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Abstract

Scattered abundantly across the vast regions of the Clarion and Clipperton

Fracture Zone (CCFZ) are pockets of Polymetallic Nodules (PMN). These

PMN possess high economic potential as they are rich in minerals such as

manganese, nickel, copper and rare earth elements. Quantification of such

PMN coverage is important for economic feasibility studies and planning

of exploitation strategies. Traditional methods for PMN quantification are

labour and time intensive as they rely on freefall box corer measurements

and/or image processing of seabed photographs. This research thesis ex-

plores PMN abundance estimation using a data-driven method based on

Artificial Neural Network (ANN). Data used are geotagged Sidescan Sonar

(SSS) seabed backscatter images and seabed photographs collected using

an Autonomous Underwater Vehicle (AUV) within the CCFZ. Compared

to an underwater camera, the SSS provides a much larger area of coverage,

effectively increasing the AUV’s efficiency in the task of seabed surveying

within the limited dive-time. This is the first known published work to

elaborate on a data-driven approach in estimating PMN abundance using

SSS seabed backscatter data. The trained ANN model yielded an average

accuracy performance of 85.36%, demonstrating that it can be an effective

tool in estimating PMN abundance from SSS seabed backscatter images.

This approach enables faster evaluation of PMN abundance for future deep

seabed exploration without the need for underwater cameras.
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Chapter 1

Introduction

The International Seabed Authority (ISA) is an inter-governmental organ-

isation established under the United Nations Convention on the Law Of

the Sea (UNCLOS). It serves as the authority for regulating all seabed

mineral-related activities in international waters.

In the year 2015, ISA licensed to Singapore, a seabed area of 58,000 km2

within the CCFZ for mineral deposits exploration. These mineral deposits

take the form of potato-sized concretions called PMN. Past explorations

have found these PMN to reside mostly on the surface or just beneath the

abyssal seabed of all major oceans as shown in Figure 1.1 [1].

Fig. 1.1. Photograph of naturally occurring PMN on the seabed surface.

Studies have documented the occurrence and high abundance of such

PMN on the CCFZ’s abyssal seabed, and it is estimated that there are
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21 billion tons of PMN within the CCFZ [1, 2, 3]. These PMN are an

alternative source of minerals from their land-based counterparts, offering

potentially high economic value from their rich contents of manganese,

copper, nickel, and cobalt [4]. This development is exciting for a city-state

like Singapore, which has no natural resources to speak of and serves to offer

an excellent opportunity for the country to further diversify and expand

its economy through these potential metal markets.

Due to the vastness of the seabed area licensed to Singapore, there are

no efficient sampling and estimation methods which can accurately quantify

PMN abundance on such an extensive scale. The methods discussed in this

thesis improves the efficiency and accuracy of existing methods by using

a labelled SSS seabed backscatter data-driven approach. Based on this

proposed method, PMN abundance estimation over large seabed area can

be more efficiently and accurately assessed.

1.1 Motivation

A prospecting agency’s ability to effectively and accurately quantify PMN

abundance over a large seabed area is crucial for the purpose of economic

feasibility studies and development of effective PMN exploitation strategies.

Studies have reported PMN distribution exhibiting considerable variability

within a span of kilometres across the CCFZ with higher abundance in

the central and north-eastern regions [3, 5, 6]. Thus, it is vital to have an

estimation method which gives an accurate portrayal of PMN abundance

and its variation within any licensed prospecting seabed to ensure a proper

economic evaluation of these minerals.

Traditional PMN estimation methods are highly laborious and time-

consuming as they rely on planimeter and point-counting of PMN collected

from various forms of seabed sampling devices such as freefall grab and box
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corer as shown in Figure 1.2 [7, 8]. Unless conducted extensively over large

seabed area, these methods produced pockets of sparse sampling points

which may suffice for estimating PMN abundance within small seabed area,

but performing interpolation using these sparse measurements across the

vast prospecting seabed area could result in a poor estimate of PMN abun-

dance [9].

A more recent method uses image processing of seabed photographs cap-

tured with an AUV-mounted camera. Due to the comparatively higher effi-

ciency in capturing seabed data, this technique has gained significant trac-

tion as the preferred method for quantifying PMN abundance [6, 10, 11, 12].

High-performance computers with efficient image processing algorithms

running on graphics-processing units are also used to estimate PMN abun-

dance from the large number of seabed photographs collected. [13]. How-

ever, the total seabed area photographed using an AUV-mounted camera

during each dive is still relatively small compared to the extent of the entire

licensed seabed area to be surveyed as shown in Figure 1.3.

Fig. 1.2. 50× 50 cm box corer grab (Inset: Sample of recovered sediments
and PMN from the box corer)
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Fig. 1.3. A segment of the SSS seabed backscatter data. Over a timespan
of 12 seconds, the AUV covered a distance of 17.28m with an average
speed of 2.8 knots. The AUV-mounted SSS collected seabed backscatter
data from a seabed area of 1728m2 while the AUV-mounted camera only
photographed a seabed area of 36m2. Due to the time required for flash
recharging between each photograph, only three seabed photographs (each
capturing a seabed area of 12m2) depicted by red ‘X’s were taken during
this period.

Advancements in underwater sensing technology have led to the use

of underwater acoustic equipment in various seabed applications, such as

performing seabed terrain classification using a multibeam sonar and a re-

lationship study between seabed characteristics and PMN abundance using

a SSS [14, 15]. Although studies have suggested the existence of a quali-

tative relationship between acoustic seabed backscatter returns and PMN

abundance [15, 16, 17], there is no published work that details a data-

driven approach in using SSS seabed backscatter data for PMN abundance

estimation thus far.

1.2 Approach

A visual comparison between the seabed photographs and SSS seabed

backscatter data collected from the Singapore licensed seabed area show
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that PMN abundance variations from the two datasets are indeed corre-

lated as reported by [15, 16, 17]. Based on this observation, this thesis

explores the use of texture variations observed in SSS seabed backscatter

data to estimate seabed PMN abundance as shown in Figure 1.4.

Fig. 1.4. A simple depiction of the problem statement, which is to correlate
PMN abundance seen in seabed photographs to SSS seabed backscatter
data.

This is achieved by training the ANN, which is a supervised machine

learning technique for solving classification problems to model the relation-

ship between the patterns found in the SSS seabed backscatter data and the

PMN seabed coverage seen from its corresponding geotagged photographs.

Once trained, the ANN can be used to estimate future sites’ PMN abun-

dance with greater efficiency and accuracy using only SSS seabed backscat-

ter data.

1.3 Thesis Layout

The results from this thesis, descriptions of all methods applied, along with

their respective accuracy improvements are discussed in an order based on

a sequential workflow methodology. Conceptual illustrations of the various

methods used are presented alongside the discussions to help the readers

understand the rationale of these methods.

Chapter 2 provides a review on existing PMN data collection and abun-

dance estimation methods. The thesis’s background information such as

the geographical area of study, data collection, and data processing meth-
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ods are also discussed in this chapter. Chapter 3 discusses the general

ANN training procedures together with the trained model’s accuracy per-

formance on unseen SSS seabed backscatter dataset. Chapter 4 discusses

the implementation of various additional methods which further improves

the model accuracy performance and the methods used in assessing the

overall reliability and the generalisation capability of the trained model.

Lastly, Chapter 5 presents the conclusion drawn from this thesis as well as

the possible area of future research.
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Chapter 2

Background

In recent years, PMN containing commercially viable minerals such as man-

ganese, nickel, copper and cobalt have increasingly drawn economic interest

from the mining industry [3, 18]. Although Murray and Renard discovered

the first CCFZ’s PMN deposits during their scientific expedition on board

H.M.S Challenger in the early 1870s [19]. It was only in the 1960s, that

reports on the abundance of such PMN deposits within the CCFZ spurred

the economic interest towards these deposits [4, 20]. Since then, numer-

ous country-led consortia have conducted exploration studies to determine

the extent of these PMN abundance and the viability of harvesting min-

erals from these PMN deposits [21]. To show the rationale of using the

proposed data-driven approach in inferring PMN abundance through SSS

seabed backscatter data, selected literatures with an emphasis on existing

PMN sampling and abundance estimation methods are discussed in this

chapter.
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2.1 Existing PMN Abundance Estimation

Methods

In the early days of PMN exploration, Murray and Renard [19] obtained

coarse estimations of PMN abundance on small seabed areas using an ex-

tensive range of labour intensive seabed collection methods such as clamshell

sampler, dredge haul and gravity core. Using these methods, chunks of

seabed are brought up to the surface, and the sediments are sieved to

extract PMN which are then weighed to determine their abundance. How-

ever, such methods only sampled a small seabed area per deployment with

sampling points potentially spaced kilometres apart. This adds uncertainty

on the variations in PMN abundance around each sampled point, making

PMN abundance estimation over the vast extent of the prospecting seabed

area rather inaccurate. In addition, it is difficult to determine the dredger’s

exact covered distance, as it may not be in contact with the seabed while

being towed, further casting a doubt on the accuracy on the samples col-

lected.

Glassy and Singleton [22] used a comparatively faster method of un-

derwater photography to perform in situ estimation of PMN abundance

using an underwater camera lowered onto the seabed. These seabed pho-

tographs, apart from providing PMN abundance estimation, also provided

additional seabed information such as seabed conditions, sediment charac-

teristics, and the directional flow of water currents through scour marks

seen on the seabed. The use of underwater cameras proved to be a more

effective means of estimating PMN abundance as each seabed photograph

depicted an average seabed area of 7.5m2 compared to an average seabed

area of 0.25m2 covered by each sampling grab.

Sharma [23], achieved a comparatively quicker way of PMN abundance

estimation through the use of a vessel’s tow-frame-mounted underwater
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camera. To expedite the analysis of these seabed photographs, Sharma et

al. [24] digitised these photographs and developed a machine learning based

image processing software to estimate PMN abundance from these seabed

photographs. To train this software, an operator creates polygons around

the PMN images in order to teach the software to recognise these relevant

features. Once taught, the software can automatically calculate the total

number of PMN or sediment pixels and tabulate them accordingly for each

digitised photograph.

With the democratisation of AUV and underwater acoustic equipment,

Okazaki and Tsune [11] used these equipment to conduct a survey on an

approximate 40 km2 of seabed area within the Japanese licensed area in the

CCFZ. Using an AUV equipped with an underwater camera and a multi-

beam echo sounder, they collected more than 10,000 seabed photographs

and built a detailed bathymetry map of the area from which they studied

the correlation between bathymetry features and PMN distribution.

Similarly, Lee and Kim [15] used a ship-towed SSS to collect seabed

backscatter images and freefall grab samples within their Korean licensed

area in the CCFZ. Based on visual comparison from both datasets, the au-

thors observed that low SSS seabed backscattering returns correspond to

freefall grab areas with low PMN abundance while medium-to-high SSS

seabed backscattering returns correspond to freefall grab samples from

areas with high PMN abundance, suggesting a correlation between SSS

seabed backscatter returns and PMN abundance.

In summary, mechanical devices such as samplers, dredgers and corers

are limited to small seabed area sampling where collected samples are in-

sufficient in providing an accurate estimation of PMN abundance over the

vast extent of the entire licensed area. On the contrary, the comparatively

larger seabed coverage imaging capability of acoustic-based equipment such

as multibeam sonar and SSS have shown promising results in correlating
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PMN abundance based on their acoustic seabed backscatter returns. This

thesis builds on this observation by exploring the feasibility of modelling

this correlation through the use of a data-driven supervised machine learn-

ing method.

2.2 Study Site

The CCFZ is a submarine region between 120 ◦W to 160 ◦W and 5 ◦N to

20 ◦N within the equatorial northeast Pacific Ocean with the typical depth

ranging from 3 km to 6 km [2]. The 58,000 km2 seabed area licensed to

Singapore is situated within the CCFZ between Hawaii and Mexico as

shown in Figure 2.1. The data used in this thesis were collected using an

AUV during an environmental baseline seabed survey from an approximate

5 km2 region of interest within this licensed area in 2015.

Fig. 2.1. The extent of the CCFZ is demarcated by the blue dashed lines.
The Singapore licensed zone for PMN exploration is shown within the red
circle.

2.3 Equipment

The AUV used in the seabed survey is equipped with an inertial navigation

system for position tracking, a doppler velocity log for vehicle navigation,

a camera coupled with lighting and laser scaling system for seabed photog-

raphy, and an SSS for seabed backscatter imaging. In addition, the AUV
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utilised a long baseline system for its positioning and navigation.

2.4 Data Collection

During the environmental survey, an AUV-mounted camera and an AUV-

mounted SSS collected the seabed photographs and seabed backscatter

data respectively. The AUV travelled at an average speed of 2.8 knots

while maintaining an average altitude of 8m over the surveyed area where

the average seabed depth is 4125m. It took the AUV a dive time of 15 hours

to cover a seabed area of approximately 5 km2 in a pre-programmed lawn-

mower pattern as shown in Figure 2.2.

Fig. 2.2. A pre-programmed lawnmower pattern route taken by the AUV
during the environmental baseline seabed survey within a CCFZ’s seabed
of interest. An AUV-mounted SSS collected seabed backscatter data from
a seabed area of approximately 5 km2.

Within this 15-hours period, the AUV-mounted SSS collected seabed

backscatter data continuously, while the AUV-mounted camera was pro-

grammed to take a seabed photograph every three seconds. However,

due to the variability in the time taken for flash recharging, seabed pho-

tographs were occasionally taken at irregular intervals resulting in along-

track patches of seabed with no seabed photograph as shown in Figure 2.3.
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Fig. 2.3. Symbol ‘x’ indicates position where each seabed photograph was
taken. (a) Segment of dive where seabed photograph was taken at approx-
imately three-second interval. (b) Due to unforeseen variability in time
taken for the camera’s flash recharging, there were instances where seabed
photograph was taken at intervals that exceeded three seconds.

The SSS seabed backscatter data collected covered a seabed area of

approximately 5 km2 and consists of 11 Georeferenced Tagged Image File

Format (GeoTIFF) images, each of size 1000×48000 pixels (translating to a

seabed area of 0.1×4.8 km2). Georeferencing information such as longitude

and latitude of the data collection points are embedded into each image

file. The AUV-mounted camera collected around 3500 seabed GeoTIFF

photographs. The size of each photographed seabed image is 1015 × 811

pixels, depicting an average seabed area of 12m2.
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2.5 Processing of Sidescan Sonar Image

SSS backscatter data collected are of binary file format. We process all SSS

seabed backscatter data into thirteen strips of waterfall GeoTIFF images.

Each strip represents the along-track length of the lawnmower path taken

by the AUV as shown in Fig. 2.2. The size of each image strip is 1000-by-

48,000 pixels which corresponds to an approximate seabed area of 100-by-

4800m.

From the visual patterns observed in our SSS seabed backscatter dataset,

we observe that the dark and light contrasting segments depict seabed ar-

eas of low and high PMN abundance respectively. Thus, to enhance these

contrasting segments, histogram equalisation, an image processing method

for enhancing contrast variation, is applied to the SSS seabed backscatter

images for contrast equalisation. The nadir (seabed directly underneath

the AUV) portion of the SSS seabed backscatter images which contains no

useful textural information is removed, resulting in SSS seabed backscatter

images with a swath-width of 75m (Image swath of 750 pixels) as seen in

Figure 2.4.
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Fig. 2.4. Swath-width of the SSS seabed backscatter image with nadir
portion removed.

2.6 Processing of Seabed Photographs

A feature-based image processing technique for quantifying PMN distribu-

tion in seabed photographs is used to identify and quantify PMN seabed

coverage area within each seabed photograph as shown in Figure 2.5. The

PMN coverage area for each seabed photograph is defined as the seabed

percentage occupied by the visible PMN.

Taking into consideration that the economically acceptable range for

mining is between 5 kg/m2 to 20 kg/m2 [4], the threshold separating high

and low PMN seabed coverage photographs is set at 40%. This translates

to a PMN density of around 23 kg/m2 which is above the required econom-

ically acceptable range. Thus, of the 3500 photographs used in this thesis,

45% of them are labelled as photographs showing high PMN abundance

seabed while the remaining 55% are labelled as photographs showing low

PMN abundance seabed.
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Fig. 2.5. PMN identified as region of interest on both seabed photographs.
(a) Photograph depicting a seabed with a low PMN coverage of 5.674%
translating to an area of 0.682m2. Photograph depicting a seabed area
with a high PMN coverage of 61.351% translating to an area of 7.585m2.
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Chapter 3

Methodology

Based on the literature survey conducted in Section 2.1, there exist short-

comings in the current PMN estimation methods. Although seabed data

collected through underwater acoustics sensors cover a larger area when

compared to existing methods, there is still a need to reliably in estimating

PMN abundance from these data. This chapter investigates the possibility

and effectiveness estimating PMN abundance using pattern variations from

a dataset of SSS seabed backscatter images through data-driven method.

This chapter discusses the initial implementation of the ANN model.

Section 3.1 discusses the rationale for using ANN and the architecture used.

Section 3.2 discusses the various processing methods used in ANN dataset

preparation. Section 3.3 discusses the ANN training algorithm and the

method used in preventing dataset overfitting.

3.1 Artificial Neural Network Architecture

ANN is a computational model of interconnected nodes loosely based on

the biological neural network structure. It is a supervised machine learning

method known for its ability to learn mapping functions of underlying fea-

tures from a given labelled training dataset [25]. In addition, a trained ANN

model is capable of capturing unknown, complex and non-linear relation-
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ships for a wide variety of different application areas, ranging from image

classification to speech recognition [26, 27]. Thus, ANN is selected as the

tool to model the non-linear function between the SSS seabed backscatter

data and seabed PMN abundance.

The ANN architecture selected for this thesis has a topological network

with two hidden layers. For this selected ANN architecture, the number

of neurons for hidden layer ‘1’ and ‘2’ is dependent on the size of the

training dataset as shown by the formula in Figure 3.1 [28]. This particular

architecture is chosen for its ability to learn underlying patterns from a

large number of distinct data samples using a comparatively small number

of hidden neurons.

Fig. 3.1. A two-hidden-layer ANN architecture where ‘I ’ represents the
number of features for each training sample, ‘S ’ represents the number of
output neurons and ‘N ’ represents the number of training samples. The
number of neurons used for hidden layer 1 and 2 respectively are denoted
as ‘J’ and ‘K’ respectively.

The aim of the ANN is to minimise the error between the given labelled

dataset and the trained model’s predicted values by adjusting the inter-

connecting weight parameters between all layers iteratively (details to be
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discussed in Section 3.3).

Ample labelled training data samples are necessary for the ANN to have

better insight into the underlying patterns of the training dataset as this

allows the ANN to be sufficiently trained in making meaningful predictions.

If the number of training data samples is too small, the ANN will not

have sufficient relevant information to adequately learn these dependencies

resulting in a trained model with relatively lower accuracy performance.

3.2 ANN Dataset Preparation

To correlate the collected seabed photographs and SSS seabed backscatter

images, all seabed photographs are superimposed onto their correspond-

ing geotagged locations on the SSS seabed backscatter images. However,

only a total approximate seabed area of 0.042 km2 is covered by all 3500

seabed photographs (each photograph covered an approximate seabed area

of 12m2) compared to the total approximate seabed area of 5 km2 covered

by SSS seabed backscatter images.

Due to this vast difference in seabed coverage area, PMN seabed cov-

erage seen in each seabed photograph is assumed to be uniform 2m along-

track and 50m across-track (translates to 20 × 500 pixels) from the geo-

tagged position of each seabed photograph resulting in a 4 × 100 m2 SSS

seabed backscatter segment. This size is subsequently reduced to 4×75 m2

with the removal of across-track nadir (25m) as shown in Figure 3.2. The

assumption made here is reasonable as it has been shown that, on average,

only a 10% PMN density change is expected every 450m [5]. In addition,

this assumption prevents overlapping of along-track neighbouring sliced

SSS seabed backscatter data and also covers the entire across-track image

width which minimises unused SSS seabed backscatter data.

To increase the number of data samples available to the ANN, these
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Fig. 3.2. (a) Pre-programmed lawnmower path taken by the AUV. (b) A
segment of the SSS seabed backscatter data, the AUV-mounted camera
took a seabed photograph every 3 seconds at every location marked by
symbol ‘x’. PMN density seen at each geotagged seabed photograph is
assumed to be uniform within the 4m along-track and 75m across-track of
the SSS seabed backscatter image.
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sliced SSS seabed backscatter segments are further separated into single

strips of 1 × 750 pixels resulting in a total data sample size of 146,903 as

shown in Figure 3.3. These data samples are normalised and labelled as

either ‘1’ or ‘2’ (denoting high or low PMN coverage) based on the PMN

seabed coverage seen from their respective geotagged photograph.

These labelled data samples are randomly separated into training (80%

of total labelled data samples), validation (10%) and testing (10%) datasets.

The training dataset is used for the training of the ANN and is the only

dataset exposed to the ANN during the training phase. The validation

dataset is used as a mechanism to prevent training dataset overfitting

while the testing datasets is used in the evaluation of the generalising

performance of the trained ANN. To achieve an unbiased estimation of

the trained ANN’s accuracy performance, both the validation and testing

datasets are not exposed to the ANN in the training phase.

-

Fig. 3.3. Multi-row data samples are sub-divided into single-row data sam-
ples to increase the total number of data samples.

3.3 Training Algorithm

The SSS training dataset takes the form of a ‘N ’ × ‘I+1’ matrix ‘X’ as

shown in Equation 3.1. The first column of value ‘1’s denotes the bias,

notation ‘N ’ denotes the sample size of the training dataset, and notation

‘I ’ denotes the number of features (number of image pixel columns) in each

data sample. The labelled output for the training dataset is denoted by

a matrix ‘Y’, where element ‘yn1’ equates to value ‘1’ and element ‘yn2’

equates to value ‘0’ when the nth training data is labelled as value ‘1’ (high
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PMN abundance) and so forth.

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 ... x1I

... ... . . . ...

1 xN1 ... xNI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yn1 yn2

... ...

yN1 yN2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.1)

From Equation 3.2, element ‘w1
ij’ denotes the inter-connecting weight

between the input layer and hidden layer ‘1’, where notations ‘i’ and ‘j’

represent the ‘ith’ neuron in the input layer and ‘jth’ neuron in hidden layer

‘1’ respectively. Likewise, element ‘w2
jk’ denotes the inter-connecting weight

between hidden layer ‘1’ and ‘2’, where notations ‘j’ and ‘k’ represent the

‘jth’ neuron in hidden layer ‘1’ and ‘kth’ node in hidden layer ‘2’ respectively

and so forth. The collective weight between neighbouring neuron layers is

denoted by matrix ‘Wp’, where notation ‘p’ denotes the weight’s starting

layer. These weights are randomly initialised close to zero to ensure that

the neurons do not perform the same computation.

W1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
bias1 ... w1

biasJ

w1
11 ... w1

1J

... . . . ...

w1
I1 ... w1

IJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w2
bias1 ... w2

biasJ

w2
11 ... w2

1K

... . . . ...

w2
J1 ... w2

JK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w3
bias1 w3

biasJ

w3
11 w3

12

... ...

w3
K1 w3

K2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

The ANN’s training algorithm iterates between the feed-forward and

the back propagation process. In the feed-forward propagation process,

the data samples are propagated through the model’s weights and neu-

rons’ activation function, generating a matrix of interim predictions at the

neuron outputs. To effectively classify the non-linear relationship between
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PMN abundance and SSS seabed backscatter training dataset, a sigmoid

activation function is applied to the weighted input at every neuron in

hidden layer ‘1’, hidden layer ‘2’, and the output layer. In addition, the

inputs (SSS seabed backscatter dataset) to the ANN are normalised to

avoid saturating the neurons’ sigmoid activation function. The mathemat-

ical descriptions of the feed-forward propagation process are shown in the

equations below.

HL1IP = XW1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 ... x1I

... ... . . . ...

1 xN1 ... xNI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
bias1 ... w1

biasJ

w1
11 ... w1

1J

... . . . ...

w1
I1 ... w1

MJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

HL1OP = 1
1 + exp(−HL1IP)

(3.4)

HL2IP = HL1OPW2 (3.5)

HL2OP = 1
1 + exp(−HL2IP)

(3.6)

OPIP = HL2OPW3 (3.7)
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OPop = 1
1 + exp(−OPIP)

(3.8)

After the completion of each forward propagation process, the back

propagation process begins with a calculation of the cross-entropy error

(denoted by ‘E ’) between the given dataset labelled and the model’s pre-

dicted values. Cross-entropy is used here as it has a faster weight learning

rate when the resultant cross-entropy error is large, thus any slowdown in

weight optimisation is avoided as the cross-entropy error minimises with

each training iteration [29, 30].

E = − 1
N

∑ ∑
[Y � ln(OPop) + (1 − Y) � ln(1 − OPop)] (3.9)

Next, partial derivatives calculations are made throughout the ANN

to determine the cross-entropy error value with respect to each preceding

weight in the ANN [31]. The mathematical descriptions of using partial

derivation to calculate the error function with respect to each individual

weight are shown in the equations below.

α3 = δE

δOPOP
� δOPOP

δOPIP
(3.10)

δE

δW3 = α3T δOPIP

δW3 (3.11)

23



α2 = α3[ δOPIP

δHL2OP
]T � δHL2OP

δHL2IP
(3.12)

δE

δW2 = α2T δHL2IP

δW2 (3.13)

α1 = α2[ δHL2IP

δHL1OP
]T � δHL1OP

δHL1IP
(3.14)

δE

δW1 = α1T δHL1IP

δW1 (3.15)

All calculated partial derivatives are used by the conjugate gradient

descent algorithm to iteratively locate the next path to the minimal of

the cross-entropy error function. This method is used as it convergences

the cross-entropy error function using less iterations when compared to the

typical gradient descent method [32].

The feed-forward and back propagation processes are repeated, and

with each iteration, the ANN’s weights are automatically re-adjusted to

further lower the resultant cross-entropy error between the given labelled

answer and the predicted output. This is continued till convergence of the

cross-entropy error function or a maximum preset training iteration number

is met. To ensure the effectiveness of the training process, the accuracy

performance of the trained model is assessed through a comparison between

the given dataset labelled and the final predicted values as shown by the

mathematical descriptions below.
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p = argmax(OPop) (3.16)

y = argmax(Y) (3.17)

Accuracy of Model (%) = 1
N

∑
(p ⇔ y) × 100 (3.18)

Iterating the ANNâĂŹs feedforward and backpropagation training pro-

cesses indefinitely increases its accuracy performance on the training dataset.

However, doing so would also lead to an overfitted model where the weight

parameters are so explicitly tuned towards the given training dataset that

they begin to erroneously fit underlying noise in the training dataset as

features. On the other hand, having insufficient iterations undermine the

ANN’s ability to adequately capture the underlying features from the given

labelled training dataset as can be seen in the drop in accuracy perfromance

against the testing dataset after iteration 8000 in Table 3.1.

Having an ANN overfitting on a training dataset resulted in the model

performing poorly with subsequent unseen datasets. Thus, to mitigate

overfitting and to ensure that a trained model can generalise well to any

data outside the training datasets, the generalisation ability of the trained

model is monitored by evaluating the accuracy performance of the model

against the validation dataset at the end of every forward and back prop-

agation iteration during the training phase. The final set of ANN weights

chosen is the one which yields the maximum accuracy performance with

the validation dataset, which in this case would be the value of the weights
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Table 3.1
Accuracy performance of the ANN model with the training and testing

datasets. Improvement in accuracy performance with the training dataset
can be seen with a larger number of training iterations. Overfitting of the
ANN model towards the training dataset is evident from the decrease in
the model’s accuracy performance towards the testing dataset beyond

16,000 training iterations.

Iteration Training Dataset Accuracy % Testing Dataset Accuracy %

80 54.67 50

800 82.58 60.14

1600 86.02 61.59

8000 89.87 61.59

16000 92.01 63.04

80000 95.95 57.25

at iteration 2250 as shown in Figure 3.4.

The ANN’s accuracy performance metric is gauged based on the ANN’s

ability to make generalised predictions towards the unseen testing dataset.

Using the above-mentioned methods, the trained ANN model achieved an

accuracy performance of 68.00% in classifying SSS seabed backscatter im-

ages into high and low PMN abundance seabed areas.
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Fig. 3.4. Figure depicting the problem of overfitting as the ANN train-
ing iteration number increases. Although the training dataset accuracy
increases with the increasing number of iterations, there is also a gradual
drop in validation dataset accuracy after 2250 iterations. Thus, the ANN
is overfitting on the training dataset after 2250 iterations. The ANN’s in-
terconnecting weights between the neurons is taken at this iteration where
it is evaluated on the unseen testing dataset.
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Chapter 4

Dataset Features Analysis

The current trained ANN model achieved an accuracy performance of 68%

in PMN abundance estimation. To further increase the accuracy perfor-

mance of the ANN, a proper understanding on the dataset features is crucial

towards implementing suitable data processing methods.

This chapter conducts an in-depth analysis into the dataset features and

discusses the methods used from our analysis findings to improve further

from the ANN’s current accuracy performance of 68%. The rationale for

using these methods along with its resultant accuracy improvements are

discussed in the following four sections. Section 4.1 discusses the contrast

enhancement of relevant SSS seabed backscatter feature through the use of

Contrast Limited Adaptive Histogram Equalisation (CLAHE). Sections 4.2

and 4.3 discuss the methods used in increasing the sample and feature size

of the SSS seabed backscatter dataset respectively. Section 4.4 discusses

the method of creating additional relevant dataset features by combining

the bathymetry dataset to the existing SSS seabed backscatter dataset.
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4.1 Contrast Limited Adaptive Histogram

Equalisation (CLAHE)

Compared to the initial Histogram Equalisation method (Section 2.5) which

does contrast enhancement based on the entire image’s histogram, CLAHE

method adjusts individual pixels based on the histogram of their surround-

ing pixel values [33]. This method works well on images with significant

light and dark regions as it amplifies their contrasting features and enhances

their regional features as shown in Figure 4.1.

Fig. 4.1. CLAHE enhancement of a generic image (right image) has a
more prominent contrast between its darker and lighter shade segments
when compared to the original image (left image).

Applying an appropriate choice of image equalisation method to the SSS

seabed backscatter dataset images is vital towards improving the existing

accuracy performance of the ANN. An ideal training image should pos-

sess features with distinct contrasting segments depicting the traits of each

class. Insufficiently distinct contrasting segments or the absence thereof

can hinder the ANN’s ability to discern features pertaining to each class

during the training process, resulting in a lower accuracy performance.

As observed previously in Section 2.5, the dark and light contrasting

segments depict seabed areas of low and high PMN abundance respectively.

Thus, to better enhance these contrasting segments, CLAHE method is

used in preference over the initial Histogram Equalisation method to pro-
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cess the SSS seabed backscatter images.

To show the resultant visual difference, both Histogram Equalisation

and CLAHE methods are applied separately on an identical portion of

SSS seabed dataset image. A visual comparison showed that the CLAHE

method processed image has a more distinct contrasting segment between

high and low PMN abundance seabed areas when compared to the His-

togram Equalisation processed image as shown in Figure 4.2.

The accuracy performance of the ANN showed an improvement when

trained with a CLAHE method processed SSS seabed backscatter images.

The accuracy performance of the trained model also showed an improve-

ment from 68.00% to 73.58%, demonstrating the effectiveness of enhancing

features that are relatable PMN abundance. Thus, it is important to first

identify dataset features that are relatable to each individual class before

applying a suitable processing method to best highlight these features.

Fig. 4.2. (a) Comparison of a portion of SSS seabed backscatter images
processed using Histogram Equalisation and CLAHE. (b) Enlarged view of
SSS seabed backscatter images processed using Histogram Equalisation. (c)
Enlarged view of SSS seabed backscatter images processed using CLAHE.
Visual contrast between high and low PMN abundance area is more promi-
nent after CLAHE application.
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4.2 Enhanced Dataset Field of View

The AUV’s lawnmower path was programmed to have at least 25% sidescan

overlap for each run-length, resulting in overlapping regions from both ad-

jacent run-length paths as shown in Figure 4.3.

Fig. 4.3. A segment of three neighbouring SSS seabed backscatter images.
Each SSS seabed backscatter image has a 25% overlapping SSS region,
coming from both the left and right adjacent run-length paths.

As the neighbouring left and right overlapping regions are within the

demarcation zone of the centre run-length strip, we appended these overlap-

ping SSS segments to the centre run-length strip dataset. Each overlapping

SSS seabed backscatter region from the left and right neighbouring run-

length strips is approximately 25m (250 pixels). Both overlapping regions

are appended to the existing dataset, increasing the across-track width

from 750 to 1250 pixels as shown in Figure 4.4.

Appending the centre run-length strip with neighbouring left and right

overlapping SSS regions increases the overall seabed feature information in

the dataset. This helps in the training process of the ANN, as a training

dataset with additional relevant features provides additional underlying

patterns that are relatable to PMN abundance. The effectiveness of this

method is shown by a further improved accuracy performance from 73.58%

to 81.78%.
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Fig. 4.4. Overlapping region from the left and right adjacent run-length
paths increases the column size of the dataset from 750 to 1250 pixels This
dataset is then further separated into single-row data samples as previously
discussed in Section 3.2.
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4.3 Enhanced Dataset Representation

Due to variability in the time taken for the AUV-mounted camera’s flash

recharging, seabed photographs were not taken at some instances. This

resulted in numerous patches of seabed area not used as part of the ANN

dataset due to the absence of ground-truth photograph as seen in Fig-

ure 4.5.

Fig. 4.5. Symbol ‘x’ shows the geotagged location where seabed photo-
graph was taken. PMN seabed coverage from each geotagged photograph
is assumed to be uniform to its surrounding SSS pixels and is processed into
data samples for the ANN (shown by the white segments). The remaining
SSS image represents seabed area not used as data sample for the ANN.

To fully utilise these unused patches of seabed areas, the PMN seabed

coverage seen in each photograph is assumed to be uniform 50m along-track

of the SSS seabed backscatter image (identical to the 50m across-track

assumption made in Section 3.2). In the event where distance between two

consecutive photographs is less than 50m, the along-track segment of the

SSS seabed backscatter image is spaced such that the segment boundary is
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equidistant from two consecutive photographs as shown by the red border

in Figure 4.6.

Fig. 4.6. Symbol ‘x’ indicates the position where seabed photographs shown
on the right were taken. PMN seabed coverage seen in each geotagged
photograph is uniform up to a distance of 50m along-track and across-
track of the SSS seabed backscatter image as shown by the red border.
This distance is shorter at instances where consecutive photographs were
taken in close proximity of one another as shown by the bottom two symbol
‘x’ where two consecutive seabed photographs were taken at 75m from each
other.

This method utilises previously unused segments of the SSS seabed

backscatter image which increases the total SSS seabed backscatter data

sample size from 146,903 to 400,000. With this increase, the ANN is sub-
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jected to a more diverse set of training data samples during its training

process, allowing additional variability between the two different classes to

be ‘learned’. The effectiveness of this method is shown by the improved

accuracy performance of the trained ANN which increased from 81.78% to

84.24%.

4.4 Heterogeneous Dataset

In addition to SSS seabed backscatter images and seabed photographs, the

AUV-mounted depth, altimeter and navigation sensors provided bathymetry

data of the seabed area during the environmental baseline survey. A Geo-

TIFF image generated from these bathymetry data is shown in Figure 4.7.

Fig. 4.7. Bathymetry GeoTIFF image from 5 km2 region of interest.

As there had been studies indicating the correlation of bathymetry to

PMN presence [6, 15], an opportunistic investigative study is conducted to

gauge the ANN’s accuracy performance using the bathymetry dataset.

Due to its format similarity to the SSS seabed backscatter dataset,

bathymetry data collected are subjected to the same data preparation as

the SSS seabed backscatter dataset (Section 3.2), where all seabed pho-
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tographs are superimposed onto their corresponding geotagged positions

on the bathymetry GeoTIFF image. PMN seabed coverage seen in each

geotagged photograph is also assumed to be uniform to its surrounding

bathymetry pixels as shown in Figure 4.8. These labelled bathymetry im-

ages are further separated into single-row pixel slices and used as data

samples for the ANN training process (identical method previously shown

in Figure 3.3).

Fig. 4.8. (a) Data collection path of the AUV. (b) SSS seabed backscatter
image and (c) bathymetry image from the same geotagged location. Similar
to the assumption made with the SSS seabed backscatter dataset, PMN
density seen in each geotagged photograph is assumed to be uniform to
its surrounding bathymetry pixels as indicated by the red boundary. (For
illustration purpose, not drawn to scale)

ANN trained using the bathymetry dataset resulted in a relatively lower

accuracy performance of 72.69%, when compared to the accuracy per-

formance of 84.24% achieved by the ANN trained using the SSS seabed

backscatter dataset. However, the lower accuracy performance is within ex-

pectation as the bathymetry dataset images are of lower resolution (1.78m
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per pixel), when compared to the SSS seabed backscatter image resolution

(0.1m per pixel), resulting in a less detailed set of seabed information as

shown in Figure 4.9.

Fig. 4.9. Although both SSS seabed backscatter and bathymetry images
depict a seabed area of 6250m2, the number of pixel representation for
both images are different as the seabed backscatter and bathymetry data
were collected using different acoustic equipment. (a) A 18 × 18 pixels
SSS seabed backscatter image and (b) a single pixel bathymetry image
representing the same seabed area of 3.24m2.

Even though the bathymetry dataset trained ANN resulted in a lower

accuracy performance, its accuracy result of 72.69% suggested that the

seabed bathymetry dataset contains useful features that can be correlated

to PMN abundance. Taking a cue from this result, the total features of the

dataset is increased by complementing the existing SSS dataset with the

bathymetry dataset. This is done by appending geo-tagged single-pixel-row

data samples of the bathymetry dataset to the end of each corresponding

geo-tagged SSS seabed backscatter single-pixel-row data sample. However,

due to the difference in pixel resolution between these two datasets, multiple

single-pixel-row SSS seabed backscatter data samples are appended to the

same single-row bathymetry data sample as shown in Figure 4.10.

37



Fig. 4.10. Method for combining two datasets of different resolution repre-
senting the same seabed area into a heterogeneous dataset.

Appending the bathymetry dataset to the existing SSS seabed backscat-

ter dataset increases the column size (features) of each data sample by 50

pixels to 1 by 1300 pixels. With this increase in feature size using a het-

erogeneous dataset of both SSS and bathymetry data, the accuracy perfor-

mance of the ANN is further improved to 86.00%.

With the implementation of heterogeneous dataset, the ANN’s current

input comprises data collected from two different acoustic equipment. The

feasibility of further improving the ANN’s accuracy performance is explored

through the implementation of an alternative ANN architecture with two

separate input and hidden ‘1’ layers as shown in Figure 4.11. The number of

hidden layer ‘1’ neurons from the single-input ANN is proportionally split

based on the feature size from the SSS seabed backscatter and bathymetry

dataset into neurons for hidden layer ‘1’ and ‘1.5’ respectively. The intent

of this ANN architecture is to allow the neurons from hidden layer ‘1’ and

‘1.5’ to first learn the respective underlying patterns from each equipment’s

dataset before combining them into layer ‘2’ to learn the overall underlying

feature. The accuracy performance achieved through this ANN architecture

is 85.59% which is of similar performance to the single layer ‘1’ and ‘2’ ANN

architecture previously discussed in Section 3.1.

The random nature by which the dataset is split into training, valida-

tion and testing dataset may create a performance bias towards a particular
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ANN architecture, resulting in an exceptionally good or bad accuracy per-

formance. This may occur due to the training dataset having particularly

dominant underlying pattern that performs particularly well or badly to-

wards a particular ANN architecture. The following chapter discusses a

method that both mitigates the issue of performance bias and ensures that

the chosen ANN architecture has the best generalisation capability.

Fig. 4.11. Dual-input ANN architecture.

4.5 Results

This section discusses the use of a k-fold cross-validation based method in

validating the generalised classification ability and accuracy performance

of both ANN architectures implemented in Sections 3.1 and 4.4.

An ANN’s accuracy performance is optimised through an ideal configu-

ration of hyperparameter values. In its original use, k-fold cross-validation

method is used to determine the best performing combination of ANN hy-

perparameter values, such as the number of hidden layers and the number

of neurons per hidden layer. This method involves training ‘k’ different

ANN models with a set of predefined hyperparameter values. All ‘k’ ANN
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models are trained using ‘k’ equal data subsets partitioned from all avail-

able data samples. During each ANN model training process, one data

subset is used as the testing dataset while the remaining ‘k-1’ data subsets

served as the training dataset. This entire process is iterated for ‘k’ ANN

models till every data subset is sequentially rotated through as the testing

dataset. The accuracy performance of the ANN based on this particular

set of predefined hyperparameter values is cross-validated using the average

accuracy result from all ‘k’ trained ANN models. The algorithm is then

repeated with a different set of predefined hyperparameter values until the

ANN achieved a targeted accuracy result.

However, a non-iterative method for determining the number of hidden

layers and neurons was established in Sections 3.1. As such, the k-fold cross-

validation is instead used as a method to verify the ANN architecture’s

generalisation capability and thus renamed as k-fold performance validation

method to reflect this purpose.

The generalisation capability of the ANN architecture is achieved by

iterating the preprocessing, training, validation and testing methods dis-

cussed in Chapters 3 and 4 for ten folds. Each fold possessed its own

randomly distributed training (80%), validation (10%) and testing (10%)

datasets as shown by the toy example in Figure 4.12. Through this method,

the two ANN architectures each produced ten different accuracy perfor-

mance results as shown in Figures. 4.13 and 4.14.

The average accuracy performance calculated using ten-fold perfor-

mance validation method provides extra reliability in computing accuracy

and removes any dataset performance bias towards any ANN architecture,

as this overall result was generated, based on not just one, but ten different

configurations of training, validation and testing datasets averaged out.

Based on the overfitting preventive method discussed in Section 3.3, the

accuracy results produced from both ANN architectures are tabulated in
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Fig. 4.12. An overview of the ten-fold performance validation method us-
ing a toy example dataset with ten data samples. All data samples are
randomly split into training (80%), validation (10%) and testing (10%)
datasets for each fold.

Table. 4.1. The tabulated accuracy performance from all twenty ANN mod-

els ranged from 82.66% to 87.89% giving an average accuracy of 85.36%

and 84.83% for single-input and dual-input ANN respectively. The small,

varying range from both sets of results showed the reliability and stability

of both ANN architectures when trained and tested using different config-

urations of datasets.

As shown in Table 4.1, the single-input ANN architecture produced

a higher average accuracy performance when compared to the dual-input

ANN architecture. An analysis of both ANN architectures showed that this

is due to the difference in the number of non-linear mapping process which

occurred at the first hidden layer. For the dual-input ANN architecture,

there are two separate mapping processes occurring in hidden layer ‘1’ and

hidden layer ‘1.5’. This resulted in two separate feature spaces, one of

which can only linearly separate the SSS seabed backscatter dataset, while

the other is only capable of linearly separating the bathymetry dataset.

Although hidden layer ‘2’ non-linearly mapped both of these outputs from

hidden layer ‘1’ and ‘1.5’ onto a new feature space which linearly separates

the majority of the dataset, this method proved to be disadvantageous
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Fig. 4.13. Training iteration graphs of a single-input ANN architecture
using ten variations of randomly distributed training, validation and testing
data samples.
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Fig. 4.14. Training iteration graphs of a dual-input ANN architecture using
ten variations of randomly distributed training, validation and testing data
samples.
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when compared to the single-input ANN architecture. This is because the

single-input ANN architecture only utilises one mapping function for the

heterogeneous dataset at the first hidden layer, mapping the input dataset

onto a feature space which linearly separates the majority of the dataset

as a whole instead of two different entities. This resultant output from

hidden layer ‘1’ is further subjected to another round of non-linear mapping

function at hidden layer ‘2’, resulting in another feature space where even

more of the heterogeneous dataset are linearly separated, thus producing a

higher average accuracy performance.

Table 4.1
Accuracy performance of two different ANN architectures, trained from

ten configurations of training, validation and testing datasets.

Fold
Accuracy(%) of

ANN architecture
with single-input

Accuracy(%) of
ANN architecture

with dual-input

1 86.00 85.57

2 85.19 84.19

3 87.89 86.98

4 85.41 84.82

5 84.70 83.57

6 82.81 82.66

7 84.02 83.80

8 86.88 87.20

9 85.21 83.81

10 85.52 85.78

Ten-fold Average 85.36 84.83

The classification performance of the single-input ANN architecture is

shown by applying confusion matrix on a randomly selected 4th fold test

result as shown in Figure 4.15. Confusion matrix presents a visual summary

of the ANN’s accuracy performance for each class. From the confusion

matrix of the 4th fold test result, it can be seen that single-input ANN has
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the ability to accurately classify the majority of the data samples into high

and low PMN abundance classification with no skewed performance bias

towards a particular class.

Fig. 4.15. Confusion matrix for the single-input ANN’s 4th fold test result.
The two green cells represent the number and percentage of correct clas-
sification prediction made, while the red cells represent the number and
percentage of incorrect classification prediction made. Lastly, the grey cell
represents the ANN overall test accuracy for the 4th fold.

The trained ANN can be further improved upon by increasing the num-

ber of different training samples and adding more relevant features to the

existing heterogeneous dataset. However, these will also increase the time

needed to train the ANN. Currently, it takes around 30 hours for the ANN

to train on approximately 360,000 (80% of total dataset) data samples

using MATLAB software installed on a workstation with a dual-processor

Intel Xeon E5-2630 V3 CPU@2.4 GHz processor. Once trained, the time

taken for the ANN to classify future heterogeneous datasets will be almost

instantaneous.

4.6 Summary

Singapore completed its first-ever biological and environmental baseline

study within its CCFZ licensed area in 2015. Data used in this thesis were
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collected from a specific seabed area of approximately 5 km2 within the

CCFZ licensed area. These data comprised 3500 GeoTIFF photographs,

each depicting a seabed area of 12m2, SSS seabed backscatter GeoTIFF

dataset, and a GeoTIFF bathymetry dataset. The seabed backscatter and

the bathymetry data were combined into a heterogeneous dataset and pro-

cessed into 400,000 data samples, each individual sample size being of the

form of 1 × 1300 pixels. These data samples are split into 80% training

dataset, 10% validation dataset, and 10% testing dataset.

These data samples were labelled with either ‘1’ or ‘2’ denoting ‘high’ or

‘low’ percentage PMN abundance. The PMN seabed abundance captured

in each geotagged seabed photograph determined the classification label for

all corresponding geotagged data samples. Based on economic feasibility for

seabed mining, the threshold for PMN abundance seabed coverage was set

at 40% which is equivalent to 23 kg/m2. The two hidden layer ANN models

used in this thesis comprised 1800 and 600 neurons for hidden layer 1 and

2, respectively. The number of neurons for each hidden layer is dependent

on the number of training data samples and classification outputs.

The PMN abundance ground truth data were taken from 3500 seabed

photographs, covering a total seabed area of 0.42 km2. The 400,000 heterogeneous

data samples collected encompasses a total seabed area of 5 km2. A sum-

mary showing the methods used in this research thesis is shown in Fig-

ure 4.16.
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Chapter 5

Conclusion

5.1 Summary of Contributions

This thesis proposed a data-driven method that addresses the efficiency

and accuracy of existing PMN abundance estimation methods. The main

contributions are summarised as follows:

• First known work of a data-driven approach in performing PMN

abundance estimation using a heterogeneous dataset of seabed backscat-

ter and bathymetry data.

• Demonstrated the possibility of correlating PMN ground truth data

from a limited quantity of small seabed coverage photographs to a

large seabed coverage heterogeneous dataset.

• Demonstrated the ANN architecture’s reliability with a ten-fold aver-

age accuracy performance of 85.36% in estimating PMN abundance

from unseen heterogeneous dataset.

• Under similar trained conditions, the trained ANN enables faster es-

timation of PMN abundance for future deep seabed sites without the

need for underwater cameras.
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The strategy used in approaching this classification problem started

with an accuracy performance benchmark from an ANN trained with a

dataset prepared using common data preparation methods. This was fol-

lowed by several focus methods to improve upon this accuracy performance

benchmark as presented in the various sections of this thesis. These accu-

racy performance improving and verification methods are as follow:

• Prevented ANN overfitting through the use of validating dataset in-

stead of the usual iterative regularisation method.

• Increased dataset field of view through the utilisation of overlapping

SSS seabed backscatter regions.

• Increased dataset representation by maximising the usage of our het-

erogeneous dataset and preprocessing them from scan images into

single-pixel-row scan line data samples.

• Opportunistic use of bathymetry data as additional dataset features

to improve the accuracy performance of the ANN.

• A k-fold performance validation method providing a reliable verifica-

tion of the ANN architecture’s accuracy performance.

5.2 Future Work

Future work includes:

• Estimating PMN abundance on an even larger seabed area by ex-

tending existing methods discussed in this thesis towards exploring

the possibility of using acoustic data collected from a surface vessel.

• Exploring the feasibility of using different machine learning models

in estimating PMN abundance.
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5.3 Final Thoughts

Due to the neuroplasticity property of the ANN, there is no need to redesign

a new ANN architecture to accommodate future features that will be added

to the dataset as these new features will be automatically learned in the

training phase of the existing ANN architecture. As such, researchers work-

ing on PMN abundance classification problem with a dataset from another

acoustic equipment or those operating in different environmental conditions

can potentially use this ANN architecture together with the various dataset

preparation and performance verification methods discussed in this thesis.

Lastly, from this thesis, it can be learnt that given adequate and accu-

rately labelled dataset, implementing a data-driven approach model such as

an ANN in quantifying PMN abundance is not difficult. However, achiev-

ing a high accuracy performing ANN requires a domain expert who has

a good understanding on the dataset features together with the methods

used in preparing the dataset.
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