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Background and Objective: New proposals to improve the regulation of hypnosis in anaesthesia based on 

the development of advanced control structures emerge continuously. However, a fair study to analyse the 

real benefits of these structures compared to simpler clinically validated PID-based solutions has not been 

presented so far. The main objective of this work is to analyse the performance limitations associated 

with using a filtered PID controller, as compared to a high-order controller, represented through a Youla 

parameter. 

Methods: The comparison consists of a two-steps methodology. First, two robust optimal filtered PID 

controllers, considering the effect of the inter-patient variability, are synthesised. A set of 47 validated 

paediatric pharmacological models, identified from clinical data, is used to this end. This model set pro- 

vides representative inter-patient variability Second, individualised filtered PID and Youla controllers are 

synthesised for each model in the set. For fairness of comparison, the same performance objective is 

optimised for all designs, and the same robustness constraints are considered. Controller synthesis is per- 

formed utilising convex optimisation and gradient-based methods relying on algebraic differentiation. The 

worst-case performance over the patient model set is used for the comparison. 

Results: Two robust filtered PID controllers for the entire model set, as well as individual-specific PID and 

Youla controllers, were optimised. All considered designs resulted in similar frequency response char- 

acteristics. The performance improvement associated with the Youla controllers was not significant com- 

pared to the individually tuned filtered PID controllers. The difference in performance between controllers 

synthesized for the model set and for individual models was significantly larger than the performance 

difference between the individual-specific PID and Youla controllers. The different controllers were eval- 

uated in simulation. Although all of them showed clinically acceptable results, the robust solutions pro- 

vided slower responses. 

Conclusion: Taking the same clinical and technical considerations into account for the optimisation of the 

different controllers, the design of individual-specific solutions resulted in only marginal differences in 

performance when comparing an optimal Youla parameter and its optimal filtered PID counterpart. The 

inter-patient variability is much more detrimental to performance than the limitations imposed by the 

simple structure of the filtered PID controller. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Adequate dosing of anaesthetic drugs is required to avoid 

wareness, maintain homeostasis, and reduce postoperative dis- 
∗ Corresponding author: 

E-mail address: jgonzalc@ull.edu.es (J.M. Gonzalez-Cava). 

s

t

g

ttps://doi.org/10.1016/j.cmpb.2020.105783 

169-2607/© 2020 Elsevier B.V. All rights reserved. 
omfort and recovery times in the post-anaesthesia care unit [1] . 

his requires continuous monitoring of the patient’s anaesthetic 

tate, enabling the anaesthesiologist to adapt drug titration as 

eeded. It is this continuous decision-making process that has in- 

pired extensive research on closed-loop control systems for anaes- 

hetic drug dosing. 

This work focuses on control of the hypnosis component of 

eneral anaesthesia, known as the Depth of hypnosis (DoH). We 
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onsider a closed-loop structure where the controller manages the 

nfusion rate of the intravenous anaesthetic drug propofol to main- 

ain a user-defined DoH setpoint, with the output of a cortical EEG 

onitor as measurement signal. The controller needs to attenuate 

he effect of the surgical disturbances. Failure to do so can result 

n patient awareness. The closed-loop system also needs to be in- 

ensitive to high frequency measurement noise typically associated 

ith DoH monitors. Furthermore, and of high relevance to the de- 

ign, the controller must be robust against patient model uncer- 

ainty. 

Properly tuned PID controllers have demonstrated adequate ro- 

ustness, performance and safety in the clinical setting [2] . The 

imple structure and low parameter count are attractive features 

f the filtered PID controller, facilitating synthesis, implementation 

nd verification. Different design approaches have been proposed 

o tune the proportional-integral-derivative parameters of the PID 

ontrollers [3] . More complex controllers have also been devel- 

ped and clinically evaluated [4,5] . Due to the absence of objec- 

ive comparisons between controller structures, it remains unclear 

hether such advanced controller types in closed-loop anaesthe- 

ia could result in an increase in performance with maintained 

afety. 

The design objectives commonly vary between published de- 

igns [6] , and they are not always explicitly stated in works pre- 

enting manually tuned controllers. Variations in the patient co- 

ort, type of surgery, drugs delivered, and the practical imple- 

entation of the controller may bias the comparison [7] . Fur- 

hermore, the sets of patient models used for controller synthe- 

is vary across research groups, as does the dynamics on which 

he obtained controllers are evaluated. While published studies 

ypically investigate the performance of a particular controller, 

hey provide little insight into whether this performance is fore- 

ost limited by the type of controller or by some other fac- 

ors such as the variability in the patient model set used for the 

ynthesis. 

The aim of this study is to directly compare the achievable per- 

ormance of PID controllers and higher-order LTI structures for the 

egulation of the depth of hypnosis in anaesthesia. For this pur- 

ose, the same clinical and technical considerations need to be 

sed for the synthesis of both structures. We have therefore for- 

ulated a robust performance synthesis problem with a clinically 

elevant control objective, which can be solved within both the 

ltered PID and Youla parameter frameworks. This enables com- 

arison of achievable performance of a filtered PID controller, with 

hat of an LTI controller of arbitrary order, for the same (uncertain) 

odel set. 

A Youla parameter, constituting an upper bound on perfor- 

ance for an LTI controller of arbitrary order, is synthesized. While 

ethods for optimising filtered PID controllers over sets of plant 

odels are considered herein, there exists no general [8] , or in the 

onsidered context applicable, method to design optimal LTI con- 

rollers for a set of process dynamics. Therefore, a two-step com- 

arison was proposed. First, the effect of the inter-patient vari- 

bility on the closed-loop performance was studied. The perfor- 

ance achieved by a robust optimal PID synthesized for a set of 

atients was compared with that achieved by individualized opti- 

al PID controllers. Second, the performance of individualised PID 

ontrollers was compared with that of individual Youla parameters 

or the models in the considered set. 

The contribution of this paper is twofold. In addition to the 

roposed method that enables systematic comparison between a 

ltered PID controller and an optimal LTI controller for DoH con- 

rol, our illustrative example shows that the room for improvement 

hen increasing controller order beyond that of a filtered PID is 

arginal when a model set featuring representative inter-patient 

ariability is considered. 
2 
. Modelling the anaesthetic process 

.1. Patient models 

Pharmacokinetic-pharmacodynamic (PKPD) models are used in 

naesthesia to describe the relationship between the hypnotic drug 

propofol) infusion rate, and its effect on a clinical variable (the 

oH) [9] . 

The comparison presented in this work was made using a set 

of 47 paediatrics PKPD models [10] . The models were identi- 

ed from clinical data and then linearised as described in [11] . The 

ain motivation for using this set of linearised models is that ro- 

ust PID controllers, similar to the ones considered herein, have 

een designed for it, and extensively validated both in simulation 

nd clinically [12] . 

Variability can be directly characterised by the linearised mod- 

ls of the set P . A more conservative characterisation is provided 

y the unstructured additive uncertainty model 

 �(iω) = { P 0 (iω) + ρ(ω)� : � ∈ C , ‖ �‖ ∞ 

< 1 } , (1) 

here P 0 is a nominal model, � is any point within the unit disc 

n the complex plane, and ρ is the uncertainty radius. The re- 

ponse P �(iω) was chosen to frequency-wise minimise ρ( ω), while 

overing P(iω) . This results in a convex program, enabling efficient 

omputation of P 0 and ρ from P, as described in [13] . Both P and 

 � were considered as descriptions of inter-patient variability in 

ur study. 

Note that these models and uncertainty description focus on 

ncertainty resulting from inter-patient variability, being the most 

hallenging uncertainty source from a control synthesis perspec- 

ive, and relatedly, the one that has received most research at- 

ention. Uncertainty can also arise as a consequence of intra- 

atient variability (e.g. haemodynamics affecting drug distribution 

nd metabolism) and also as a consequence of limited parameter 

dentifiability from underlying modelling experiments [14,15] . 

.2. Equipment models 

The Bispectral Index (BIS) monitor has been used to measure 

he DoH in a majority closed-loop controlled propofol anaesthe- 

ia systems [16] . We instead assume the use of the NeuroSense 

AV CNS monitor. It is similar to the BIS, but comes with the ad- 

antage of time-invariant response dynamics [17] 

(s ) = 

1 

( 8 s + 1 ) 
2 
, (2) 

aking it more suitable for closed-loop control applications [18] . 

The monitor dynamics (2) were incorporated in our study 

hrough series connection with the patient model. 

Dynamics of modern remote-controlled infusion pumps are es- 

entially static and linear, with negligible quantisation effects. In 

ddition, bandwidth and titration precision of these pumps are 

igh, relative to the requirements imposed on a closed-loop propo- 

ol anaesthesia system. Consequently, no explicit actuator model 

as been employed. 

.3. Disturbance models 

Two main exogenous disturbances were considered in this 

tudy. First, surgical stimuli act as disturbances, increasing the 

oH, unless counteracted. As suggested in [19] , they were mod- 

lled as steps added to the patient output. Second, measurement 

oise was added to the DoH monitor output. A white noise model, 

reviously identified from data [19] , was used. 
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Fig. 1. Block diagram of the closed-loop system. The signals are: DoH setpoint, r ; propofol infusion rate, u ; DoH, z ; measured DoH, y ; surgical disturbance, d ; measurement 

noise, n . 
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. Optimisation-based controller design 

.1. Performance and robustness 

Closed-loop DoH control involves two problems: a servo prob- 

em, associated with the induction of anaesthesia, during which 

he patient state is transitioned from aware to a setpoint DoH; 

 regulator problem, associated with maintenance of anaesthesia, 

imed at disturbance attenuation in the vicinity of the setpoint. It 

s good control engineering practice to separate the two using a 

wo-degree-of-freedom (2DOF) design, as suggested in [20] , where 

he regulator problem is first solved by a feedback controller, that 

s then augmented with a feedforward controller addressing set- 

oint tracking. This work considers the regulator problem. 

A block diagram illustrating the closed-loop system is shown 

n Fig. 1 . The control objective is to attenuate the disturbance, d , 

rom the DoH, z . Considering that sudden large deviations from the 

etpoint are clinically worse than more persistent small setpoint 

eviations, the L 2 norm of the monitored DoH, y , resulting from a 

isturbance step, d , was minimized. 

To ensure robustness of the design, H ∞ 

constraints on the sen- 

itivity function S , and its complement, T = 1 − S, were imposed. 

onstraining ‖ T ‖ ∞ 

and ‖ S ‖ ∞ 

provides robustness to additive pro- 

ess perturbations and loop-transfer perturbations [21] . Measure- 

ent noise was attenuated by imposing an H 2 constraint on the 

ransfer function KS from noise, n , to control signal, u . The noise

ensitivity constraint was expressed using the H 2 , since the out- 

ome of limiting the H ∞ 

norm depends heavily on for which fre- 

uency, with respect to the closed-loop bandwidth, it is attained 

22] . The constraint levels ( M s , M t and M ks ) were chosen to match

orst case values of the constrained functions, evaluated over the 

onsidered inter-patient variability model, with a previously clin- 

cally evaluated PID controller in the loop [12] . These constraints 

imit maximal magnitudes of sensitivity and complementary sen- 

itivity, and bound admissible energy transfer from measurement 

oise to control signal. They do not limit performance more than 

equired for adequate robustness. In particular, it is easy to devise 

xamples with other plant dynamics, where a Youla design would 

utperform a PID counterpart under the given constraints. 

Response undershoot was limited to 10 WAV CNS , preventing the 

orst-case undershoot associated with the 50 WAV CNS to bring the 

oH outside the recommended 40–60 WAV CNS interval for general 

naesthesia. With modern infusion pumps, prevention of actuator 

ear is not a motivation for limiting control signal noise. However, 

lew rate limitations and the risk of the supervising anaesthesiolo- 

ist putting a controller with violently varying output into manual 

ode would be [23] . 

Filtered PID controllers, robust over the model set, P, and the 

ncertain model, P �, were synthesised, alongside individual fil- 

ered PID controllers for each each of the 47 models in P . The lat- 

er were compared with Youla parameters, individually optimised 

or the same 47 models. First, this comparison quantified the bene- 

t of increasing controller order. Second, the comparison between 

he individualised PID controllers with those optimized to be ro- 

ust over P and P �, respectively, quantified the performance lim- 

tations imposed by inter-patient variability. Main considerations 
3 
or the optimisation of the different controllers are presented in 

he next subsections. 

.2. PID controllers 

A general description for the synthesis of the PID controllers 

ncluded in the comparison is presented in this section. Robust fil- 

ered PID controllers in the form 

(s ) = C(s ) F (s ) (3) 

(s ) = k p + k i 
1 

s 
+ k d s (4) 

 (s ) = 

1 

T 2 s 2 + 2 ζT s + 1 

(5) 

ere synthesised. Parameters [ k p , k i , k d ] of the PID controller 

4) were co-optimised with parameters [ T, ζ ] of the filter (5) . 

The parametrisation of K resulted in a non-convex synthesis 

roblem that was approached with a two-stage method. First, a 

lobal optimisation, based on simulated annealing (SA), was per- 

ormed [24] , with logarithmic barrier functions representing the 

onstraints. Since SA is a gradient-free method, it provides no 

eans to verify local optimality. Consequently, the second stage 

omprised gradient-based optimisation by means of the method of 

oving asymptotes (MMA) [25] . The optimisation methods were 

mplemented using the Julia language package ControlSystems.jl 

26] in combination with forward-mode automatic differentiation 

27] . Key implementation aspects are reviewed in [28] . 

The optimisation was performed over a uniform frequency 

rid 

= { ω 1 , . . . , ω N } , ω k = 

kπ

NT s 
, 

here the number of frequency points, N = 2 11 , was numerically 

erified to lie sufficiently dense for the problem at hand. The sam- 

ling period was set to T s = 5 s, matching the actuation interval in

he control system for which the models are intended [12] . 

.2.1. PID control based on the model set 

The filtered PID controller was optimised by maximizing the 

orst-case performance over the patient model set P while sat- 

sfying robustness and undershoot constraints for each patient 

odel in P: 

min 

K 
max 

∀ k ∈{ 1 , ... , #(P) } 

∥∥∥S k 
1 

iω 

∥∥∥2 

2 
(6) 

subject to 

 k ∈{ 1 , ... , #(P) } 
‖ S k ‖ ∞ 

≤ M s 

‖ T k ‖ ∞ 

≤ M t 

‖ KS k ‖ 2 ≤ M ks 

F 

−1 
(

S 
1 

)
≥ m y . 
iω 
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.2.2. PID based on the uncertain model 

Inter-patient variability was represented by P �(iω) , describing 

he set of all possible responses at frequency ω. The problem of 

ptimisation of the worst-case performance while satisfying worst- 

ase constraints over P �(iω) is given by 

min 

K 

1 

π

∫ ∞ 

0 

S 
2 1 

ω 

2 
dω (7) 

ubject to 

∀ ω 
| P 0 KM + 1 | − ρ| KM| − 1 

M s 
≥ 0 

| P 0 KM + f (M t ) | − ρ| KM | − f (M t ) 

M t 
≥ 0 

‖ KS ‖ 2 ≤ M KS 

min 

P �

(
F 

−1 
(

S �
1 

iω 

))
≥ m y , 

here 

f (M t ) = 

M 

2 
t 

M 

2 
t − 1 

nd 

 = 

1 

| P 0 KM + 1 | − ρ| KM| (8) 

epresents the worst-case sensitivity in terms of the optimisation 

bjective generated by P �. A detailed explanation of the deriva- 

ions for the worst-case expressions in (7) and (8) is provided in 

he Appendix. 

The last inequality of (7) , where S � represents any frequency- 

ise realisation of (1 + P K) −1 with P ∈ P �, limits load-response

ndershoot to m y . Minimisation under P � generates the worst case 

or the constraint under S �. Undershoot was limited by enforcing 

hat y k ≥ m y is fulfilled for each corresponding time-domain sam- 

le 

 k = 

1 

N 

N−1 ∑ 

n =0 

Y n e 
2 πn 

N i (9) 

f the response y . Each Y n needs to be selected from a disc in the

omplex plane, generated by P �, before the inverse Fourier trans- 

orm (9) is applied. The radii of these discs are given by the expres- 

ion (A.6) , provided in the Appendix. The smallest contribution to 

 k from disc y N is ρn , resulting in the bound 

 k ≥ y k, 0 −
N−1 ∑ 

n =0 

ρn . (10) 

.2.3. PID control based on the individual models 

A similar formulation to (6) was considered for the optimisation 

f the individualised filtered PID, in which maximisation over k ∈ 

 1 , . . . , #(P) } was replaced by optimising individual controllers for 

ach patient model k . 

.3. Youla synthesis 

The Youla parametrisation characterises all stabilising con- 

rollers, K , for a linear plant, P . Using a suitable representation of a

eneral controller transfer function, it is possible to apply convex 

ptimisation to search for the optimal controller. For a stable plant, 

he Youla parametrisation becomes particularly simple. Introducing 

he Youla parameter 

 = 

K 

1 + P K 

, (11) 

he sensitivity function and its complement can be expressed as 

 = P Q (12) 
4 
 = 1 − P Q (13) 

hile the control signal response to measurement noise is given 

y K S = Q . 

Transient responses were evaluated over T = 80 0 0 s, being a 

ufficient horizon considering propofol PK dynamics. The Youla pa- 

ameter Q was expressed using the Ritz approximation 

 d (z) = Q 0 (z) + 

N q ∑ 

k =1 

x k Q k (z) (14) 

here x k are the scalar variables to be optimised, and Q k (z) = z k −1 

epresents a discrete-time shift. The constant term of (14) is given 

y 

 0 (z) = 

K ind ,d (z) 

1 + P d (z) K ind ,d (z) 
, (15) 

here 

 ind ,d (z) = FOH (K ind (s ) , h ) (16) 

 d (z) = FOH (P (s ) , h ) (17) 

re the first-order-hold discretisations of the optimal individualised 

ltered PID controller and the plant, respectively. 

The same frequency grid and sampling period were used for the 

oula and filtered PID designs. The corresponding cost to be min- 

mised was 

 = 

T/h ∑ 

k =0 

y 2 (k ) . (18) 

he aforementioned robustness constraints on S, T and KS , as well 

s the undershoot constraint on y were introduced. 

To guarantee that J converges as t → ∞ , the controller must 

ave integral action. This was enforced by adding the steady-state 

onstraint 

Q d (1) − 1 

P d (1) 

∣∣∣ < ε (19) 

or some small ε ( 10 −7 was used here). All considered constraints 

re closed-loop convex, meaning that a solution can be found ef- 

ciently. Once the optimal Q d is found, the controller is recovered 

s 

 d = 

Q d 

1 − Q d P d 
. (20) 

he optimisation problem was specified and solved in MATLAB us- 

ng the CVX optimisation library with the MOSEK solver. All solu- 

ions were checked for constraint violations between grid points. 

. Results 

.1. Analysis of the optimisation 

Table 1 provides an overview of the resulting controllers. The 

arameter values obtained through the optimisation are shown in 

able 2 for the robust filtered PID designs. The choice of N q = 400

arameters of the Youla controller, Q K , was deemed sufficient, and 

urther increase resulted in negligible performance gain. Since the 

igh parameter count of Q K renders tabulation infeasible, Bode 

lots for the analysis of the frequency response of each controller 

re presented instead. Fig. 2 reveals a high degree of similarity be- 

ween the considered designs. The main difference between the in- 

ividually optimised PID controllers, K ind , and their Youla param- 

ter counterparts, K Q , lies in the mid-frequency range, where the 

dditional degrees of freedom of K Q provided a phase advance in 
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Fig. 2. Controller Bode plots. a) shows magnitudes, | K ( i ω)|; b) shows phases, 

∠ K(iω) . Colours according to Table 1 . 

Table 1 

List of evaluated Youla parameters and filtered PID controllers, 

and the colour used to represent them in figures of Section 4 . 

Controller Colour Description 

K set blue PID for patient set 

K � orange PID for additive uncertainty model 

K Q green individualised Youla controller 

K ind violet individualised PID controller 

Table 2 

Parameters of the considered filtered PID con- 

trollers. Parameters correspond to the ideal se- 

rial PID form K p (1 + (T i s ) 
−1 + T d s ) . The filter pa- 

rameters are presented as in (5) . Units are: 

K p [mg/kg/min WAV CNS ]; T i [s]; T d [s]; T f [s]. The 

relative damping ζ is dimensionless. 

K p T i T d T f ζ

K set 1.04 314 65.1 15.3 0.71 

K � 1.05 644 38.7 11.1 0.73 

t

t

p

C

t

F

r

r

v

t

w

K

a  

c

Fig. 3. Distribution of optimisation cost ‖ y ‖ 2 2 over the patient model. Colours ac- 

cording to Table 1 . 

Fig. 4. Magnitudes of a) sensitivity | S ( i ω)| and b) complementary sensitivity | T ( i ω)| 

for the considered designs. The horizontal dashed black line shows the constraint 

levels. Thick lines show the worst-case constraint level for each considered con- 

troller type. Colours according to Table 1 . 

Fig. 5. Distribution of noise sensitivity H 2 norm, ‖ KS ‖ 2 , of the considered con- 

trollers over the patient model set. The vertical dashed black line shows the con- 

straint level, M ks . Colours according to Table 1 . 

K

i

s

s

S

a

he range of 0.01–0.05 rad/s. The main difference between the fil- 

ered PID designs were for low frequencies. 

Fig. 3 shows the distribution of the optimisation cost when ap- 

lying the considered controllers over the patient model set P . 

ost values were normalised by the maximum cost α = 316 , at- 

ained over P with the clinically verified filtered PID controller, K C . 

or a particular model, it was observed that the above-mentioned 

elative phase advance of the Youla design in the mid-frequency 

ange resulted in limited performance improvement over the indi- 

idually tuned filtered PID controllers. However, including uncer- 

ainty from the inter-patient variability resulted in a significantly 

orse performance as seen by comparing either of K set or K � with 

 ind . 

Resulting sensitivity and complementary sensitivity magnitudes 

re shown in Fig. 4 . The constraint levels, M s = 2 . 55 and M t = 2 . 08 ,

orrespond to the worst case H ∞ 

norms obtained when evaluating 
5 
 C over P . The H 2 norms and the Bode magnitudes of the underly- 

ng KS were computed for the analysis of the noise sensitivity con- 

traint. Results are shown in Figs. 5 and 6 , respectively. The noise 

ensitivity constraint was active for each controller type except K �. 

pecifically, it was active for each of the 47 models in P under K ind 

nd K Q . In addition, at least one patient model of the set reached 
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Fig. 6. Noise sensitivity magnitude | K ( i ω ) S ( i ω )| for the considered design. Thick 

lines correspond to the closed-loop generating the worst ‖ KS ‖ 2 for each controller 

type. Colours according to Table 1 . 

Fig. 7. Closed-loop response y ( t ) resulting from applying an additive output distur- 

bance of magnitude 10 WAV CNS (solid black line) to each model in the set. Thick 

lines show the responses of maximal undershoot for each considered controller 

type. The dashed black line shows the undershoot constraint level m y . Colours ac- 

cording to Table 1 . 
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Fig. 8. Closed-loop responses of the nonlinear patient models when applying a sim- 

ulated surgical stimulation. a) shows simulated NeuroSense monitor responses. The 

disturbance is shown in solid black; the dashed black line represents the setpoint 

r = 50 WAV CNS , and the undershoot constraint level m y imposed. b) shows the cor- 

responding infusion profiles u . Thick lines show the highest cost over the patient 

model set for each considered controller type. Colours according to Table 1 . 

p

b

m

t

e

d

o

f

i

a

s

w

t

d

c

g

a

d

i

w

e

o

t

i

t

e

w

I  

a  

s

a

t

a

he constraint when optimising K set . As a result, it could be noted 

hat the performance was limited by the constraint level on noise 

ensitivity, KS , in three of the four proposed designs. 

The results of the closed-loop patient output to a step distur- 

ance when considering the linearised patient models is shown in 

ig. 7 . The undershoot constraint was only active for K �. However, 

s a consequence of � being a conservative uncertainty descrip- 

ion, K � resulted in fulfilment of the undershoot constraint when 

valuating the controller over the 47 individual patient models of 

. 

.2. Simulations 

Controller performance of the obtained controllers were evalu- 

ted in a simulation using the 47 nonlinear patient models, from 

hich the linear models comprising P were obtained.A DoH set- 

oint of 50 WAV CNS was considered. With the systems in station- 

rity at this setpoint, a step disturbance of magnitude 10 WAV CNS 

as applied at t = 0 . The outcome is shown in Fig. 8 . All designs

rovided admissible disturbance responses, similar to those result- 

ng from the linearised models. These results show that the con- 

rollers maintain the DoH within the recommended 40–60 WAV CNS 

ange during the maintenance phase, in face of disturbances and 

he design model mismatch caused by the nonlinearity. 

. Discussion 

This simulation study has compared the achievable perfor- 

ance of a widely used and clinically validated PID-based struc- 

ure for DoH control to that involving a more advanced linear 

ime-invariant controller of arbitrary high order. All considered 

ontrollers were optimised using the same performance and ro- 

ustness criteria. The effect of the inter-patient variability on the 
6 
erformance was analysed. Both synthesis and evaluation were 

ased on a set of previously published and verified PKPD patient 

odels. All the designs were performed for linearised versions of 

he patient models. Consequently, the resulting controllers were 

valuated together with the underlying nonlinear models to vali- 

ate the results. The comparison showed that increasing controller 

rder beyond that of a filtered PID, resulted in only marginal per- 

ormance gains, and further improvements were prevented by the 

nter-patient variability. Taking additional uncertainty sources, such 

s intra-patient variability and model parameter uncertainty as- 

ociated with identification from experimental data, into account, 

ill further diminish the margin for improvement. 

The objective used in the current comparison was to minimise 

he L 2 norm of the measured DoH response resulting from the 

isturbance model. To introduce further robustness and associated 

onservatism, an uncertainty description from the model set was 

enerated and considered for the synthesis of a robust controller 

s proposed in [13] . This approach enables the use of model-based 

esigns, from a small number of models with significant spread 

n frequency response. Since a set of models was considered here, 

orst-case performance over the model set was optimised, while 

nsuring that each imposed constraint was fulfilled for each model 

f the set. While optimising mean or median performance consti- 

utes possible alternatives, the worst case was chosen here since it 

ntroduces safety through conservatism. 

Disturbance attenuation was balanced against undershoot, 

hrough imposing a constraint of 10 WAV CNS on the latter. Relat- 

dly, a trade-off between performance and control signal activity 

as introduced through constraining the noise sensitivity function. 

t could be noted that the associated constraint levels M s = 2 . 55

nd M t = 2 . 08 exceeded the typical recommendation [21] . The rea-

on is that robustness to inter-patient variability was enforced to 

 large degree by taking the model set into account, as opposed 

o designing for a single patient model and enforcing robustness 

cross the set using the mentioned constraint levels. Here, M s and 
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 t should instead be viewed as providing additional robustness, 

nsuring stability for patient models which were not fully repre- 

ented by those in P . 

The presented methodology could be applied also to other clin- 

cally representative model sets or synthesis problem formulations. 

tudies conducted to date show that there is a large similarity 

etween the pharmacological behaviours described by the PKPD 

odels proposed for adults and children, see e.g. [29] . On a sim- 

lar note, in some applications a slightly differing objective could 

e preferable. In [12] , a PID controller for propofol anaesthesia was 

ptimised and clinically evaluated. Limiting the time of induction 

or anaesthesia was more heavily emphasized, resulting in param- 

ters values differing slightly from the ones reported here. In ad- 

ition, a comparison between a PID controller and a higher-order 

odel-based controller was conducted in [30] . However, both con- 

rollers included in the comparison were manually tuned. Although 

he same design objective was considered for both controllers, dif- 

erent design criteria were implemented. 

The main limitation of our study lies in the infeasibility of find- 

ng the optimal Youla parameter for a set of models. (While un- 

nown, its performance would be upper bounded by K Q and lower 

ounded by K set .) This is why we have compared optimal Youla 

arameters for individual patient models to corresponding optimal 

ltered PID controller. The two rightmost boxes of Fig. 3 reveal that 

here is very little difference in performance between these two 

esigns. Separate comparison between the individualized filtered 

ID controllers ( K ind ), and those designed to be perform robustly 

cross the inter-patient variability ( K set , K �) reveals that the main 

erformance difference between designs included in the study can 

nstead be attributed to the inter-patient variability. 

. Conclusion 

Given clinically imposed requirements on robustness in combi- 

ation with representative inter-patient variability, increasing con- 

roller order beyond that of a filtered PID controller does not sig- 

ificantly increase achievable performance in propofol DoH control. 

elatedly, there is a significant discrepancy between the achievable 

erformance when considering an individual patient model com- 

ared to a model capturing representative variability within a tar- 

et population. To conclude, there is little to gain by increasing 

ontroller complexity, unless model uncertainty stemming from 

nter-patient variability is reduced. 
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ppendix A 

Expressions pertaining to the studied optimisation problem are 

erived below. The optimisation objective of (7) is to minimise the 
7 
squared) L 2 norm of the output, resulting from a load step distur- 

ance: 

in 

K 
max 

P �

∥∥∥S �
1 

iw 

∥∥∥2 

2 
= min 

K 
max 

P �

1 

π

∫ ∞ 

0 

∣∣∣S � 1 

iw 

∣∣∣2 

dw, (A.1) 

here 

 � = 

1 

1 + P 0 KM + | KM | ρ�
(A.2) 

s the uncertain sensitivity function generated by P �. Introducing 

 = max 
P �

| S �| , 
he minimisation of (A.1) can be formulated as 

in 

K 

1 

π

∫ ∞ 

0 
| S �| 2 1 

w 

2 
dw = min 

K 

1 

π

∫ ∞ 

0 

S 
2 1 

w 

2 
dw. 

he expression (8) for S is obtained by taking the modulus of (A.2) . 

et ϕ be the argument of the term 1 + P 0 KM in the denominator 

f (A.2) . Maximisation of (8) under ρ� then occurs for a point on 

he boundary of � with argument −ϕ. The modulus of S � at this 

oint is given by (8) . 

In the absence of uncertainty, H ∞ 

constraints on S and T are 

quivalent to the loop transfer function, L avoiding discs in the 

yquist plane for all considered frequencies: 

 L − c| − r ≥ 0 . (A.3) 

he centres c ∗ and radii r ∗ of these discs are 

 s = −1 , r s = 

1 

M s 
, c t = − M 

2 
t 

M 

2 
t − 1 

, r t = 

M t 

M 

2 
t − 1 

, 

here the subscripts s and t correspond to the sensitivity and com- 

lementary sensitivity constraints, respectively. See, [31] for fur- 

her details. Generalisations to the case involving the additive un- 

ertainty ρ�, comprises maximising (A.3) under P �. 

The methodology is the same as used to obtain the expression 

8) from (A.2) , resulting in 

| P 0 KM + 1 | − ρ| KM | − 1 

M s 
≥ 0 

P 0 KM + 

M 

2 
t 

M 

2 
t − 1 

∣∣∣∣ − ρ| KM | − M t 

M 

2 
t − 1 

≥ 0 . 

The (squared) H 2 constraint on noise sensitivity can be ex- 

ressed as 

max 
r�

1 

π

∫ ∞ 

0 
| K | 2 | S �| 2 dw ≤ M 

2 
ks 

 

1 

π

∫ ∞ 

0 
| K | 2 S 

2 
dw ≤ M 

2 
ks . 

The undershoot constraint y ≥ m y is enforced point-wise in the 

tep response. This is achieved by constraining 

 

k 
= min 

P �
F 

−1 
(

S �
1 

iω 

)
, (A.4) 

here y k is the minimum of the response y under P � at sample k 

nd F 

−1 the inverse Fourier operator. The minimum y k of (A.4) can 

e expressed as 

 

k 
= y k, 0 −

1 

N 

N−1 ∑ 

n =0 

ρ̄n , (A.5) 

here y k ,0 is the inverse Fourier transform of the response with 

he nominal model P 0 in the loop. For each frequency grid point, 

ndexed by n in (A.5) , the worst case contribution ρ̄n can be ob- 

ained similarly to how S̄ was obtained from S �: 

¯n = 

| KM | ρ
| 1 + P 0 KM | 2 − | KM | 2 ρ2 

1 

2 πω n 
. (A.6) 

ike before, the angular frequency argument (here ω n ) has been 

ropped from (A.6) , to facilitate readability. 
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