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Abstract

Snapping shrimp are found in abundance in shallow waters around the world.

In such regions, they dominate the high frequency soundscape by producing

transient impulsive signals known as “snaps”. Studies have shown that by

estimating the spatial and temporal distribution of snaps we can obtain ecological

information about the health of coral reefs. This provides an efficient alternative

over conventional monitoring which deploys human divers to conduct inspection.

Localizing snaps generated by the shrimp inhabiting underwater structures can

reveal the physical forms of these submerged structures. All of these sensing

applications rely on the ability to estimate the location of individual snaps

accurately. Given the acoustic data from a hydrophone array, we can estimate

the direction of arrival (DoA) of snaps if we measure the time difference of the

arrival (TDoA) of the snap between sensors. This method estimates only the

DoA but not the 3D location of most of the snaps because it assumes that the

snaps originate at the near-field of the array. In a previous work, researchers

have attempted to estimate the 3D location of the snaps and their occurrence

times by using known bathymetric data. The work in this research does not

assume a priori knowledge of the bathymetry.

The goal of this thesis is to explore the use of both direct and surface-reflected

snaps in localizing far-field snapping shrimp noise for passive sensing. By

measuring the TDoA of direct and surface-reflected snaps, we can estimate the

iii



range of a snap source. However, considering that the receiver typically receives

signals from multiple snap sources with similar acoustic signatures, it is not

feasible to unambiguously distinguish the TDoA in the sensor array data for

DoA and range estimation. The situation is further complicated by the fact

that the signal propagating path consists of partially unknown parameters. We

approach the problem of snap localization by detecting the direction of arrival

and time of arrival (DoA-ToA) of an ensemble of impulsive transient signals, and

then alternatingly associating the arrivals and refining the signal propagating

path. In the investigation, we formulate a robust technique in detecting the

DoA-ToA of impulsive signals through sparse recovery of an underdetermined

linear system, and introduce an algorithm to approximately solve the arrival

association and parameter estimation problem.

In this thesis, we developed method to estimate the location and time

occurrence of snapping shrimp snaps located up to few hundred meters away

from the receiver. This method was tested in Singapore waters using receiver

measuring 1.3 m diameter. The estimated location of snapping shrimp allows

us to passively image underwater man-made structures, and the estimated

variations in receiver depth and orientation are shown to be consistent with

tidal variation as reported in the Singapore tide-tables. This method paves the

way for using portable sized receiver to conduct large-area passive sensing with

snapping shrimp noise in coastal waters.
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Chapter 1

Introduction

1.1 Sonar and passive sensing

Electromagnetic (EM) waves such as light and radio waves suffer from high

attenuation in water, a significant factor which limits their use in underwater

sensing. For example in coastal waters, optical visibility can fall below a few

meters in range [1], [2]. On the other hand, sound travels longer distances

underwater than EM waves, making it an efficient tool for probing the ocean.

The use of sound for underwater navigation and ranging is traditionally known as

sonar. There are two types of sonar — active and passive. Active sonar involves

emitting sounds and listening for echoes, while passive sonar involves listening

to the presence of underwater sounds. From the observed sounds and echoes, a

sonar system can detect, locate and characterize both underwater sound sources

and scatterers. Over the years, sonar has evolved into a mature technology.

It has found use in diverse fields ranging from military applications such as

submarine detection and navigation to commercial applications like fish finding,

echo sounding, bathymetric mapping, ocean surveillance, etc.

Advances in the study of underwater ambient noise lead the way to the

investigation of a technique called passive sensing. In contrast to sonar,

passive sensing observes sounds generated by ambient sources such as human
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CHAPTER 1. INTRODUCTION

activities, marine life and natural physical processes, and extracts useful

information surrounding these sources through the observation. Understanding

the generation mechanism and biological properties of these ambient sources

offers additional ability to extract useful information out of the ambient

recording. For example, wind actions on the water surface [3]–[5] and

ship noise [6] provide natural insonification for seabed layer imaging and

characterization. The idea of utilizing ambient sources for various sensing

applications has gained momentum in recent years.

In tropical and subtropical coastal waters, snapping shrimp has been regarded

as one of the consistent and reliable ambient sources. Sounds emitted by

snapping shrimp dominate the high frequency soundscape underwater [7]. The

ensemble of snapping shrimp noise creates a background crackle which causes

significant negative impact on sonar and underwater communication systems

in conventional processing [8]–[10]. However recent field studies suggest that

snapping shrimp noise are useful for passive sensing. Healthy coral reefs bustle

with noise from the snapping shrimp. Conversely dead reefs are silent. For

instance, estimated density of snapping shrimp is reported to be one to two

orders magnitude greater within the healthy habitat than degraded ones [11].

Therefore detecting shrimp distribution on known coral reef locations help us to

assess the health of the reef population. This method is more efficient compared

to standard coral reef monitoring approaches which are time-consuming, prone

to human bias, besides being manpower intensive. Location of shrimp reveals

pictorial images of underwater submerged structures. Matching these images

with the known local bathymetry allows underwater vehicle to perform passive

2



1.2. OBJECTIVES

positioning. This is similar to how some pelagic larval reef fishes make use of reef

sounds dominated by snapping shrimp noise for navigational purposes [12], [13].

Passive sensing with snapping shrimp noise relies on the ability to estimate

the location of shrimp accurately. This area of study remains a challenging

problem. The primary difficulty arises from the fact that the aperture size of the

receiver limits the detectable range of the snapping shrimp, especially when using

conventional passive localization method. Larger aperture receiver is required

to localize snapping shrimp farther away. However, deploying large aperture

receiver is costly and may not be suitable for certain sensing applications. The

secondary difficulty lies in localizing snapping shrimp sources, given that a few

thousand acoustic signals comprising the direct arrivals and their multipath

propagations can be observed within a short period of time. These signals are

broadband, transient and impulsive, have similar acoustic signatures, and occur

sporadically. Detecting and estimating the originating location of these signals is

considerably harder than for conventional acoustic signals which are continuous

and occur in small amounts.

1.2 Objectives

The ocean surface acts like an acoustic reflector to reflect snaps. The main aim of

this thesis is to explore the use of direct and surface-reflected snaps in localizing

far-field snapping shrimp noise for large-area passive sensing. Achieving

this goal enables improvement in the portability and energy consumption of

passive sensing applications with snapping shrimp noise without sacrificing the

attainable range for sensing. By measuring the TDoA of direct snaps between

3



CHAPTER 1. INTRODUCTION

sensors, we can estimate DoA of the snaps. By measuring the TDoA of direct

and surface-reflected snaps, we can estimate the range of the snaps. The DoA

and range of the snaps completely define the location of snaps. Estimating

the DoA and range of snaps is non-trivial, because in practice, large numbers

of direct and surface-reflected snaps are received in the observation period.

These arrivals have very similar acoustic signatures and the arrival propagating

path is only partially known. We investigate the snap localization problem

by first detecting the direction of arrival and time of arrival (DoA-ToA) of

impulsive transient signals which comprise direct and surface-reflected snaps.

Subsequently, we alternatingly associate the ensemble of DoA-ToAs and refine

the arrival propagating path to estimate the location of snaps. The specific

objectives of this research are to:

• investigate the advantage of sparse assumption in detecting DoA-ToA of

snapping shrimp noise;

• study the use of multipath ranging in estimating the originating locations

of snaps with and without the associated direct and multipath arrivals of

these snaps;

• demonstrate that the knowledge of location of the shrimp can be used for

sensing.

1.3 Scope of the research

This study focuses on localizing snapping shrimp noise using small aperture

receiver in shallow waters. Since the snapping shrimp noise dominates the high

frequency soundscape of underwater ambient noise, we use ray tracing as the

4
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propagation model of snapping shrimp noise. We also assume an iso-velocity

channel such that ray paths are straight lines. We do not consider deep water

and cold water scenario as the propagation of acoustic wave is refracted such that

the ray path is a curve. The small aperture receiver consists of numerous sensors

and the positions of these sensors are assumed to be fixed with no uncertainties

in array geometry. The locations of the receiver and snapping shrimp are static

during the observation period. Other underwater ambient noises such as shipping

noise and breaking waves are present in the acoustic recording of the receiver.

Since our signal of interest is snapping shrimp noise, these ambient sources are

filtered by bandpass filtering the frequency of the data. Impulsive signals, which

correspond to direct and surface-reflected snaps, have distinct DoA-ToAs and are

observed by the receiver at approximately the same time. The thesis focuses on

detecting and localizing the originating locations of snaps. We are interested in

the direct usage of detected and estimated locations of snaps for passive sensing

such as forming pictorial images of submerged structures. The indirect usage

such as illuminating underwater silent objects using snapping shrimp noise is

not straightforward and hence it is not discussed in the thesis.

1.4 Contributions

The following are contributions made by this study.

• DoA-ToA detection of nearly identical, impulsive and transient signals is

formulated as an inverse problem of an underdetermined linear system.

The idea of choosing minimum number of DoA-ToAs given the array

sensor data in solving this inverse problem, is proposed. We show that

5



CHAPTER 1. INTRODUCTION

the proposed method possesses better detection performance than the

existing methods through receiver operating characteristic (ROC). We also

demonstrate that the proposed method is robust to the changes in aperture

size and number of sensors in the receiver, a consideration which is crucial

for practical implementation. Detection of impulsive signals is an active

area of research to solve problems ranging from seismic imaging [14] to

forensic science and audio surveillance systems [15]. The proposed method

is well-suited to handle these types of applications.

• Given that perfect association of direct and surface-reflected snaps is

known, a 3-dimensional geometric model describing the direct arrival and

surface reflection of snaps is proposed. Uncertainties in water surface

and receiver orientation are considered in this model. This leads to

the construction of a range estimator of snap parameterized by nominal

receiver depth and receiver orientation. Assumed parameters are normally

perturbed from the true values and this may lead to large range estimation

error for snap localization. A two-step minimization method is proposed

to improve the assumed parameters so that the range of snaps can be

accurately estimated using estimated parameters which are close to the

true values. The range estimation error based on estimated parameters is

much lower than the range estimation error based on assumed parameters

in numerical simulations. We believe that this is the first time such kind

of work has been used for snap localization. This work may provide a

theoretical framework for underwater source localization by incorporating

6
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information of direct and surface-reflected signals with just the partial

knowledge of the propagating path.

• In practice, the problem is further complicated by the fact that not

only the propagating path of the arrivals is partially known, but the

perfect association of direct and surface-reflected snaps is also generally not

known. Estimating the location of snaps from the ensemble of DoA-ToA

of impulsive signals relies on the ability to jointly associate the arrivals

to form direct and surface-reflected pairs, while estimating the parameters

to completely describe the arrival propagating path. This joint association

and estimation problem is difficult to solve. We propose an algorithm which

alternates the association of arrivals given the fixed parameters, with the

estimation of the parameters based on the fixed set of associations. In

numerical simulations, the alternating method is capable of estimating the

location of snaps to reveal their spatial distribution without knowing the

perfect association of direct and surface-reflected snaps. The investigation

contributes to a better understanding of practical challenges in snap

localization based on direct and surface-reflected snaps. The proposed

method provides an alternative to solve this problem approximately.

• The proposed methods are tested in two experiments which were conducted

in different bathymetric environments in Singapore waters. The estimated

locations of snaps correlate with the position of underwater submerged

structures such as long-term mooring buoys and jetty. The estimated

nominal receiver depth matches the pattern of tidal changes in the

7



CHAPTER 1. INTRODUCTION

Singapore tide table. This empirically shows that passive sensing in

the range of about two hundred meters using a small aperture receiver

measuring in 1.3 m diameter is feasible by solely incorporating the direct

and surface-reflected snaps. This suggests that a large-area passive sensing

system with snapping shrimp noise using a portable receiver is a viable

approach.

1.5 Thesis Organization

Chapter 2 gives a brief review on underwater passive sensing. The characteristics

of snapping shrimp noise are presented followed by a discussion on existing

sensing applications which rely solely on using ambient sources. Literature

survey on passive snap localization schemes is included. A broadband snapping

shrimp noise recording system is discussed to facilitate the understanding on

experimental datasets.

Chapter 3 presents an underdetermined linear system to model the array

sensor data largely dominated by snapping shrimp noise. Sparse approximation

in detecting the DoA-ToA of the snaps is explored. The detection performance

of the sparse approximation-based approach is compared with existing methods

via numerical simulations.

Chapter 4 presents a 3-dimensional geometric model of the associated direct

arrival and surface-reflected snaps. Range estimator of the snaps is constructed

and the sensitivity of the approximated parameters with respect to the estimated

range is discussed. Chapter 5 introduces a method to refine the approximated

parameters based on an ensemble of associated arrivals. By relaxing the

8



1.5. THESIS ORGANIZATION

assumption of perfect association, a more practical snap localization problem

is discussed and an algorithm is proposed to tackle the problem.

In chapter 6, snapping shrimp noise detection and localization methods are

tested via two sets of experiments in Singapore waters. The effectiveness of the

proposed methods is demonstrated by the match between the spatial distribution

of estimated snaps and several known underwater man-made structures.

Chapter 7 summarizes the key findings of the study and provides further

research directions to address the limitations of the study.
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Chapter 2

Background

This thesis encompasses a broad number of topics ranging from passive sensing

and characteristic of ambient noise generated by snapping shrimp, to techniques

of underwater source localization. Throughout the years, these topics have been

extensively explored. This chapter on the background of study is not meant to be

exhaustive but to introduce concepts that facilitate readability of the following

chapters.

2.1 Underwater passive sensing

The first practical use of underwater passive sensing can be dated back to early

1900s during World War I even though a similar idea has been conjectured by

Leonardo da Vinci in much earlier times [16]. The invention was developed by

the Allies to listen to the machinery noise of German submarines. Observing

the noise allowed not only the detection and localization of submarines but also

their identification through the individual acoustic signatures. However, passive

sensing is sensitive to underwater ambient noise. For instance, the University

of California Division of War Research (UCDWR) scientists identified snapping

shrimp as the major coastal noise sources affecting sonar during World War

II [17]. As technology advances, submarines become progressively quieter, such

that conventional passive sensing is no longer effective. Instead of listening to

10
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the noise generated by submarines, Flatte and Munk explored the possibility

of detecting submarines via scattered acoustic signals from underwater ambient

noise [18].

Besides military applications, passive sensing is an important tool in

marine biological research. The Sound Surveillance System (SOSUS), which

is a network of hydrophones mounted on the seafloor, was used to passively

detect and locate blue whale in the northeast Pacific Ocean [19]. This is

useful in studying the migratory pattern and behaviour in the open ocean.

Other passive sensory systems like Northeast Passive Acoustic Sensing Network

(NEPAN) provide information on the presence and physical distribution of

whales, dolphins, and certain species of fish [20]. In ocean monitoring, estimating

water depth and seabed sub-bottom layering can be done using ambient noise

correlations [3]. Similar correlation techniques can also be used to monitor

deep ocean temperature, an important indicator and determining factor on

the Earth’s climate evolution [21]. Passive acoustic thermometry of the deep

ocean, as implemented in Ascension and Wake islands, only requires two existing

hydroacoustic stations for ambient noise recording.

Passive sensing is also an energy-efficient technique to identify potential

underwater threats for long-term underwater security and surveillance due to

its low power consumption. Passive tracking methods using an array of sensors

have been developed to detect and track open-circuit divers or intruders in

coastal waters by searching for their breathing waveforms [22], [23]. Detecting,

localizing and tracking either noisy submerged objects or ambient sources play

a very crucial part in underwater passive sensing. In general, passive sensing

11
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is a broad topic. We focus our study on passive sensing using snapping shrimp

noise in shallow waters. This problem is interesting because snapping shrimp

noise is one of the most pervasive sounds in tropical littoral waters. Several

findings have demonstrated how snapping shrimp noise can be used as sources

of opportunity in underwater passive sensing [7], [24], [25]. We discuss some of

the passive sensing techniques in the following section.

2.2 Snapping shrimp noise

2.2.1 Individual snap

Snapping shrimp, also known as pistol shrimp, belong to the Alpheidae and

Synalphedae family of crustaceans. These animals grow to only a few centimeters

long with one normal claw and one distinctive enlarged claw which can measure

up to half the length of its body. Figure 2.1 shows a photograph of a snapping

shrimp. Johnson et al. discovered that all lower latitude regions are within the

geographical zone of snapping shrimp [26]. Cato and Bell noted that shrimp are

commonly found in tropical and subtropical shallow waters with temperature

does not go below 11 degrees Celsius and at depths of less than 60 m [27].

They live in colonies, lodging on coral reefs, man-made structures, debris, etc.

The rapid closure of the enlarged claw shoots out water and creates a low

pressure cavitation bubble that collapses with an extremely loud sound [28].

This generates the acoustic signature of the snap, which starts with a full closure

of the claw to produce a precursor pulse. The cavitation bubble grows until it

collapses to create a main peak, followed by a reverberation time containing

the oscillations of the main peak [29]. Immediately after the main peak due

12
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to collapse of the bubble, smaller bubbles are repeatedly created and then

collapse until a complete dissolution of the bubble. This process is denoted as

immediate reverberation. This is then followed by much later reverberation due

to the multipath reflections. Figure 2.2 illustrates a time series acoustic pressure

recording of a snap in Singapore waters. The “reverberation” in Figure 2.2

defines the immediate reverberation. The theoretical model in [28] predicts the

width of the main spike of a shrimp snap to be in the order of 100 ps. However,

in practice, the observed spike width is probably in the order of few µs because of

the low pass filtering effect of the ocean as well as the limited sampling rate [24].

The acoustic pressure of shrimp snaps in Sydney Harbour at Pyrmont and Coral

sea near Innisfail were measured using a system with 350 kHz bandwidth. The

snap recording shows a peak width that varies from 3.5 to 8 µs and a bandwidth

that extends beyond 200 kHz [27]. Au and Banks show that the reverberation

time of a snap is within 100 µs while Legg et al. calculate it as 1.2 ms [30], [31].

The difference could be attributed to the impulse response of the environment

and the recording system.

2.2.2 Ensemble of snaps

Persistent crackling sounds are often reported by scuba divers in shallow waters.

This background crackle is the resultant of a large number of snaps in a short

period of time. Figure 2.3 shows a 10-second clip of 25−75 kHz bandpass filtered

ambient noise recording in Singapore waters, which is dominated by snapping

shrimp noise. As can be observed, the recorded signal comprises multiple

impulsive transient signals. These signals are the direct arrival of the snaps and

13



CHAPTER 2. BACKGROUND

Figure 2.1: Snapping shrimp. “Alpheus heterochaelis” by “Crabby Taxonomist”
License under a Creative Common Attribution-NonCommercial-ShareAlike
2.0 Generic (CC BY-NC-SA 2.0). Accessed on 18 August 2016.
https://www.flickr.com/photos/crabby_taxonomist/7213807522/in/

album-72157629764324092/

the respective multipath propagations. The amplitude variation of the recording

can be modeled using a symmetric α-stable (SαS) distribution [32] or more

recently an α-sub-Gaussian noise model with memory [33]. The family of SαS

distributions generalizes the central limit theorem to include the impulsiveness of

pressure variation. Investigations show that snap occurrences are not completely

random. Snaps tend to cluster within short (less than a second) and medium

(1 s − 400 s) time scale. Short time scale clustering can be possibly attributed

to surface reflections [8]. Ambient signal is not impulsive as compared to shrimp

snap signal. Figure 2.4 shows the acoustic pressure recording of shrimp snap

and ambient signal.
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Figure 2.2: An acoustic pressure recording of a snap in Singapore waters.

2.2.3 Sources of opportunity

The idea of utilizing ambient sounds for acoustic sensing is not new. Listening

to the sounds generated by wind actions on the water surface enables seabed

layer imaging and charaterization [3]–[5]. Cross-correlating underwater diffuse

noise measurements produces estimation for sound-speed profiles [34]. We are

interested in snapping shrimp acting as sources of opportunity for passive sensing

and thus several experimental findings are reviewed in the following paragraphs.

During the study of the use of ambient noise for underwater imaging,

snapping shrimp noise has been used to illuminate silent submerged objects

in the ocean. In one of the experiments, Epifanio et al. realized that a lot

of impulsive transient signals reflected by a submerged object originated from
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Figure 2.3: 10-second acoustic pressure recording of ambient noise in Singapore
waters dominated by snapping shrimp noise.

snapping shrimp located at pier pilings behind the receiver, and they provide

significant energy contrast to form a pictorial image of the object [35]. Potter

et al. showed that temporal variation of directional acoustic pressure is a better

quantity to use to differentiate between the reflected snapping shrimp noise and

the underwater background noise [36]. Kuselan et al. noticed that not all of

the ambient sources contribute to the object illumination and suggested that by

judiciously selecting arrivals that provide illumination and rejecting others, the

image quality can be improved [37]. Chitre et al. demonstrated that passive

ranging of silent submerged objects is feasible given the rough locations of the

shrimp [38]. This is analogous to range estimation using multistatic sonar.

Coral reefs are home to a multitude of living creatures some of which are
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Figure 2.4: Acoustic pressure recording of underwater ambient noise containing
shrimp snaps and ambient signals.

extremely noisy like the snapping shrimp. Field results indicate that reef fishes

find their way back to the reefs where they originated from by listening to the

sounds of snapping shrimp and fishes on the reefs [12]. Piercy et al. found

that higher-quality reefs tend to be noisier than degraded reefs [39]. Sounds

emitted by snapping shrimp give indication on the location and health of coral

reefs [7]. The mapping of low density clusters on known coral reefs might suggest

dead reefs. This approach is fairly efficient compared to the traditional practice

of sending divers underwater for inspection. A snap reflected off the seabed

contains information about the sediment. Multiple snaps enable the estimation

of seabed sediment properties [24]. It is also possible to image submerged
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structures using noise generated by the shrimp inhabiting these structures [40].

The time difference between direct arrivals and surface reflections of snaps is

useful in the passive estimation of the depth of autonomous underwater vehicles

(AUVs) [41].

Most of the aforementioned applications of passive sensing with snapping

shrimp noise rely on the ability to localize individual snaps. The common

practice of using large aperture receiver for snap localization is not effective

for large area coverage. Other localization methods rely on strict assumptions

which are only appropriate for certain applications. We discuss some of these

issues in the next section.

2.3 Passive snap localization

Consider a receiver in the form of an array of sensors, and assume that the

sources of sounds are static over the observation period. Let the location of a

source be defined by the DoA and range with respect to the origin of the receiver.

Passive localization methods can be classified into two main categories [42]. The

first is wavefront curvature method. The maximum range between the origin of

the receiver and the source has to be at most a few multiples of the aperture size

of the receiver. This enables the arrival waveform of the source to be spherical in

shape. Figure 2.5 shows an arrival of a near-field source observed by a uniform

linear array (ULA) receiver. The near-field TDoA between sensors can be written

as

∆τnear =
1

c

(
D −

√
L2 +D2 − 2LD cos(γ)

)
(2.1)
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where L is the spacing between sensors of the receiver, D is the range of the source

from the origin of the receiver, γ is the DoA of the source, and c is the speed of

sound underwater. Given multiple measurements of ∆τnear for different sensors,

Equation 2.1 can be extended to a nonlinear system and by solving the inverse

problem of this system, we can estimate the DoA and range of the source. This

method forms the basis of many modern ranging systems and has been applied

to estimate the location of shrimp. A 3-sensor ULA with interelement spacing of

9.7 m was deployed in Sydney Harbour [40]. This experiment demonstrates the

passive localization of snapping shrimp noise using wavefront curvature method.

The spatial distribution of snapping shrimp agrees with the structure of the

wharf. Freeman et al., by using a bilinear array of 6 m diameter, found that

local biological sources, including snapping shrimp, were situated on or inside

the reef structure rather than the adjacent sandy areas [43]. The disadvantage

of wavefront curvature method is that the sources have to be in the near-field of

the receiver, i.e., the range of the sources is limited by the size of the receiver’s

aperture. Deploying a large aperture receiver, especially the 2-dimensional array,

is not practical in shallow waters. This limits the ability to locate shrimp in 3

dimensions. Furthermore, identifying the same snap in two different sensors

well-apart is a challenging problem.

A small aperture ULA receiver observes an plane wave arrival of a far-field

source as illustrated in Figure 2.6. Far-field TDoA between sensors is a function

of DoA such that

∆τfar =
L cos(γ)

c
. (2.2)
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Figure 2.5: A 2-dimensional sketch illustrating the propagating spherical wave
originating from a near-field source. The solid and dashed spherical waves
represent the same waveform at different time instants.

We can only estimate the DoA but not the range of far-field sources given

multiple measurements of ∆τfar for different sensors. The second approach

of passive localization, namely multipath ranging, solves the far-field range

estimation problem. It incorporates the direct arrival and multipaths of the

source to form an effectively larger virtual receiver. This enables us to accurately

estimate the range of sources in far-field without having to build a physically

large aperture receiver. Figure 2.6 gives a brief idea of the geometry for multipath

ranging of a source based on direct arrival and surface-reflected arrival. To the

best of our knowledge, multipath ranging has not yet been utilized to estimate the

location of snapping shrimp. Quite a number of encouraging results have been
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obtained from localizing cetaceans such as dolphin and whale [44], [45]. Only

a small number of click sounds emitted by dolphins are observed during the

observation period. Hence, associating the direct arrival and surface-reflected

click sounds is considerably simple. In contrast, thousands of snaps can be

observed even in a short period of time and the acoustic signatures of the snaps

are almost identical. Identifying the correct surface reflection of a snap arrival

is non-trivial. Other passive localization attempts have also been proposed. For

instance, colonies of shrimp can be localized using triangulation by moving the

small aperture receiver to different locations over a long period of time [46].

Continuous collection of ambient noise measurements over a long period is time

consuming, and may not be suitable for certain applications. Chitre et al.

estimated shrimp locations using small aperture receiver with the assumption

that snapping shrimp live on a flat seabed [38] . This may not be valid and

exact knowledge of the local bathymetry is not always available.

In short, the state-of-the-art for snapping shrimp passive localization can

be categorized into near-field and far-field localization. Near-field localization

is based on the concept of wavefront curvature method which limits the spatial

coverage of the snaps. Far-field localization relies on certain assumptions which

may not be true in practice. Both of these methods suffers from the respective

limitations.
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Figure 2.6: A 2-dimensional sketch illustrating a propagating plane wave
originating from a far-field source. The solid and dashed plane waves represent
the same waveform at different time instants. The red line indicates the
propagating path of the surface-reflected arrival.

2.4 Remotely Operated Mobile Ambient Noise Imaging System

(ROMANIS)

There are numerous data acquisition systems for snapping shrimp noise

recording. Acoustic Daylight Ocean Noise Imaging System (ADONIS) is one of

the systems which used to investigate the feasibility of forming pictorial images

of a silent underwater objects solely by using ambient noise [35],[47]. A 4-sensors

tetrahedral array namely, the High frequency ambient noise Data AcQuisition

System (HiDAQ) was developed to study the high frequency ambient noise of

Singapore waters, which consists predominantly of snapping shrimp noise [48].
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Our study is based on the underwater acoustic pressure data collected by

ROMANIS.

ROMANIS was primarily built to study the ambient noise soundscape as

well as the feasibility of illuminating silent submerged objects using snapping

shrimp as the main natural insonifiers. It is a broadband planar array

comprising 508 sensors and measuring 1.3 m in diameter [49], [50]. Sensors

are placed non-periodically. Each sensor of ROMANIS is able to sample at

196000 samples per second. The frequency band of ROMANIS is 25 kHz−75 kHz

which is also the frequency band that contains significant amount of energy from

snapping shrimp. 25 kHz and 75 kHz are selected to give the most effective

imaging resolution and range. The angular resolution of this array is roughly

1◦ at the highest frequency of operation. A fully populated array requires more

than ten thousand sensors, driving up the computational complexity beyond

current practical limits. Without sacrificing the resolution, a sparse array was

implemented in the design [51]. Figure 2.8 shows the aperiodic sensor placement

of ROMANIS.

Throughout the study, ROMANIS was used to record snapping shrimp

noise in Singapore waters. The large number of sensors improve the detection

capability of snaps especially the multipath propagations which are generally

weaker in strength.

2.5 Summary

In this chapter, we presented the topic of underwater passive sensing by

introducing several applications. We proposed using snapping shrimp noise for
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Figure 2.7: A photograph of ROMANIS.
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Figure 2.8: Sensor placement of ROMANIS. Each gray cell represents a sensor.

passive sensing, and provided a description on the snap mechanism, its signal

statistics as well as the established results of some applications. As passive

sensing is closely related to passive localization, the ideas of passive localization

were briefly reviewed. Finally, we concluded the chapter by discussing the details

of the receiver which is going to be used in the study.
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Chapter 3

Detecting the DoA-ToA of transient impulsive signals

Cross-correlation-based TDoA is known to be effective in detecting the source

of a continuous signal impinging on an array of sensors. However when multiple

transient impulsive signals which have similar acoustic signatures are observed

simultaneously, the performance of the TDoA method degrades drastically.

Beamforming estimates the time domain propagating signals given the array

sensor data through coherent and incoherent sum. Identifying high amplitude

elements from the beamformed output yields DoA-ToAs of impulsive signals.

This method may prone to false positive detection due to sidelobe of the

beamformer. In this chapter, we propose robust methods, namely Sparse

and reduced-Sparse, to detect DoA-ToA of impulsive transient signals such as

those originating from multiple sources of snapping shrimp. The robustness is

measured based on true positive and false positive detection rate of DoA-ToA

of impulsive signals using receiver with different aperture sizes and number of

sensors. A robust DoA-ToA method possesses high true positive and low false

positive detection in all receiver configurations.

3.1 Signal model

To formally introduce the problem, we present a signal model to describe the

acoustic pressure sensor array data of the impulsive transient signals. Let the
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acoustic center of an array be the origin of a Cartesian coordinate system. Let

J be the number of transient impulsive signals arriving from the far-field, i.e.,

the signals are represented by {(φ∗j , θ∗j ,Γ∗j )}Jj=1 where ∗ denotes the true value.

Each signal is associated with a 3-tuple (φ∗j , θ
∗
j ,Γ
∗
j ), consisting of the azimuth

angle, elevation angle, and the ToA. The acoustic pressure data of sensor m of

the array at time tn = n
Fs

, n ∈ Z≥0, can be written as

xm(tn) =

J∑
j=1

sj(tn − (Γ∗j + τm(φ∗j , θ
∗
j ))) (3.1)

where Fs is the sampling rate. sj(tn) is the acoustic pressure of signal j at time

instance tn. τm(φ, θ) is the time delay associated with the additional time needed

for a source signal to reach the sensor m, and is given by τm(φ, θ) = pT
mq(φ,θ)
c ,

where q(φ, θ) ∈ R3 is the unit vector in the signal propagating direction, pm ∈ R3

is the sensor location, and c is the speed of sound in water. Figure 3.1 illustrates

a simplified signal model by considering two impulsive transient signals.

The discrete Fourier transform (DFT) of the T collected snapshots of the

sensor data can be written as

xm(fk) =

J∑
j=1

exp(−j2πfkτm(φ∗j , θ
∗
j )) exp(−j2πfkΓ

∗
j )sj(fk) (3.2)

for fk = k
T Fs, k = {0, 1, · · · , T − 1} where j =

√
−1. The DFT of M -sensor

array data can be expressed as

x = Ac (3.3)

where A = [A1, · · · ,A|B|] ∈ CMT×T |B| is an overcomplete array response matrix
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Figure 3.1: A sketch of sensor array observing the arrival of two impulsive
transient signals. The vertical red arrows indicate the spatial displacement of
the propagating signal at the particular snapshot.

represented as a partitioned matrix, with column sub-matrices of the form: [52]

Ab =



a(f0, φb, θb) 0 · · · 0

0 a(f1, φb, θb) · · · 0

...
...

. . .
...

0 0 · · · a(fT−1, φb, θb)


(3.4)

where a(fk, φb, θb) = [exp(−j2πfkτ1(φb, θb)), · · · , exp(−j2πfkτM (φb, θb))]
T, and

b = 1, 2, · · · , |B| where B is the discrete space of all possible DoA. x =

[x1(f1), x2(f1), · · · , xM (f1), x1(f2), . . . , xM (fT−1)]T ∈ CMT is the column vector

of the Fourier coefficients of the array sensor data. c = [c1, · · · , c|B|]T ∈ CT |B|

with cj = [sj(f0), · · · , sj(fT−1)]T for j = 1, 2, · · · , |B| is the column vector with

J non-zero blocks denoting the phase shifted Fourier coefficients of the arrivals.

Note that the ToA functions are non-linear. The next step is to extend the
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overcomplete sensing matrix to include the discrete space occupied by all possible

ToAs. This extended formulation does not scale well as the size of the sensing

matrix increases exponentially with the number of possible ToAs.

3.2 DoA-ToA power map

The discrete space of all possible DoA-ToA is denoted by S. The DoA-ToA

power map z is a vector indexed by S such that the amplitude of the element

indicates absolute square of acoustic pressure of the signals in DoA-ToA space.

Based on the aforementioned signal model, we outline the cross-correlation-based

and beamforming-based method in generating DoA-ToA power map. Following

that, we discuss the recent development of high resolution beamforming based

on sparse DoA. We further extend this idea to propose sparse DoA-ToA method.

3.2.1 Cross-correlation-based TDoA (XCorr)

We can find the ToA of a snap at the sensor by cross-correlating the snap with

the time-series sensor data. Since a snap is unknown a priori, we do not know

exactly the acoustic signal structure of the snap. In existing literature, snaps are

usually approximated by segments of the time-series sensor data, which consists

of distinct peaks [29], [37]. Let sensor m′ be the reference sensor. In order to

find the main peaks of the snaps in data of sensor m′, the data is preprocessed

to form an enveloped sensor data such as

x̃m′(tn) =
√
x2
m′(tn) + H[xm′(tn)]2 (3.5)
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where H is the discrete Hilbert transform operator. The enveloped sensor data

is the magnitude of analytic sensor data based on Hilbert transform. Enveloping

sensor data reveals the instantaneous amplitude of the sensor data which is

essential to find main peaks of the snaps. N peaks exceeding a selected threshold,

denoted by u, of the enveloped sensor output are identified as snaps with the

ToA at sensor m′ indicated by ζm′,i for snap i = 1, 2, · · · , N . Let snap i be

sref
i (tn) =


xm′(tn) if |tn − ζm′,i| ≤ ls

2

0 otherwise

(3.6)

Equation 3.6 defines estimated snap i extracted from the acoustic recording of

sensor m′. The subtraction in |tn − ξm′,i| ≤ ls
2 determines the non-zero values

of sref
i (tn) according to the time stamp of the estimated peak of snap, denoted

by ξm′,i, and the time length of snaps, denoted by ls. The process of identifying

snaps from the sensor array data is named as snap detection. TDoA of snap i

between sensor m′ and m 6= m′ can be obtained by solving

arg max
−ll≤t≤ll

∣∣∣∣∣∑
n

xm(tn)sref
i (tn − t)

∣∣∣∣∣ (3.7)

where the TDoA is bounded by the maximum time lag ll which is dependent on

the size of the array. The DoA-ToA detection i, denoted by (φ′i, θ
′
i,Γ
′
i), maximizes

the number of consistent TDoAs of snap i. Hence, we have {(φ′i, θ′i,Γ′i)}Ni=1 and

without loss of generality, we can construct the DoA-ToA power map of this

method, denoted by zXCorr, such that the non-zero elements are indexed by
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{(φ′i, θ′i,Γ′i)}Ni=1 with amplitude 1 and other elements are zeros. Snap detection is

sensitive to the threshold value u. A large u would result in the detector failing to

pick up weak signals, whereas a small u would result in detecting too much noise.

Furthermore, the use of cross-correlation for TDoA estimation is susceptible to

error. This is due to the fact that multiple transient impulsive signals, which

include snaps and the corresponding multipath signals, can be found within

the maximum time lag of a particular snap. The acoustic signature between

different arrivals cannot be easily distinguished. Interested readers can refer

to [25],[40],[43] for further details regarding a variety of XCorr implementations.

3.2.2 Beamforming

3.2.2.1 Delay and sum (DAS)

The time domain DAS beamformer estimates the time domain propagating

signals through coherent and incoherent sum of the propagating signals given the

array sensor data [53]. Identifying high amplitude elements from the beamformed

output yields DoA-ToAs of impulsive signals. Formally, the time domain DAS

beamformed output can be written as

αDAS(φ, θ,Γ) =
1

M

M∑
m=1

xm(Γ− τm(φ, θ)) (3.8)

where (φ, θ,Γ) ∈ S. The vectorization of αDAS(φ, θ,Γ) for all the elements in

S is denoted by αDAS and the DoA-ToA instantaneous power map of the DAS

beamforming-based method is simply zDAS = |αDAS|2. In fact, zDAS is noisy

due to the high sidelobe of the DAS beamformer.
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3.2.2.2 Hough

To reduce the noise in the instantaneous power map, the sensor array data can be

preprocessed such that peaks of enveloped sensor data, exceeding the threshold u,

are set to ones while others are set to zeros across all the sensors. Subsequently,

the time domain beamformed output of the preprocessed sensor array data yields

the DoA-ToA power map denoted by zHough. We use superscript Hough for the

annotation because it is analogous to finding multiple planes in the preprocessed

sensor array data [38]. Like the cross-correlation-based TDoA method, choosing

threshold u is non-trivial. This method resembles the DAS-based method for

small u, while at large u, it suppresses weaker snaps. The original idea of the

Hough-based method is proposed in [37], [38].

3.2.3 Exploring sparsity

3.2.3.1 Block-Sparse (BS)

With the assumption that only a small number of wideband signals arrive at

the array in the observation window, a DoA estimation technique based on the

assumption of sparse DoA has been proposed [54] [52]

ĉBS = min
c

1

2
‖Ac− x‖22 + λ

|B|∑
b=1

‖cb‖2 (3.9)
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and a more intuitive form of this beamformer based on basis pursuit denoising

(BPDN) is given by [55]

ĉBS = min
c

|B|∑
b=1

‖cb‖2

s.t. ‖Ac− x‖2 ≤ ε. (3.10)

The solution of Equation 3.10 ĉBS is an estimate of c in Equation 3.3 based on

the objective function, L1/L2-norm. This mixed norm enforces block-sparsity

on the solution which promotes spatially sparse wideband signal reconstruction

[56]. ε2 denotes the upper bound on the noise power of the signal model. λ

controls the tradeoff between model misfit and block-sparsity of the solution.

In order to have a stable recovery for block-sparse solution using Equation 4.15

and Equation 3.10, the coherence of A, defined by the maximum off-diagonal

element of absolute Gram matrix of A, has to be low [55], [57]. A simple way to

reduce the coherence of A is to use a non-periodic array [57]. Let

V =
1√
T


exp(−j2πf0t0) · · · exp(−j2πf0tT−1)

...
. . .

...

exp(−j2πfT−1t0) · · · exp(−j2πfT−1tT−1)

 (3.11)

be the discrete Fourier transform matrix and W be the block diagonal matrix

of V. The DoA-ToA power map of the BS method can be computed such

as zBS = |WHĉBS|2. However, the wideband characteristic imposed by BS

method is necessary but not sufficient to describe a impulsive transient signal

since wideband signal can be non-impulsive and/or non-transient. For instance,
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Equation 3.10 can be rewritten as

α̂BS = min
α

|B|∑
b=1

‖Vαb‖2

s.t. ‖AWα− x‖2 ≤ ε (3.12)

where cBS
b = VαBS

b is the time domain beamformed output in direction b. Since

V is a unitary matrix, minimizing ‖VαBS
b ‖2 = ‖αBS

b ‖2 does not impose sparsity

on the time domain beamformed output signal in direction b. This is in contrast

with the prior knowledge of the transient impulsive signal which has sparse

support in the time domain.

3.2.3.2 Sparse (S) – proposed method 1

The time domain beamformed output of the transient impulsive signal should

be sparse in both DoA and ToA. We can reformulate Equation 3.3 as

x = AWα. (3.13)

and a sparse solution of α can be recovered via

α̂S = min
α
‖α‖0

s.t. ‖AWα− x‖2 ≤ ε. (3.14)

The time domain beamformed output α̂S is an estimate of the inverse DFT of c

in Equation 3.3 based on the objective function, L0-norm, which calculates the

total number of non-zero elements of a vector. Minimizing L0-norm yields the
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sparsest solution of Equation 3.13 and also the sparsest DoA-ToA power map.

However, there is no efficient algorithm to solve Equation 3.14 to obtain the

optimal solution. The closest possible convex relaxation of the problem is

α̂S = min
α
‖α‖1

s.t. ‖AWα− x‖2 ≤ ε (3.15)

which can be solved efficiently using either second-order cone program or first

order method. Let the coherence of A be κ. The coherence of AW can be

written as

µ(AW) = max
i,j,i6=j

{|WHAHAW|(i,j)}

≤ κVHV

= κ. (3.16)

This shows that the coherence of AW is upper bounded by coherence of A. The

property for allowing stable recovery is preserved. As a result, stable recovery of

sparse solution using Equation 3.15 is feasible if we have A with low coherence.

3.2.3.3 reduced-Sparse (rS) – proposed method 2

To minimize the effect of steering and model mismatch, a very large sensing

matrix A has to be constructed so that all the array responses of the signals

can be accurately represented by linear combination of the columns of A.

Considering a discrete space of field of view be −50◦ to 50◦ azimuth angle and

−20◦ to 20◦ elevation angle with the spacing of 0.5◦, and the discrete space of
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time of arrival be 0 to 4999 samples with the spacing of 1 sample, the dimensions

of A based on an array with 500 sensors is in the order of millions times ten of

millions while the dimensions of W is in the order of ten of millions times ten

of millions. This leads to a computationally expensive optimization problem in

Equation 3.14. An intuitive way to improve the efficiency of this method is to

reduce the size of A and W. Energy of the DAS beamformed output defined by

yb =
∑

Γ

|α(φb, θb,Γ)|2. (3.17)

can serve as an indicator to eliminate the obvious redundant DoAs and hence

only a subset of B is retained to generate a reduced-size A and W. Formally,

this subset can be written as B̃ = {(φb, θb) ∈ B|yb > Pp[y]} where Pp[y] refers

to pth percentile of the value in vector y. To avoid any confusion, the method

of using the complete matrices and reduced-size matrices are coined as S and

reduced rS respectively. The sparse DoA-ToA power maps can be denoted as

zS = |α̂S|2 and zrS = |α̂rS|2.

3.3 Discussion

3.3.1 DoA-ToA detection

In this section, we discuss a process to extract the DoA-ToA detection

{(φi, θi,Γi)}Ni=1 from the DoA-ToA power map z. This is obvious for zXCorr

as the non-zero element of zXCorr is exactly the DoA-ToA of the snaps. Other

methods tend to recover the DoA-ToA power map of snaps based on different

criteria. Since the acoustic signal of a snap spans more than one sample and the
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array responses of the adjacent DoAs are highly correlated, zHough, zDAS, zBS,

zS, and zrS, to some extent, comprise multiple high amplitude elements (main

peak of the snaps) surrounded by low amplitude elements (acoustic signal of a

snap besides the main peak, spatial leakage of the snaps, sensor noise and etc.).

Locating these high amplitude elements gives the DoA-ToA detection.

Let 4φ, 4θ, and 4Γ be the threshold distances of the DoA-ToA detection.

Let 4z be the threshold amplitude of the DoA-ToA detection. The DoA-ToA

detection D can be obtained using peak finding algorithm in a 3-dimensional

space. This can be done firstly by setting the small value elements in z to zeros

based on the threshold amplitude and then selecting local maximums among

the adjacent non-zero elements. Closely located peaks are eliminated based on

the threshold distance because these peaks are probably due to the acoustic

variability of snap or spatial leakage through highly correlated array response in

DoA. We summarize the peak finding algorithm in Algorithm 3.1. We present a

simple example in Figure 3.2 to further illustrate the algorithm. For convenient

visualization, the figure contains a rough sketch of z.

Algorithm 3.1 Peak finding

Require: z, S, D = ∅, 4z, 4φ, 4θ, 4Γ

1: S̃ contains the indexes of local minimum of the thresholded z using 4z

2:

(φ′, θ′,Γ′) = arg max
(φ,θ,Γ)

z(φ,θ,Γ) s.t. (φ, θ,Γ) ∈ S̃

3: Q = {(φ, θ,Γ)||φ′ − φ| > 4φ, |θ′ − θ| > 4θ, |Γ′ − Γ| > 4Γ, (φ, θ,Γ) ∈ S̃}
4: S̃ = S̃ ∩ Q, D = D ∪ (φ′, θ′,Γ′)
5: repeat 2, 3, 4 until S̃ = ∅
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Figure 3.2: The two filled squares are the DoA-ToA detections. Both filled
squares and filled circle are the selected peaks. The horizontal dashed line
illustrates the threshold amplitude and the vertical lines show the threshold
distances.

3.3.2 Practical considerations

The transient signal is sparse in time since it has very few non-zero samples

within T . Reconstruction of a sparse time domain signal is feasible by randomly

choosing a partial knowledge of its Fourier coefficients (Compressed Sensing) [58].

Random selection produces partial DFT matrix which satisfies the restricted

isometry property (RIP) to ensure high probability of stable recovery using

L1-minimization [59]. By randomly choosing a set of frequencies such that index

of frequency k ∈ Ω ⊂ {0, 1, · · · , T−1} we can reduce the memory requirement for

storing huge A. Within the observation period, the DoA of the signals is sparse

in B which corresponds to a widely spread wavenumber (spatial frequency).

High-resolution DoA estimation can be achieved by having a random sample of

the spatial information using a sparse array.
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Assuming a known noise power is impractical since the arrival of a snap is

random. We can identify the main peaks of the snaps using simple thresholding

and peak finding as described in the previous section. Then, we define the

trimmed data of sensor m as

xtm(tn) =


0 if tn ∈ {ζm,i}Nmi=1

xm(tn) if otherwise

(3.18)

where ζm,i is a ToA of detected snap i at sensor m and Nm is the number of

detected snaps at sensor m. We can estimate ε = ‖xt‖2 where xt is the Fourier

coefficient vector of the trimmed sensor array data. By identifying and then

eliminating the peaks of snaps observed in each sensor, we wish to obtain the

sensor data without snaps so that they can be used to compute an upper bound

of noise power for the optimization problem.

3.4 Numerical simulations

In this section, we study the detection performance of the aforementioned

methods based on the simulated sensor array data of the impulsive transient

signals in 3 different cases as shown in Table 3.1. The impulsive transient signal

j was generated according to an exponentially damped sinusoid represented as

sj(t) =


βj exp(−btn) cos(2πf stn), if tn ≥ 0

0, otherwise

(3.19)
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where βj is the amplitude of the main peak of signal j, b is the decay constant,

and f s is the frequency of the sinusoid. b = 10000 and f s = 30000 Hz were chosen

to imitate the transient and wideband behaviour of the snaps. Figure 3.3 shows

the unit amplitude time domain simulated signal. Two signals were generated

in case 1 and case 2. The signals were purposely simulated with DoA-ToAs close

to each other in case 2. Case 3 is similar to case 2 with the additional three

weak signals. ROMANIS was used to record all of these signals which were

contaminated by independent and identically distributed (IID) Gaussian noise

of zero mean and variance σ2, with the peak signal to noise ratio (PSNR) defined

by

PSNR = 10 log

(
1
J

∑
j β

2
j

σ2

)
. (3.20)

Two plots of simulated observed signals of a sensor are shown in Figure 3.4,

one without noise and the other with noise. Let S = Sφ ∪ Sθ ∪ SΓ where the

set of azimuth angles Sφ = {−20◦,−19.5◦, · · · , 20◦}, the set of elevation angles

Sθ = {−20◦,−19.5◦, · · · , 20◦} and the set of time of arrivals SΓ = {0, 1, · · · , 499}.

We set the threshold u to 99.0th percentile of the sensor data for snap detection.

u is a small positve real value smaller and close to 99.9th in order to avoid false

positive snap detection from the sensor data. The typical maximum time lag

of XCorr is the diameter of the receiver divided by speed of sound which gives

0.844 ms. Array response A was generated by randomly selecting 64 frequency

points while the reduced-size A was based on 90th percentile of the energy of the

DAS beamformed output. We computed zXCorr, zHough, zDAS, zBS, zS, and zrS

accordingly. Optimization toolbox, SPGL1, was used to solve for zBS, zS, and
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Figure 3.3: Time domain simulated s1.

zrS [60], [61].

Table 3.1: Simulation setup.

Case Signal β φ θ ΓFs (sample)

1
s1 1.0 −6.3◦ −8.1◦ 49.2
s2 1.0 −6.1◦ 5.2◦ 249.3

2
s1 1.0 −6.3◦ 3.4◦ 49.2
s2 1.0 −6.1◦ 5.1◦ 72.3

3
s1 1.0 −6.3◦ 3.4◦ 49.2
s2 1.0 −6.1◦ 5.2◦ 72.3
s3 0.8 5.8◦ 4.2◦ 125.7
s4 0.8 11.1◦ −3.8◦ 230.3
s5 0.8 2.4◦ 9.6◦ 400.8

Given the DoA-ToA power maps, DoA-ToA detections were obtained based

on 4φ = 1◦, 4θ = 1◦ while 4Γ = 0.510 ms is the time length of a snap. The

detected DoA-ToA is true positive (TP) if it is within the threshold distance of

the actual DoA-ToA. The true positive rate (TPR) is the number of TP divided
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(b) With noise at 10 dB PSNR

Figure 3.4: Acoustic pressure recording of a sensor for two simulated signals.

by the number of actual DoA-ToA. False positive count (FPC) is defined by

the number of detections which is beyond the threshold distance of the actual

DoA-ToA. By varying the threshold amplitude, the TPR vs FPC curves were

plotted based on the average of 50 noise realizations. We defined low PSNR as

10 dB and high PSNR as 20 dB in all cases.

The discussion on the detection performance using varies methods is shown

in Figure 3.5. As the amplitude of the non-zero elements of zXCorr are the same,

there is only one point in all of the TPR vs FPC plots for XCorr regardless of the

threshold amplitude. In case 1, DAS, S, and rS methods achieve ideal detection

performance, i.e., TPR=1, FPC=0, by choosing the right threshold amplitude.

Others approach close to the ideal detection performance with a small number

of FPC. Similar observations can be obtained in the result of case 2 except that

the detection performance of XCorr and Hough degrade extensively in case 2.

When the TDoA of two signals is less than the maximum time lag of XCorr, the

method fails to identify the snap across sensors using cross-correlation. When

two signals are close in DoA and ToA, Hough suffers from a large number of
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false positive detections. In case 3, XCorr, Hough, and BS have poor detection

performance compared to the other methods.
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Figure 3.5: Simulations at 10 dB PSNR.

Using the complete set of 508 sensors of ROMANIS, we noticed that DAS, S

and rS are able to achieve ideal detection performance in all the simulated cases.

To differentiate the performance among these methods, we reduced the effective

diameter of ROMANIS by considering sensors within the radius of 0.3 m as

shown in Figure 3.6 and recomputed case 3. A small aperture receiver is always

preferable provided the detection performance can be maintained. However,

this effectively decreases the resolution and PSNR of the receiver. In Figure 3.7,

43



CHAPTER 3. DETECTING THE DOA-TOA OF TRANSIENT IMPULSIVE
SIGNALS

the detection performance of S and rS surpass that of DAS when using the

scaled-down array in case 3. One of the reasons is that DAS seems to be easily

susceptible to false positive detection at 10 dB and 20 dB PSNR. In general,

the detection performances of S and rS are fairly consistent and are robust in

a variety of circumstances such as the simulated cases. Even though rS uses

the reduced-size A, it does not suffer performance degradation in detecting the

DoA-ToA of snaps.
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Figure 3.6: Sensor placement of scaled-down ROMANIS. The gray color sensors
are those used in the simulation.

3.5 Summary

In this chapter, we discussed the transient impulsive signal model based on an

array of sensors. We outlined the existing methods in detecting DoA-ToA of the

impulsive transient signals such as those originating from snapping shrimp. We
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Figure 3.7: TPR vs FPC plot of case 3 using the scaled-down ROMANIS.
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explored the option of using sparse DoA-ToA as the prior knowledge of the signal

support in detecting the DoA-ToA of these impulsive signals. We demonstrated

that the proposed method has several advantages over the existing methods via

numerical simulations. We will revisit the performance of these methods based

on experimental results in Chapter 6.
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Chapter 4

Geometric models of the direct arrival and

surface-reflected snaps

In the previous chapter, we studied the DoA-ToA detection problem of impulsive

transient signals such as those produced by the snapping shrimp, and proposed

a sparse estimation method which overcomes the limitations of existing methods

by its ability to distinguish similar arrivals which are adjacent in DoA or ToA.

However, DoA-ToAs do not convey range information of far-field arrivals and

hence, we cannot estimate the location of snaps. Given that water surface is like

an acoustic reflector, we are able to associate the direct and surface-reflected

snaps. In this chapter, we formulate geometric models by considering an

effectively larger virtual array consisting of the actual array and its image above

the water surface. This enables us to construct a range estimator for the snap

by measuring the TDoA between the direct and surface-reflected arrival.

4.1 2-dimensional geometric model

A snap generates multipath propagations in warm shallow waters. The primary

propagating path is the direct arrival. The first order propagating paths are the

reflections at air-water interface and water-seabed interface, namely the surface

and bottom reflections. The reflection coefficient is approximately -1 for a snap

47



CHAPTER 4. GEOMETRIC MODELS OF THE DIRECT ARRIVAL AND
SURFACE-REFLECTED SNAPS

reflected at the water-air interface so the surface reflection is the same as the

direct arrival with 180◦ phase inversion [62]. Due to the high absorption loss,

especially in areas with sandy seabed, the bottom reflection and higher order

propagations are ignored. For simplicity, we assume that water surface is calm

and flat, and that both direct and surface-reflected arrival propagate in the same

azimuth angle. The reason for both arrivals propagating at the same azimuth

angle is the fact that the orientation of the receiver is unperturbed such that

the broadside of the receiver is parallel to the water surface and the z-axis of

the receiver is perpendicular to the water surface. This yields a 2-dimensional

geometric model as shown in Figure 4.1.

In Figure 4.1(a), azimuth angles of the direct and surface reflection of snap

i are the same, and are denoted by φi. In Figure 4.1(b), elevation angles of

the direct and surface reflection of snap i are denoted by θdi and θri respectively.

Elevation angle φi carries a positive sign if it is above the OA line parallel to

water surface. Ri and Di are the distances traveled from the origin of snap i to

the receiver. The ToA of the direct and surface reflection of snap i are τdi and

τ ri . During the observation period, we assume that the nominal depth of the

receiver h is constant.
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(a) 3-dimensional view

(b) Cross-sectional view

Figure 4.1: 2-dimensional geometric model with two arrows indicating direct
arrival and surface reflection of a snap. (a) shows a 3-dimensional view of the
direct and surface reflection of snap i. (b) shows the cross-sectional view of the
snap propagating at azimuth angle φi.
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We have

cos(θdi ) =
ai
Di
, (4.1)

cos(θri ) =
ai

Ri + R̃i
, (4.2)

and

δi = Ri + R̃i −Di (4.3)

where δi = c(τ ri − τdi ) and c is the underwater speed of sound. Equation 4.1-4.3

can be written compactly as

δi = ai

(
1

cos(θri )
− 1

cos(θdi )

)
. (4.4)

Equating the two vertical distances hsi , we derive

|d− a tan(θdi )| = a tan(θri )− d. (4.5)

By squaring both sides of Equation 4.5 and selecting the non-trivial solution, we

obtain

ai =
2h

tan(θdi ) + tan(θri )
. (4.6)

The range of snap i can be written as

Di =
2h cos(θri )

sin(θdi + θri )
(4.7)
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based on Equation 4.1 and 4.5. Finally, the location of snap i is

Λi = Di


cos(φi) cos(θdi )

sin(φi) cos(θdi )

sin(θdi )

 (4.8)

according to the Cartesian coordinate system in Figure 4.1. Note that D′i is

parameterized by h which is only known approximately and requires an ensemble

of arrivals to improve the a priori knowledge.

Using ROMANIS, we collected ambient noise acoustic pressure data at Selat

Pauh anchorage in Singapore waters which has an average depth of 15 m. The

data is dominated by impulsive transient signals generated by snapping shrimp.

DoA-ToA of the impulsive signals were identified and then associated into coarse

direct and surface-reflected snaps. The computation method regarding the coarse

pairing is discussed in the subsequent chapter. In concise description, this is

a method which utilizes a few general physical properties of surface reflection

to eliminate nuisance arrivals from the detected DoA-ToAs. At the moment,

you may assume that the coarse direct and surface-reflected snap is a noisy

association which we can easily derive from the DoA-ToA of impulsive transient

signals. The coarse direct and surface reflection of snap i is represented by

3-tuple ((φi, θ
d
i ), (φi, θ

r
i ), δi) where (φi, θ

d
i ) is the azimuth and elevation angle of

the direct arrival, and (φi, θ
r
i ) is the azimuth and elevation angle of the surface

reflection. Combining Equation 4.4 and Equation 4.6, we can relate the 3-tuple
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of coarse pair i by

δi = 2h

[
cos(θdi )− cos(θri )

sin(θdi + θri )

]
. (4.9)

This relation is depicted in Figure 4.2 which displays the scatter points according

to 3-tuple of the coarse pairs collected from the data. The gray curve represents

Equation 4.9 and the majority of scatter points form a plane-like cluster

on this curve, these being attributed to the correctly associated direct and

surface-reflected snaps. The correct association is denoted by blue color. Points

outside the cluster, denoted by red color, are likely to be the wrong associations.

This shows that the experimental data in Singapore waters, to some extent,

agrees with the geometric model of the direct arrival and surface-reflected snaps.

However, this model assumes that both direct and surface reflection have

the same azimuth angle, that the water surface is completely flat, and that the

orientation of the receiver is aligned with the water surface. The real sensor

array data may not completely fit into this simple geometric model.
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Figure 4.2: Scatter plot of the δi, θ
d
i , and θri based on the coarse direct and

reflection arrivals generated by acoustic recording in Singapore waters. Points,
which fit well on the the curve, are labeled in blue color while others are in red
color.

4.2 3-dimensional geometric model

By relaxing the aforementioned assumptions, we present a more general form of

geometric model in this section. We set up a right-handed coordinate system

with its origin at the acoustic center of the receiver, x-axis pointing along the

broadside direction, and y-axis pointing along the row of sensors. Let di and ri be

the direction unit vectors of the direct and reflected arrival pair i respectively.

These unit vectors are the generalization of θdi and θri with different azimuth

angles. We consider d̂i, r̂i, and δi to be the measured quantities for each snap i.

Let Did̂i be the position vector of the snap i. Let Rir̂i be the position vector

of the point of reflection in the ocean surface, and n̂i be the unit vector normal

to the surface (pointing downwards) at that point. We assume the undisturbed

ocean surface to be a plane given by the equation xTŝ = h + ηi where x is
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any point on the surface, ŝ is normal to the surface (pointing upwards), and ηi

is the depth deviation from the nominal water depth, h, due to wave motion.

ŝ effectively captures the exact orientation of the receiver on the sea floor. We

assume that h and ŝ do not change over the observation period, but are unknown.

In practice, we may know them approximately. Figure 4.3 displays the geometry

of a direct and surface-reflected arrival pair.

Figure 4.3: 3-dimensional geometric illustration of a direct and surface-reflected
arrival pair.

The path length difference δi is given by

δi = Ri + |Did̂i −Rir̂i| −Di. (4.10)
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Rearranging and squaring both sides, we get

Ri =
δ2
i /2 +Diδi

Di + δi −Did̂T
i r̂i

. (4.11)

Since the point of reflection must lie on the ocean surface, the perturbed nominal

water depth can be written as

Rir̂
T
i ŝ = h+ ηi (4.12)

which is the projection of Rir̂ onto ŝ. The normal vector ni is given by

n̂i = U(U(Did̂i −Rir̂i)− r̂i) (4.13)

where U(x) is an operator generating a unit vector from vector x. Since r̂i,

n̂i and v̂i = U(Did̂i − Rir̂i) are coplanar, there exists β1 and β2 such that

n̂i = β1v̂i−β2r̂i. Law of reflection ensures −r̂Ti n̂i = v̂T
i n̂i so that −β1r

T
i v̂i+β2 =

β1 − β2r̂
T
i v̂i which leads to β1 = β2. Since n̂i = β1(v̂i − r̂i) and n̂i is a unit

vector, β1 = 1
|v̂i−r̂i| and thus n̂i = U(v̂i − r̂i). This confirms the correctness of

Equation 4.13.

In the case of a calm unperturbed water surface, n̂i = −ŝ and ηi = 0. In the

presence of waves, n̂i = −ŝ+νi where νi indicates the local roughness of the sea

surface. Substituting Equation 4.13, we get

U(U(Did̂i −Rir̂i)− r̂i) = −ŝ + νi. (4.14)
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The left hand side of Equation 4.12 and Equation 4.14 depict the indirect noisy

measurements of h and ŝ respectively. If h and ŝ are known and ηi is ignored,

the range of snap i can be estimated based on

D′i =
δ2
i /2− h

r̂Tŝ
δi

h
r̂Tŝ
− h

r̂Tŝ
d̂T
i r̂i − δi

. (4.15)

Subsequently, the location of snap i is defined as

Λ′i = D′i

(
Td̂i

)
. (4.16)

where T is the transformation of the receiver axes to the datum axes. Since

ŝ = [sin(αo), sin(ρo) cos(αo), cos(ρo) cos(αo)]T where αo and ρo are the pitch and

roll of the normal vector of datum, we can write the transformation matrix as

T =


cos(−αo) 0 sin(−αo)

0 1 0

− sin(−αo) 0 cos(−αo)




1 0 0

0 cos(ρo) − sin(ρo)

0 sin(ρo) cos(ρo)

 (4.17)

where the first matrix describes the pitch rotation at y-axis and second matrix

is the roll rotation at x-axis according to the right-handed rule. Combining

Equation 4.15 and 4.16, we notice that the estimated location of snap i is a

function of h and ŝ if DoA-ToA of the direct and surface-reflected snap i is

known.

Given the direct and surface-reflected snaps, and parameters h and s, we

compute the δi for snap i by solving the nonlinear Equations 4.10, 4.12 and 4.14
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Figure 4.4: Absolute error of δ between measurement and geometric model with
respect to snap index.

with ηi = 0 and νi = 0. We compare the measured path length difference

using TDoA of direct and surface reflection, denoted by δ, with the geometric

model-based path length difference, denoted by δmodel in Figure 4.4. The 2D

geometric model is also included as a benchmark. The correct and wrong

association of the direct and surface-reflected snaps can be easily shown since

wrong association suffers from larger error compared to correct association. By

considering receiver orientation, the 3D geometric model can better approximate

the multipath propagation of the snap than the 2D geometric model and

subsequently improves the agreement between δ and δmodel as shown in

Figure 4.4(b).

4.3 Sensitivity analysis

The 3-dimensional geometric model is equivalent to the 2-dimensional geometric

model if the ocean surface is unperturbed (ηi = 0,νi = 0) and the orientation

of the receiver is aligned to the water surface, i.e., ŝ = [0, 0, 1]T. As a result, the
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sensitivity analysis on the 3-dimensional geometric model is applicable to the

2-dimensional geometric model. For ease of notation, index i is omitted in this

section. Let d̂, r̂, and δ be known exactly but not h and ŝ. The range estimator

in Equation 4.7 is a function of the prior knowledge of the parameters such that

D′(h+ εh, ŝ + εŝ) =
δ2/2− h+εh

r̂T(ŝ+εŝ)
δ

h+εh
r̂T(ŝ+εŝ)

− h+εh
r̂T(ŝ+εŝ)

d̂Tr̂− δ
. (4.18)

where the a priori parameters (h + εh, ŝ + εŝ) are defined by the summation of

the actual value of the parameters (h, ŝ) and the errors (εh, εŝ).

To simplify the notation, we define R′ = h
r̂Tŝ

which linearises the parameter

errors such that R′ + εR′ = h+εh
r̂T(ŝ+εŝ)

. Hence, we can write

D′(R′ + εR′) =
δ2

2 − (R′ + εR′)δ

(R′ + εR′)− (R′ + εR′)d̂Tr̂− δ
(4.19)

where εR′ is related to εh and εŝ. The range estimation error due to the a priori

parameters can be written as

D′(R′ + εR′)−D′(R′) = D′(R′)εR′

[
− 1

R′ + εR′ +
δ

−1+d̂Tr̂

]
(4.20)

The magnitude of the estimation error turns out to be

|D′(R′ + εR′)−D′(R′)| ∝ D′(R′)|εR′ |. (4.21)

We notice that the error is linearly proportional to the range of the snap.

We are also interested in identifying which parameter is more significant in
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generating larger range estimation error. The previous paragraph has shown the

direct relation between |εR′ | and the range estimation error. Thus, it is sufficient

to just present the relation between |εR′ | and the parameters. Let εŝ = 0. We

have

|εR′1 | =
1

r̂Tŝ
|εh|. (4.22)

Let h = 0. We have

|εR′2 | =
1

r̂Tŝ

(
h

r̂T(ŝ + εŝ)

)
|r̂Tεŝ|

≤ 1

r̂Tŝ

(
h

r̂T(ŝ + εŝ)

)
|εŝ| (4.23)

The upper bound is due to Cauchy-Schwarz inequality and |r̂| = 1 [63]. For

comparison, we replace the magnitude of the errors by the same fractional

perturbation, denoted by 0 ≤ e ≤ 1, with respect to the magnitude of the

parameters. This can be written as |εh| = eh and |εŝ| = e|ŝ| = e. Equations

(4.22) and (4.23) become

|εR′1 | =
h

r̂Tŝ
e, (4.24)

|εR′2 | ≤
h

r̂Tŝ

(
1

r̂T(ŝ + εŝ)

)
e. (4.25)

Snaps are located in far-field and the receiver orientation is close to [0, 0, 1]T, and

hence 0 < r̂T(ŝ + εŝ) < 1. When snaps are farther away, the value approaches

0, and when snaps are nearer, the value approaches 1. In general, the error of

the receiver orientation is more significant than the error of the nominal receiver

depth for range estimation error in the worst case scenario. For distant snaps,
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range estimation error due to inaccurate knowledge of receiver orientation is

larger as compared to the error due to inaccurate knowledge of receiver depth.

4.4 Summary

In this chapter, we studied the far-field range estimation problem by firstly

looking at the 2-dimensional geometric model of the direct arrival and

surface-reflected snap. We recognized the limitations of this simple model and

hence developed the more general 3-dimensional geometric model, which is based

on less restrictive assumptions. Based on this model, we constructed the range

estimator for the snap which is parametrized by the nominal water depth and

the receiver orientation. We discussed the sensitivity of these parameters to the

estimated range. We also showed that the error of receiver orientation has greater

impact on the estimated range than the nominal water depth. We observed that

the accuracy of the parameters is crucial for snapping shrimp range estimation.

However at this juncture it is still unclear as to how better parameters can be

obtained other than by using the prior knowledge. We will address this problem

in the next chapter.
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Chapter 5

Association and estimation problem in snap

localization

In the previous chapter, we showed that estimated location of snap is a

function of parameters h and ŝ. However, by assuming prior knowledge of

the parameters we may not be able to obtain accurate range estimation. In

this chapter we propose a method to improve the knowledge of the parameters,

with the assumption that these parameters remain constant over the observation

period. In the first part, we assume that we know the associated direct and

surface-reflected snaps so that we can obtain an estimator for the parameters.

This assumption is not true in practice. However, it is important for the

development of the method to improve the a priori knowledge of h and ŝ given

a perfect association. Through numerical simulations, we will show that the

derived method is capable of estimating the locations of snaps even if a small

number of wrong associations of direct and surface-reflected snaps exist. Then, in

the second part of the chapter, we relax the assumption of perfect association and

establish a relatively comprehensive problem for snapping shrimp localization.

An algorithm, which simultaneously associates the arrivals and estimates the

parameters, is discussed.
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5.1 Estimating the nominal water depth and receiver orientation

5.1.1 Formulation

Estimating h and ŝ from one associated direct and surface reflection arrival of

snap is non-trivial since there are more unknowns than number of nonlinear

equations. Let P be the number of associated direct and surface-reflected

snaps collected during the observation period. The small variation over the

nominal water depth h is represented by a set of IID random variables {ηi}Pi=1,

while the small variation in the water surface normal vector is represented

by a set of IID random vectors {νi}Pi=1. Figure 5.1 depicts the 3-dimensional

geometric model, showing multiple snaps reflected from different water surface

conditions. Let h′ and ŝ′ be the estimates of h and ŝ. Let {Di}Pi=1 be bounded

by {[lDi , uDi ]}Pi=1 respectively, and considering Ri as a function of Di, then the

equations U(U(Did̂i−Rir̂i)− r̂i) = −ŝ+νi for i = 1, 2, · · · , P can be illustrated

as a set of curves on an unit ball by varying {Di}Pi=1. All the curves should pass

close to ŝ since they are shifted by {νi}Pi=1 from ŝ. According to Rir̂
Tŝ = h+ ηi,

varying {Di}Pi=1 creates lines on h shifted by {ηi}Pi=1. All the lines should lie in

the vicinity of h. Estimating h and ŝ reduces to finding h′ and ŝ′ that is closest

to all the curves and the lines. The closeness can be measured by the distance

between the estimates and the points on the curves and the lines.
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Figure 5.1: Geometric illustration of two direct and surface-reflected snaps.

We can write this as an optimization problem:

h′, ŝ′ = arg min
h̃,˜̂s:‖˜̂s‖2=1

P∑
i=1

min
lDi≤D̃i≤uDi

(
‖R̃ir̂Ti ˜̂s− h̃‖22

+ λ‖˜̂s + U(U(D̃id̂i − R̃ir̂i)− r̂i)‖22
)

(5.1)

where D̃i defines a point on the respective curve and line which has the shortest

Euclidean distance from h′ and ŝ′, and R̃i is a function of D̃i. λ > 0 is a tuning

parameter controlling the relative importance of the closeness in the curves and

closeness in the lines. Note that {D̃i}Pi=1 is not the estimate of {Di}Pi=1. It is

used solely to describe the distribution of the curves and the lines.

Estimating h and ŝ involves solving nonconvex optimization problem in

Equation 5.1. Considering a smooth bathymetry and calm sea state, we can

initialize h̃(0) to the average nominal water depth at the receiver deployment

location and ˜̂s(0) = [0, 0, 1]T both values of which should be close to the actual h
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and ŝ. For k = 1 iteration, the single-variable inner minimization of Equation 5.1

can be efficiently solved for {D̃(k)
i }Pi=1 given h̃(k−1) and ˜̂s(k−1). Subsequently, we

solve the outer minimization of Equation 5.1 for h̃(k) and ˜̂s(k) given {D̃(k)
i }Pi=1.

The two-step minimization is repeated for the next iteration until the objective

function value is lesser than a predefined positive small number. Let f be the

objective function of Equation 5.1. The decrease of the objective function value

over iterations can be shown as follows:

f(D̃
(k)
i , h̃(k), ˜̂s(k)) ≤ f(D̃

(k)
i , h̃(k−1), ˜̂s(k−1))

≤ f(D̃
(k−1)
i , h̃(k−1), ˜̂s(k−1)) (5.2)

for k = 1, 2 · · · . This shows that local optimal estimates can be achieved.

The objective function in Equation 5.1 can be divided into two cost functions.

The first cost is the distance between the estimate and the points on the lines

while the second cost is the distance between the estimate and the points on

the curves. For λ → 0, the first cost dominates and D
(1)
i can always be found

such that the objective function value is close to zero regardless of h̃(0) and ˜̂s(0)

if the lDi and uDi are not tied. The local optimal estimates are simply the prior

knowledge of the parameters. For λ → ∞, the second cost dominates but it is

less likely that we can find D̃i such that the objective function value is zero over

the iterations. However, this might lead to over-fitting in ŝ and consequently

yields large error in the estimate of h.
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5.1.2 Numerical simulations

In this section, we verify the parameter estimation performance of the proposed

method by adopting 2 different simulations. The first simulation features

longer range and randomly distributed snaps, while the second simulation has

shorter range and structurally distributed snaps. 2000 associated direct and

surface-reflected snaps were generated based on ηi ∼ N (0, (0.2 m)2) and

νi = n̂i + ŝ

= −


sin(αi + αo)

sin(ρi + ρo) cos(αi + αo)

cos(ρi + ρo) cos(αi + αo)

+


sin(αo)

sin(ρo) cos(αo)

cos(ρo) cos(αo)

 (5.3)

for i = 1, 2, · · · , 1000 where αi ∼ N (0, 5◦2) and ρi ∼ N (0, 5◦2) are the pitch and

roll of the local water surface whereas αo and ρo describe the orientation of the

receiver. We fixed lDi = 0 m and uDi = 300 m for all i. The parameters were

estimated using Equation 5.1. We displayed the estimated locations of snaps

based on the actual and estimated parameters for comparison. The locations are

modified such that the origin of z-axis is set on the water surface for convenient

illustration.

In simulation 1, we set h = 15 m, αo = −7◦ and ρo = −5. The sources

were uniformly distributed across [−60◦,+60◦] in azimuth angle, [−5◦,+10◦] in

elevation angle and [100 m, 200 m] in range. Let the average nominal water

depth be h̃(0) = 14 m. When λ = 0, we obtain h′ = h̃(0) and ŝ′ = ˜̂s(0) which

yield estimated range error of approximately 100 m. This shows that using the
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prior knowledge parameters is not a reliable method for range estimation. The

lowest estimation error of h′ and ŝ′ are attained at λ = 5000 and λ = 7000

respectively. This finding is reasonable as the estimator with larger λ tends to

over-fit the curves which determine ŝ. When λ is gradually reduced, more effort

is given to minimizing the error in h. The calculated range of the snaps based on

the estimated parameters is more accurate for large λ and better ŝ′ estimate as

shown in Figure 5.2(c) and Figure 5.2(d). This agrees with the previous result

stating that the error in ŝ′ is more significant than the error in h′ for snaps that

are farther apart from the receiver.

In simulation 2, we examine the capability of the method to estimate the

parameters given that snaps are structurally distributed in space. We set h =

5 m, αo = 7◦ and ρo = −5◦. The snaps were uniformly generated within a

rectangular space defined by [10 m, 20 m] in x-axis, [−20 m, 20 m] in y-axis,

[−1 m, 0 m] in z-axis, and two vertical spaces, both sharing the same interval

[−1 m, 2 m] in z-axis but with one at 10 m x-axis, [9 m, 10 m] y-axis while the

other at [15 m] x-axis, [−20 m,−19 m]. Let the average nominal water depth

be h(0) = 3 m. According to Figure 5.3, the accuracy of D′ is less dependent on

ŝ′ because this parameter becomes less significant when the range of the snap

decreases. Similarly, there is a large estimation error for the range of the snaps

parameterized by the prior knowledge of the parameters.

In short, a large λ, i.e., numbering a few thousands seems to be a reasonable

amount for the two-step minimization. This is because the increment in the

parameter estimation error is small for large λ. Even though a large λ does not

produce optimal estimation for shorter range snaps such as those in simulation
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h(0), ŝ(0)
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Figure 5.2: The accuracy of h′ and ŝ′ and the performance of the range estimator
of snap using the parameters in simulation 1.

2, the parameter error is considerably small compared to the underestimated λ.

5.2 Association and estimation

To determine the snapping shrimp locations from DoA-ToA recording, there are

two crucial pieces of information that need to be known in practice. One is

the parameters of the range estimator like nominal water depth and receiver

orientation. The other is the association of direct and surface-reflected snaps

from multiple arrivals. If many snaps arrive at the origin of the receiver
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‖ŝ
−
ŝ
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Figure 5.3: The accuracy of h′ and ŝ′ and the performance of the range estimator
of snap using the parameters in simulation 2.

approximately at the same time, associating a snap with its reflection is a hard

problem without the exact knowledge of the parameters describing the geometric

model. Observing large number of arrivals potentially increases the number of

wrong pairings if the geometric model is partially known. Given the DoA-ToA

arrivals, we discuss a complete algorithm to solve the problem of snapping shrimp

noise localization. We present the idea starting with the coarse pairing procedure

which eliminates obvious wrong association among all the arrivals, followed by an
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algorithm to associate the arrivals and at the same time estimate the parameters.

5.2.1 Coarse pairing

If N arrivals are observed, we can form, at most, N2 associated direct and

surface-reflected snaps. For brevity we shall refer to the associated direct and

surface-reflected snaps simply as pairs. These pairs include a large portion of

wrong association. In fact, by removing the number of obviously wrong pairs,

we can reduce the number of pairings from N2 to P ′. The P ′ pairs denoted

by {d̂i, r̂i, δi}P
′

i , where d̂i = [cos(φd
i ) cos(θd

i ), sin(φd
i ) cos(θd

i ), sin(θd
i )]T and r̂i =

[cos(φri ) cos(θr
i), sin(φr

i) cos(θr
i), sin(θr

i)]
T, and where superscript d and r represent

direct arrival and surface reflection, can be judiciously formed based on the

physical properties of surface reflection of a calm water surface. The pairs must

satisfy

1. |φd
i − φr

i | ≤ ε

2. θr
i > |θd

i |

3. 0 ≤ δi ≤ 2hu

for i = 1, 2, · · · , P ′ where hu is the maximum water depth. The first property

indicates that the azimuth angle of the reflection has to be within a small

deviation from the direct arrival of the snap. The second property requires the

unit vector of the reflection to be above the direct arrival. Lastly, the difference

in path length is a positive real value, bounded by property 3. The problem size

has been extensively reduced to N arrivals and P ′ pairs where P ′ � N2.
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5.2.2 Joint association and estimation

Let the N arrivals be the vertices, and the P ′ pairs of the arrivals be edges of

a Graph. We define a weighted Graph with incidence matrix G. The weight of

the edge i, denoted by wi, indicates the likeliness of the associated direct and

surface-reflected pair i. Unlike the standard approach, the acoustic signature of

the arrival of the snaps is not very useful in identifying the pairs. We suggest that

the weights be defined by the fitness of the pairs with respect to the geometric

model. Any pair which conforms to the geometrical constraints will have a

large weight and vice versa. However, the geometric model contains unknown

parameters and we can only define the weight as a function of the parameters

such as the nominal water depth and receiver orientation. G is a N by P binary

matrix with the “1” elements representing pairing on the vertices which means

each column of G contains two “1” elements.

The challenge of this problem is that the pairing depends on the unknown

parameters but the parameter estimation requires a good set of pairs. To localize

the snaps, we have to jointly associate the pairs and estimate the unknown

parameter in order to find the set of pairs that maximizes the sum of the weights
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of edges of the Graph. Formally, this can be written as

arg max
x∈{0,1}P ′ ,
h′,ŝ′:‖ŝ′‖2=1

wTx− µf(x, h′, ŝ′)

s.t. Gx ≤ 1,

wi =


1

‖ŝ′+n̂i(h′,ŝ′)‖22
(n̂i(h

′, ŝ′))z ≤ κ,

0, otherwise

for i = 1, 2, · · · , P ′ (5.4)

where x is a P ′-dimensional binary column vector with “1” elements indicating

the existence of the pairs, n̂i(h
′, ŝ′) = U(U(D′i(h

′, ŝ′)d̂i− h′

r̂Ti ŝ
′ r̂)− r̂i) for D′i(h

′, ŝ′)

as given in (4.7) parameterized by h′ and ŝ′. f(x, h′, ŝ′) is the objective

function of (5.1) with respect to variables x, h′ and ŝ′. µ > 0 indicates the

importance between arrival association and parameter estimation. The first

constraint (inequality) of the optimization problem is that every arrival can only

be associated once. The second constraint defines the weight as a function of

the parameters. Let (n̂i(h
′, ŝ′))z be the z-axis element of the normal vector

n̂i(h
′, ŝ′). κ is a real value greater and close to −1. The hard threshold

(n̂i(h
′, ŝ′))z ≤ κ constrains the normal vector of the local water surface to

point approximately downwards, representing a calm sea state. The optimization

problem is complicated and there is no obvious algorithm to solve it optimally.

We next propose an algorithm to solve this problem approximately.
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5.2.3 Alternating association and estimation

Instead of solving the joint association and estimation problem, the location

of the snaps can be estimated by alternatingly associating the pairs with fixed

parameters and then estimating the parameters with fixed selected pairs. Given

the prior knowledge of the parameters, we can compute the weights of the edges

and select a set of pairs that maximizes the sum of the weights (Association).

Next, based on the pairing, we can improve the prior knowledge of the parameters

for the range estimator (Estimation). The Association and Estimation are

repeated in an alternating manner until some criteria are fulfilled. We summarize

the method in algorithm 5.1. A major limitation of the proposed algorithm is

lack of convergence proof as the Association does not guarantee the reduction

of the objective function in Estimation compared to the previous iteration’s.

In fact, we will show that given a good initialization of h and ŝ, the algorithm

stops at a few iterations in the numerical simulations as well as the experimental

results.

After the computation of the algorithm, we can further refine the remaining

pairs by deciding on a threshold with respect to the amplitudes of w to separate

the pairs into two clusters. Correct pairings fall into the high amplitude cluster,

while nuisance pairings fall into the low amplitude cluster. Since the association

and estimation algorithm selects the distinct set of pairs that maximize the

weights of the edges of the pairs, this algorithm is not able to deal with those

pairs having very small weights which are probably nuisance pairs as long as they

are not overlapping with other arrivals. The existence of the small number of
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Algorithm 5.1 Alternating association and estimation for snap localization

Require: {(d̂i, r̂i, δi)}P
′

i=1, G,
x(0) ← 0,
h′(0) ← average water depth,
ŝ′(0) ← [0, 0, 1]T,
k ← 0,
maxIter← maximum number of iterations,
εh ← positive small value,
εŝ ← positive small value

1: Given

wi =

{
1

‖ŝ′(k)+n̂i(h′(k),ŝ′(k))‖22
(n̂i(h

′(k), ŝ′(k)))z ≤ κ,

0, otherwise
for i = 1, 2, · · · , P ′, solve

arg max
x∈{0,1}P ′

wTx s.t. Gx ≤ 1

for x(k+1).
2: Given x, we solve (5.1) for h̃(k+1) and ˜̂s(k+1).
3: if k ≤ maxIter OR (‖h′(k)− h′(k+1)‖2 > εh AND ‖ŝ′(k)− ŝ′(k+1)‖2 > εŝ AND
‖x(k) − x(k+1)‖2 > 0) then

4: k ← k + 1
5: Go to 2
6: end if
7: return x, h̃← h′(k), ˜̂s← ŝ′(k)

nuisance pairs does not effect the performance of parameter estimation. Hence,

the refinement process is crucial to remove the nuisance pairs at this final stage.

5.2.4 Numerical simulations

Referring to the same data generated in simulation 1 and 2 in the previous

section, we do not assume perfect association of the direct and surface-reflected

snap. In fact, 100 direct arrivals and 100 reflections were independently discarded

to create a 10 percent nuisance arrival noise and hence the maximum number of

correct pairs is 1800. We used λ = 8000 to compute the parameter estimation for

simulation 1 and simulation 2. The estimated location of the snaps λ′ based on

these parameters are shown in Figure 5.4. We only depict the location of snaps

73



CHAPTER 5. ASSOCIATION AND ESTIMATION PROBLEM IN SNAP
LOCALIZATION

at x- and y-axes in simulation 1 for the ease of visualization. We present the

estimated receiver orientation ŝ′ in the form of pitch α(o)′ and roll ρ(o)′ for the ease

of comparison with the actual simulated receiver orientation in α(o) and ρ(o). The

proposed method is able to recover most of the direct and surface-reflected snaps

in both cases. As the snaps are farther apart from the receiver, the accuracy of

the estimated parameters is slightly degraded.
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(a) Actual location of snaps at x- and y-axes
in simulation 1.
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(b) Estimated location of snaps at x- and
y-axes in simulation 1. h′ = 15.1689 m,
ρo′ = −4.9510◦, αo′ = −6.9403o′ and number
of correct pairs is 1795.
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(c) Actual location of snaps in simulation 2.
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(d) Estimated location of snaps in simulation
2. h′ = 5.1205 m, ρo′ = −4.9840◦, αo′ =
7.0444o′ and number of correct pairs is 1787.

Figure 5.4: Location of the snaps based on alternating association and
estimation. The actual location of the snaps is presented for reference.
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5.3 Summary

In this section, we presented a two-step optimization method to estimate the

nominal water depth and the receiver orientation. We verified the performance

of the method in two simulation results. Subsequently, we discussed a more

practical problem which includes the association of the direct arrival and

surface-reflected snaps along with the parameter estimation. We propose an

algorithm to solve this problem suboptimally.
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Chapter 6

Experiments

In the previous chapters, we reviewed the limitations of existing methods in

detecting DoA-ToA of snaps and suggested reliable DoA-ToA detection methods

based on assumption of sparse DoA-ToA. Given the detected DoA-ToA of snaps,

we discussed the challenges in estimating the originating locations of the snaps.

We have showed through numerical simulations that our proposed methods

are capable of solving the snap detection and localization problems. In this

chapter, we first provide a suggestion on refining the estimated range of a snap

by considering the estimated range of adjacent snaps in experimental results.

We describe the details of the experiments, and then present the results based

on the experimental data collected in Singapore waters in 2010 and 2014.

6.1 Spatial smoothing of estimated locations of snaps

For convenience, the range estimator is developed based on the assumption of

unperturbed water depth, where ηi = 0 for any i. In reality, perturbation in

water depth exists and ηi is non-zero, which contributes to the estimation error.

The first order approximation of the range estimation error can be written as

Di −D′i ≈
δ2
i + δ2

i d̂
T
i r̂i

2
(
δi − h

r̂Ti ŝ
+ h

r̂Ti ŝ
d̂T
i r̂i

)2
r̂Ti ŝ

ηi. (6.1)
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Let {ηi}P
′

i=1 be IID symmetric unimodel random variables. We can improve the

estimated range by calculating the mean of an ensemble of signals from the

same snap source. However, it is very difficult to distinguish which are the

signals originating from the same snap source. One alternative in obtaining the

estimated range is to calculate the mean of estimated ranges of multiple adjacent

snap sources having approximately the same DoA. The reasoning behind this

method is the fact that we usually observe snapping shrimp living close together

in colonies whether on coral reefs or man-made structures. So the direct snap

arrivals from the same DoA over time are most likely to have originated from

the same shrimp colony, and not from different colonies at different distances

away. Note also that these shrimp colonies reside on solid structures which

form a barrier for direct arrival propagations from other shrimp sources farther

away. Let B be the discrete set of all possible DoA. Then, we define B′(φi,θi) =

{(φ, θ)||φ − φi| ≤ εφ, |θ − θi| ≤ εθ, (φ, θ) ∈ B} where εφ and εθ are some small

angles. We can now refine the estimated range of the snap i as

D′′i =
1

|B′(φi,θi)|
∑

j:(φj ,θj)∈B′(φi,θi)

D′j . (6.2)

6.2 Experiment 2010

Experiment 2010 was conducted within a stretch of sea covering 500 m×500 m at

Selat Pauh anchorage in Singapore waters during the months of April-May 2010.

ROMANIS was deployed from a barge at the location 1◦12.967′N, 103◦44.382′E

with average water depth of 15 m. It was stationed on the seabed with a

77



CHAPTER 6. EXPERIMENTS

reasonably flat bathymetry where the sea bottom was a mix of sand and mud.

The sea state within the deployment area was reported to be calm. The array

was positioned to face southward such that two long-term mooring buoys fall in

the field of view of the array. Buoy 1 and buoy 2 were at the range of about

144 m and 246 m respectively from ROMANIS. These buoys provide interesting

points for study because the anchor lines of the buoys present suitable habitats

for the snapping shrimp to form colonies that are structurally different from

those lodging on the seabed. Figure 6.1 shows photographs taken during the

experiment and Figure 6.2 is a map indicating the location of the experiment.

Acoustic pressure data dominated by snapping shrimp noise were recorded. In

particular, two 30-second datasets collected on April 11, 2010 at 21:04:55 and

21:05:42 local time respectively were used. We present the experimental results

regarding snapping shrimp noise DoA-ToA detection and localization in the

following section.

(a) Deploying ROMANIS. (b) Long-term mooring buoy 1.

Figure 6.1: Photographs taken from the barge during Experiment 2010.
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Figure 6.2: Selet Pauh location chart. The red box is the working area of the
experiment.

6.2.1 DoA-ToA detection

For DoA-ToA detection, a 10-second data segment collected on April

11, 2010 at 21:05:42 was used. We define the set of azimuth

angles Sφ = {−50◦,−49.5◦, · · · , 50◦}, the set of elevation angles Sθ =

{−30◦,−29.5◦, · · · , 40◦} and the set of time of arrivals SΓ = {0, 1, · · · , 3920} for

S. We set the threshold u to 1st percentile of the sensor data for arrival detection.

The maximum time lag of XCorr is 0.844 ms for the full-sized ROMANIS, and

0.390 ms for the scaled-down ROMANIS with diameter 0.6 m. Array response A

was generated by randomly selecting 512 frequency points while the reduced-size

A was based on 90th percentile of the energy of the DAS beamformed output.

The choice of 512 frequency points is based on the practice of downsampling
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the total Fourier coefficients by a multiple integer factor. We computed zXCorr,

zHough, zDAS, zBS, and zrS accordingly. For DoA-ToA detection, we set the

threshold distance 4φ = 1◦, 4θ = 1◦, and 4Γ = 0.510 ms while the threshold

amplitude 4z is defined by the 0.999th percentile of z. The DoA-ToA detection

is repeatedly computed over the 10-second data segment without overlapping.

Let Na be the number of detected DoA-ToAs and 4Na be normalized value

of the change in the number of detected DoA-ToAs with respect to the full-sized

ROMANIS. We verify the detection performance by plotting the detected DoA

in Figure 6.3 and showing the changes in the number of detected DoA-ToA

between full-sized and scaled-down ROMANIS in Table 6.1. The table shows

that given the same dataset, the detection performance is verified through ∆Na

with different aperture sizes and different number of sensors in the receiver. This

measurement provides an indication on the consistency and robustness of the

detection method with respect to changes in array resolution (smaller aperture)

and changes in array signal-and-noise ratio (lesser number of sensors). Hough

generally has the worst performance in terms of the ability to compute the DoA of

snapping shrimp noise as shown in Figure 6.3. This may due to the large number

of false positive detection. The DoA plot of XCorr using full-sized ROMANIS

differs from the one using scaled-down ROMANIS. Compared with full-sized

ROMANIS, DoA-ToA detection of XCorr using scaled-down ROMANIS tends

to be inconsistent as shown in Table 6.1 and its DoA plot does not give

a clear illustration on the colonies of shrimp. DoA plots of BS and DAS

seem to have consistent detection performance regardless of the ROMANIS size

according to Figure 6.3. However, we observe that the change in the number of
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detected DoA-ToAs of the methods is huge from using full-sized to scaled-down

ROMANIS. This shows that the methods may be sensitive to aperture size as

well as the PSNR of sensor data. Note that BS has the largest number of

detected DoA-ToA but with considerably lesser coverage in DoA. One particular

DoA might contain multiple detections in the ToA-axis as the BS method only

enforces sparsity in DoA space.

The DoA plot using rS mainly consists of three layers: the middle layer,

which corresponds to shrimp colonies residing on the seabed, and the top and

bottom layers which may be due to surface and bottom reflections of the snapping

shrimp noise. There is significant amount of arrivals propagating at 2.4◦ azimuth

angle which probably originated from snapping shrimp colonies on buoy 1. The

proposed method tends to discover more arrivals from buoy 2 at roughly 37◦

azimuth angle. According to the Global Positioning System (GPS) coordinates

data, the azimuth angle between the straight line from ROMANIS to buoy 1 and

the straight line from ROMANIS to buoy 2 is approximately 36◦. This shows

that the detected DoA is close to the calculated azimuth angles of the buoys.
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Table 6.1: Number of detected DoA-ToAs in Experiment 2010.

Method ROMANIS Na 4Na

XCorr
full-sized 2070

31%
scaled-down 2709

Hough
full-sized 8590

93%
scaled-down 16555

DAS
full-sized 3453

56%
scaled-down 1514

BS
full-sized 17352

35%
scaled-down 11326

rS
full-sized 3925

7%
scaled-down 3656
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(a) DoA using XCorr (full-sized)
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(b) DoA using XCorr (scaled-down)
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(c) DoA using Hough (full-sized)
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(d) DoA using Hough (scaled-down)
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(e) DoA using DAS (full-sized)
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(f) DoA using DAS (scaled-down)
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(g) DoA using BS (full-sized)
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(h) DoA using BS (scaled-down)
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(i) DoA using rS (full-sized)
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(j) DoA using rS (scaled-down)

Figure 6.3: The blue points in the scatter plots are the detected DoA. Buoy 1
and 2 are marked by the red circles, while the arrows indicate the azimuth angle
of the buoys.

6.2.2 Snap localization

Based on the entire dataset collected at 21:05:42 local time using full-sized

ROMANIS, DoA-ToA detection using rS were performed and 11482 arrivals

were detected. We set εφ = 20◦ and hu = 20 m for the coarse pairing and

λ = 10000 for the parameter estimation. All the snaps propagating within

εφ = 1◦ and εθ = 1◦ were considered to have from the same shrimp colony.

Two results, one showing purely the estimated location of snaps and the other

showing the spatially smoothed estimated location of snaps, were presented.
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Given a location of a snap, spatial smoothing computes a new location of the

snap through averaging the location of adjacent snaps with similar DoA. Since

this procedure applies to every snaps, the number of estimated locations of snaps

remains the same for both plots.

Without spatial smoothing, Figure 6.4(a) shows that the estimated ranges

of snaps originating from the buoys suffer from deviations of approximately

10 m possibly caused by vertical wave motion. Figure 6.8(b) shows the

spatially smoothed estimated location of snaps such that two clusters of snaps

form vertical patterns while the remaining snaps populate an inclined surface.

The vertical patterns are located 140.13 m and 251.92 m respectively from

ROMANIS. The ranges of these vertical columns match the actual ranges of the

buoys. This suggests that the vectical patterns of snaps are probably originated

from the snapping shrimp lodged on the long-term mooring buoy. The cluster

of snaps over the inclined surface can be mapped to the colonies of shrimp

populating the sloping seabed. The spatial distribution of this cluster gives an

indication on the local bathymetry of the seafloor between buoys, showing a

decreasing depth from buoy 1 at 14 m, to buoy 2 at 11 m. The visual inspection

is slightly different from the reported nominal water depths of buoy 1 and buoy

2 which are 11.5 m and 10 m respectively according to 2010 hydrographic chart.

The accuracy of the buoy depth is mainly limited by the number of snaps

obtained from the area of interest.

For the same dataset, the estimated nominal depth is 16.06 m and the

estimated receiver orientation is ρ′ = 1.6◦ and α′ = 2.0◦. To verify the accuracy

of the estimation, we performed the DoA-ToA detection based on another
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30-second dataset collected at 21:04:55 local time. The spatial distribution

of the estimated location of snaps is generally similar to the previous result

with a slightly different estimated parameters. From the second dataset, we

obtained 15.51 m for the estimated nominal water depth, and ρ′ = 1.7◦ and

α′ = 1.8◦ for the estimated receiver orientation. The experimental results

provided here are adequate in the feasibility study of using small aperture

receiver for localizing snapping shrimp. However, the size and the number of

datasets in this experiment might not be sufficient to reveal most of the shrimp

colonies. We address these issues and further verify the localization performance

by conducting another experiment as discussed in the following section.
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(a) Dots show the estimated locations of snaps without spatial smoothing. The

origin of ROMANIS is denoted by the black cross.
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(b) Dots show the estimated locations of snaps with spatial smoothing and red

vertical lines illustrate the x-y position of the buoy. The origin of ROMANIS is

denoted by the black cross.

Figure 6.4: Estimated location of snaps in Experiment 2010.
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6.3 Experiment 2014

Experiment 2014 was conducted at St. John Island, Singapore in August 2014.

ROMANIS was deployed at 1◦13.027′N, 103◦51.106′E with average water depth

of 5 m to collect the acoustic pressure recording of ambient noise which is

dominated by snapping shrimp noise. It was surrounded by man-made structures

like the jetty, watergate and fishing farm. A large amount of snaps can be

observed in these areas as they form a conducive environment for snapping

shrimp. ROMANIS was positioned approximately 8 m away facing the jetty

where a lot of snaps can be found. Figure 6.5 shows the photographs of the

experiment and a labeled Google Map indicating the position of the surrounding

man-made structures. Four datasets containing snapping shrimp noise from the

jetty were recorded at different time slots. Each of the dataset is a 300-second

acoustic pressure recording by ROMANIS. The sea state during the recording

was reported to be calm.

6.3.1 DoA-ToA detection

One of the datasets was collected on August 12, 2014 at 15:49:43 local time.

A 10-second data segment was used to verify the performance of DoA-ToA

detection of snapping shrimp noise. The computations of zXCorr, zHough, zDAS,

zBS, and zrS are generally the same as the previous experiment’s. Note that the

receiver was placed near the jetty and close to the coast, and hence reflected

snaps on underwater structure of the jetty as well as seafloor are significant.

An incident of snap might cause a large number diffuse reflections on the rough

surface of these obstacles. For better visualization of snapping shrimp position,
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(a) Deploying ROMANIS at the
jetty.

(b) Jetty

(c) Position of ROMANIS in the labeled Google map.

Figure 6.5: Experiment 2014 at St. John Island, Singapore.

either in the DoA space or the later 3-dimensional Euclidean space, the detected

DoA-ToA is post-processed by setting maximum number of detections to 20 for

each round of DoA-ToA computation over the dataset to reduce the number of

such arrivals.

We examined the detection performance by plotting the detected DoA in

Figure 6.6 and showing the changes in the number of detected DoA-ToA between

full-sized and scaled-down ROMANIS in Table 6.2. The DoA plots for all the
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methods using full-sized ROMANIS are essentially the same, except for the BS

method’s. A visual inspection of the DoA plots show that the estimated location

of snaps in DoA space can be classified into two clusters, a bottom layer and a top

layer. These two layers merge into one at the receiver’s broadside while separate

out beyond the receiver’s broadside. The bottom layer is probably due to the

direct arrivals of the impulsive transient signals originating from snapping shrimp

lodging on the pillars of the jetty. The top layer is simply the mirror image of

the bottom layer caused by surface-reflected snaps. This is obvious especially

in the detected DoA-ToA using DAS and rS. When the size of ROMANIS was

reduced, the changes in the number of DoA-ToA detections using XCorr, Hough,

DAS, and BS based on the same threshold values are huge. The possible reasons

for the difference are the low PSNR and the lack of ability to resolve arrivals

close in DoA-ToA space using small aperture receiver. In contrast, the change in

the number of detections between full-sized and scaled-down ROMANIS using

rS is relatively small. This observation is indeed consistent with the result in

Experiment 2010.
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Table 6.2: Number of detected DoA-ToAs in Experiment 2014.

Method ROMANIS Na 4Na

XCorr
full-sized 1675

43%
scaled-down 2401

Hough
full-sized 2934

51%
scaled-down 1437

DAS
full-sized 2408

55%
scaled-down 1079

BS
full-sized 676

202%
scaled-down 2042

rS
full-sized 2510

15%
scaled-down 2130
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(a) DoA using XCorr (full-sized)
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(b) DoA using XCorr (scaled-down)

-50 0 50

Azimuth (degree)

-30

-20

-10

0

10

20

30

E
le
va
ti
o
n
(d
eg
re
e)

(c) DoA using Hough (full-sized)
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(d) DoA using Hough (scaled-down)
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(e) DoA using DAS (full-sized)
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(f) DoA using DAS (scaled-down)
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Figure 6.6: The blue dots in the scatter plots are the detected DoA.

6.3.2 Snap localization

From the same dataset, 34531 arrivals, which comprise direct arrivals and

multipath reflections of snapping shrimp noise, were detected using full-sized

ROMANIS, and subsequently the location of these snaps were estimated. We

set εφ = 20◦ and hu = 20 m for the coarse pairing and λ = 5000 for the parameter

estimation. We presented two results regarding the estimated location of snaps.

The first is purely the estimated location of snaps while the second is the spatially

smoothed estimated location of snaps.

Figure 6.8 displays the layout of the jetty along with the estimation results
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of the shrimp locations for comparison. Based on εφ = 1◦ and εθ = 1◦, the

estimated snap locations with spatial smoothing reveals some of the pillars of

the jetty. In Figure 6.8(a), it can be seen that without spatial smoothing, the

pillars of the jetty are not so clearly revealed, because there is a bigger spread

of estimated range of snaps from the same colony, possibly due to vertical wave

motion. Comparing the layout of the jetty in Figure 6.7 and the estimated

locations of snaps in Figure 6.8(b), we notice that the vertical patterns formed

by the estimated snap locations match the pillars of the jetty. In particular, the

actual distance between pillar A and B is 4− 8 m while the observed distance is

around 5.87 m. The actual distance between pillar A and C should be at least

4 m since the pillars are not truly vertical but are inclined outwards such that

the base of the pillars are more than 4 m apart. The observed distance between

the two vertical patterns of the estimated shrimp locations, which corresponds

to the pillars A and B, is 6.70 m. The estimated sources of snaps trace out a

slope extending from the seabed to the shore, which is a reasonable result, based

on the local bathymetry information.

The remaining datasets were collected at 16:06:46, 16:44:16 and 16:51:25 local

time respectively. Combining with the aforementioned dataset, the estimated

nominal depth and receiver orientation over four datasets collected in different

time slots are shown in Figure 6.9. On August 12, 2014, a high tide was reported

at 12:45 followed by a low tide at 18:25 with the tidal height dropping gradually

in between. According to the Singapore Tide Table 2014, the tidal height on

August 12, 2014 at Tanjong Pagar, the closest point to St. John Island, measured

1.5 m at 16:00:00 and 1.1 m at 17:00:00 [64]. The difference between these tidal
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heights is 0.4 m.. This agrees with our observation regarding the changes in the

estimated nominal water depth. The rate of reduction of ĥ is the highest between

dataset 16:06:46 and 16:44:16 as they have the largest time difference. The rate

is lower for datasets which are smaller in time difference. The estimated receiver

orientation obtained using snapping shrimp noise is consistent over datasets.

The receiver orientation is shown to be slightly tilted with respect to the sea

level.

Figure 6.7: Layout of the jetty. A, B, and C indicate the pillars of the jetty.
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(a) Dots show the estimated locations of snaps without spatial smoothing. The
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Figure 6.8: Estimated location of snaps originating from the jetty at St. John
Island, Singapore.
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Figure 6.9: Estimated parameters based on different datasets.
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6.4 Summary

In this chapter, we demonstrated that the proposed sparse DoA-ToA detection

method is robust regardless of array size and threshold values. The method is

able to identify impulsive signals originating from snapping shrimp lodging on the

man-made structures in two distinct underwater environments. Subsequently, we

showed that by incorporating the direct arrival and surface-reflected snaps, snap

localization using small aperture receiver is feasible in practice. Field evidences,

such as matching the estimated locations of the snaps with the local bathymetry

as well as comparing the estimated parameters with the official hydrographic

survey data, have been provided.
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Conclusion

7.1 Summary

The main aim of the thesis was to investigate the feasibility of passive

sensing with snapping shrimp noise. Existing DoA-ToA detection methods

are unable to resolve arrivals close in DoA-ToA, especially those using small

aperture receivers. Our method, based on the assumption of sparse DoA is

capable of high resolution DoA detection. We extended the idea by assuming

the propagating snap to be sparse in both DoA and ToA, and developed

reliable methods in detecting the DoA-ToA of snapping shrimp noise. The

sparse DoA-ToA methods outperformed some of the common methods such as

cross-correlation-based TDoA and other variants of the beamforming method

based on ROC curve. Even with a reduced-size array response matrix, the

reduced-sparse DoA-ToA method showed detection performance comparable to

that of the sparse DoA-ToA method. Based on the results on the number

of detected DoA-ToAs and scatter plots of the DoA estimates, (derived from

acoustic recording of snapping shrimp noise in Singapore waters,) we showed

that our sparse DoA-ToA methods performed consistently regardless of the

aperture size of the receiver. The reduced-sparse DoA-ToA method was able

to discover persistent arrivals originating from shrimp colonies populating the
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known underwater man-made structures like the anchor lines of the long-term

mooring buoys, and the pillars of the jetty. In fact, the proposed method could

be applied to DoA-ToA detection problems involving any impulsive signals due

to its general formulation. Note that all the results regarding our methods were

computed by randomly undersampling Fourier coefficients of the sensor array

recording. This finding could be useful for the development of efficient sensing

mechanism that specializes in detecting the DoA-ToA of impulsive transient

signals.

The second part of the study is to estimate the locations of the shrimp

given their detected DoA-ToAs. In general, small aperture receiver can only

estimate the DoA but not the range of snaps in the far-field. But by assuming

that the ocean surface acts like an acoustic mirror, reflecting all the snaps at

the surface, we explored the possibility of estimating the range of the snaps

by measuring the TDoA between the direct arrival and surface-reflected snaps.

To simplify the problem we first assumed that the direct and surface-reflected

arrivals are perfectly associated. Then we formulated a geometric model to

derive the range estimator, which is parameterized by the nominal water depth

and receiver orientation. The 3-dimensional geometric model dispenses the

restriction of the 2-dimensional model which requires the water surface to be

completely flat. Through the sensitivity analysis, we showed that the range

estimation error is linearly proportional to the range of the snap multiplied by

the parameter errors. Parameter error of receiver orientation tends to be more

significant than parameter error of nominal water depth. The range estimation

error increases significantly when contaminated by parameter error in receiver
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orientation compared to parameter error in nominal water depth, at higher snap

ranges.

Understanding the significance of the parameter estimation error, the next

step aimed to improve the approximations, making use of an ensemble of

associated direct arrival and surface-reflected snaps. A two-step iterative method

was introduced to minimize the discrepancy of the model fitting. The iterative

method produces local optimal estimate but this estimate depends on the tuning

parameter which controls the relative importance of the two cost functions of

the method. In numerical simulations, we demonstrated that a large value

of the tuning parameter yields accurate estimated range of snaps which are

further apart from the receiver. Since the parameter error in receiver orientation

becomes less significant at smaller snap range, a smaller value for the tuning

parameter is sufficient.

Finally, we solved the problem of estimating the location of snapping shrimp

by relaxing the assumption of perfectly known associated direct arrival and

surface-reflected snaps. We presented this problem as a joint association and

estimation optimization problem. An algorithm was developed to alternatingly

associate the arrivals with fixed parameters and estimate the parameters with

fixed associated arrivals. Throughout the experiments in Singapore waters,

we were able to reveal the forms of underwater structures of the long-term

mooring buoys and the jetty in 3-dimensional space using solely noise generated

by snapping shrimp inhabiting these structures. The success in detecting and

localizing snapping shrimp noise potentially lays the foundation for a wide variety

of underwater acoustic applications.
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7.2 Future work

The use of underwater ambient sources to do passive sensing is an exciting field

which still requires extensive work for improvement. While we have numerically

shown that ideal detection performance is possible, and experimentally examined

the detection performance using undersampled Fourier coefficients of sensor

array recording, it is still unclear as to what the minimum number of Fourier

coefficients should be. This is an interesting future research direction for

building smaller aperture receivers with lower sampling rate, while preserving

the DoA-ToA detection performance of impulsive signals. In fact, this is one

of the examples in compressed sensing which is a signal processing approach to

acquire the “compressed” signal [65].

In developing the parameter estimator, we proposed a rule of thumb

in choosing the tuning parameter of the estimator instead of deriving a

rigorous procedure to compute the value of the tuning parameter. In certain

circumstances, the tuning parameter can be a predominant factor in determining

the characteristic of the estimator, and therefore a more rigorous study on this

issue is necessary. For snap localization, we noticed through the numerical and

experimental datasets that the alternating association and estimation algorithm

will converge after a number of iterations given the prior knowledge of the

parameters. Further analysis such as the rate of convergence and the correctness

of the algorithm is essential to examine this behaviour.

Our study produces reliable methods for underwater acoustic sensing with

snapping shrimp noise. Equipped with these methods, we may further develop
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other underwater acoustic applications. For instance, the ability to localize

snapping shrimp in 3-dimensional space using small aperture receiver facilitates

coral reef monitoring. The idea of using snapping shrimp noise for coral reef

monitoring using large aperture receiver or merely a one-sensor receiver to record

snapping shrimp noise has been investigated [43], [66]. The former is capable of

covering a large region of interest but is inefficient for long-term monitoring. The

latter is easy to implement but is limited by the area of (monitoring) coverage.

A large-area monitoring system using a small aperture sensor array would be a

viable approach that fills the gap between the two approaches.
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[52] D. Malioutov, M. Çetin, and A. S. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” Signal Processing,
IEEE Transactions on, vol. 53, no. 8, pp. 3010–3022, 2005.

[53] D. Johnson and D. Dudgeon, Array signal processing: concepts and
techniques. Simon & Schuster, 1992.

[54] D. Malioutov et al., “A sparse signal reconstruction perspective for source
localization with sensor arrays,” in MS thesis, Mass. Inst. Technol, 2003.

[55] A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamforming,”
The Journal of the Acoustical Society of America, vol. 136, no. 1, pp.
260–271, 2014.

[56] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.

[57] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals:
Uncertainty relations and efficient recovery,” IEEE Transactions on Signal
Processing, vol. 58, no. 6, pp. 3042–3054, 2010.

[58] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
2006.

[59] E. J. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE transactions on
information theory, vol. 52, no. 12, pp. 5406–5425, 2006.

107



BIBLIOGRAPHY

[60] E. van den Berg and M. P. Friedlander, “Probing the pareto
frontier for basis pursuit solutions,” SIAM Journal on Scientific
Computing, vol. 31, no. 2, pp. 890–912, 2008. [Online]. Available:
http://link.aip.org/link/?SCE/31/890

[61] ——, “SPGL1: A solver for large-scale sparse reconstruction,” June 2007,
http://www.cs.ubc.ca/labs/scl/spgl1.

[62] L. M. Brekhovskikh and Y. Lysanov, Fundamentals of ocean acoustics (3rd
edition). Springer Verlag, 2003.

[63] J. M. Steele, The Cauchy-Schwarz master class: an introduction to the art
of mathematical inequalities. Cambridge University Press, 2004.

[64] Singapore Tide Table Year 2014. Hydrographic Department, Maritime and
Port Authority of Singapore, 2014.

[65] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information
theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[66] M. O. Lammers, R. E. Brainard, W. W. Au, T. A. Mooney, and K. B. Wong,
“An ecological acoustic recorder (ear) for long-term monitoring of biological
and anthropogenic sounds on coral reefs and other marine habitats,” The
Journal of the Acoustical Society of America, vol. 123, no. 3, pp. 1720–1728,
2008.

108



List of Publications

(C1) Y. M. Too and M. Chitre, “Localization of impulsive sources in the oceans
using the method of images,” in MTS/IEEE Oceans-St. John’s, pp. 1-6,
2014.

(C2) Y. M. Too, M. Chitre and V. Pallayil, “Detecting the direction of
arrival and time of arrival of impulsive transient signals,” in MTS/IEEE
Oceans-Monterey’s, pp. 1-8, 2016.

(J1) Y. M. Too, M. Chitre, G. Barbastathis and V. Pallayil, “Localizing
snapping shrimp noise using a small aperture array,” in IEEE Journal
of Oceanic Engineering. (submitted)

(P1) Y. M. Too, M. Chitre, V. Pallayil, Anshu and G. Barbastathis, “Coral reef
monitoring using ambient noise,” in CENSAM 8th Annual Workshop, 29
June 2015. (Poster Presentation)

109


