
INFORMATION BASED ADAPTIVE PATH

PLANNING AND SAMPLING FOR

ENVIRONMENTAL MONITORING

RAJAT MISHRA

(B. Tech, VIT University (Vellore), India)

SUPERVISORS

Associate Professor Mandar Chitre

Associate Professor Sanjay Swarup

EXAMINERS

Associate Professor He Jianzhong

Associate Professor Prahlad Vadakkepat

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL OF INTEGRATIVE

SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2019





Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources

of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Rajat Mishra

August 2019

ii





Acknowledgments

My research would not have been possible without the aid and sup-

port of a group of people. I take this opportunity to express my

appreciation to them in this acknowledgement.

First and foremost, I would like to express my sincere gratitude to

my PhD supervisors, A/Prof. Mandar Chitre and A/Prof. Sanjay

Swarup, for providing me the opportunity to work in this field of

research. Their commitment and passion for research and solving

applied problems has motivated me to become a better researcher.

Working with them has been a great learning experience and their

guidance has always encouraged me to do quality research work. I

could not have imagined having better supervisors for my PhD work.

I would also like to thank my Thesis Advisory Committee (TAC) chair,

A/Prof. Prahlad Vadakkepat, for his valuable feedback throughout

the course of my work.

I also thank my fellow labmates in ARL1 and Integrated Urban

Waterways group at SCELSE2. I would like to express my gratitude

to Mr. Koay Teong Beng and Mr. Wu Yusong for all their support in

successfully completing the field experiments present in this thesis. I

thank Dr. Aditya Bandla, Mr. Chua Si Hao and Mr. Ooi Qi En for

taking the time out of their schedule to process the samples collected

as part of this work. Adding to these names, I would like to thank

Dr. Prasad Anjangi, Dr. Ahmed Mahmood, Dr. Hari Vishnu, Dr.

1Acoustic Research Laboratory (ARL), Tropical Marine Science Institute (TMSI), National
University of Singapore - https://arl.nus.edu.sg/

2Singapore Center for Environmental Life Sciences Engineering, Singapore - http://scelse.sg/

iii



iv

Bharath Kalyan, Mr. Liang Jie Wong and Dr. Gourvendu Saxena

for the many interesting discussions we had and for making my PhD

journey enjoyable and fun. I would also like to thank Ms. Ong Lee

Lin for organizing all the amazing lab get-togethers and helping me

in research writing.

Finally, I am indebted to my late parents, Mr. Rakesh Mishra and

Ms. Rajni Mishra, for instigating the dedication and motivation to

always pursue my interests. Without their unconditional love and

encouragement I would never have enjoyed so many opportunities.

Special thanks go to my beloved elder sisters, Ms. Richa Tiwari and

Ms. Rashi Dixit, for always supporting me in my professional and

personal endeavours. Last but not the least, I thank all my family

members and friends both in Singapore and abroad who have made

my PhD journey a happy and meaningful one.



Abstract

The environmental processes taking place in oceans, lakes, rivers, and

other water resources are of interest to a broad range environmental

scientists. These processes typically span across large areas and exhibit

spatio-temporal variations, which makes the task of environmental

monitoring challenging. This task is increasingly being automated

using robots such as drones and underwater vehicles.

The constantly changing spatial and temporal distribution of the envi-

ronmental fields put a natural bound on the area that can be surveyed

before the field varies significantly. Due to these natural bounds, the

robot’s path should be adjusted to capture the maximum amount of

information within a limited amount of time and provide a good esti-

mate of the environmental field. The branch of algorithms that solves

this information maximization problem is termed as Informative Path

Planning (IPP).

In this work, we present a comprehensive approach for both monitoring

and physical sample collection for understanding the environmental

processes. We first present the two IPP algorithms to perform the

monitoring task with bounds on the mission time and provide a

good estimate of the environmental field. These algorithms adapt

the path during the task based on the recently collected information,

which is termed as online IPP. We make use of Sparse Gaussian

Processes (SGP) for the field estimation and path planning methods

for coordinating a single robot or a team of robots. The performance of

these algorithms are benchmarked against conventional lawn mower

paths and validated through field experiments. These validation
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experiments show that our frameworks outperform the conventional

monitoring methods. Moreover, we examine the biological relevance

of the field estimated using such frameworks and show that informed

sampling can yield substantial information about the environment. We

also perform a quality analysis of the samples collected using robots

to demonstrate the use case of adaptive frameworks in environmental

monitoring.

The use of online or offline IPP algorithms solves the problem of

monitoring environmental fields. However, the physical sample col-

lection generally happens after field estimation is finished. Such a

sequential approach results in a temporal delay between the actual

sample collection and the completion of the monitoring task. In an

ideal scenario, these two actions should be performed at the same

instance. This problem of simultaneous sampling and monitoring of

an environmental field is addressed by another algorithm present in

this work. This algorithm provides a framework to collect samples

from the hotspots, while using SGP for estimating the field and de-

cision making frameworks to decide the sampling location. Using

simulations, we show that our framework performs well in estimating

the field and meets the scientific objectives for collecting samples.

In addition to the development of these frameworks, vehicle designs

have gone through modifications to improve the robot’s endurance

and maneuverability. Most of these new designs do not have the

conventional AUV structure and thus using simple vehicle dynamics is

not straight-forward. We present a data-driven framework to address

this problem of system identification for AUVs. This framework is

based on an artificial neural network, which learns a model of robot’s

system dynamics using field data. We use field data to benchmark the

performance of our approach and show it outperforms the standard

state space model.
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Chapter 1
Introduction

1.1 Motivation for using Robots in Environmental

Monitoring

Urban freshwater systems are critical components of densely populated large- and

mega-cities [9]. The management and regulation of such systems are largely based

on scientific recommendations, which are obtained using geochemical datasets

[10]. The microorganism communities that play a key role in catalyzing the

geochemical changes are generally considered as a single lumped variable [11].

Such an approach fails to identify and account for the spatial and temporal

variations in environmental parameters and the interactions of associated micro-

organism communities. On the contrary, such small-scale processes by these

organisms add to the variations in the water quality and this influence can be

observed at a macro-scale level [12]. Capturing such variations is critical for the

development of water quality models in urban freshwater systems [13]. Hotspots

or hot moments of chemical constituents are excellent locations for understanding

the dynamics between the water resources and the associated microorganism

communities. Furthermore, experiments for studying the microorganisms and

its activities are generally driven by strong statistical analysis. This means the

data capture methodology and the sampling regimes are equally important for

understanding the microorganisms well [14].

In order to locate and capture these hotspots, the spatio-temporal distribution

of the environmental parameters over the survey field is a necessary information.

In this thesis, such survey problems are referred as monitoring tasks. A general

1
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difficulty with monitoring tasks is modelling the spatial and temporal changes of

the field. However, this difficulty can be mitigated by assuming the environmental

fields are temporally static over a short time period. This assumption reduces

the modelling complexity but adds a constraint on the survey time and thus the

information collection process for estimating the field. The use of Informative

Path Planning (IPP) frameworks is a good solution to such problems as these

frameworks aim at collecting information efficiently. However, most of the these

frameworks focus on path planning approaches to optimize for temporal constraint

[15, 16, 17, 18], and do not address the problem of learning the model from a

large dataset. A framework that can optimize both on planning as well as model

learning is still an open problem, and this applies to both single- and multi-robot

systems. We present two monitoring frameworks, AdaPP and m-AdaPP, to

address these problems.

Once the hotspots are located, the scientists decide the location of taking

a sample. We have termed such a task of sample collection as sampling task.

Generally, the sampling task does not happen as frequently as the monitoring

task but it can be used for solving the sample collection problem. In such an

approach, the monitoring framework will provide an estimate of the field and

this will be followed by sample collection, which will introduce a delay between

monitoring and sampling tasks. In an ideal scenario, this delay should be as

small as possible and some frameworks have suggested approaches to perform

monitoring and sampling task simultaneously to reduce this delay [19, 20]. We

present another single-robot framework that aims at solving this delay problem

while also providing a control over the sampling behaviour.

Another recent advancement in using the robots for environmental monitoring

is the development of new vehicles, which are designed to have higher endurance

and increased maneuverability. However, this advancement has increased the

complexity of vehicle dynamics and thus using off-the-shelf vehicle dynamics

model for designing a controller is not correct. We suggest a data-driven approach

to model such vehicles and compare its performance with a simple dynamics



Chapter 1. Introduction 3

model heavily used in designing controllers.

1.2 Goals

• To provide frameworks for environmental monitoring task and validate

their performance via simulations and field experiments.

• To examine the biological relevance of the field estimated using the envi-

ronmental monitoring frameworks.

• To design a framework which can perform monitoring and sampling task

simultaneously using only the data collected during the survey.

• To provide a data-driven approach for system identification of vehicles with

complex system dynamics.

1.3 Contributions

Our work primarily focuses on solving the field estimation and data collection

problem for environmental monitoring. The specific contributions of this thesis

are listed as follows:

• Formulated an adaptive single-robot framework that uses kernel information

for adaptive path planning and provides a performance improvement in

estimating environmental fields over conventional methods.

• Developed an adaptive multi-robot framework that efficiently coordinates

the motion of a team of robots to provide a good estimate of the environ-

mental field within a stipulated amount of time.

• Validated the performance of the multi-robot framework for providing

better estimates compared to conventional lawn mower paths via field

experiments.

• Examined the biological relevance of informed sampling using the fields

estimated by the adaptive frameworks in freshwater reservoir.
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• Developed a framework for collecting physical environmental samples while

collecting the field data and estimating the field.

• Designed a system identification framework by using multi-layer perceptron

and physics based features for estimating vehicle dynamics.

1.4 Thesis Organization

Chapter 2 provides a review of the relevant literature for the scope of this work.

We discuss the existing methods and list the set of open problems that help in

understanding the impact of our research.

Chapter 3 introduces the problems with the current monitoring approaches for

experiments using single-robot and suggests an information based path planning

framework for the estimating environmental fields. We discuss two single-robot

frameworks in detail and provide comparison results with the current monitoring

approaches via simulation using real field data. We term these two frameworks as

AdaPP and k-AdaPP. The key difference between these two frameworks is in the

planning iteration and Chapter 2 discusses this in detail. The results show that

our algorithm performs well as compared to conventional monitoring approaches.

Chapter 4 provides an extension of the single-robot framework to a multi-robot

setup and we term this multi-robot framework as m-AdaPP. This framework

manages the coordination between the robots to provide an estimate of the field

within a limited mission time. We discuss the use of dynamic programming in

our finite horizon problem and explain our centralized approach for planning.

We benchmark the performance of our this framework and provide results that

show our multi-robot coordination can provide better field estimates in half or

one-third the mission time set for single-robot framework. We further validate

the performance of this framework via field experiments against the conventional

lawn mower approach and show that our framework outperforms it.

In Chapter 5, we examine the biological relevance of the fields estimated using

the multi-robot framework. We use the estimated fields to find the hotspots and



Chapter 1. Introduction 5

coldspots for each survey over different days and collect physical water samples to

analyze the microorganisms in these samples. We use DNA sequencing to identify

different microorganisms and show that the two regions, hotspots and coldspots,

have significantly different communities for different survey areas and different

survey days. This is an encouraging use case of the multi-robot algorithm as it

signifies the importance of informed sampling for microorganism studies.

Chapter 6 introduces a framework for coordinating both physical water

collection and estimation of the field as a combined tasks. We explain the

use of exploration-vs-exploitation method for our combined task and suggest a

modification to our single-robot algorithm to address this simultaneous monitoring

(exploration) and sampling (exploitation) task. We term this framework as

SAM and compare the performance of our algorithm with exploration-only and

exploitation-only approaches and discuss the results in detail.

Robots used for environmental monitoring can cause disturbance in the

environmental field that it is sensing. The first step to quantify this disturbance

is to have an accurate vehicle’s dynamics model. We suggest a neural network

based method for estimating vehicle dynamics in Chapter 7. We discuss the

universal approximation capability of neural networks and explain the use of this

capability in approximating the vehicle model. We suggest the use of physics

based features for estimating the vehicle dynamics and compare its performance

with commonly used dynamics equation. We show our neural network based

approach predicts more accurate system variables compared to the commonly

used equations and thus can be used in designing efficient controllers.

Finally, we summarize our key results and present the future research direc-

tions in Chapter 8.



Chapter 2
Literature Review

2.1 Overview

The environmental processes taking place in oceans, lakes, rivers, and other

water resources are of interest to a broad range of scientists. These processes

typically span across large areas and exhibit spatio-temporal variations, which

makes the task of environmental monitoring challenging. Increasingly, this task

is being automated using Autonomous Underwater Vehicles (AUVs) [21], which

is an advancement over the use of static sensor buoys for monitoring. This

Chapter briefly reviews some of the existing work on AUVs and its application

in environmental monitoring. Section 2.2 briefly explains the importance of

environmental monitoring and sampling. Section 2.3 discusses various frameworks

used for environmental monitoring, which expands to simultaneous sampling and

monitoring frameworks in Section 2.4. Finally, Section 2.5 reviews some of the

new AUV designs and addresses the problem with system identification of these

new AUVs.

2.2 Environmental Monitoring and Sampling

Freshwater systems such as reservoirs or lakes are the main source of drinkable

water and therefore, these systems are critical components of densely populated

large- and mega-cities [9]. The management and regulation of such systems has

largely been based on scientific recommendations, informed purely by indicators

such as chemical and geological characteristics [10]. However, environmental

processes in these freshwater systems are heterogeneous and exhibit both spatial

6
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and temporal variations [22, 23, 24]. The freshwater systems are also a home to

communities of microorganisms that play a key role in impacting the water-quality

indicators, and to the variations in the water-quality parameters [12]. These

microrganism communities have both feed-forward and feed-back interaction with

the large communities of plants and animals centered around waters, which is

termed as freshwater biome. Furthermore, rare places and rare events have the

potential to exert a disproportionate influence on the movement of elements at

the scale of landscapes and ecosystems [12, 25]. Capturing such variations is

extremely important for the development of water-quality models in the freshwater

systems [13, 26], which is generally overlooked due to lack of prior information

on environmental parameters gradients. Hotspots of chemical constituents and

microbial activity are excellent locations where high variations in environmental

parameters and associated microbial communities is available with respect to the

bulk water in the aquatic environments.

2.2.1 Importance of Hotspots

Water quality hotspots in aquatic systems in urban areas can be both harm-

ful and beneficial to the ecosystem, depending on the biological and chemical

characteristics of the hotspot [27, 28, 29]. For example, hotspot formation for

nitrogen (N) and phosphorus removal (P) are beneficial in natural water systems,

especially in the receiving waters of urban areas, such as reservoirs [27, 28]. On

the other hand, hotspots of contaminants formed due to flow characteristics of

water body might influence the local microbial ecosystem by changing dissolved

oxygen (DO) levels and adversely impact the natural processes by altering the

communities of microorganisms [30, 31]. Interestingly, urban freshwater systems

use aerators to improve water quality in reservoirs, which develops artificial

hotspots of dissolved oxygen (DO). However, how such artifical hotspots impact

the existing microorganism communities is not well explored. Moreover, most of

these scientific experiments that study the effects of these hotspots are generally

centered around specific site locations, which are spatially small in comparison to
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the expanse of water resources. It has been shown that a good spatial-temporal

resolution of an environmental parameter not only improves the quality of the

data but also drives the scientific conclusions [32]. Therefore, based on the exper-

imental design, it can be beneficial to increase the survey area of environmental

parameters and help the scientists to easily locate the hotspots.

In addition to finding the hotspots, it is equally important to sample these

regions and discover the associated microbial communities. Sampling from

hotspots of oxygen minimum zones has helped in answering a microorganism’s

role in terrestrial loss of N in inland waters [33]. The importance of hotspot

sampling is not limited to microbial communities only but it can be also used

to study the effects of fish population on biological and chemical parameters of

water resources [34]. Such studies show that sampling from hotspots can provide

us the insights on the micro and macro ecology basis of development of these

hotspots and explain the dynamics of freshwater systems. Therefore, estimating

the distribution of hotspots and sampling from the maximum variations of

environmental parameters such as dissolved oxygen is critical in understanding

the environmental processes in the freshwater systems.

2.2.2 Current Practices in Environmental Monitoring

Buoys and Floats equipped with environmental sensor are used to monitor water-

quality across different water resources such as oceans and freshwater systems.

One of the widely used platforms is Argo Floats [35], which has helped in various

scientific studies [36, 37, 38, 39]. More recently, robotic systems such as AUVs

are being increasingly utilized as fundamental data-gathering tools by scientists,

catering to the need of monitoring and sampling the environmental processes

[21]. A major portion of the AUVs are now designed to carry out scientific

data collection missions [40, 7, 41, 42, 16]. Such robot-aided data collection has

been also used in explaining biological processes [43, 44]. However, the use of

these robots is still limited due to the complex spatio-temporal nature of the

environmental parameters. In order to mitigate these drawbacks, information-
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based planning frameworks have been suggested for environmental monitoring

missions, making these robots more directed towards scientific data collection.

These frameworks are discussed in detail in the following sections.

2.3 Frameworks for Environmental Monitoring

Environmental processes are normally spread across large distances, generally

in the range of kilometers, and vary both spatially and temporally. In order

to monitor these processes through environmental parameters such as pH or

dissolved oxygen, it is ideal to do multiple blanket coverage of the survey area. A

simple approach for doing multiple blanket coverage is to place static buoys using

information from environmental modelling [45, 46]. Such an approach will provide

good temporal resolution, however, it will be a resource intensive approach as each

buoy will require environmental sensors, which will demand regular maintenance.

This motivated developing actuated sensors, AUVs equipped with sensors, which

can be used to provide both spatial and temporal resolution of an environmental

field. Similar to buoy placement frameworks, AUVs can use the information from

the environmental model and guide its motion to provide better coverage of the

survey area. The frameworks that use such approaches of planning based on

information are termed as Informative Path Planning (IPP) frameworks, which

selectively samples the field and produces an approximation of the environmental

field. The Table 2.1 states some of the IPP frameworks used for environmental

monitoring.

One of the challenges in estimating environmental fields is the data collection

process. In general, the IPP mitigates this challenge by evaluating informative

paths using an information measure for unobserved locations[15, 16, 17]. The

robot then traverses the path which provides maximum information as per a

predefined criterion and collects data to give an estimate of the environment.

In general, the IPP frameworks have three components: collecting data while

traversing, adapting the robot’s path to provide a good approximation of the

field and learning a model of the environmental field. The first component is self
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Framework Single-Robot Multi- Robot

Singh et al., 2006 [47] ×

Zhang et al., 2008 [48] ×

Low et al., 2008 [49] ×

Binney et al., 2010 [50] ×

Low et al., 2011 [17] ×

Cao et al., 2013 [4] ×

Kemna et al., 2017 [51] ×

Ma et al., 2017 [52] ×

Hitz et al., 2017 [53] ×

Mishra et al., 2018 [54] ×

Table 2.1: A list of some Gaussian Process based Informative Path Planning
frameworks used for environmental monitoring.

explanatory, whereas, the last two components are the key characteristics which

define the behaviour of all IPP frameworks.

Adapting the robot’s path to provide a good approximation represents the re-

planning capability based on gathered information. Based on the frequency of this

re-planning, the IPP frameworks can be classified as: Non-adaptive algorithms

(offline) which commit to a path and do not adjust based on new observations and

Adaptive algorithms (online) which alter the pre-planned paths on-the-fly based

on the new observations. Several non-adaptive algorithms have been suggested in

the past to solve for near-optimal paths [47, 18, 55, 56] using prior information

of the field. However, the environmental parameters generally undergo temporal

changes and thus the prior information may no longer be valid for planning for

the robot’s path. In contrast, adaptive algorithms have the advantage of allowing

re-planning based on current observations.

The IPP frameworks can also be classified based on the number of robots it

can coordinate. Any framework that can coordinate more than two robots can be

classified as a multi-robot IPP framework [47, 17, 57, 51], whereas, frameworks
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designed to coordinate just one robot are classified as single-robot frameworks

[48, 53, 54]. Each of these two classes of frameworks have its own advantage.

The planning step for single-robot frameworks is less complex as compared to

multi-robot frameworks, however, covering large survey areas with a single robot

may not feasible due to the limited on-board resources of a robot. On the

contrary, multi-robot frameworks can easily mitigate the problem of covering

large survey areas by division-of-labour but the coordination of the team of

robots to efficiently utilize each robot’s resources adds significant computational

overhead to multi-robot IPP frameworks. Moreover, multi-robot frameworks

gather more data in a short amount of time, which requires faster model learning

techniques to achieve real-time performance for the overall system. Such problem

of model learning are currently not addressed in the multi-robot frameworks and

thus limits the usage to small datasets or small survey areas.

The next important component in the adaptive algorithm is the online approx-

imation of the survey area as this approximation governs the future waypoints

in a robot’s path. For example, in the case of water quality monitoring, a good

approach will be to use off-the-shelf simulators like Delft3D [58] or Regional

Oceanic Monitoring System (ROMS) [59]. However, these simulators generally

run on high performance clusters and such computational power is usually not

available in robotic platforms. One good approach to combine these simulators

with path planning is presented in [60]. In this approach, ROMS use the data

from various sensors to produce velocity profiles on a remote server, which can

then be used by the robot for path planning. However, in areas where the sensors

for ROMS are not present or the spatial resolution of ROMS’s forecast is poor,

such an approach will not work.

A commonly used approach in Geostatistics [22, 23] is to assume that the

spatio-temporal environmental field is realized from a probabilistic model called

Gaussian Processes (GPs). The computational power required for learning

a Gaussian Process model is comparatively much less than that required by

simulators. Therefore, this approach has been used several times for path
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planning [16, 48, 57, 49, 17]. In [53], GPs and an information criterion were used

to plan paths for an AUV to segment the environmental field into three different

level sets. Similarly, using GPs, a path planning algorithm based on entropy and

information criterion is suggested in [4]. In all of these works, GP regression is

done using all the data collected during the survey. In a practical scenario, a

water quality sensor [61] can sense data at a frequency of 1 Hz and thus running a

robot with this sensor for an hour will provide 3, 600 data points for learning the

model. In simple terms, this means that the data collected during a survey can

increase rapidly and therefore, the conventional method of doing GP regression

is not feasible. This problem can be solved using sparse GPs. An explanation

of how the sparse GPs can be integrated into a path planning framework is

discussed in [52]. This recent work is directed towards long-term monitoring and

overcomes the spatial and temporal changes by updating the GP model based

on an information criterion. It is a good single-robot framework, however, the

sparse GP point selection can be still improved with a more data-driven sparse

GP variants such as [62]. Moreover, this framework may not work well for time

sensitive missions as the planning step only plans for few waypoints ahead and

does not adapt the path while traversing these few waypoints. Interestingly, the

combination of such sparse GP models and time sensitive mission planning for

the single- and multi-robot frameworks is still missing.

2.3.1 Sparse Gaussian Processes

GP models are commonly used for non-parametric regression problems [63], such

as spatial data modeling [64], image thresholding [65] and soil modeling [66]. For

spatial data regression problems, the training data set D consists of N input

vectors X = {xn}Nn=1, where each vector is two dimensional, and corresponding

target values y = {yn}Nn=1. Moreover, in a standard GP regression formulation

it is common to assume a Gaussian noise model to accommodate measurement

noise. The likelihood of observed values y can be given as p(y|f) = N (y|f , σ2I)

where f is the underlying latent function and σ2I is the noise term. Placing a
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zero mean prior and a covariance function given by K(xn,xn′) and parameterized

by θ, the distribution for a new input x is given by

p(y|x,D, θ) = N (y|kx
>(KN + σ2I)−1y,Kx,x

−kx
>(KN + σ2I)−1kx + σ2), (2.1)

where [kx]n = K(xn,x), [KN ]n,n′ = K(xn,xn′) and Kx,x = K(x,x). As it can

be observed from Eq. 2.1, the computation time for large datasets will be high

as the prediction, and even the training, scales with N3 due to inversion of

the covariance matrix, where N is the total number of datapoints. Sparse GPs

overcome this problem by having sparse approximation of the full GP using only

M points, where M � N . In general, the selection of this subset of M points is

based on some information criterion [67].

A common problem with information criterion based sparse GP method is the

absence of a good method to learn the kernel hyperparameters, because the subset

selection and hyperparameter optimization are generally done independently.

Moreover, when using automatic relevance determination [68] covariance function,

learning bad hyperparameters can adversely affect the prediction performance.

SPGP framework solves this problem by constructing a GP regression model which

finds the active subset and hyperparameters in one smooth joint optimization.

2.3.2 Sparse Pseudo-inputs Gaussian Processes

In a standard GP model [63] with zero mean prior, the kernel function is solely

responsible for estimating the mapping between the input vector and the target

values as shown in Eq. 2.1. Therefore, assuming the hyperparameters of the

kernel function are known, the predictive function is effectively parameterized by

D. In the case of SPGP, this parameterization is done using the pseudo data set

D of size M � N , which has pseudo-inputs X = {xm}Mm=1 and corresponding

pseudo targets f = {fm}Mm=1. The pseudo targets are denoted as f instead of y
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because these targets do not represent the observed values and therefore, adding

the noise variance σ2 can be omitted. The actual prediction distribution has the

noise variance and is given as

p(y|x,D, θ) = N (y|kx
>K−1

M f ,Kx,x − kx
>K−1

M kx + σ2), (2.2)

where [KM ]mm′ = K(xm,xm′) and [kx]m = K(xm,x), for m = 1, 2...,M . On

comparing the Eq. 2.1 and Eq. 2.2, one can clearly observe the reduced com-

putation burden for the inversion of covariance matrix, from a matrix KN with

N ×N entries to a matrix KM with M ×M entries. Following the derivation in

[62], the predictive distribution given a new input x∗ is:

p(y|x∗,D,X) = N (y∗|µ∗, σ2
∗), (2.3)

where

µ∗ = k∗
TQ−1

M KMN (Λ + σ2I)y (2.4)

σ2
∗ = K∗,∗ − k>∗ (K−1

M −Q−1
M )k∗ + σ2. (2.5)

The derivation of QM is omitted here, however, the main cost in computing it

is the inversion of a diagonal matrix [62]. Using the spatial data as input, µ∗

will represent the mean predicted field and the variance σ2
∗ will constitute to the

uncertainity in this prediction. Moreover, the scalar environmental fields can

be non stationary [4] and up to a certain extent, SPGP is capable of modeling

non-stationary GP processes through its pseudo-inputs, which gives it an edge

over other sparse GP methods.

2.4 Informed Sampling and Monitoring Frameworks

Sampling of water hotspots is an important task in many environmental moni-

toring activities, providing a means for us to understand the various processes
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taking place in our water resources. Environmental fields such as temperature or

chlorophyll content, are scalar quantities which exhibit spatio-temporal variations

[22]. Moreover, to achieve the objective of sampling the hotspots, prior knowledge

of the field’s spatial and temporal variations is necessary. Such prior information

regarding the variability is generally not available but by using some recent

adaptive frameworks [48, 15, 4, 57, 54], it is possible to obtain a good approxi-

mation of the environmental field. We define such frameworks as monitoring or

exploration-only frameworks.

In general monitoring frameworks impose a temporal constraint on the field

estimation task. These temporal constraints are used to exploit the quasi-static

characteristic of the environmental fields. In simple terms, the fields are assumed

to be temporally constant for short duration of time, spanning anywhere between

minutes to several hours [22, 24]. For the sample collection task, the monitoring

frameworks can be used to obtain an approximation of the field, which can be

followed by sampling from the hotspots of the approximated field. Such an

approach will require the monitoring task to be completed before the sampling

of hotspots can begin. This sequential order of tasks will introduce a temporal

gap between the field estimation and the physical sample collection and ideally

this gap should be as low as possible.

The framework in [69] suggests an on-line multi-choice hiring algorithm. This

framework presents an algorithm for making irrevocable sample selection decisions

from a set of possible sampling candidates. Following this work, the algorithm in

[19] uses a formulation of secretary-hiring problem [70] and probabilistic model

for field estimation. In both of these frameworks, the field estimation and sample

collection occur in an on-line manner but only for predefined paths, such as lawn

mower or yo-yo motion. Such an approach, which predefines the paths, reduces

the adaptive nature in the task of obtaining a good approximation of the field,

and introduces a bias in the sampling task.

Recently, [20] suggested another framework for simultaneous monitoring and

sampling. In this framework, the sampling and monitoring tasks are distributed
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between the two members of a team, consisting of an explorer robot and a sampler

robot. The sampling is based on a look-back secretary-hiring formulation, which

controls the sampler robot’s motion. The formulation of this framework is

suitable for the scenarios where a robot can either be configured as an explorer

or a sampler, within a team consisting of two or more robots. However, our

objective is to develop a single robot framework for both sampling and monitoring

tasks without the need for prior information about the environmental field. Such

a single robot framework can then be easily extended to a multi-robot system,

where the sampling and monitoring roles can be shared across members of the

multi-robot team.

2.5 System Identification

The environmental monitoring task has motivated significant technological ad-

vancements in the field of Autonomous Underwater Vehicles (AUVs) [71, 72, 73,

74, 75, 1, 3]. Generally, the dynamics of such AUVs are described using six de-

grees of freedom and their respective differential equations of motion [76]. These

equations have parameters that represent the nonlinear components of AUV

dynamics. However, in practice, it is quite difficult to estimate these parameters

and therefore, certain assumptions are made to linearize this model for easier

estimation [77]. These linearized models are actually the simplified equations of

inter-dependent state variables, which are computed using regression analysis of

AUV motion data. However, due to linearization, these models usually fail to

predict the dynamics accurately during complex manoeuvres. Moreover, AUV

designs which have different propulsion mechanisms or have significantly different

body structure as compared to industrial AUVs like Iver, Gavia and Remus

cannot use the linear physics model defined in [76, 77] and a large proportion

of soft robots are developed for environmental monitoring face this challenge

[78, 79, 80, 81, 2]. Therefore, for such systems, the linearized model needs to

be estimated again and tuned to compensate for the change in dynamics. One

way of modelling these systems is to use a linear representation of the AUV’s
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(a) (b)

(c) (d)

Figure 2.1: Girona 500 [1] in different thruster configurations: (a) 3 thrusters
and 3 Degrees of Freedom (DOF)(b) 5 thrusters and 5 DOF, (c) 6 thrusters and
5 DOF and (d) 8 thrusters and 6 DOF.

state variables and control inputs, also known as output equation of a state-space

model. In comparison to the traditional approach, this is an easier method for

estimating unknown dynamics as it utilizes the motion data directly without

requiring detailed analysis of the AUV’s physics model.

Other than the physics-based approach and the state-space model, some other

approximation-based techniques have also been used in the past for learning the

dynamics model [82, 83, 84, 85]. In particular, the feedforward neural networks

have the capability of approximating any continuous function [86] and therefore,

they are good candidates for such applications. Inspired by this, a linearly

parameterized neural network was used to estimate dynamics of a surface vessel

[87]. However, the neural network presented in [87] has no hidden neurons and
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(a) (b)

(c) (d)

Figure 2.2: AUV with new propulsion mechanisms and designs: (a) U-CAT
[2] robot by the Centre for Biorobotics, Tallinn University of Technology, Esto-
nia, (b) a hybdrid AUV, Starbug [3], by CSIRO, Australia, (c) NUSwan and
(d) STARFISH AUV with a vector thruster by Acoustic Research Laboratory,
National University of Singapore, Singapore.

its input features are directly connected to its output layer. It is shown in [88]

that if a complex mapping exists between the input and output units, a large

hidden layer is required in between to estimate the mapping perfectly. Therefore,

in order to develop an efficient dynamics model and predict complex manoeuvres

accurately, a Multi-Layer Perceptron (MLP) type of neural network appears to

be a promising solution.

An MLP is a fully-connected feedforward neural network used for function

approximation. In an MLP, most of its neurons have a nonlinear activation

function, the standard choices of which are signum, sigmoidal or hyperbolic

tangent. Reference [89], along with [90], showed that the use of rectifiers as

activation functions in different neural networks improved their discriminative

performance. Following this approach, in [43] the performance of different
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activation functions was compared, and the results demonstrated that rectifier

neurons were better at finding minima during training for classification tasks, as

well as for contextual analysis. These promising results led to recent advancements

in the area of Deep Learning. In [91], a rectifier neural network coupled with

a quadratic function of the helicopter’s state variables, accurately predicted its

acceleration during complex manoeuvres.



Chapter 3
Adaptive Monitoring using a Single Robot

In Chapter 2, we discussed the Informative Path Planning frameworks used for

environmental monitoring and listed some of the single-robot frameworks. These

frameworks generally have a budget for planning such as fixed mission time or

the number samples a robot can collect. Moreover, these frameworks commonly

estimate the environmental field using GP, which has a training complexity of

O(N3) where N is the number of total training points. In this chapter, we discuss

our single-robot framework which uses the Sparse GPs for estimating the fields

and makes use of decision making techniques for efficient path planning.

3.1 Estimating Scalar Fields using a Robot

Monitoring environmental processes is critical in understanding our water re-

sources. It has helped scientists examine algal blooms and phyisco-chemical

interactions at a micro scale and most of these examinations have been done

using static sensors [45]. However, the water resources are generally spread

over large areas and thus static bouys are only capable of providing a sparse

representation of the environmental process. This has motivated the development

of actuated sensors or robots [21], which can be used to provide both spatial and

temporal resolution of an environmental field. In a typical deployment scenario,

the robots are given the task to survey an area and provide an estimate of the

environmental field. These robots mostly make use of the existing technologies

present in static bouys and their use can be maximized by coordinating their

motion to provide an estimate of the environmental field. The use of IPP (IPP)

20
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frameworks have provided a new approach to solve this monitoring task problem

and in this section, we discuss some of the problems and applications of the

existing IPP frameworks.

One of the challenges in estimating environmental fields is the data collection

process. It is a challenge because the robots generally have limited time to

collect data before the field varies significantly. Therefore, this data collection

process needs to be carefully coordinated to make efficient use of mission time.

In general, the IPP mitigates this challenge by selecting paths that have high

probability of providing a good estimate of the field [15, 16, 17]. This selection

of paths in IPP is generally based on an information criterion, which is the main

difference between IPP and other planning frameworks. The robot then traverses

the path which provides maximum information as per the criterion and collects

data to give an estimate of the environment. Generally, the IPP frameworks have

three components: collecting data while traversing, adapting the robot’s path to

collect informative data and learning a model of the environmental field. The

first component is self explanatory, whereas, the last two components are the key

characteristics which define the behaviour of all IPP frameworks.

Our aim is to obtain a good estimate of scalar environmental fields, such as

chlorophyll concentration, conductivity or temperature. This can be achieved

by collecting representative data of the spatio-temporal field using robots. In

general, the temporal changes in environment occur over a period of days or

months [92, 93, 94]. Therefore, it is safe to assume that these scalar fields will

be temporally static for a period of few minutes. Such an assumption is useful

for reducing the modeling complexity of the environmental field. However, this

assumption also imposes a temporal constraint on the data collection process.

Therefore, imposing this constraint on the mission time for monitoring tasks

is important. Some of the IPP algorithms that impose constraints on mission

time are discussed in [50, 15, 57]. However, all these frameworks estimate the

environmental fields using full Gaussian Process (GPs), which suffers from longer

training times and thus affects the overall planning performance. A framework
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(a) (b)

Figure 3.1: (a) A scenario similar to the transect sampling task presented in
[4]. The environmental field here is the sea surface temperature of an area in
Sea of Japan on January 21, 2018. Taken from MUR SST dataset [5]. (b) An
autonomous surface robot, NUSwan, capable of water quality monitoring is being
retrieved after mission.

that uses Sparse GPs for estimating fields is discussed in [52]. This framework

presents a solution for persistent monitoring where it handles the temporal

dynamics by using the user set thresholds. In this chapter, we introduce two

frameworks that provide the flexibility of sparseness as well as the ability to

perform monitoring tasks in limited mission time and benchmark its performance

against lawn mower paths.

In our first framework, the planning and learning components of our IPP

framework are decoupled. We denote this framework as AdaPP here on-wards.

This frameworks learns the model of the environmental fields using GP and uses

the model variance to plan for future locations. The information exchange in this

framework between the learned model and the planning step only occurs at the

start of each planning step. Such a decoupled approach is simple and provides a

framework to make use of sparse GPs for field estimation as well as finishing the

monitoring task within a fixed amount of time. Moreover, such an approach also

means the planning component of the IPP framework is entirely based on the
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information provided only once and does not make full use of the information

gained using the GP model. We introduce another online IPP framework named

as k-AdaPP, which integrates the GP’s kernel information directly into the

planning step. This framework uses a similar GP method as AdaPP to get

an estimate of the field and the corresponding variance in this estimate. In

comparison to the first framework, k-AdaPP uses the updated model information

as well as the remaining mission time for generating next waypoints. We test

our performance with other conventional methods for estimating environmental

field using a sea surface temperature dataset provided by NASA Jet Propulsion

Laboratory [5]. The results show that the predicted fields using k-AdaPP and

AdaPP are a good approximation of the ground truth and outperforms all the

conventional methods.

3.2 Problem Formulation

Broadly, our problem statement is to find a path for a robot and collect represen-

tative data to provide a good estimate of the environmental field and finish this

task within a fixed amount of time T . This statement can be represented as

arg min
P̃∈Λ̃t

1

|X̃ |

∫
X̃

(
Y(x)− Ŷ(x,Dt ∪DP̃

T−t)
)2
dx, (3.1)

such that

T (P̃) ≤ T and (3.2)

P̃0 = xt, (3.3)

where Y(·) is a function of the field over the spatial domain X̃ , Ŷ(·, ·) is the

estimated function of the field at time t using the collected data Dt and the data

yet to be collected DP̃
T−t by traversing a path P̃. Moreover, Λ̃t in (3.1) represents

a set of paths originating from xt and P̃ denotes one of the element of Λt with

P̃0 as the starting point of these paths. All the paths in the set Λ start from the

robot’s current location xt, given by (3.3). Finally, the function T (·) provides
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an estimate of the time to traverse a path. In our problem statement, we have

defined the measure of goodness as a low mean squared error over the complete

spatial domain. The current form of the problem statement is not solvable as we

cannot get the information about Y(·) without sampling or visiting locations and

thus without actually traversing a path P̃, we cannot obtain the target values

y = {yi}Ti=t for yet to be visited locations. Interestingly, we can make use of

characteristics of a GP model to make the problem (3.3) solvable. The function

Ŷ(·, ·) is learned using a GP model and it can be written as N (µ∗, σ
2
∗), where µ∗

should represent a close approximation of Y(·) if the learned GP model is a good

fit and the overall variance σ2
∗ is low. Therefore, we can re-write (3.1) as

arg min
P̃∈Λ̃t

1

|X̃ |

∫
X̃

σ2
∗(x,Dt, P̃)dx. (3.4)

It is important to note that we have replaced DP̃
T−t with just P̃ as we can get an

estimate of the variance without sensing the target values and only the locations

x given by P̃ is sufficient. However, the estimated variance depends on DT−t

and it will be updated using (2.5) whenever the robot collects more data Dt.

Therefore, our planning problem can be seen as collecting good data such that

the overall variance becomes is low.

The problem statement given by (3.4) is in continuous domain X̂ . This means

the number of paths in the set Λ̃t will be large and searching for the optimal path

P̃∗ that satisfies our problem statement will be difficult. A common approach

to reduce such complexity is to discretize the continuous domain X̃ into a grid

X . In this scenario, each location xt will generally have 8 neighbours and thus

for each location the decision will be to select which of these neighbours to visit.

Using this discretization approach, our problem can be represented as

arg min
P∈Λt

1

|X |
∑
X
σ2
∗(x,Dt,P), (3.5)

where Λt represents the set of paths generated by connecting spatial locations and

P represents one of the path in this set. The constraints for these paths P given
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Figure 3.2: An illustration of Λt as a state space. The first state is the location
of the robot xt and time t. The next time step t+ 1 shows the 8 neighbours x

′
t+1

of this first state. This is followed by further branching of the states, however,
we have branched only one of the state to show the growing state space for our
search problem.

by (3.3) and (3.2) are still applicable with only change of shifting from continous

domain to a discrete domain. In simple terms, the set Λt will represent a state

space with the first state as sxt = {xt, t} and each subsequent state connected

to all its neighbours given by E(sxt), where E(·) is a function that provides the

spatial locations of all the neighbours for the next time step. In the worst case

scenario, each of the state will have a branching factor of maximum possible

value of function E(·), which is 8. This will result in a large state space as shown

in Fig. 3.2 and finding an optimal solution within a short period of time will

not be feasible. In literature, such a search problem that cannot be solved in

real-time using the limited computation power are termed as NP-hard problem.

In our framework, we solve this search problem by efficiently sampling the state

space and coordinating the robot motion over the limited mission time.
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3.3 Adaptive Path Planning using a GP model

In this section we explain our approach for solving the search problem as explained

in Section 3.2. We make use of concepts such as spatial decomposition and

Dynamic Programming to efficiently search through the state space.

3.3.1 Decomposition of Survey Area

A general approach to reduce the size of the search problem is to decompose the

survey area into smaller sub-regions. This decomposition is commonly defined by

a criteria, which provides a good representation of the field. One such approach is

GreedySubset [47], where each sub-region is formed using some prior information.

However, most of the survey tasks do not have prior information of the field and

thus such methods will not be applicable.

Our approach for spatial decomposition is both simple and computationally

fast. We use the estimated variance in the predicted field for decomposing the

survey area into smaller regions. Our survey area is discretized into C cells, given

by c = {c1, c2...cC}. The representative point cbx and variance σ2
∗,cb of a cell cb

containing Z spatial points are given as:

σ2
∗,cb =

Z∑
z=1

σ2
∗, zx

Z
, (3.6)

cbx =

Z∑
z=1

zxσ2
∗, zx

Z
, (3.7)

where σ2
∗, ix

is the variance of a spatial point ix. These quantities represent the

mean variance and variance weighted average for all locations in a cell cb. As

(3.6) and (3.7) are are easy to compute, the survey area can be decomposed into

representative sub-regions at a faster rate.



Chapter 3. Adaptive Monitoring using a Single Robot 27

3.3.2 Planning Framework using Dynamic Programming

One of the problems in our path planning is the temporal constraint on surveying

an environmental field. This problem becomes more challenging as no prior

information is given to facilitate the path planning. Our framework mitigates

this problem by re-planning after each step and selecting the next action based

on the information gained from the collected data D and the remaining mission

time. This selection aims at informed data collection within the limited mission

time to satisfy (3.4). Therefore, this step of obtaining the next action is critical

to make our planning framework efficient. We facilitate the explanation of our

framework by introducing a simple single robot algorithm with no constraints on

mission time first.

Single-robot algorithm with no constraints

In a scenario, where the environmental field does not vary temporally and thus

there are no constraints on mission time, the task of selecting next actions is

simple. Given the robot’s current location cxt at time t and spatially decomposed

survey area, the next action can be obtained using policy iteration:

V (cxt) := max
at∈Acxt

[R(cxt, at) + γV (c
′
xt+1)], (3.8)

π(cxt) := arg max
at∈Acxt

V (cxt), (3.9)

where

R(cxt, at) =
σ2
∗,c′

||cxt − c′xt+1||
,

c′xt+1 is the next cell on taking the action at in a cell cxt, Acxt is a set of all

possible actions in cell cxt and γ is the discounting factor. In this scenario we

can use Dynamic Programming (DP) to obtain the optimal policy π∗(·) and the

next action using π∗(cxt). This is a simple and straightforward approach to get

optimal solutions for temporally static fields. However, an important to note

is that the diagonal movements are penalized in the reward function R(cxt, a).
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This is to optimize the usage of time, and does not put constraints on the overall

mission time. We term this simple algorithm as single-robot DP.

Information Collection with Constraints on Mission Time

As mentioned before, the single-robot DP algorithm works only for scenarios where

there is no limitation on mission time. However, we have to impose a constraint

on the mission time to collect sufficient information from the environmental

fields before it varies significantly. The actions provided by the single-robot

DP algorithm may not be optimal after imposing temporal constraints. This is

because the actions for finite horizon problems are generally different from the

actions in infinite horizon problems as infinite horizon decisions do not factor a

temporal bound. Therefore, the direct usage of single-robot DP algorithm will

not meet our planning objective of surveying an area in limited time.

Introducing time constraint to the single-robot DP algorithm is not straightfor-

ward. The selection of next action in temporally constrained planning frameworks

has to be based on the information already collected as well as on the remaining

time. In our framework, the selection process is aimed at reducing the overall

model variance to provide a good approximation of the environmental field. This

selection process starts with the updated variance map and we make use of spatial

decomposition as explained in Section 3.3.1 to reduce the variance map into a

set of cells. Therefore, the optimal action a∗t at time t is given as

a∗t = arg max
at∈Acxt

[ U(at) + ηϑT−t(at)], (3.10)

where U(at) is a function that gives the mean variance of the cell that will be

visited on taking action at, η is a discounting factor, Acxt is a set of all the

possible actions for a robot in cell c and ϑT−t(at) represents the potential of

reducing variance within the remaining time T − t on taking the action at.

In an ideal scenario, we should plan till the end of mission time for all the

possible actions and select the action at current time t that reduces the maximum

variance. Such an approach would result in a large tree search problem with each
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Algorithm 3.1: Single-robot Adaptive Path Planning Framework

Data: Starting point (cxt), Total mission time (T ), SPGP Parameters

(M)

Result: Predicted Field µ∗
/* Initialization */

1 Run sampling decomposition for grid size G and assume constant

variance σ2
∗

/* Algorithm Loop */

2 while t < T do

3 Construct the set Acxt

4 for at+1 ∈ Acxt do

5 Estimate ϑT−t(at) by simulating planning using single-robot DP

and GP model

6 Calculate and store U(at) + ηϑT−t(at)

7 end

8 Use 3.10 to get a∗t
9 Take the action a∗t and collect training data Dt

10 Update the time t := t+ 1

11 θ = Full-GP using [yt(1 : M),Xt(1 : M)]

12 X = Xt(rand(M))

13 [µ∗, σ
2
∗] := Run SPGP(yt, Xt, θ, X)

14 Run sampling decomposition for Grid Size G and σ2
∗

15 end

node represented by a tuple of the robot’s future location and the remaining time

T − t, where the branching factor for each node is defined by set of available

actions Acxt . This search problem is similar to (3.5), however, this search is over

the spatially decomposed grid instead of spatial points. A common solution to

such a search problem is to use value function approximation and learn a model

for ϑT−t(·), however, doing this in an online manner with less data points may not

deliver good results. Moreover, we are only interested in an estimate of ϑT−t(·)

to obtain the next action and not in the absolute value. In our framework, we

compute an estimate of ϑT−t(·) using a combination of single-robot DP algorithm
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and kernel information to quickly traverse through the large search space. At

each planning iteration, we simulate the actions given by the set Acxt parallely.

These parallel simulation start with finding the neighboring cell c′xt that the

robot will visit for each of the available actions. Simulating any of the robot’s

actions has two challenges, one is updating the variance when a robot moves from

one cell to another and the second challenge is selecting an action from the set of

actions available for the next cell c′t+1. We have two approaches for obtaining an

estimate of the change in variance, one is arbitarily reducing the variance to the

noise term σ2 and second is to use kernel information to estimate the updated

variance. The first approach is relatively simple and faster to compute, however,

it does not provide a good estimate of change in variance as compared to the

second approach. We term our first approach as AdaPP framework.

Using the kernel information to estimate the change in variance is a more

direct approach for integrating the model information into planning. It helps in

providing a more realistic estimate of the posterior variance, which is completely

based on the data collected till time t. We term this framework that makes

use of kernel information as k-AdaPP. These two approaches solve only our first

challenge, however, these approaches do not provide an answer to selecting an

action for the new cell c′t+1. We can use the single-robot DP algorithm to find

the optimal move for the new cell, however, this move will disregard the mission

time constraint on the planning. As we are interested in obtaining an estimate of

ϑT−t(·), we still select the move suggested by the single-robot DP algorithm but

reduce the mission time by the time that it will take for the robot to move from

the cell c′t+1 to the cell c′′t+2. We repeat these two steps of estimating the change

in variance and using single-robot DP algorithm to find moves for the new cell,

and simulate the paths for the remaining mission time.

After finishing the simulation for one of the action, we estimate the variance

map and calculate the area under the curve (AUC). This AUC is a representation

of the estimated remaining variance in the model at the end of mission time for

taking an action at time t. This is also illustrated in the Fig. 3.3. We perform
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Figure 3.3: An illustration of the planning step of k-AdaPP. The images in the
left box are the predicted field and the corresponding variance, which is estimated
using the data collected by the robot. In the current scenario, the robot can move
to 8 neighbouring cells and thus the planning framework simulates 8 different
paths from each of these cells. All these candidate paths are present in the box on
the right. Each of the candidate path have an associated Area Under the Curve
(AUC) value, which represents the remaining variance at the end of mission. The
framework selects the path with minimum AUC, highlighted by a red box.

this procedure for all the actions given by the set Acxt and simulate the paths to

get an estimate of resulting variances. We calculate the AUCs from the estimated

resulting variances and use it to provide an estimate of ϑT−t(·) at the current

time t for each action a. Once the estimates of all the actions at current time

are available, the next action is obtained using (3.10). We have also summarized

these steps in Algorithm 3.1. Overall, our framework uses two approaches for

reducing the posterior model variance and coordinates the robot’s motion to

collect sufficient data for providing a good estimate of the field.

3.3.3 SPGP for Feild Estimation

The kernel function in the SPGP formulation is used in estimating both the

mean and variance of the GP model, as explained in Section 2.3.2. Moreover,
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our planning iteration depends on the kernel function to determine the change in

variance and thus plays an important role in the performance of our framework.

We are interested in modeling envrionmental fields and a commonly used kernel

function for such geostatistic modelling is automatic relevance determination,

which is defined by K(·, ·):

K(xn,xn′) = α exp

(
1

2

2∑
l=1

bl(xn,l − xn′,l)2

)
, (3.11)

where α, b1 and b2 are the parameters of the kernel function, xn and xn′ repre-

sent two different locations and xn,l represents the value for l dimension of xn.

After including the noise term σ2, the hyperparameters of the sparse GP are

given by θ = {α, b1, b2, σ2} and pseudo-inputs X. These hyperparameters are

learned by maximizing the marginal likelihood as mentioned in [62]. Once these

hyperparameters are known, the variance for the locations not visited by the

robot is estimated using (3.11). Moreover, this same equation is used to estimate

the change in variance and get an estimate of ϑT−t(·), which is critical for taking

the decision given by (3.10).

3.4 Simulation Results

In this section, we do a comprehensive analysis of our framework using simulations.

We use the Sea Surface Temperature (SST) data of the Sea of Japan provided

by the Jet Propulsion Laboratory [5] for simulating environmental field. We

extracted the temperature data for an area of 200 × 200 km2 and mapped it to

an area of 200 × 200 m2. This mapping was done to conserve the features of an

environmental field and have an area that can be explored within a realistic value

of mission time, T . The Fig. 3.4.a shows a visual representation of this field. We

implemented our algorithm in MATLAB. For implementation of SPGP, we used

the code provided by the authors of [62] and modified it for our spatial regression

application. The simulations were done on a hexa-core Intel i7 processor with 32

GB of RAM.
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(a) Ground Truth

(b) k-AdaPP,
T = 600 s

(c) k-AdaPP,
T = 800 s

(d) k-AdaPP,
T = 1000 s

(e) k-AdaPP,
T = 1200 s

(f) AdaPP,
T = 600 s

(g) AdaPP,
T = 800 s

(h) AdaPP,
T = 1000 s

(i) AdaPP,
T = 1200 s

(j) Lawn Mower,
T = 600 s

(k) Lawn Mower,
T = 800 s

(l) Lawn Mower,
T = 1000 s

(m) Lawn Mower,
T = 1200 s

Figure 3.4: Simulation results for a 200 × 200 m2 sea surface temperature field.
(a) is the ground truth obtained using the MUR dataset [5]. (b)-(e) represents
the field estimated using AdaPP for different T = {600 s, 800 s, 1000 s, 1200 s}
respectively. Similarly, (f)-(i) are the field estimated using AdaPP and (j)-(k)
represent the fields estimated using lawn mower paths. It can be observed that
the fields estimated using our frameworks k-AdaPP and AdaPP are visually
more similar to the ground truth as compared to the fields estimated using
lawn mower patterns. Moreover, the performance for all the approaches improve
with increasing the mission time T . These performance become comparable for
T = 1200 s as the robot would have collected sufficient information using any of
the simulated approaches.
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Figure 3.5: A performance comparison between Lawn Mower paths, k-AdaPP
and AdaPP using Mean Absolute Error (MAE) in estimating the SST field for
different mission times over 50 runs. The MAE in estimating the temperature
fields using k-AdaPP for low mission time {600 s, 800 s} is less than the MAE for
AdaPP and Lawn Mower paths. This is a good indication that integrating more
information from the GP model improves the overall planning performance.

3.4.1 Performance Comparison with Lawn Mower Paths

We used the field as shown in Fig. 3.4(a) and simulated the monitoring task for

four different mission times, T = {600 s, 800 s, 1000 s, 1200 s} and the grid size G

as 30 m. The vehicle is assumed to be traveling at constant speed of 1 m/s. We

also estimated the field using the lawn mower paths for these four static periods,

assuming constant vehicle speed and zero turning radius. The total number of

pseudo-input points were kept at M = 50 and the initial guess for SPGP kernel

parameters were obtained by running a full GP regression on a subset of M

points.

The results of our simulations are shown in Fig. 3.4 and the Mean Absolute

Error (MAE) over 50 runs in estimating the field is shown in Fig. 3.5. It is clear
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from the results that the field predicted using AdaPP and k-AdaPP algorithm

are a better match of the ground truth compared to the field predicted using lawn

mower paths, specially for shorter mission periods. Moreover, the approximation

improves with increasing mission time T for all the approaches. This is an

expected trend as our frameworks and the lawn mower paths cover more area

and get more time to collect data, which improve the GP model’s performance.

3.4.2 Performance Improvement by Integrating Kernel Informa-

tion

We compared our two frameworks, AdaPP and k-AdaPP, to examine the improve-

ment in performance by integrating model information into the planning. We

calculated the MAE for each mission time to check whether our frameworks are

a good solution to our original problem statement given by (3.1). These results

are present in Fig. 3.5. The k-AdaPP framework performs significantly better

for smaller mission times such as T = {600s, 800s}, whereas, the performance

improvement for longer mission times is not significant.

The significant improvement in the k-AdaPP ’s performance over the decoupled

framework AdaPP for smaller mission times is encouraging. This reflects that

k-AdaPP ’s decision making process is improved by using the kernel information in

path planning. However, the the performance for longer mission times is similar

and it is expected as both the frameworks get sufficient time to collect substantial

information about the field and thus yield similar results.

3.4.3 Performance of Spatial Decomposition Approach

We first simulated to show the importance of weighted decomposition algorithm

as described in Section 3.3.1. We simulated 10 independent runs of k-AdaPP

framework using weighted and non-weighted decomposition. The total time T

was kept as 800 seconds for each of these simulations. These runs were done

for three grid sizes, {20 m, 30 m, 40 m}, and we used RMSE to do a comparison

between the two approaches. The result for this comparison are shown in Fig. 3.6.
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Figure 3.6: A comparison between weighted (W) and non-weighted (NW)
spatial decomposition using the mean RMSE values over 10 runs in estimating
the SST field for different monitoring strategies. The performance using the
weighted (NW) spatial decomposition given by green bars is better than the
performance using non-weighted (W) spatial decomposition for all the grid size
G. The mission time for all the simulations was kept as T = 800 s.

It can be observed that the average performance with weighted decomposition

is always better than non-weighted decomposition. It is also important to note

that as the grid size increases, the improvement in performance of the weighted

decomposition becomes more significant. Ideally, we would like to have the grid

size which will give us lowest RMSE value but this will also result in increasing

the state space for decision making. Based on our compute resources, we selected

the grid size of 30 m for all the remaining simulations.

3.4.4 Performance Comparison with Other Estimation Approaches

In addition to lawn mower patterns, some of the commonly used approaches for

collecting data are random walk and purely greedy techniques. We compared

the performance of our framework against these conventional approaches as well.

Simulating a random walk is straightforward, however, we modified our decision

strategy to simulate a pure greedy approach. At each decision step, the greedy

algorithm selected the neighbouring cell with maximum variance and this was

repeated till the end of mission time.



Chapter 3. Adaptive Monitoring using a Single Robot 37

Figure 3.7: Mean Absolute Errors (MAEs) over 10 runs in estimating the
SST field for different monitoring approaches. The error values for the fields
estimated using Random and Lawn Mower are significantly higher as compared
to other methods. The Greedy algorithm has the lowest mean MAE value among
all the benchmark models, however, our framework k-AdaPP even outperforms
this benchmark model. Our framework’s better performance as compared to
the Greedy algorithm is an indication that coordinating the robots based on
remaining mission time is important in providing a good estimate of the field.

We simulated 50 runs for each approach and calculated the Mean Absolute

Error (RMSE) for each run. The mission time for all the runs was kept constant

as T = 800 s. The result for MAE are present in Fig. 3.7, where it can be clearly

observed that our framework outperforms all the other approaches. Interestingly,

the mean performance of greedy algorithm is better than lawn mower because

the greedy behaviour is always targeted towards myopic information gain. This

is a positive indication of using information dynamically instead of using no

information for path planning. However, our framework optimizes on information

as well as mission time in comparison to the myopic greedy approach, and this is

one of the reason why our method outperforms the pure greedy approach.
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3.5 Summary

In this chapter, we discussed two frameworks for estimating the scalar environ-

mental field using a single robot with the constraints on mission time. Our two

frameworks integrated the model information into the planning iterations using

different approached. Our AdaPP framework updates the cell of a variance to

the measurement noise to simulate the planning step. However, the k-AdaPP

uses the kernel map to update the variance map based on the path and thus

provide a more accurate estimate of change in variance. Both of our frameworks

used a sparse GP method for estimating the environmental fields.

The simulations were performed using sea surface temperature data and the

results show that our frameworks provide a better approximation of the environ-

mental field compared to traditional lawn mower paths and other monitoring

method. We also compared the performance between our k-AdaPP framework

with other commonly used data gathering approaches and the results show that

our framework outperforms all the other simulated methods. These results pro-

vide a good evidence for using kernel information in path planning. The two

main contributions discussed in this chapter were learning a scalar environmental

field using a sparse GP model and a single-robot adaptive framework based on

the GP’s kernel function.



Chapter 4
Multi-Robot Adaptive Monitoring

Using a team of robots for environmental monitoring of large water bodies is

an emerging approach. The idea behind this approach is to further reduce

the mission time for surveying environmental as compared to the mission time

required for single robot. However, the team of robots should be coordinated

to make efficient use of the mission time and provide a good approximation

of the environmental field. In this chapter, we suggest an online multi-robot

framework m-AdaPP to handle this coordination. We test our framework for

estimating an environmental field with no prior information. We also benchmark

the performance in field against conventional approaches such as lawn mower

patterns. Although we focus on monitoring application, this approach is general

and can be used for exploring unknown environments.

4.1 Practical Constraints in Using a Team of Robots

Our objective is to obtain a good approximation of a scalar environmental field,

such as temperature, conductivity or chlorophyll concentrations, using a team

of robots within a fixed amount of time. We discussed some approaches of

performing environmental monitoring in Chapter 3 using a single robot. A

common problem in using single robot is the limitation on the area it can cover

within a fixed amount of time. This also means that a single robot can only

collect a fixed amount of information within a fixed amount of time and thus

reducing the amount of time will also reduce the total collected information.

Such problems with single robot scenarios can be easily resolved by using a team

39
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(a) (b)

Figure 4.1: (a) A multi-robot scenario for estimating Sea Surface Temperature.
(b) Our robots deployed in a local reservoir to perform adaptive monitoring to
estimate Dissolved Oxygen in water.

of robots. More robots can be used to collect more information, however, these

robots should be coordinated to collect the information efficiently. In this chapter,

we discuss a framework that can be used to provide coordination for a team of

robots.

An entropy based method for multi-robot operation [4] was proposed where a

set of waypoints were obtained using dynamic programming. However, this frame-

work was for transect environmental fields, where robots can only move forward

and generate waypoints using the information from previous locations. Another

multi-robot framework is [95], which uses lawn mowers to obtain preliminary

information followed by a leader robot making decisions to adapt the lawn mower

pattern for the team of robots. Such an approach is helpful for adapting lawn

mower patterns, however, following these straight vertical paths will consume

time in collecting repetitive information. A similar approach is described in [96],

where the robots maintain a formation and adapt the formation to cover a larger

area. Vehicles with motion constraints such as gliders can make use of these

frameworks but most of the robots do not have such strict motion constraints.
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We are interested in a multi-robot framework that can be used for a team of

robots such as AUVs that have less motion constraints and finish the monitoring

task within a fixed amount of time. Moreover, an important component missing

in the multi-robot frameworks is the computation time for making decisions. The

computation time can be ignored in cases where it is insignificant compared to

the overall mission time. However, our task is to finish collecting data within

a short amount of time and thus computation time will become an important

component of our overall mission time. For example, lets assume each decision

iteration takes about 5 seconds and during a mission of 600 seconds, the decisions

are taken about 20 times. In this example, the computation time will consume

more than 15% of the mission time and thus leaving even less time for data

collection.

In this chapter, we suggest a multi-robot IPP framework m-AdaPP for

estimating a scalar environmental field. Our aim is to coordinate a team of robots

to get a good approximation of a scalar field and finish the overall mission in a

fixed amount of time. We make use of the SPGP model to provide an estimate

of the field and the corresponding variance. The paths are evaluated to minimize

the overall variance and we have included the time taken for this evaluation in our

overall mission time. We test the coordination and field estimation performance

of our framework using a sea surface temperature dataset in simulations. We

also compare our framework’s performance against the conventional lawn mowers

patters for estimating the environmental fields and show that our framework

performs well.

4.2 Problem Formulation

Our problem statement is to coordinate a team of H robots to provide a good

estimate of an scalar environmental field within time T . This problem statement

is similar to the problem statement of the framework in the previous chapter,

however, the data collection is being done by a team of robots instead of a single

robot. We can re-write (3.5) for this case as
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arg min
P̂∈Λ̂t

1

|X |
∑
X
σ2
∗(x, D̂t, P̂), (4.1)

where P̂ is a set containing one path for each robot and given as

P̂ = {1P, 2P, 3P, ... HP}. (4.2)

Similarly, Λ̂ is a set containing all the paths for each robot and it is given as

Λ̂t = {1Λt,
2Λt,

3Λt, ... HΛt}. (4.3)

In (4.2) and (4.3), the set of path iP and the set of collection of paths iΛt

represent the candidate paths for robot i. Moreover, we have replaced Dt

with D̂t in (4.1) to include the data collected from all the robots and thus

D̂t = {1Dt, 2Dt, 3Dt... HDt}, where iDt is the data collected by robot i till

time t. The mission time constraints to solve (4.1) will be

T (iP) + τ ≤ T − t and (4.4)

iP0 = ixt ∀i ∈ [1, H], (4.5)

where the new addition τ in comparison to (3.2) represents the computation

time for each decision and ixt represents the location of robot i at time t. The

constraints given by (4.4) represent that each robot will have less than T − t

time available for collecting data. However, we can absorb τ inside T (iP) if the

computation can be done while traversing. This will require taking a decision for

the next location while collecting data. The current formulation given by (4.1)

will not allow it as the decision made at time t is possible only after collecting

all the data D̂t till time t. However, we can use the data D̂t to make a decision

for the next location xt+1 and collect more data while travelling from xt to xt+1.

This will change the problem statement to
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arg min
P̂∈Λ̂t+1

1

|X |
∑
X
σ2
∗(x, D̂t, P̂), (4.6)

such that

τ ≤ T ({ixt, ixt+1}) and (4.7)

T (iP) ≤ T − t and (4.8)

iP0 = ixt+1 ∀i ∈ [1, H] , (4.9)

where Λ̂t+1 represents the set of all paths for each robot i from its next location

ixt+1. This formulation changes (4.4) to (4.8) but introduces a new constraint

given by (4.7), which represents that computation time should be less than or

equal to the time taken by the robots to travel to the next location. Similar to

our state space representation in (3.2), the set Λ̂t+1 can be visualized as a state

space too. This state space will be a convolution of multiple state spaces given

by {iΛt+1} and its starting state given as st = {ixt+1} ∀i ∈ [1, H]. The state

space of the set Λ̂t+1 will be large and thus it can be classified as a NP-hard

search problem. Therefore, we need a framework to efficiently sample this state

space and provide a good estimate of the environmental field.

4.3 Multi-Robot Planning Framework

We suggest an algorithm, named as m-AdaPP, to efficiently search through the

state space given by Λ̂t+1 and collect data using the kernel information to get a

good estimate of our field. This algorithm follows the basic IPP framework and

thus has the three components, which are planning, model learning and collecting

data. As discussed in the section before, we learn the model and plan for the

next location while the robots are travelling and collecting more data. We make

use of the Spatial Decomposition approach explained in the previous chapter and

reduce our search space by discretizing the grid in to cells.
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Figure 4.2: An illustration showing execution of one step of our framework.
The GP model learning and planning for next waypoint occurs in parallel while
the robot is collecting data from the field. Such an approach can be used for
efficient use of mission time.

4.3.1 Multi-Robot Path Planning

There are three constraints on our planning as explained in the previous section.

These are the limits on each robot’s total mission time T , bounds on the com-

putation time used for planning and each robot’s starting point. Although the

planning is done over cells instead of locations, this does not mean that robots do

not collect data while traveling from one cell to another. The data is collected as

and when the sensors provides a scalar value of the field, defined by the sensor’s

frequency rate. This data is then stamped against the current location of the

robot and used for estimating the overall environmental field.

In the discretized are, the representative location of each cell will change

based on the variance in that cell. This will result in each robot traversing

different lengths of paths and therefore, it will mean robots will reach its next
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waypoint at different time. Therefore, the update of the collected data will be

asynchronous and planning decisions will be made using partial information. We

bring snychronization between the team of robots by dividing the total time T

into intervals of Ts, where at the end of every interval the robots are assumed

to have reached their waypoints, and the future waypoints are generated while

traversing to these point. This time interval Ts should be sufficient for a robot to

reach the neighboring cells even when traversing at the average speed.

Multi-Robot Path Planning with no constraints

We make use of single-robot DP algorithm to explain our multi-robot path

planning algorithm. Extending the single-robot algorithm to a multi-robot

scenario requires two modifications. First, the robots should be coordinated to

explore an area in a collaborative manner. This is similar to the problem which

is solved using a general sequential algorithm in [47]. This sequential algorithm

decides a path for one robot first, which is followed by path allocation to second

robot and then sequentially to the remaining robots. However, we are concerned

only with the next waypoint instead of the complete path. The second necessary

modification is to prevent the collision between two robots, which can be achieved

by having negative rewards for each robot’s current location. As we are interested

in planning for one-time ahead, the update rules for multi-robot case can be

given as

V (c
′
i x) = max

a∈Ac′
i

x

[R(c
′
i x, a) + γV (c

′′
i x)], (4.10)

π(c
′
i x) = arg max

a∈Ac′
i

x

V (c
′
i x), (4.11)

where

R(c
′
i x, a) =


σ∗,c′

||c′i x− c′′
i x||

if c′′i x 6∈ 1:Hx− {c′i x}

−ε if c′′i x ∈ 1:Hx− {c′i x}
,
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1:Hx represents the current location of all the robots, c′i x represents the location

the robot i will reach at time t+ 1 and ε is the value of the negative reward. We

run one full cycle of policy iteration using DP for robot 1 and obtain the optimal

policy given by π∗(·). Using this policy, we get the future location of the robot 1,

given by c′′
1 x := π∗(c

′
1 x), and update this new location for robot 1 in the location

set of all robots 1:Hx. This update of the location in the set of location 1:Hx

makes sure that robot 2 and remaining robots do not visit the same cell where

the robot 1 will be at the next time step. We run such cycles sequentially for all

the H robots and obtain the respective next waypoints. We name this algorithm

the multi-robot DP.

Multi-Robot Path Planning with Temporal Constraints

Introducing time constraints to this multi-robot framework is not straightforward.

The new waypoints generated using the above framework may not be optimal

given the remaining time T − t. Therefore, we need to find a combination of

actions for different robots that would reduce the overall variance within the

remainging time. Let Φt+Ts denote this combinatorial set of all actions Ac′
i x

∀i ∈ [1, H] at time t+ Ts. We define another combinatorial set ϕt+Ts , which is a

subset of Φt+Ts representing one action for each robot. From the set Φt+Ts , we

remove the states where the next action for two or more robots will result in a

collision. Therefore, the optimal combination of action ϕ∗t+Ts at time t+ Ts can

be given by

arg max
ϕ′t+1∈Φt+1

U(ϕ′t+Ts) + ηϑT−t−Ts(ϕ
′
t+Ts), (4.12)

where U(ϕ′t+Ts) is a function that gives the sum of variances of cells that will

be visited due to the combination of actions in ϕ′t+Ts , η is a discounting factor

and ϑT−t−Ts(ϕ′t+Ts) represents the potential of reducing uncertainty within the

remaining time T − t− Ts by taking the combination of actions given by the set

ϕ′t+Ts .

The problem given by 4.12 is of the similar form as the single robot planning

problem given by 3.10. We can use the kernel based planning as explained in
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Figure 4.3: A concept diagram explaining the sequential planning in our multi-
robot framework m-AdaPP. The left-most grid shows the robots traversing a
path to the next waypoint. In parallel, the framework is planning for the next of
actions assuming the robots have already reached the location. The framework
simulates paths and updates the variance for the remaining time and select the
actions that minimize the overall variance.

the previous chapter to find an estimate of ϑT−(t+Ts)(·) and solve this problem.

However, the problem here is for a team of robots rather than a single robot and

thus the decision is over a set of actions ϕ′t+Ts for multiple robots as compared to

set of actions for a single robot. This problem requires coordinated movement of

each robot to minimize the overall variance. Therefore, direct use of the planning

framework for the single robot is not feasible in this case.

We solve the problem of coordination between the robots by using multi-robot

DP at each simulated planning iteration and provide a combination of actions.

We do this in two steps. First, we run one full iteration of multi-robot DP and

obtain a set of actions ϕ′t+Ts . Second, we reduce the total time by Ts and update

the variance of the cells based on the paths the robots will take due to the actions

given by ϕ′t+Ts . We re-run the multi-robot DP algorithm to find the next set
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Algorithm 4.1: m-AdaPP - multi-robot Adaptive Path Planning

Data: Starting points (1:Hx), Total mission time (T − t− Ts), SPGP

Parameters (M)

Result: Estimate Field µ∗
/* Initialization */

1 Run sampling decomposition using resolution G and set σ2
∗ as constant

/* Algorithm Loop */

2 while t < T do

3 Construct the set Φt+TS

4 foreach ϕ′t+Ts ∈ Θt do

5 Estimate ϑεT−t−Ts(ϕ
′
t+Ts

) by simulating planning using

multi-robot DP and SPGP Kernel

6 Calculate and store U(ϕ′t+Ts) + ηϑT−t−Ts(ϕ
′
t+Ts

)

7 end

8 Use Eq. 4.12 to get ϕ′t+Ts
9 Wait for time interval given by Ts to be over

10 Take the actions given in s∗t

11 Update the time t = t+ Ts and training data Dt+Ts
12 θ = Full-GP using [y(1 : M),X (1 : M)]

13 X = X (rand(M))

14 [µ∗, σ
2
∗] := Run SPGP(y, X , θ, X )

15 Run sampling decomposition using resolution G and σ2
∗

16 end

of actions ϕ′t+2Ts
using the updated variance. We iterate over these two steps

till the mission time is over t = T . Using this approach, we get an estimate of

ϑT−(t+Ts)(·) and thus we can evaluate the value of the combination ϕ′t+Ts given

by (4.12). Similarly, we can use this to find the values for all the combinations

given by the set Φt+Ts . Once we have the values for all the actions, we can use

(4.12) to find the set of actions for the robots for time t + Ts. An example of

these steps is illustrated as a diagram in Fig. 4.3. All these steps are repeated

whenever the training dataset D is updated, which will be at a regular interval of

Ts and thus bring the adaptive nature to the m-AdaPP framework. Our overall
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framework is presented in Algorithm 4.1.

There are two important points to note about our framework. First, the

decisions are made sequentially but it does not mean the robots also move

sequentially. Once a decision is made, all the robots move to its next location

simultaneously within time Ts. Second, the calculation of ϑT−(t+Ts)(·) for one

set of action in Φt+Ts is independent of the other set of actions. This provides an

opportunity to estimate the value for ϑT−(t+Ts)(·) for all set of actions in parallel.

This helps in reducing the overall computation time of our framework.

4.3.2 Field Prediction Using SPGP

We make use of the same kernel function used in single-robot frameworks. It is

defined by K(·, ·):

K(xn,xn′) = α exp

(
1

2

2∑
l=1

bl(xn,l − xn′,l)2

)
, (4.13)

where α, b1 and b2 are the parameters of the kernel function, xn and xn′ represent

two different locations and xn,l represents the value for l dimension of xn. After

adding the Gaussian noise model, the hyperparameters of the sparse GP are

given by θ = {α, b1, b2, σ2} and pseudo inputs X.

4.4 Experimental Results

We performed two set of experiments using our framework. One was to examine

the coordination within the team of robots and other was to compare the per-

formance of our framework with the performance of conventional lawn mower

patterns. This section discusses both of these experiments.

4.4.1 Simulations to Test the Coordination Efficiency

We used the real field data of Sea Surface Temperature (SST) provided by the

Jet Propulsion Laboratory [5]. We extracted the data for two areas of 200× 200

km2 each and mapped it to two fields with area 200× 200 m2. This scaling was
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(a) (b)

(c) (d)

Figure 4.4: Simulation results of m-AdaPP for estimating a temperature field.
(a) represents the ground truth and (b) represents the field estimated using one
robot. Similarly, (c) and (d) represent the field estimated using two robots and
a team of three robots, respectively. The mission time for (b) is T = 2400 s,
(c) is T = 1200 s and (d) is T = 800. It can be observed that the hot and cold
regions estimated using different team of robots is correct. This shows that our
framework efficiently coordinates the team of robots and makes efficient use of
mission time to collect good representative data.

done to retain the features of a temperature field and have an area which can be

explored within a practical value of mission time T . We denote Fig. 4.4(a) as

Field 1 and Fig. 4.5(a) as Field 2 for the following discussions.
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(a) (b)

(c) (d)

Figure 4.5: Another set of results of our framework on estimating a temperature
field from the SST dataset. (a) represents the ground truth and the remaining
figures (b)-(d) represent the field estimated using one, two and three robots,
respectively. Similar to the previous figure, the field estimated using different
team of robots is comparable. These results are another example showing that
our framework coordinated the team of robots well.

The maximum speed of the robots used in environmental monitoring is

generally low. This is to make sure that the robots do not cause substantial

disturbance to the environment it is sensing. For example, the maximum speed

of our water quality sensing robot, NUSwan [6], is 1 m/s. However, the average

speed of NUSwan with external disturbances such as strong winds or waves is
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about 0.3 m/s. We use this speed to define the value of Ts. Following the grid

size G = 30 m from the previous chapter, the average time required for travelling

from one cell to another cell will be atleast 100 s. Therefore, we set the value of

Ts as 120 giving the vehicle sufficient time to reach the next cell.

We learned the SPGP model with M = 50 pseudo data points. Similar to the

single robot framework, we used a subset ofM points of the total dataset and run

a full GP regression to initialize the hyperparameters of our kernel function. We

implemented our algorithm in MATLAB. For SPGP, we took the MATLAB code

provided by the authors [62] and modified it for spatial regression application.

The simulations were done on a hexa-core Intel i7 processor with 32 GB of RAM.

We simulated teams consisting of a maximum of three robots. We examined

the coordination within the team of robots by providing less mission time for the

teams with more number of robots. This means that the team of two robots will

have less time compared to a single robot. If the framework is able to coordinate

this team of two robots well, the performance of these two simulations should be

comparable. For our simulation setup, we set the mission time T as 2400 s for

single robot, 1200 s for a team of two robots and 800 s for a team of three robots.

It is important to note that the mission time T for single robot here is 2400,

which is much higher than the mission times set in the previous chapter. This

difference is due to assumed speed and a direct comparison of the mission times

is not correct. Instead a relationship can be seen in terms of distance travelled,

a vehicle with speed 0.3 m/s will travel around 700 m in 2400 s. Whereas, the

same vehicle with speed increase to 1 m/s will travel the same distance in 700

s. Therefore, our limit on mission time in the current setup is not substantially

different from the setup in previous chapter. Moreover, our average computation

time for the team of three robots after parallelization was about 23 s, which is

much less than Ts and thus satisfies the constraint on τ given by (4.7).

The results of the fields estimated using m-AdaPP are present in Fig. 4.4

and Fig. 4.5. It is clear from the figures that the estimated hot and cold regions

by our framework are correct and the overall estimated fields are similar for
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(a)

(b)

Figure 4.6: Mean Absolute Error (MAE) in estimating the temperature field
using different teams of robots. (a) shows the error in estimating the field given
by Field 1 and (b) shows the error in estimating Field 2. The similar MAE
values for different teams of robots with different mission time T provide a more
objective evidence that our framework is capable of coordinating the teams well.
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Figure 4.7: The Mean Absolute Error over 10 runs for different teams of
robots. The result show the error in estimating the field given by Field 1. The
consistent performance of our multi-robot framework over multiple runs provides
the evidence that our framework is robust.

different teams of robots. We also calculated the mean absolute error (MAE) as

a measure of performance in estimating the fields. We use this metric to examine

the coordination efficiency of our framework. The MAE results are present in

Fig. 4.6.

It can be observed from Fig. 4.6 that our framework’s performance is similar

for different teams of robots. The mission time for each team of robots is

proportional to the number of robots in each team. This means that the amount

of data collected by a single robot in T = 2400 s will be similar to the amount

of data collected by a team of two robots in T = 1200 s. The only way the

performance between these two setups will be similar if the framework efficiently

coordinates the motion of the two robots to collect informative data within the

limited mission time. Therefore, the similar MAE values in Fig. 4.6 for different

teams of robots and for different fields is a good indication that our framework is

capable of coordinating the team efficiently. We also repeated the simulations
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Figure 4.8: One of the robots we used in our field experiments. It is a variant
of NUSwan [6]. This figure shows various components present in our robot. Our
robots are capable of navigating autonomously once a waypoint is given. It
is equipped with general water quality sensors and provides real-time updates
of the physical and chemical parameters of water. Moreover, our robots use a
middleware which enables them to receive waypoints from remote servers and
provide the mission relevant information back to the server for future planning.

over 10 runs for each team of robot and recorded the mean absolute error. These

results are present in Fig. 4.7 and it can be observed that our framework shows

consistent performance over multiple runs.

4.4.2 Field Experiments for Performance Comparison with Lawn

Mower Paths

We tested the performance of our framework against the conventional approaches

such as estimating fields using Lawn Mower paths via field experiments. We

developed two variants of the NUSwan [6] robot as shown in Fig 4.8. These

robots were equipped with general water quality sensors such as Dissolved Oxygen,

Conductivity, pH and Oxidation-Reduction Potential. Moreover, these robots
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used on-board navigation sensors to reach the locations given by the framework.

Our framework m-AdaPP was hosted on a cloud server, which can be accessed

by our robots using GPRS internet connection. This cloud server was a compute

instance provided by Amazon Web Service with capability to run 16 threads in

parallel. This capability is crucial for our framework as it significantly reduces the

computation time for making planning decisions. We optimized our framework

to run smoothly on this compute instance. Both the robots posted the data to

this server every 5 seconds.

For consistency, the mission time for the team of two robots for our field

experiments is same as the mission time we used for two robots in our simulations,

which is T = 1200 s and Ts = 120 s. In general, lawn mower paths are defined by

the number of legs, where each leg is a straight path parallel to one of the axis

of the survey area. Therefore, the lawn mowers are defined in terms of lengths

rather than time. If the speed of the vehicle is constant, lawn mowers can be

defined in terms of time but speed of the vehicle in field can vary due to external

disturbances.

Imposing the temporal constraints directly on the lawn mower paths can

result in abruptly stopping the lawn mower pattern. Therefore, we assume an

average speed of the robots and use this average speed to calculate the total

length of the lawn mower for the mission time T = 1200 s. We set this average

speed as 0.5 m/s. It is important to note that this average speed is higher than

the average speed mentioned earlier. This difference is to factor that the vehicle

will be mostly moving in a straight line and thus inertia of the vehicle will help

in maintaining a higher speed. Using the average speed of 0.5 m/s and mission

time T = 1200 s, we set the length of lawn mower as 600 m.

We selected a survey field of area 150× 150 m2 in a local reservoir and used

our robots to estimate the field of Dissolved Oxygen over this area. The estimated

fields using the lawn mower patterns and our frameworks are present in Fig. 4.9

and Fig. 4.10, respectively. The mission time for the lawn mower paths was 1236

s and thus our assumption of a higher average speed was correct. The black and
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Figure 4.9: Field estimated using lawn mower patterns with a team of two
robots. The estimated field is for relative Dissolved Oxygen for an area of
150× 150 m2 in a local reservoir. The black and red circles with large radius and
no outline represent the starting locations of the robots. Similarly, the black and
red dots represent the locations of the data collected. Finally, the black and red
circles with large radius and a green outline reflect the end location of each robot
and arrow represents the direction towards starting location. The total mission
time for this experiment was T = 1236 s.

red circles with large radius and no outline represent the starting locations of the

robots in Fig. 4.9 and Fig. 4.10, whereas, the circles with green outline represent

the end location of the robots.

There was no prior information about the ground truth for this field of

Dissovled Oxygen (DO). Therefore, we collected a test dataset to measure the

performance of our framework and the lawn mower paths. This test dataset was
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Figure 4.10: Field estimated using a team of two robots and our framework
m-AdaPP. The estimated field is for relative Dissolved Oxygen for an area of
150× 150 m2 in a local reservoir. The black and red circles with large radius and
no outline represent the starting locations of the robots. Similarly, the black and
red dots represent the locations of the data collected. Finally, the black and red
circles with large radius and a green outline reflect the end location of each robot
and arrow represents the direction towards starting location. The total mission
time for this experiment was T = 1200 s with Ts = 120 s. It is interesting to
observe that data collected using this team of robots was dense in a few regions,
whereas, sparse for the remaining regions. However, our framework still performs
better as compared to the lawn mower pattern and this is a field validated result
that collecting representative data (adaptive framework) can perform better as
compared to collecting data with repetitive information (lawn mowers).

collected while robots were travelling back to its respective starting location after

finishing the mission. This dataset contained both the locations as well as the

ground truth data for the respective locations. We obtained the estimated DO
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Estimation Using RMSE MAE

Lawn Mower Patterns 6.6 4.8

m-AdaPP 3.9 2.8

Table 4.1: The Root Mean Square Error and Mean Absolute Error in estimating
the field of Dissolved Oxygen. These errors were calculated by using the test
data collected by the team of robots while returning to the starting location. Our
framework gives about 50% improvement in performance as compared to the
fields estimated using lawn mowers.

value for these locations using the learned models and calculated the errors in

estimation using the collected ground truth data. These results are present in

Table 4.1. Our framework performs significantly better as compared to the lawn

mower paths. Such performance in field experiments is a confirmation that our

m-AdaPP framework is able to provide a good estimate of the environmental

field.

4.5 Summary

We explained a framework for monitoring scalar environmental fields using a team

of robots with bounds on overall mission time. We used the kernel information of

the sparse GP model to explore the combinations of move available to the team

of robots and collect informative data. We simulated the framework using real

world data and the results show that our framework is capable of coordinating a

team of robots efficiently. We also simulated multiple runs of the framework to

test the robustness in our performance and the results show consistent results

across multiple simulations.

We designed two robots based on the NUSwan vehicle for monitoring reservoirs

in Singapore. Using this team of robots, we validated the performance of our

framework in the field against conventional methods such as using lawn mower

paths. The estimation error for these field experiments were based on the test

data collected after finishing the monitoring task and the results show that
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our framework outperforms the lawn mower approach. Overall, we explained

and validated our contribution for using a team of robots to estimate a scalar

environmental field in this chapter.



Chapter 5
Biological Relevance of Adaptive

Frameworks

In this chapter, we examine the biological relevance of the fields estimated using

the adaptive frameworks. We make use of the multi-robot adaptive framework

discussed in the previous chapter and examine the quality of the samples using

the standard lab-based methods. We show that the fields estimated using the

frameworks can provide reasonable scientific information and thus provide a

strong use case for environmental monitoring.

5.1 Adaptive Frameworks and Scientific Experiments

Adaptive monitoring frameworks have been used commonly for estimating scalar

environmental fields such as chlorophyll concentration and temperature. However,

the biological relevance of these estimated field is still not well established. There

can be multiple interpretations of biological relevance such as estimating the

hotspots or tracking a certain phenomenon which has a scientific value. However,

we use this term to establish a more fundamental relationship, which is relevance

of the estimated fields in understanding the interactions at a micron scale.

Some of the works have attempted to establish the connection between the

fields estimated using robots and using these estimated fields to understand

various environmental phenomenons. One such work is tracking the hydrocarbon

plumes and bio-degradation at the Deepwater Horizon site [75, 97]. This work

focused on developing a framework to observe the bio-degradation of hydrocarbon

plume and it is a good example of tracking a biological phenomenon to understand

61
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(a) (b)

Figure 5.1: Our team collecting samples after the robots have finished estimating
an environmental field in Pandan Reservoir. These samples were collected using
the robots and brought back to the deployment station as shown in (a). The water
samplers were detached from the robot to transfer the water into a container for
further lab analysis.

it at a macro-scale. However, the changes at micro-scale can result in a substantial

shifts in the environmental fields [43]. The experiments in [43] were done using

robots and a network of sensors. This work makes use of the fields estimated using

the network and the robots to explain the changes at a micro-scale. However, it

does not make full use of the fields estimated to guide the sampling strategy for

studying the changes at micro-scale. Another interesting approach for establishing

scientific relevance is discussed in [19]. In this approach, the authors designed two

frameworks, one is to make the sampling decisions and another one to estimate

the concentration of a pathogen based on the sensor values. This framework

makes full use of sampling based on the information, however, the focus of this

work was to select samples from the pre-defined path of an underwater glider

and aimed at estimating the concentration of a particular pathogen.
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Figure 5.2: An illustration explaining the motivation for examining the fields
and the flow of our experiment to examine the biological relevance of the fields
estimated using environmental fields.

5.2 Experimental Setup

5.2.1 Objective

We are interested in a comprehensive examination of the fields estimated using

the environmental fields. Generally, the frameworks are used to the estimate
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the fields of a particular physico-chemical parameter. This estimation results

in regions of hot and cold spots, which represents the region with high and

low values of a particular parameter respectively. We aim to examine these

estimated regions and study their relevance from a micro-scale perspective, which

is identifying the microorganisms in the sample and using this identification to get

differentiation between the samples. In addition, we aim to examine the quality

of the collected samples by using the conventional DNA quality scores, commonly

known as Phread Quality Score [98]. These quality scores can help in identifying

the condition of the samples collected by checking the error probabilities in the

determining the sequence of DNA [99]. A conceptual diagram explaining our

experimental setup is present in Fig. 5.2.

5.2.2 Preliminary Sampling

A preliminary test was done to examine the sample volume collected from robot’s

sampler. The robots generally have a maximum capacity for collecting a sample,

for example, our robots can collect a maximum of 1 L of water and thus it is

necessary to examine whether one sample per hot or cold region will be enough.

These preliminary tests were done using the robot’s sampler and the locations

for these samples were selected randomly, where no estimation of the field was

available. We iterated over small quantities of water from these samples to find

the correct water volume that has enough DNA content to facilitate other lab

analysis. In each of these iteration, we was passed a fixed volume of water through

a micro-size filter and the DNA was extracted from the residue on this filter. We

examined the quality of DNA using gel electrophoresis.

5.2.3 Sample Collection using m-AdaPP

We used a team of two robots to survey the areas in a local water resource,

Pandan Reservoir. For convenience, we used our adaptive framework m-AdaPP,

which is explained in detail in the previous chapter. We used the framework to

estimate Dissolved Oxygen (DO) as it plays an important role in the activities
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of microorganisms and often used to define the water quality [100, 101, 102].

Following is an overview of the sampling protocol we followed:

1. Randomly select a survey area of 75 m × 75 m in the reservoir.

2. Use a team of two robots and m-AdaPP framework to estimate the field of

Dissolved Oxygen using the on-board water quality sensors.

3. Once the estimation is finished, select the location of samples from hot and

cold regions of the predicted field.

4. Use the robots to collect 1 L of water samples from the selected regions for

lab analysis.

We repeated this sample collection over large temporal delays (days) and small

temporal delays (hours). The collected sample were analyzed for quality of the

extracted DNA as well as to find distinguishing characteristics between hot and

cold regions. The following section provides an overview of these analysis.

5.2.4 Materials and Methods for Processing the Samples

Each collected sample was passed through a micrometre filter and the residue on

these filters were put in a deep freezer until the DNA extraction was initiated.

The residue from the filtering process contains various microorganisms which

were present in the water sample. The DNA extraction from these residues were

done using standard DNA extraction kits. This extraction was followed by DNA

sequencing, which is used to identify basic DNA pairs and form a DNA sequence.

The recovered DNA sequences were then matched with an existing DNA

database, SILVA v132 database [103], to find the exact identities of all the

microorganisms present in the sample. This step required denoising of the

recovered DNA sequences and this was done in R programming language using

the dada2 package [104]. These steps are standards for identifying microorganisms

in any water sample and we followed these steps for all our samples. However,

this section only provides an overview of our sampling protocol and more details

are available in Appendix A.
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Figure 5.3: The estimated field for relative value of Dissolved Oxygen for a
75× 75 m2 area in Pandan Reservoir on 28th February, 2019. The red and black
dots respectively represent the paths of the two robots. The red and blue circle
with white outline represent the samples collected from the hot and cold region
respectively.

5.3 Field Experiments

We started with preliminary field experiments to identify the volume of water

required for lab analysis. We collected 3 samples randomly from the local

reservoir and followed the steps as explained in Section 5.2.2. The results from

gel electrophoresis analysis showed that a volume of 20 ml was enough to get

DNA for sequencing. Therefore, we collected 1 sample per hot or cold region.

Three field estimation tasks were done using our framework. Two out of these

three estimation tasks were on the same day with temporal difference of 1 hour.

Each of these estimation tasks were given a mission time of 20 minutes. Following

was the overall schedule of our experiments - 1030 hours on 28/02/2019, 1305

hours on 04/03/2019 and 1425 hours on 04/03/2019.
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(a)

(b)

Figure 5.4: (a) The estimated fields of relative values of Dissolved Oxygen for
a 75× 75 m2 area in Pandan Reservoir on 04th March, 2019 at (a) 1305 hours
and (b) 1425 hours. The red and black dots respectively represent the paths of
the two robots. The red and blue circle with white outline represent the samples
collected from the hot and cold region respectively.
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(a)

(b)

Figure 5.5: The Pherd Quality Score for (a) the raw DNA sequences obtained
from DNA sequencing and (b) the denoised DNA sequences retained after the
filtering process. The dashed orange lines represent the variance in predicting
the DNA pairs in each nucleotide position in 250 nucletotide long sequence reads,
which is represented by the X axis. The green line represents the mean quality
score and the non-dashed orange line represents the median quality score for
each nucleotide in the DNA, respectively. Similarly, the gray-scale heat map in
the background of each plot shows the distribution of the quality score for each
nucleotide.
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The field estimated on 28/02/2019 is shown in Fig. 5.3 and the fields estimated

on 04/03/2019 are shown in the Fig. 5.4. All the values of Dissolved Oxygen

in these figures are a relative measure of DO instead of the true values. We

manually selected the locations to sample using the estimated field and used

the robot to collect 1 L of water. These sampling locations are shown as red

and blue circles with white outline in respective figures (Fig. 5.3 and Fig. 5.4).

Overall we collected 3 samples from the cold regions and 4 samples from the hot

regions of all the estimated fields. These samples were then sent for lab analysis

as described in Section 5.2.4.

The Fig. 5.5 shows the quality score of the collected samples from our three

experiments. The quality score in this figure was calculated using Phread Quality

Score, which is a standard approach to measure the quality of samples. The

results in Fig. 5.5 are encouraging as the scores of the raw DNA sequences

recovered using DNA sequencing and the denoised DNA sequences are good.

The high quality scores also mean that the collected samples can be used for

finding the microorganisms present in the sample with high certainty. Therefore,

we further analyzed the DNA sequences to find the exact microorganism present

in our samples and examine the differences between hot and cold regions estimated

by our framework.

The Fig. 5.6 shows results from analysis of Principal Coordinate [105], which

is a commonly used method to find the dissimilarities between the communities

of microorganisms in each sample. These dissimilarities are calculated based

on the differences between the abundances of various microorganisms in each

sample and with the help of ordination, it is condensed a 2 dimensional plot.

Each of the points in this 2D plane were then marked with the label of hot or cold

region based on whether the samples were collected from the regions of relatively

higher DO levels or lower DO levels. The robustness of the association between

microbial communities and DO levels is evident based on the three experiments.

It can be clearly observed that the community of microorganisms living in the hot

regions are substantially different from the community living in the cold regions
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Figure 5.6: The results from Analysis of Principal Coordinates and ordination
for the microbial communities within each of the 7 samples. The red dots represent
the samples collected from the hot regions, whereas, the cyan dots represent the
samples from cold regions of the estimated field. Percentage values of each axis
represent the variation explained.

of the estimated fields. Therefore, these preliminary results are a good validation

for the use of adaptive frameworks in not only estimating the heterogenous and

dynamic environments but also helping in understanding the interaction within

microbial communities.

5.4 Summary

In this chapter, we examined the biological relevance of the fields estimated using

our multi-robot framework, m-AdaPP. We used the framework to estimate fields

and find the regions of high (hot) and low (cold) concentrations for each survey

area. This experiment was repeated over 2 days for different spatial locations.
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After completing each survey, we collected physical water samples using our

robots and used standard scientific protocols for analyzing the communities

of microorganisms in the samples. These standard lab-based methods were

sample filtering, DNA sequencing and assembling the DNA to identify different

microorganisms. The results show the samples collected using our framework

have a good quality score. Moreover, we analyzed our samples collected from hot

and cold regions and found communities to be distinct.



Chapter 6
Adaptive Monitoring and Informed

Sampling

In this chapter, we discuss the framework for informed sampling based on the

fields estimated using adaptive monitoring. The frameworks explained in the

Chapters 3 and 4 can be only used to provide an estimate of the field. However,

most environmental studies require physical sample collection from the regions of

scientific interests. These regions could be hot spots or cold spots of the estimated

field. Therefore, we present a framework here which can be used for both field

estimation and sample collection simultaneously from areas of scientific interest.

6.1 Exploration-vs-Exploitation in Monitoring and Sam-

pling

We are interested in combining both the tasks of field estimation and sample

collection into a single on-line framework. This can be achieved by collecting

representative data such as temperature measurements to get a good approxima-

tion of the field, and simultaneously use this approximation to collect physical

samples. Similar to monitoring frameworks, the combined approach can make use

of the temporal constraints for field estimation and sampling task, which helps in

reducing the model complexity of the environmental field. It is important to note

that our problem definition falls in the category of exploration-vs-exploitation

dilemma. The exploration characteristics come from the objective to get a good

approximation of the field, while the exploitation behaviour come from collecting

the samples from the areas of scientific interest.

72
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Figure 6.1: Our NUSWan [7] being deployed for monitoring and water sample
collection in a freshwater lake in Singapore. It has a water sampler which can be
used to collect upto 1 L of water.

In Chapter 3, we discussed a single robot adaptive framework k-AdaPP for

estimating environmental fields. At each step, k-AdaPP evaluates the potential

of all the neighbouring locations and selects the one which minimizes the overall

variance, thus making it an exploration only framework. In this chapter, we

present a single robot framework to address the task of simultaneous sampling

and monitoring of an environmental field and name this framwework as SAM.

We define the areas of hot regions as the areas of scientific interest, however,

this definition can be changed to suit any other sampling design. Therefore, our

framework aims to collect samples from the hot regions, while using a sparse

variant of Gaussian Process (GPs) to estimate the environmental fields. Moreover,

the sampling decisions are made using a combination of Upper Confidence Bound

(UCB) algorithm and a user defined utility function, which provides scientists the
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freedom to customize the sampling criteria as per the experiment’s requirement.

This user defined utility functions brings an adaptive behaviour to the sampling

decision process and thus it provides a strong use case for various scientific

experiments. We test the performance of our framework using sea surface

temperature dataset [8] and show that our framework SAM is able to provide

good estimates of the field as well as pick samples from the hot regions.

6.2 Problem Formulation

Our problem statement is to collect O samples from the hot regions of the

estimated field, where the field estimation task is done simultaneously and has to

finish within a fixed amount of time. This can be represented as

S = arg max
ix,jx∈P

O∑
i=1

Y(ix|Dt,P)×
O∏

j=1,j 6=i
G(ix, jx), (6.1)

such that

T (P) = T − t, (6.2)

where S is a set containing O spatial locations from the survey area and

Y(ix|Dt,P) is the value of the environmental parameter of a spatial location ix

in a path P, which is an element of the set of paths Λt explained in Chapter 3.

The function G(ix,j x) is used to discount the field value for a spatial location

ix given a sampled location jx and T is the total mission time. In short, (6.1)

represents the selection behavior for a set of spatial locations, which is controlled

by the definition of the utility function g(·, ·) and field’s distribution f(·). The

summation in 6.1 represents the constraint on collecting all the samples from

hot regions, a higher value of summation will come from samples collected from

higher values of the field. However, the utility function adds a weight to each of

the sample collected and thus changing the sampling behaviour to suit a scientific

objective.

Broadly, we have two optimization problems to solve, one is the estimation of
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the scalar environmental field and the other is the selection of samples satisfying

(6.1). To have a standard terminology, we consider the task of field estimation as

a monitoring or exploration problem and the task of physical sample collection

as a sampling or exploitation problem. As discussed before, solving these two

problems simultaneously represents an exploration-vs-exploitation dilemma. Our

algorithm k-AdaPP is an exploration-only framework, which aims at minimizing

the overall variance of the estimated field, and shows that we are able to get

a good approximation of the ground truth. We use this idea of minimizing

variance to address our exploration problem. We also leverage some of the

algorithm’s features such as spatial decomposition and sparse GP for estimating

fields. However, to address the exploration-vs-exploitation dilemma we add

certain elements to the k-AdaPP framework and these additions are discussed in

the following sections.

6.2.1 Upper Confidence Bound Algorithm

Exploitation in a sequential decision making problem is a well researched area

[106, 107, 108]. One of the commonly used approach for solving such problems is

the Upper Confidence Bound (UCB) algorithm. In a general UCB formulation,

the goal is to find the action that provides the maximum reward from the set of

possible actions. The UCB algorithm uses the combination of estimated mean

and variance of the rewards for each action and simply selects the action that

provides maximum possible reward. The definition of the maximum possible

reward defines the behaviour of the decision process and it has been formulated

to be used in different applications [109, 110].

6.3 Monitoring and Sampling using Information

In this section, we explain our exploration-vs-exploitation framework SAM. We

explain the use of k-AdaPP to provide an estimate of the field and the candidate

paths that can be used to minimize the variance in the remaining time. We also

explain the unification of these paths and selection of sampling location.
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6.3.1 Using Kernel Information in Planning

Similar to the exploration-only frameworks in Chapter 3, we use sparse GP,

SPGP, to estimate the field and the associated variance. At each planning

iteration, our framework simulates future paths through all the neighboring

cells and selects the path that minimizes the overall variance in the model. An

interesting characteristic of using GPs or Sparse GPs is the estimated variance,

which can be estimated using just the kernel model. In our field estimation

task, this means that the change in model variance for any spatial location

can be approximated without physically traversing to it. Another interesting

characteristics for Sparse GPs is the prediction complexity for estimating the

variance is completely independent of N and does not suffer from increasing

number of training points. The combination of these two characteristics makes

sparse GPs an ideal tool for quickly approximating the change in variance for all

the spatial location yet to be visited.

The exploration framework in SAM makes use of the kernel properties of

Sparse GP for evaluating different paths through the neighboring cells similar to

k-AdaPP. The exploration framework simulates candidate paths through each

neighboring cell and estimates its capability in minimizing the overall variance in

the the model. Our objective is to also collect samples from the hots regions of

the estimated field and therefore, merely satisfying low overall variance will not

solve the problem given by (6.1).

It is important to note that in the k-Adapp framework, the decision is made

after calculating the resulting variance of all the paths from the neighbouring

locations. We define this set of path for each neighbouring location as Υt and

resulting variance as V. This set is different from the set Λt as it contains only

one path for each neighbouring location. The set Υt will be a subset of Λt as it

is obtained using k-AdaPP ’s framework after searching through all the paths in

Λt. We form this subset because the locations in the paths in set Υt can be good

candidates for selecting the sampling points.
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Algorithm 6.1: UCB based Sample Selection from a path

Data: Sampling Canditates (µ(P) + σ2(P)), Remaining no. of samples

(o), Sampled locations till time t (St), Utility function G(·, ·)
Result: Greedy subset of locations that can be sampled (ST−t),

Expected Reward (κP)

/* Initialization */

1 Rewards before discounting Γ = µ(P) + σ2(P)

2 Discount the rewards Γ = Γ ∗ G(P,j x) ∀ jx ∈ St

3 ST−t = ∅
/* Algorithm Loop */

4 while o > 0 do

5 Find the location of maximum reward x = max(Γ)

6 Add x to ST−t

7 Update no. of samples o = o− 1

8 Update the rewards Γ = Γ ∗ G(P,x)

9 Update expected reward κP = κP + µ∗(x) + σ2
∗(x)

10 end

6.3.2 Selecting Sampling Locations from a Path

In an ideal scenario, we need to select the best sampling candidates that satisfy

(6.1) using complete information about of Y(·). However, we do not assume

to have any prior information and the exploration happens while selecting the

samples, therefore knowing the actual value of Y(·) in advance is not possible.

However, an estimate of Y(·) can be obtained using the sparse GP’s mean (µ(·))

and variance (σ2(·)), which are continuously updated using the data collected

during exploration. In addition to this data collection, the exploration framework

provides future candidate paths and the resulting variance as discussed in the

previous section.

Given the estimated field and the candidate paths, the sampling problem

can be divided into two layers of problems. The first layer is to select the best

O − o samples for each of the future paths given by the framework, where o
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is the number of samples already collected. The second layer is to select one

of the paths given all the O samples (exploitation) and the resulting variances

(exploration) for each candidate path. The first layer of the problem follows the

general formulation of making sequential decisions, whereas, the second problem

represents an exploration-vs-exploitation dilemma. We first discuss the problem

of finding O − o sampling locations for each candidate path.

Given a future path P and the sparse GP’s mean µ∗(·) and variance σ2
∗(·), we

define the spatial locations in the path P as the candidates for taking a sample

and the sample value of each of these candidates can be identified as

arg max
ix∈P

µ∗(
ix) + σ∗(

ix). (6.3)

In simple terms, (6.3) represents the reward for taking a sample as the sum of

mean and variance of the selected location, µ(·) + σ2(·). With this formulation, a

simple approach to find the O − o sampling locations is to sort µ(Pi) + σ2(Pi) in

descending order and select the top O−o candidates. Such a selection process can

produce all samples from the same hot region, which is a valid solution but may

be irrelevant for the scientific objective. Therefore, we use a utility function G(·)

to introduce the experimental objectives into our sample selection problem and

adjust the sampling rewards on-the-fly. This utility function is used to control the

sampling behaviour, such as minimum distance between the samples or sampling

only when the sample value exceeds the user-set threshold.

Our approach to select the best sampling points from a given path is presented

in Algorithm 6.1. At each sample selection step, the utility function is used to

weight the rewards for the remaining sampling candidates. This is followed by

selecting the next sampling location with the maximum weighted reward and this

process continues until all the O sampling locations are selected for the given

path. At the end, the total reward for a path is given by the sum of all weighted

rewards for all the selected sampling locations.
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Algorithm 6.2: SAM - Sampling and Adaptive Monitoring Framework

Data: Set of Paths from k-AdaPP (Υt), Total Reward for each path

(κP), Resulting Variance for the paths in Υt ((V)), Branching

Threshold (ε)

Result: Selected path P∗
/* Initialization */

1 Find the maximum reward κ = max{κiP ∀ iP ∈ Υt}

2 Generate the subset of paths Υ′t = arg
Pi∀Υt

κ
iP > κ− ε

3 Generate the subset V′ of resulting variance for paths in Υ′t

4 if |Υ′t| == 1 then

5 Select the only path in Υ′t

6 else

7 Find the path which has minimum remaining variance

P∗ = Υ′t[arg minV′]

8 end

6.3.3 Unifying Monitoring and Sampling tasks

In the previous sections, we have described the approach for generating candidate

paths for exploration and selecting the best locations to sample from a given

path. However, unifying these two components into one framework is not simple.

The approach that we have used is given in Algorithm 6.2.

At each planning iteration, a set of candidate paths are available with informa-

tion about the resulting variance and the total reward for collecting samples. This

is where the exploration-vs-exploitation dilemma arises. In order to overcome it,

we first sort the candidate paths given by Υt according to the total reward of

the candidate paths κP. We then form a subset Υ′t and resulting variances V′

for those paths where the total reward lies within a threshold ε of the maximum

possible reward.

The idea of forming a smaller subset is similar to the Branch-and-Bound

method used for efficiently narrowing down a search problem. If the size of set

Υ′t is 1, we select the only path in this set and take the first step according to it.
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The set Υ′t having only a single element represents that no other path in Υt has

a reward within a threshold ε range of the maximum reward. On the other hand,

if the set has more than one path, we select the path with the minimum resulting

variance min V′. Such an approach of forming a subset based on the rewards

and selecting paths using the resulting variance gives the balance required for

the exploration-vs-exploitation dilemma.

6.4 Simulation Results

For our simulations, we used the real field Sea Surface Temperature (SST) data

provided by the Jet Propulsion Laboratory [8]. We extracted the temperature

data for an area of 200× 200 km2 each and mapped it to an area of 200× 200

m2. This mapping was done to conserve the features of the environmental field

and have an area that can be explored within a practical value of T . We used

the same simulation setup as explained in Chapter 3.

6.4.1 The Utility Function

We modeled the utility function such that the samples collected were not all from

the same location, which is a general sampling strategy used used in the field.

The utility function used in our simulation can be given as

G(ix, jx) = min(
||ix− jx||

σl
, 1), (6.4)

where σl is set to 50 m. The function G(·, ·) penalizes the samples collected within

50 m radius of the already sampled location jx. The mission time is set to 1000

s and the vehicle is assumed to be traveling at constant speed of 1 m/s. We

implemented our algorithm using MATLAB.

Fig. 6.2 shows the estimated fields and sampled locations using our algorithm

for different valued of O given by {2, 3, 4}, with the value for ε set to 0.25. It

can be observed that our algorithm was able to capture samples from the hots

regions and provide a good approximation of the environmental field in each case.
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(a) Ground Truth (b) O = 2, T = 1000s

(c) O = 3, T = 1000s (d) O = 4, T = 1000s

Figure 6.2: Simulation results for a 200 × 200 m2 sea surface temperature
field. (a) is the ground truth obtained using the MUR dataset [8]. (b)-(d)
represents the field predicted using SAM for T = 1000 s and different values
of O given by {2, 3, 4}. The white lines represent the paths taken by the robot
and the black dots represent the locations where the samples were collected.
The collected samples are all from the hot regions of the estimated field as well
as the spatial difference between these samples controlled by the function G is
significant. Moreover, the fields estimated for different values of O provide a
good approximation of the ground truth.

Moreover, we used the root mean square error (RMSE) to measure the exploration

performance and these results are present in Fig. 6.3. This figure shows similar

transient drops in RMSE for different values of O, which demonstrates that our

exploration strategy works efficiently.
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Figure 6.3: Root Mean Squared Error in estimating the ground truth for an
overall mission time as T = 1000 s and different values of O as {2, 3, 4}. The
RMSE trend for different values of O is comparable and thus it shows that the
exploration framework in SAM is able to coordinate the robot well even with
increasing the number of samples.

6.4.2 Comparison with Exploration or Exploitation only Frame-

works

We further examined the exploration and exploitation characteristics of our

framework SAM. For benchmarking the exploitation performance, we simulated

a greedy algorithm that can collect samples without any discounting from the

utility function G(·, ·). The sampling location is also not constrained by the

locations in the path of the robot. Therefore, this algorithm would result in

collecting all the samples from maximum of the the temperature field given in Fig.
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(a)

(b)

Figure 6.4: (a) Sum of samples collected using the greedy algorithm and mean
sum of samples collected using our framework SAM. (b) Root Mean Squared
Error in predicting the ground truth for different values of O as {2, 3, 4}. Both
of these results are over 10 simulation runs.
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6.2(a). The sum of samples for this algorithm will be the maximum value of the

sum of samples that could be collected from the field. Similarly, We measured the

exploration performance SAM by using our exploration-only framework k-AdaPP

as a benchmark. An interesting observation is that our framework SAM can

be made a exploration-only framework by removing the constraint on collecting

samples, which is equating O to zero.

We simulated the greedy algorithm, k-AdaPP and SAM for each value of

O and repeated these simulations 10 times. The results of these simulations

are present in Fig. 6.4. The RMSEs to measure the exploration performance

are present as box plots, where O = 0 represents the performance of the of the

exploration-only framework k-AdaPP. The overall RMSE for k-AdaPP is low

as compared to the fields estimated using SAM, however, the error difference

between these two frameworks is not large. Moreover, the mean RMSE for each

value of O in [2, 3, 4] is similar. This provides more evidence to our observations

from Fig. 6.3 that our framework provides good estimates of the field, even on

increasing number of samples. The exploitation performance of our framework

is shown in Fig. 6.4(a). It is clear that our framework performs as good as the

greedy algorithm. These results are encouraging as the the samples collected from

the greedy algorithm represents a maximum sum of samples and our frameworks

scores similar sum values even with the constraints from the utility function

G(·, ·).

6.5 Summary

In this chapter, we presented a framework for simultaneously sampling and

estimating a scalar environmental field using a single robot with the constraints on

mission time. The environmental field was modeled with a sparse GP framework,

SPGP, and the sampling decision process was handled using a combination of

UCB and Branch-and-Bound approach.

At each decision iteration, we generate candidate paths using our k-AdaPP

framework and select the samples for each candidate path based on a science
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objective fused with UCB. The Branch-and-Bound approach helps in narrowing

down the candidate paths to a reduced set of paths that provide good sampling

locations. The final path is selected from this reduced set based on which path will

result in lowest uncertainty at the end of mission. We simulated our framework

using real world temperature data and the results show that our algorithm is able

to provide a good approximation of the environmental field, while simultaneously

collecting samples from the hots regions of the estimated field. This chapter

provides details about our simultaneously sampling and monitoring framework,

which is capable of integrating scientific sampling behaviours.



Chapter 7
Data-driven System Identification

Robots are now commonly used for environmental monitoring. These robots are

equipped with environmental sensors such as water quality or weather sensors.

However, the robots generally have actuators to move, which can also cause

disturbance in the environmental field that it is sensing. It is thus important

to quantify this disturbance and a first step in this direction is to estimate the

dynamics of the robot in the environment accurately. In this chapter, we present

a method to estimate the robot’s dynamics model and use the motion data of

one our AUV to show that our method outperforms the conventional system

identification technique.

7.1 Methods for Estimating Vehicle Dynamics

Traditional approaches in modelling AUVs are based on physics models derived

using first principles [76] with certain assumptions to make it linear model for

easier estimation of system parameters [77]. However, AUVs with vehicle design

not similar to a conventional AUV such as Iver or REMUS cannot use these

linear system model. AUVs with un-conventional designs are now becoming

more common and some of them are being used for environmental monitoring

[78, 79, 80, 81, 2]. Therefore, it is important to have a method to learn the

dynamics model of such robots.

Learning a vehicle’s dynamics model can be seen as learning a function that

can estimate the output parameters based on the input parameters such as

velocity and control inputs. Therefore, a function approximation approach can

86
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Figure 7.1: The schematic diagram of our modular AUV, STARFISH, with a
Voith-Schneider (VS) thruster. This thruster is installed close to the tail and
thus can be used as an alternative to conventional fin design. The blue arrows
close to the tail of the AUV show the direction of thrust from the VS thruster.
These arrows are perpendicular to the rotation axis of the AUV given by the
dotted red-line.

be used to learn a good dynamics model of the robot. It has been shown that

feed-forward neural networks have the capability of approximating any continuous

function [86]. Moreover, the function approximated using neural networks can

learn complex mappings between the input and output parameters. This learning

is done using only examples of input and output parameters and it does not

require prior information. Therefore, neural networks are a good candidate for

learning the vehicle’s dynamics model.

We make use of a neural network structure, known as Multi-Layer Perceptron

(MLP), with a non-linear activation of its hidden units using rectifiers [90] to

approximate an AUV’s dynamics. In addition, we explain the methods used

for optimizing our MLP’s learning process. We used a conventional shape AUV

with vector thrusters for our experiments. The details about the vector thruster

and the state space model of our AUV are present in Section 7.2. We explain

our MLP network and its optimization in Section 7.3. The details about our

experiments and the performance comparison between the models are present in
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Section 7.4.

7.2 Linearized Model of AUV with Vector Thruster

7.2.1 Voith-Schneider Propeller as Vector Thruster

Typical design of an AUV consists of a cylindrical hull with a horizontal thruster

and four protruding control fins. The integrated motion of these four fins

control the AUV’s roll, pitch, yaw and depth. However, this design has limited

maneuverability as the motion is dependent on the control surfaces around

the AUV. For example, such AUVs under nominal speeds generally have large

turning radii. In addition, the protruding fins increase the AUV’s drag and are

mechanically the weakest part of its body. An alternative to using these fins is

vector thrusters. These thrusters can provide forces perpendicular to vehicle’s

body and make the turning radii smaller. One of the thrusters that has such

capability is Voith-Schneider Thruster.

In sea vessels like ships or ferries, complex maneuvering such as on-the-

spot turning is made possible by the use of Voith-Schneider (V-S) propulsion

mechanism [111]. In general, this propulsion system consists of a cycloidal rotor

that provides thrust in the direction perpendicular to its rotation axis. This

thruster mechanism can be used to control the AUV’s yaw and pitch and can act

as an alternative to AUV’s fins. In order to substitute the function efficiently,

we align the rotation axis of the V-S propeller to coincide with the AUV’s roll

axis. Furthermore, this thruster is positioned close to the AUV’s tail to replicate

the effect of the four fins as shown in Fig. 7.1. This design makes the vehicle’s

motion independent of control surfaces and adds capabilities like thrust vectoring

and on-the-spot turning. However, the non-linear behavior of the AUV increases

by adding this thruster module and thus the system dynamics becomes more

complex.
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7.2.2 State Space Equation Model

Generally, the dynamics of an AUV is described using differential equations

of motion [76]. The model equations are defined in two different coordinate

frames: earth-fixed or North-East-Down (NED) frame and body-fixed frame.

Six velocity components, υ = [u, v, w, p, q, r]′ (surge, sway, heave, roll, pitch,

yaw) are used to define dynamics in the body-fixed frame, where [·]′ represents

a transpose of the matrix. Similarly, the Euler angles [δ, ζ, ψ] and the distance

between NED and body-fixed frame in NED coordinate system [d1, d2, d3] is given

as Θ = [d1, d2, d3, δ, ζ, ψ]′. These two vectors are related through Euler Angle

transformation as

Θ̇ = Jυ. (7.1)

As described in [76], the nonlinear vehicle dynamics of a robotic system operating

in fluids can be expressed in a compact form as:

Iυ̇ + C(υ)υ +D(υ)υ + Ω(Θ) = B(υ)u, (7.2)

where I represents the total inertia, C(υ) represents the coriolis and centripetal

forces, D(υ) represents the hydrodynamic damping, Ω(Θ) is the vector of restoring

forces and moments, B(υ) is the control matrix and u is the control inputs given to

the system. The individual components in (7.2) are highly nonlinear and difficult

to estimate via field experiments. Therefore, it is not practical to use (7.2) for

estimating the dynamics of an AUV. A more detailed explanation of this problem

is present in [76]. Therefore, an alternative solution is to separate the model into

non-interacting or lightly interacting subsystems. The widely accepted solution is

to divide the model into the following three categories: speed subsystem, steering

subsystem and diving subsystem [77]. However, it is not feasible to divide the

complex AUV designed into such subsystems, for example, the pitch and yaw

dynamics are coupled for an AUV using vector thruster. Another approach for

system identification for such AUVs is the state space model, which can be used

to obtain a simplified approximation of vehicle’s dynamics. This model can be
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represented as

f = A υ,Θq + Bu, (7.3)

where f is a system parameter that is being modelled, υ,Θe is the vector containing

the AUV’s state variables and A and B are matrices of the state space model.

A state space model is capable of capturing all possible linear dependencies on

state variables and control inputs. Interestingly, the three subsystems mentioned

in [77] can also be represented using (7.3). For example, the yaw acceleration in

steering subsystem is dependent on yaw rate and rudder input. Therefore, in such

cases, all the array elements of matrices A and B that are not corresponding to

yaw rate and rudder input will be zero. This implies that the matrices A and B

contain elements that have physical significance like components of hydrodynamic

added mass or the effects of stern input. Therefore, it can be concluded that the

state space representation is very similar to a linear physics model and it can be

considered as a good baseline for performance comparison.

The coefficient matrices A and B in (7.3) define the accuracy of the model

and they are generally estimated using least square fit on the input data. As

the state space model is a linear approximation of the AUV’s dynamics rather

than a theoretical derivation, its accuracy will depend mostly on the quality of

motion data. If the data used to estimate the coefficient matrices do not capture

sufficient dynamics, it will be difficult to obtain an accurate dynamics model.

Therefore, the state space model given by (7.3) offers a good linear representation

of the AUV but it does not guarantee an accurate dynamics model as it is affected

by the quality of motion data.

7.3 Multilayer Perceptron as Function Approxima-

tors

A Multi-Layer Perceptron is a feed-forward artificial neural network that learns

the mapping between the input data and the output data. The conventional

structure of an MLP is a fully connected network with three layers: an input
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layer having all the input features, a hidden layer activated by an activation

function and an output layer giving the final result. We have adopted the same

network structure for our model. The output f ′ of our MLP can be expressed as

f ′ = ω̂ ×Ψ(ω υ,θ,uq + δ) + δ̂, (7.4)

where ω̂ and δ̂ are the weights and biases for the hidden layer, ω and δ are the

weights and biases for input layer, Ψ(·) is the activation function and υ,θ,ue is

the input feature vector containing the AUV’s state variables and control input.

MLPs have the capability of universal function approximation because of

the nonlinear transformation in its hidden layer. This nonlinear transformation

is given by the activation function Ψ(·). This transformation of the scaled

and shifted input features can either activate or deactivate each hidden unit.

Therefore, some of the hidden units get activated for certain regions of the input

data and learn their representation in the final output. This results in projecting

the entire input dataset into a space where it becomes linearly separable with

respect to each hidden unit. Therefore, the estimated output is obtained using

only the hidden units activated by a particular input.

We understand that such characteristics would be useful in learning an

accurate dynamics model for AUVs. For example, we know that in a linear physics

model, yaw acceleration is dependent on yaw velocity and rudder deflection [77].

However, this representation is a simplified version of (7.2), which shows that yaw

acceleration is dependent on other state variables as well. Therefore, we opted to

design an MLP to estimate the dynamics model as it is capable of learning such

underlying representations through the nonlinear transformations.

The activation function Ψ(·) is one of the key features of a neural network.

The standard options for an activation function of MLP are sigmoid and tanh.

However, recent advancements in Deep Learning have been driven by the use of

rectifiers as the activation function. A simple rectifier activation function, Ψ(·),

is given as

Ψ(·) = max(0, ·). (7.5)
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(a)

(b)

Figure 7.2: (a) Our modular AUV, STARFISH, with the (b) Voith-Schneider
Module. The motion data was collected using module.
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An important characteristic of such activation function is that its output is

proportional to its input for all positive input values, and zero for all negative

input values. This gives rectifiers a much larger active region than the tanh

function. Also, such activation function helps in efficient gradient propagation

during training, and does not suffer from the vanishing gradient problem [112].

7.4 Experiments

7.4.1 AUV’s Motion Data

In order to test the performance of our network against the baseline linear model,

we collected the motion data using our modular AUV called STARFISH. It has

a thruster for horizontal propulsion and a V-S propeller for providing directional

thrust as shown in Fig. 7.2. The horizontal propulsion and V-S propeller together

control the yaw, pitch and depth of STARFISH. In order to suppress its roll

dynamics, STARFISH has an internal rolling compensator mechanism [113]. We

took the AUV to a local reservoir and programmed it to do complex manoeuvres.

These complex manoeuvres included 360◦ on-the-spot turning. These manoeuvres

were repeated for different thrust values to excite the AUV’s dynamics and we

recorded the data for a total of 12 minutes of such motions.

The recorded data has 13 features: orientation (δ, ζ, ψ), linear and angular

velocities (u, v, w, p, q, r), two servo positions of V-S propeller’s control rod, V-S

propeller’s rotational rpm and horizontal thruster’s rpm. Some of the sensors had

low sampling frequency and thus the data was interpolated to obtain a sampling

rate of 10 Hz. We used a cubic polynomial fit on each subset of 10 adjacent

points for this interpolation. Sensors with sampling frequency higher than 10 Hz

were down sampled to achieve a fixed sampling rate across the entire dataset.

The total dataset consists of 7, 314 data points out of which 4, 994 data points

were randomly selected for training, 1, 070 for validation and an equal number of

data points for testing.
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Figure 7.3: Performance comparison between our MLP network and the linear
model in estimating AUV’s dynamics.
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7.4.2 Optimization of our State Space Model and MLP

The coefficient matrices of our baseline state space model were learned using

regression analysis. This analysis was done on the training dataset and we

used Levenberg-Marquardt algorithm [114] for learning the matrices. For each

regression, a system parameter was selected and it was put as the output variable

f given by (7.3). This was followed by the regression analysis and the best fit

coefficients were learned. Generally, the output variable f is a system parameter

that cannot be directly measured using any sensor but has an important role in

the design of a controller for AUVs.

Our MLP model has a single hidden layer and a rectifier as an activation

function. We used Gradient Descent (GD) optimizer to minimize the residual sum

of squares (RSS) between the model’s prediction f ′ and the observed dynamics.

We also used RSS as a metric to determine MLP’s performance on the validation

and test dataset. In addition, the GD optimizer used a decaying learning rate β

given as

β = 0βe−i, (7.6)

where 0β is the initial learning rate, i is the optimizer’s iteration number and

e is the mathematical constant used in natural logarithms. We also scaled all

the input features υ,θ,uq between 0 and 1 to maintain consistency across all the

features for the entire dataset. We used the patience interval [115] method for

stopping our training process. This patience parameter is used to control the

number of iterations to go further in training and look for a better performance.

Therefore, during training whenever a low RSS value is recorded, we extend the

number of iterations by adding this patience parameter and look for a lower RSS

value.

The optimization of neural networks also depend on the initialization of

weights and biases, and the learning rate. The standard method for initializing is

to select weights and biases randomly from a zero-mean Gaussian distribution

[116]. Selecting a learning rate is critical for obtaining a good performance from
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neural networks. A small learning rate β and a random initialization can result

in the optimizer getting stuck in a local minima. On the other hand, a higher

learning rate may result in the optimizer completely missing the global optima.

We used a two-phase initialization process to solve the problem of selecting

the learning rate and the initial values of weights and biases. In the first phase,

the weights and biases are initialized using a zero-mean Gaussian and trained

with a relatively average learning rate β′. The value for β′ is obtained from

some preliminary tests using the training dataset. This value is a the of a low

and high learning rate relevant to the training dataset. The training process is

initiated using the decaying learning rate given by (7.6) until it is terminated by

the number of training iteration exceeding the patience interval.

Before entering into the second phase, the weights and biases corresponding

to the best performance from the first phase are restored. This restoration is

required because the first phase was terminated because the network was not

able to perform better within the patience interval. This means that the last

iteration’s weights and biases do not correspond to the best performance or the

lowest RSS score. At the beginning of the second phase, the weights and biases

are initialized using the restored values. After this second initialization, the

training is performed again using a decaying learning rate with its initial value

β′′, which is lower than the previous learning rate β′ . This type of two-phase

learning process ensures that the initial weights and biases come close enough to

a global minima and then critical updates are made during the second run to

find the best performance.

7.4.3 Performance

We trained the baseline model and our rectifier network using the training set

and used RSS as a performance metric. We used Google’s open source library

TensorFlow to implement both the models. The MLP model used 2, 500 hidden

units and a mini-batch size of 1, 000 samples for training. The learning rate

β′ was set to 10−4 and β′′ to 10−6. These learning rate values were decided
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System Parameter RSS for MLP RSS for State Space

Yaw Acceleration 4.2 19.2

Pitch Acceleration 5.2 11.0

Roll Acceleration 1.8 6.5

Table 7.1: Residual Sum of Scores (RSS) for acceleration parameters obtained
using MLP and State Space model.

after some initial experimental runs using the training dataset. The patience

interval was set to 10, 000 iterations. The rectifier MLP model has 13 input

features as descibed in Section 7.4.1. Both the state space and MLP models

are trained to predict the system parameter one time-step ahead. In real time,

this one time-step prediction is equivalent to estimating the value 0.2 s ahead

of the current timestamp. The test dataset performance for both the models is

presented in Fig. 7.3 and Table 7.1 gives the details about the RSS value for the

system parameters which were not present as an input variable.

It can be clearly observed from Fig. 7.3 that our MLP network and state

space model gave promising performance in predicting orientation and angular

velocities. However, MLP significantly outperformed state space models in

predicting acceleration state variables. These are also the parameters which were

not present as input features to our models. Therefore, no prior information

was available about their current state when both models were estimating the

variable’s future value. This difference in performance is a good evidence that

MLPs are capable of learning the underlying non-linear dynamics whereas, state

space models are only able to provide rough estimates.

The Table 7.1 gives more details about the performance of both models in

estimating the acceleration parameters of our AUV. The RSS values provide

another verification that the MLP model learned a better representation of

acceleration parameters as compared to the state space model. This means that

state space models can only perform well when sufficient information about the

output variable is already present as an input. However, the MLP model is able
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to estimate unknown as well as known dynamics accurately and therefore, can

be considered ideal for modelling complex AUV dynamics.

7.5 Summary

In this chapter, we defined a rectifier activated MLP network for learning AUV

dynamics. We used the state space model as a baseline method. These models

were tested for predicting system parameters for an AUV with a vector thruster.

Our results show that the performance of MLP network is either better or at least

as good as our baseline model. The baseline model gives a decent performance

only when the output variable is present as a state input. Whereas, the MLP

model accurately predicts all the system parameters irrespective of their presence

as an input feature. Therefore, the MLP model is shown to be a better choice

over a linear dynamics model, and capable of modelling complex AUV dynamics.

Lastly, we also discussed briefly the methods for optimizing our model’s learning

process. The main contribution detailed in this chapter is the design of a MLP

model to estimate the system parameter that cannot be measured directly.



Chapter 8
Conclusions and Future Work

In this chapter, we provide a conclusion for this thesis and the future directions

that can be pursued based on the results present in this work.

8.1 Conclusions and Discussions

This work provides a comprehensive approach for monitoring and sampling

environmental fields using robots. We started with the problem of estimating

scalar environmental fields, such as chlorophyll concentration or dissolved oxygen.

The environmental fields generally have spatio-temporal characteristics and thus

estimating fields with such dynamic behaviour is difficult. However, the temporal

changes in the fields generally occur over large temporal intervals. This means

that the environmental fields can be assumed to be temporally constant for a

short period of time. We used this assumption by constraining the total mission

time for estimating the environmental fields using robots.

The modelling of spatial phenomenons can be done using Gaussian Processes

(GP), a method commonly used in the field of Geostatistics. However, learning a

GP model for a large dataset is computationally expensive and thus it was not

ideal for real-time applications. Another model that can be used to approximate

the environmental fields is sparse GP, which learns a sparse representation of the

full GP model and it can be learned at a much faster rate. Therefore, all our

field estimation tasks used sparse GPs to estimate the spatial distribution of the

environmental fields. Specifically, we used a spase GP variant called as Sparse

GP using Pseudo Inputs or SPGP.

99
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We discussed two frameworks for using a single robot to estimate a scalar

environmental field. We placed limits on the mission time for collecting the data

and these constraints were introduced for assuming a temporally static field. The

main difference between our two single-robot frameworks was the amount of

information that was gained using GP model and integrated into the planning

step. One approach used only the variance map estimated by the GP model,

whereas, the other approach used the kernel function as well as the variance map

to continuously update the variance as per the future paths. We termed the

framework using kernel information as k-AdaPP.

We simulated our frameworks using real world temperature data and the

results showed that both our frameworks provided a better approximation of the

field as compared to traditional lawn mower paths. We further analyzed various

components in our frameworks, such as the spatial decomposition algorithm. We

showed using this decomposition algorithm our framework was able to perform

better. Finally, we compared our framework with other methods that are used for

collecting data and showed that our framework’s mean performance over 10 sim-

ulation runs outperformed all the other methods. The performance improvement

using our framework was considerable. It provided a substantial evidence that

our framework for single robots can provide good estimates of the environmental

fields using GP’s information.

The overall performance of the single robot frameworks is limited by the time

a robot can use to collect data. This means reducing the total amount of mission

time will affect the framework’s overall performance. This problem can be solved

by using a team of robots. However, extending the single-robot approach to a

team of robots is not simple. We suggested another framework for estimating

the environmental fields using a team of robots. Similar to the single robot

framework, we used the kernel information of the sparse GP model to coordinate

the team of robots and collect informative data. This is also the first framework

where we included the computation time as part of the mission time to provide a

more field-ready framework. We termed this framework as m-AdaPP.
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We tested the performance of our framework in simulations as well as in the

field. In our simulations, we reduced the total mission time on increasing the

number of robots. We showed through these simulations that our framework was

able to coordinate the team of robots well. The performance of a team of two

robots with half the time was similar to the performance of a single robots given

the full amount of time. This similarity in performance could be only possible if

the framework coordinated the motion of the robots efficiently. Moreover, we also

compared the performance of this framework with conventional field estimation

methods. This performance comparison was done via field experiments. We

developed a team of two robots and used these robots to estimate the Dissolved

Oxygen levels in a local reservoir. The results from the field experiments clearly

showed that the fields estimated using our framework gave a low estimation error

as compared to the fields estimated using lawn mower patterns.

Our frameworks, k-AdaPP for single robot and m-AdaPP for a team of robots,

were shown to provide a good estimate of the environmental fields. Once we

established that our framework performed well in reservoirs, we examined the

biological relevance of the fields estimated using these framework. We used the

m-AdaPP framework to provide an estimate of the Dissolved Oxygen levels and

collected samples from the estimated hot and cold regions. We repeated this field

experiment over large and short temporal delays.

The collected samples were analyzed for the quality of DNA recovered from

each of the sample. Our results showed that the quality score for all our exper-

iments was good. This means that our frameworks can not only be used for

estimating the environmental fields but it can be also used for studying microor-

ganisms with a more informed sampling approach. We used this preliminary set

of data to explore the differences between the microorganisms existing in hot

and cold regions. Our results showed that there is a clear difference between

the microorganisms existing in the two regions. This is an interesting result and

the cause for this difference can be further examined with a larger number of

samples.
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In the field experiments for examining the biological relevance, the samples

were collected after the robots had finished estimating the environmental field.

This is a general approach in most of the scientific studies. Such a sequential

approach also introduces a temporal delay between sensing a location and collect-

ing a sample from it. Therefore, we presented a framework for simultaneously

sampling and estimating a scalar environmental field using a single robot. We

handled the decision problem in this framework by using a combination of Upper

Confidence Bound and Branch-and-Bound approach. We also provided a function

that can be modelled by scientists to put additional constraints on selecting

the samples. Our simulations were done using real world temperature data

and the results demonstrated that our framework was able to provide a good

approximation of the environmental field, while simultaneously collecting samples

from the hot regions of the estimated field. We termed this framework as SAM

In this work, we have provided a complete set of frameworks that can be

used to address various requirements of a general environmental study. All our

frameworks are based on using robots for collecting informative data. However,

the robots are generally equipped with actuators to move and these actuators

or the motion of the robots itself can cause a disturbance to the parameter it

is sensing. It is necessary to quantify this disturbance and we took the first

step in this direction by suggesting a method for estimating the robot’s motion

accurately. We used a neural network structure, also known as MLP, to develop

a data-driven system identification method. We bench-marked its performance

against a linear model to estimate the complex dynamics of an AUVs with vector

thruster. Our results represented that our MLP method outperformed the linear

approach for all the variables that could not be directly measured using the

on-board sensors.

We developed following frameworks as part of this work:

• k-AdaPP: A single-robot framework for estimating the scalar environmen-

tal fields using Sparse GPs. The path selection was based on the kernel

model learned using the collected data. This framework was shown to
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outperform standard monitoring approaches in simulation.

• m-AdaPP: A multi-robot framework for managing a team of robots to

estimate the scalar environmental fields. This framework was validated in

simulations as well in field. It was shown to manage the team of robots

efficiently and perform better as compared to lawn mower paths.

• SAM: Single-robot framework for simultaneously monitoring and phys-

ical sample collection from an environmental field. It can incorporate a

science based objective and adapt it’s sampling behaviour based on this

objective. We showed this framework could provide a good estimate of

the environmental field while collecting the samples based on the scientific

objective.

8.2 Future Work

This section suggests a few directions that can be pursued as continuation to the

work in this thesis.

• Long Term Monitoring: Our current frameworks perform the field

estimation task with a constraint on the total amount of time. We will

identify the approaches to relax this constraint and develop a framework

that can be used for long term monitoring.

• Distributed Framework for a Team of Robots: Increasing the team

size for our centralized framework can increase the computation time

significantly. We will devise a computationally efficient and distributed

data collection framework and test its performance against our centralized

framework.

• Shifting from Estimation to Searching: We will re-structure our prob-

lem statement to shift the goal of the framework from just estimating the

environmental fields to searching for areas of high or low concentrations.
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• Generalizing the Frameworks as Optimizers: We will derive the

framework as a generalized optimizers and identify new areas of applications

such as fast convergence for convex optimization problems.

• Examining the Disturbance from Robot Motion: We will examine

the disturbances of environmental parameters caused by the movement of

robots using our dynamics model estimator.
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Appendix A

Sample preparation, DNA extraction and amplicon se-

quencing

Biomass was captured on 0.2 µm polycarbonate filters by passing water samples

(approx. 0.2 L) using gentle vacuum (5 mmHg in). Polycarbonate filters were

subsequently stored in deep freezers (-80◦ C) until DNA extraction. Genomic DNA

was extracted from the polycarbonate filters using a DNA/RNA co-extraction

kit (Norgen Biotek Corp.). The V4-V5 hypervariable regions of the 16SrDNA

gene were then amplified using the 515Y (GTGYCAGCMGCCGCGGTAA) and 926R

(CCGYCAATTYMTTTRAGTTT) primers. DNA quality and quantity were assessed

using agarose gel electrophoresis and fluorescence spectroscopy (Qubit, Thermo

Fischer). Samples were by Mr. Ooi Qi En while amplicon libraries were prepared

by Mr. Chua Si Hao under the supervision of Dr. Aditya Bandla. Amplicon

libraries were then tagged with Nextera (Illiumina Inc.) indices and adaptors

using standard protocol and sequenced using the Miseq (Illumina; v3 chemistry)

to generate 300 bp paired-end reads at the sequencing facility at the Singapore

Center for Environmental Life Sciences Engineering (SCELSE).

16SrDNA amplicon sequence analysis

Raw demultiplexed reads were depleted off primers using cutadapt v2.3. Amplicon

sequence variants were then resolved using the dada2 R package [104] using a

customized in-house workflow. Briefly, low-quality tails of the paired-end reads

were trimmed to fixed lengths and then those with maximum expected errors of

≤ 3 were retained for subsequent steps using the filterAndTrim function. Error

profiles were generated using the learnErrors function with default settings.
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Dereplicated reads were then denoised using a two-pass strategy designed to

detect singletons using the dada function. Denoised reads were merged using the

mergePairs function to yield sequence variants. Chimeras were then removed

using the removeBimeraDenovo function with the pooled option. Chimera-free

sequence variants were then filtered to retain only those variants with length 374

bp ± 10 bp. Finally, taxonomy was assigned using the assignTaxonomy function

with the SILVA v132 database [103] with species labels being inferred using

an exact sequence matching strategy implemented in the addSpecies function.

Amplicon sequences were analyzed by Dr. Aditya Bandla.
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