr. A reduced-size
array response A was generated by randomly selecting 512
frequency points based on 90th percentile of the energy of
the DAS beamformed output. We computed zXCorr, zHough,
zDAS, zBS, and zrS accordingly. For DoA-ToA detection,
we set the threshold distance 4φ = 1◦, 4θ = 1◦, and
4Γ = 0.510 ms while the threshold amplitude 4z is defined
by the 99.999th percentile of z. The DoA-ToA detection is
repeatedly computed over a 5-second ROMANIS dataset
without overlapping.

Let Na be the number of detected DoA-ToAs and 4Na
be the change in the number of detected DoA-ToAs with
respect to the full-sized ROMANIS. We verify the detection
performance by plotting the detected DoA in Figure 8 and
showing the changes in the number of detected DoA-ToA
between full-sized and scaled-down ROMANIS in Table II.
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Fig. 7: TPR vs FPC plot of case 3 using the scaled-down
ROMANIS.

Hough generally has the worst performance in terms of the
ability to compute the DoA of snapping shrimp noise. This
may due to the large number of false positive detection. The
DoA plot of XCorr using full-sized ROMANIS differs greatly
from the one using scaled-down ROMANIS indicating an
extensive performance degradation. DoA plot of DAS seems
to have consistent detection performance regardless of the
ROMANIS size. However, we observe that the change in the
number of detected DoA-ToAs of DAS is huge, approximately
52%, from using full-sized to scaled-down ROMANIS. This
shows that the method may sensitive to aperture size as well as
the PSNR of sensor data. Note that BS has the largest number
of detected DoA-ToA but with considerably lesser coverage in
DoA. One particular DoA might contain multiple detections
in the ToA-axis as the BS method only enforces sparsity in
DoA space.
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(a) DoA using XCorr (full-sized)
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(b) DoA using XCorr (scaled-down)
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(c) DoA using Hough (full-sized)

-20 0 20 40

Azimuth (◦)

-20

-15

-10

-5

0

5

10

15

20

E
le
va
ti
on

(◦
)

(d) DoA using Hough (scaled-down)
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(e) DoA using DAS (full-sized)

-20 0 20 40

Azimuth (◦)

-20

-15

-10

-5

0

5

10

15

20

E
le
va
ti
on

(◦
)

(f) DoA using DAS (scaled-down)
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(g) DoA using BS (full-sized)
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(h) DoA using BS (scaled-down)
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(i) DoA using rS (full-sized)
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Fig. 8: The blue points in the scatter plots are the detected
DoA. The circles mark buoy 1 and buoy 2 with the arrows
indicating the azimuth angle of the buoys.

The DoA plot using rS mainly consists of two layers: the
bottom layer, which corresponds to shrimp colonies stationed



TABLE II: Number of detected DoA-ToAs.

Method ROMANIS Na 4Na

XCorr full-sized 1051
30%scaled-down 1371

Hough full-sized 3623
109%scaled-down 7560

DAS full-sized 2465
52%scaled-down 1177

BS full-sized 8993
28%scaled-down 6434

rS full-sized 2046
9.6%scaled-down 1850

on the seabed, and the top layer which may be due to surface
reflection of the snapping shrimp noise. There is significant
amount of arrivals propagating at 2.4◦ azimuth angle which
probably originated from snapping shrimp colonies on buoy
1. The proposed method tends to discover more arrivals from
buoy 2 at roughly 37◦ azimuth angle. According to the GPS
coordinates of ROMANIS, buoy 1, and buoy 2, the azimuth
angle between a straight line from ROMANIS to buoy 1 and a
straight line from ROMANIS to buoy 2 is approximately 36◦.
This shows that the detected DoA is close to the calculated
azimuth angles of the buoys.

VII. CONCLUSION

We formulated an underdetermined linear system to model
the array sensor data largely dominated by impulsive transient
signals such as those generated by the snapping shrimp. We
outlined some of the existing methods in detecting DoA-
ToA of impulsive transient signals. We explored the option
of using sparse DoA-ToA as the prior knowledge for the
signal support in detecting the DoA-ToA of these impulsive
signals. We demonstrated that the proposed method has several
advantages over existing methods via numerical simulations.
Unlike the conventional approach, it is robust to signals that
are close in both DoA and ToA. The detection performance
is maintained even in smaller aperture receiver with lesser
number of sensors. We demonstracted that the method is able
to reveal the bearings of the long term mooring bouys as
far as 246 m away from the receiver. In fact, the proposed
method could be applied to DoA-ToA detection problems
involving any impulsive transient signals. It has been shown
that optimal DoA-ToA detection of the impulsive transient
signal can be acquired by randomly undersampling Fourier
coefficients of the sensor array data. Future study should
focus on determining minimum number of frequency points
for optimal DoA-ToA detection given an array of sensors.
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