
Development of an Underwater Simulator using
Unity3D and Robot Operating System
Akash Chaudhary

Department of Physics,
Birla Institute of Technology and Science - Pilani

Goa, India
f20160743@goa.bits-pilani.ac.in

Rajat Mishra
Acoustic Research Laboratory,

National University of Singapore
Singapore

rajat@nus.edu.sg

Bharath Kalyan
Acoustic Research Laboratory,

National University of Singapore
Singapore

bharath@nus.edu.sg

Mandar Chitre
Acoustic Research Laboratory &

Department of Electrical and Computer Engineering,
National University of Singapore

Singapore
mandar@nus.edu.sg

Abstract—We developed an Open-Source Underwater Simu-
lator that uses Unity3D for the simulating Remotely Operated
Vehicle (ROV) operations and Robot Operating System (ROS) as
the middleware to control the simulated vehicle. This simulator
provides a virtual environment in which a vehicle can be
simulated with a multi-beam SONAR and interact with features
such as hilly terrain, lake, and pipelines. The vehicle is fitted
with sensors and cameras to continuously monitor its state. The
end-user is presented with an interactive user interface, which
allows them to control various elements of the simulation. The
application connects with ROS over a WebSocket to receive
commands and send back parameters, video feed, and SONAR
data, allowing the user to map the vehicle’s environment in 3
dimensions using a mapping library. The simulator is tested
with an adaptive lawn-mower type planner to display its full
capabilities.

Index Terms—underwater robotics, simulation, tether-less
ROV inspection, Unity3D, Robot Operating System

I. INTRODUCTION

Simulations serve as the backbone while developing algo-
rithms for robots [10]. They allow researchers to test their
system robustly in an virtual environment with relatively low
risk and expenditure as compared to field experiments. This
also provides the flexibility to test the boundary conditions and
the system performance under different operating conditions.
In general, many well-built simulators are available for aerial
and ground vehicles such as AirSim [9], which allows the
user to configure the vehicle controls and provides pre-built
features to experiment. In the case of underwater missions, the
challenges are different.

There are two major classes of vehicles used in underwa-
ter missions, Remotely Operated Vehicles (ROVs) and Au-
tonomous Underwater vehicles (AUVs). ROVs are controlled
by the operator to explore an intended region. On the contrary,
AUVs can carry out a mission without the need for constant
human supervision. The ROVs are generally tethered to a
base station for remote control of the complete vehicle. If the

tether can be replaced by a wireless link, we can increase
the operating region of the ROV and reduce the risk of
entanglement. While acoustic wireless links provide numerous
advantages, they are much slower than tethered connections
and exhibit long latency [11]. This results in a situation where
we can have tether-less control over ROVs but with limited
bandwidth, and sophisticated control algorithm.

We wanted to create a tool that can provide us with
a platform to test and simulate algorithms under different
operating conditions.

Over the years, many underwater simulators have been
developed. UWSim [1] uses OpenSceneGraph (OSG) and
osgOcean libraries for simulation. UWSim gives users the
option to add various scene elements and supports multiple
robots. It supports customizable widgets which can be placed
on the main window to displays various data parameters as re-
quired. However, it has limited flexibility to create custom user
interfaces and add various sensors like an IMU or a Doppler
Velocity Log. UUV Simulator [2] uses Gazebo for simulation
along with Robot Operating System (ROS). In addition to its
capability of simulating an underwater environment, it can also
add new simulation scenarios at runtime, thus making it easier
for the users to test their platforms. Even with the robustness
of ROS and good features, several crucial components are
missing. For example, the characteristically reduced visibility
in a marine environment as we see further in the simulated
ocean.

We are interested in mapping an area without any prior
information of the environment. For this application, we
required a setup that is capable of simulating an underwater
environment and compatibility with ROS for easy integration
with mapping packages. Therefore, simulators like the URSim
[3], which are developed using Unity3D but do not contain
mapping capabilities, were not a viable option for us. We were
not able to find an existing solution that met our needs.This
motivated us to develop a new simulator for tether-less ROV



operations.
We present an open-source underwater simulator developed

using Unity3D and ROS. This simulator provides a good
approximation of real-world ROV operations such as pipeline
inspection and tether-less control.

The simulator is open-source in order to allow users to
modify it according to their requirements. A comprehen-
sive documentation makes it possible to quickly get ac-
quainted with the development tools and Unity’s user interface.
The source code can be found at https://github.com/org-arl/
UWRoboticsSimulator.

The simulator can take control commands from ROS and
execute them in Unity while simulating the physical forces
and constraints involved in the movement of an underwater
vehicle. It also emulates a multi-beam SONAR allowing it
to map its surroundings acoustically. In the following section
we describe the reasons for selecting Unity3D as our physics
engine, its capabilities, and its usefulness in our application.
We present the details of the simulator’s elements, including
the environment building and the User-Interface. In Section
IV, we explain the integration of ROS as the control center,
thus making it possible to test any algorithm made in the ROS
ecosystem to be tested in our simulator. The details about the
emulation of the multi-beam SONAR are present in Section
V and the simulator’s mapping capabilities are discussed in
Section VI along with the possibility of a digital twin control
implementation. Finally, we discuss the results in Section VII.

II. UNITY 3D
In general, Gazebo is the tool of choice for many researchers

[2] when working with ROS and robotic systems. It is a
helpful application due to its ability to create simulations
that can be easily linked with ROS. Nevertheless, our project
required more freedom and functionality that usually do not
fall under Gazebo’s domain, such as independent operation
as an application and custom user interface. Unity3D is a
powerful development platform that can simulate real-world
interactions more accurately than Gazebo [3]. It can also
connect with ROS over a ROSBridge WebSocket connection
giving it the capability to be controlled from anywhere glob-
ally, provided that they are on the same network. Therefore,
we used Unity3D as our simulation platform.

Unity3D is usually employed to develop games and is
therefore quite adept at simulating ROV operations such as
pipeline inspection. It has a well-configured physics engine,
allowing us to simulate complex physical interactions easily.
The engine can also simulate forces such as gravity, buoyancy,
drag, and others. Unity can also be used to test vision-
based algorithms. It allows us to control and set the visual
elements of the environment, bringing it closer to what an
actual camera would see in the same scenario. Unity also
supports multiple platforms, so any application developed in
Unity can be deployed on Windows, Linux, and macOS.

A. Terrain and Environment
Our test environment (Fig. 1) consists of a lake surrounded

by mountains. The lake contains several objects such as

Fig. 1. The simulator environment containing the terrain, the vehicle and
various scene components.

Fig. 2. The difference between the scene with and without underwater visual
effects.

pipelines and gates that can serve as metrics for performance
testing of the simulator and its control as well as mapping
capabilities. The scene also contains a control station that
harbors the ROV. The seabed is a separate object used for
texturing purposes and as a reference object for various
functions involving depth information.

Along with functionality, realism also plays a vital role
in the simulator. We created the seabed using simplex noise,
and custom-built effects are used to simulate the underwater
environment as shown in Fig. 2. A distortion effect is added
to the camera view to depict the light refraction that occurs
underwater, and a fog to resemble the reduced visibility in
turbid waters. Light diffusion effects are also added to simulate
sunlight diffusing through the water surface and falling on the
underwater objects.

B. Vehicle Dynamics and Control

The vehicle designed in our simulator is based on a ROV
with six degrees of freedom controlled using the appropriate
thrusters. The ROV can translate along three directions and
rotate about three axes. The corresponding movements are:



Fig. 3. The Remotely operated underwater vehicle along with its movement
vectors.

• Translation:
◦ Surge - Along x-axis
◦ Sway - Along y-axis
◦ Heave - Along z-axis

• Rotation:
◦ Roll - About x-axis
◦ Pitch - About y-axis
◦ Yaw - About z-axis

Fig. 3 demonstrates the vehicle dynamics with the model
used in the simulator. The AddForce mechanism present in
Unity3D is used to emulate thrusters in which forces and
torques are applied along the axis per the control input. This
closely mimics the behavior of real thrusters. The thrusters are
controlled by commands sent from ROS.

C. The Simulation Control

The simulation environment is controlled with a variety
of scripts, each enabling crucial functionality. Some of the
important script groups are :

1) Buoyancy:
a) BoatPhysics: This script is attached to the vehicle

and acts a parent for the other buoyancy scripts.
b) ModifyBoatMesh: Generates the mesh that is be-

low the water.
c) TriangleData: Sends the triangle information to

other Buoyancy scripts.
d) WaterController: Extracts information about the

water and water level to send to the other scripts.
2) Button Functions:

a) Controls the toggle functions such as ROV release
from the control station and light panels of the
ROV.

b) Ability to switch between camera display modes
to focus on a specific camera view.

3) Pause Game: Encodes a pause menu to give more
control over each simulation run.

4) Seabed Script:

a) Calculates Vehicle’s Angular and Linear Velocity
and convert them to their respective scalars i.e.
Angular and Linear Speed.

b) Calculates the Acceleration of the Vehicle.
c) Calculates the vehicle’s distance from the seabed.
d) Calculates the Vehicle’s depth, its surrounding

Temperature and Pressure.
e) Calculates the Vehicle’s distance from the control

station.
f) Controls the behavior of the Range warning, Prox-

imity warning and the collision warning LEDs.
5) StartScreen: Script controlling the elements of the main

menu including user input for IP address, port number,
mission timing and SONAR Model. Takes these inputs
and uses them in the simulator and redirects to the
simulator screen when ’Start’ is pressed.

6) UIScript: Creates and display various UI elements
such as the vehicle’s speeds, acceleration, position and
various sensor outputs.

There is another set of scripts which are responsible for the
transfer of data to and from the ROS system. They will be
discussed separately in section IV.

D. Physical Forces and Interactions

One of the advantages of using Unity is the availability
of rigidbody properties, which gives the vehicle its physical
properties like mass and enables collision detection. Once the
vehicle is given the rigidbody property, it can be influenced
by gravity, and drag (and angular drag) forces can be applied
to the vehicle. These drag forces and their proportional mag-
nitude can be controlled from the inspection panel of Unity,
giving us more control over the overall movement behavior of
the ROV.

When working with an underwater environment, a promi-
nent force exerted on the vehicle in water is the Buoyant
force, which manifests due to the imbalance in the vertical
component of the hydrostatic forces on the surface of a body.
If the volume of the submerged body is known, it can be
calculated using Archimedes’ principle:

Fb = −ρgV

where, Fb is the buoyant force, ρ is the fluid density, g
is acceleration due to gravity, and V is the volume of the
displaced fluid.

While this method works perfectly well in theory, game
engines require us to discretize the problem, which means that
we would need to divide the vehicle into primitive shapes to
calculate the volume of the submerged part. It also requires us
to close the submerged volume to calculate its value [7]. Even
primitive shapes such as spheres, which reduce the required
computational power, yield inefficient approximation of the
volume of a body. This leads to a higher error in low poly-
gon bodies. We, therefore, adopt the surface approximation
approach proposed in [6] and [7].

We start by dividing the surface of our vehicle into triangles.
A function then determines, for each triangle, whether it is



Fig. 4. The Start Screen allows the user to set the parameters of the simulation.

submerged or not (in the case of partially submerged ROV).
The triangles are divided into three categories: Submerged
triangles, not submerged triangles, and triangles intersected by
the water surface. We discard the not submerged triangles from
our calculations as they do not contribute to the buoyancy. The
intersected triangles are further divided into smaller triangles.
This is done till every triangle is either above or below
the water surface. The buoyant force is then added to each
submerged triangle, thus giving us the overall force on the
vehicle.

This method removes any constraints on the vehicle shape,
and any custom model can be used for the simulation. The
computational cost is also low as game engines work well
with triangular calculations. Introducing the buoyant force in
the simulation also forces the user to compensate for it in their
controller, just like they would do in a real ROV.

E. Sensors and Attachments

To make any control possible, the vehicle needs to have a
base set of sensors that can localize the vehicle and record
environment parameters as part of an exploration mission.
The ROV included in the simulator contains a wide variety
of sensors, and their output are communicated to the ROS
system for further processing.

The simulated ROV has two cameras, one facing forward
and the other facing downwards. We also emulate an Iner-
tial Measurement Unit (IMU) to output angular and linear
velocities and accelerations. It also has a proximity sensor
for safety and pressure and temperature sensor to monitor the
environment. The pressure sensor is also used to find the depth
of the vehicle. In order to enable navigation in relatively dark
environments, there are navigation lights on the vehicle. These
can be toggled on and off using command inputs from ROS.

F. The User Interface

The simulator contains an intuitive User Interface (UI),
allowing the user to get accustomed to the application quickly.
The UI is similar to a small conventional ROV control station.

The UI is divided into two screens. The first one is the Start
Screen (Fig. 4). As the simulator uses ROS for controlling the

Fig. 5. The main user interface displaying the vehicle parameters, camera
feeds and warning lights.

vehicle, the user can start a ROS server and connect it with the
simulator using the ROSBridge. The simulator UI provides the
choice of using four SONAR model variants depending upon
the environment. Once the simulation is launched, the user is
taken to the main screen as shown in Fig. 5. It shows various
vehicle parameters, such as its estimated position, speed,
angular speed, pressure, temperature, depth, and distance from
the station. It also simulates LED lights that warn the user of
any collision or possible communication problems due to the
vehicle going out of range.

III. BLENDER

All the components of the simulation were modeled using
Blender. Blender is an open-source 3D design tool for cre-
ating 3D models, environment design, animations, and game
objects. This 3D design tool made it possible to make custom
models for our simulator, therefore significantly increasing the
customizable properties of the simulation. Objects are exported
as Filmbox (.fbx) file type from blender to be imported into
Unity3D. The objects might not carry over custom materials
and shaders from Blender to Unity. They will also not have
colliders attached to them on import, so special care was taken
while using them in a scene. The major difference comes in
how the built-in blender shaders behave in Unity, making it
necessary to reassign them once imported.

IV. ROBOT OPERATING SYSTEM

ROS [8] is an open-source framework that provides pack-
ages and tools to develop middleware for robots. It is one of
the most widely used tools amongst robotics researchers and
engineers. It provides us with all the required utilities to set up
our system and build a middleware to control the simulated
robot. The agents within ROS use a publisher - subscriber
method to exchange both structured and unstructured data. In
addition, it allows us to visualize the data if required, like in
the case of stored maps.

We wanted to build a simulator that was compatible with
ROS, as many robotics systems today use ROS as their frame-
work. Our system consists of three separate parts: Control,
Sensors and Mapping.



1) Control: To send commands from ROS to Unity, this
section provides us with the tool to manages the control
messages for the simulated vehicle in our unity3D simu-
lator. It includes movement commands, camera control,
lights, and the release of the ROV from the command
station. It also sets up the interface for our planner to
interact with the simulator.

2) Sensors: This part supervises the sensor outputs from the
simulated vehicle, like pressure, temperature, position,
and movement feedback, and publishes them for other
programs to use. It also publishes the transform of the
vehicle to be used by the mapping system.

3) Mapping: The last part is the mapping capabilities of
our simulator. This part parses the information sent from
the Unity system and uses it to create a map of the
surroundings and store it for future use. This is explained
in detail in sections V and VI.

We use the ROSBridge library to connect ROS with our
Unity3D simulator.

A. ROSBridge Library

The ROSBridge library provides a JSON interface to ROS,
allowing us to publish and subscribe to ROS topics, call ROS
services and most importantly, use Web sockets. We use the
ROSBridge library over a WebSocket, allowing our Unity
system to connect to ROS and behave as an integrated system.

We send data, including parameters, control inputs, or video
feed, between Unity3D and ROS, enabling us to use the Unity
simulator as a substitute for actual hardware. This allows us
to test all of our algorithms as if running them on the real
ROV. This saves us time and money, and it also reduces risks
that experimental programs might pose on expensive hardware.
The ROSBridge for Unity is a C# based library that serves
as the other end of this exchange. Michael Jenkin wrote the
original library, but we are using a modified version written
by Mathias Ciarlo [4].

We use ROSBridge to send video feeds, depth feed, and
vehicle parameters from Unity to ROS and receive control
commands from ROS. The setup uses the RosInitializer script
to input the target IP address and calls all the subscriber and
publisher scripts in Unity. It also projects the camera feed on to
2D textures to be transferred to ROS as a compressed image.

To ensure that our system resembles real hardware as
closely as possible, we introduced an artificial lag in the
communication pipeline to emulate the communication lag
over an acoustic modem. The delay depends on the distance
of the vehicle from the command station to account for the
travel time of sound.

We tested our system with ROS Melodic and Noetic,
the latest version of ROS on publication date. As ROS is
approaching its end of life, to ensure our simulator’s longevity,
we also tested it with ROS2 Eloquent and Foxy.

V. SONAR

SONAR is a technique that uses sound propagation to
navigate, and detect objects on or under the surface of the

Fig. 6. Depth map created using shader modification

water. We emulated a sonar in our Unity3D vehicle to send
depth information over our ROSBridge.

A. Depth Maps

The first method we tested was based on depth cameras
like the Intel Realsense or Zed camera, in which the system
outputs a depth map, with its pixel colours indicating the depth
information [12] (Fig. 6). We achieved this by modifying the
shaders of the camera output. We could control the resolution,
range, and other parameters.

This approach required us to modify shaders at runtime,
making it computationally expensive. To solve this, we tested
a method provided by Unity known as Raycast, which closely
resembles a SONAR.

B. Unity3D Raycast

Raycast is a feature of Unity, where a ray propagates from
an object and returns a Boolean based on whether it hit an
object or not. It is usually used to detect bullet collisions in
games, as displayed in Fig. 7. While the Raycast is helpful
to detect collisions in the ray’s path, it can also return the hit
distance, and therefore can be used as a SONAR which returns
the distance of the object it hits.

C. Multi-beam SONAR

Using multiple beams enables the user to cover a larger
area and create a dense map of the environment. The first step
towards building a Sonar in our simulator was to identify a
real-world product to base our model. The EM 2040 MKII
MULTIBEAM ECHOSOUNDER [13] (Fig. 8) was chosen
as it fulfills our range as well as swath spread angle criteria
and comes in multiple variants, giving the user more control
depending upon the mission’s environment. We implemented
four variants of the sonar, 600Hz and 700 Hz, with the option
for Single or Dual Swath, which will change the range and
the spread angle of the equipment.

We have set-up the sonar in a forward-facing configuration.
When the simulator is launched, the user is given the option
to choose a model variant. A model trigger is sent from Unity
to ROS as soon as the user clicks on the start button so



Fig. 7. Raycast being used in Unity to find bullet collision

Fig. 8. The EM2040 MKII Multibeam Echosounder and its variants.

that the ROS system can know which variant of the SONAR
is selected. The ROS system adjusts the related parameters
like the range and swath angle accordingly. The output “hit”
distance of every ray is stored in a single array which is then
communicated to ROS over ROSBridge for further processing.
The sonar can also tilt upwards or downwards, giving it the
ability to scan vertical structures without moving the vehicle.

We can control the tilt angle of the sonar by sending control
commands from ROS to Unity. They are added progressively
to the movement of the scanner. The pose coordinates from the
ROV to the scanner are sent to ROS, which are then converted
into transforms by a tf2 broadcaster. This transforms as the
base scan frame for the laser scan topic and all for further
processing. Fig. 9 shows the SONAR in action. Fig. 10 shows
the transform tree.

Fig. 9. The forward facing sonar using raycast method to return depth values.

Fig. 10. Transform tree from the world frame to the SONAR sensor frame.

VI. MAPPING WITH OCTOMAP

The OctoMap library [14] implements a 3D occupancy
grid mapping approach, providing data structures and mapping
algorithms in C++ particularly suited for robotics. We use Oc-
toMap to recreate the environment scanned by our underwater
vehicle and subsequently save it for future use. This is done
in several steps, outlined below:

1) By incorporating the position published from the
Unity3D simulator of both the vehicle and the scanner,
we publish the respective transform by using the tf2
library. This is then broadcasted by a tf broadcaster to
be used by our OctoMap node later on.

2) A string decoder subscribes to the decoded depth array
sent from Unity3D and republish that data as a float
array.

3) The LaserScan Publisher uses the decoded depth float
array to convert it into a laser scan topic. It also uses
the transform of the sonar as the scanner link.

4) The OctoMap mapping tool needs the depth data as a
point cloud. So we convert the laser scan to point cloud
and publish it over the topic /laserPointCloud

5) Once we have our point cloud and transforms ready, we
feed them into our OctoMap mapping node, where we
can use the rviz tool to visualize the recreated map.



Fig. 11. System’s nodemap displaying the mapping process.

Fig. 12. Comparison between the terrain and the 3D occupancy grid map
recreated in rviz.

6) The final Node Map of the whole system is represented
by Fig. 11

7) A sample map is shown in Fig. 12

VII. RESULTS AND DISCUSSION

The simulator is completely operational and is able to
transfer data as well as camera feed over the ROSBridge con-
nection. The control inputs from ROS are correctly executed in
Unity3D. The physics engine simulates the interactions with
the underwater objects as intended. The simulated SONAR
output, along with the OctoMap package, is able to create
a rich map, as shown in Fig. 12. The user interface gives
sufficient control over the simulation and prepares the user
for a real mission.

We tested the mapping pipeline for creating a “Digital twin”
using lawnmower-like patterns. Control commands were sent
from the ROS, and based on the feedback from the sensor, the
patterns were auto-generated. Simultaneously, we mapped the
surroundings using the SONAR and stored it in the system.
This helped us simulate a real-world scenario where tether-less
ROVs can be used for mapping underwater environments.

Our simulator can be used to develop a robust platform to
design and test various planners and tools employed in marine
robotics. It allows researchers to check their systems before
deployment, saving time and money. It can be used for other
applications such as human-in-the-loop-based control and as
a training software for new ROV controllers. Furthermore, it
can be used as an educational tool for students new to the field
of marine robotics.

The simulator is being further enhanced. We intend to
add more user-friendly control over the physical components
of the simulator, making it possible to change simulation
parameters and components even in the exported executable of
the simulator. Meanwhile, the source code is freely available
for anyone to use or modify it to meet their requirements.

ACKNOWLEDGMENT

This research is supported by NUS Advanced Robotics
Centre Seed funding & A*STAR under its RIE2020 Advanced
Manufacturing and Engineering (AME) Industry Alignment
Fund – Pre-Positioning (IAF-PP) (Award A20H8a0241).

REFERENCES

[1] Prats, M.; Perez, J.; Fernandez, J.J.; Sanz, P.J., ”An open source tool for
simulation and supervision of underwater intervention missions”, 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2577-2582, 7-12 Oct. 2012

[2] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat and T.
Rauschenbach, ”UUV Simulator: A Gazebo-based package for underwa-
ter intervention and multi-robot simulation,” OCEANS 2016 MTS/IEEE
Monterey, 2016, pp. 1-8, doi: 10.1109/OCEANS.2016.7761080.

[3] A. Konrad, “Simulation of Mobile Robots with Unity and ROS - A
Case-Study and a Comparison with Gazebo,” M.S. thesis, Dept. of
Engineering Sc., Univ. West, Trollhättan, Sweden, 2019. Accessed on:
July 29, 2020. [Online]. Available: https://www.diva-portal.org/smash/
get/diva2:1334348/FULLTEXT01.pdf

[4] Mathias Ciarlo, ROSBridgeLib, GitHub, Jan. 6, 2015. Accessed on:
Sept. 2, 2020. [Online]. Available: https://github.com/MathiasCiarlo/
ROSBridgeLib

[5] Katara, Pushkal & Khanna, Mukul & Nagar, Harshit & Kumarappan,
Annapurani. (2019). Open Source Simulator for Unmanned Underwater
Vehicles using ROS and Unity3D. 1-7. 10.1109/UT.2019.8734309.

[6] Erik Nordeus, Make a realistic boat in Unity with C#, Habrador.
Accessed on: Oct. 20, 2020. [Online]. Available: https://www.habrador.
com/tutorials/unity-boat-tutorial/3-buoyancy/

[7] Jacques Kerner, Water interaction model for boats in video games,
Gamasutra, Feb. 27, 2015. Accessed on: Oct. 20, 2020. [Online]. Avail-
able: https://www.gamasutra.com/view/news/237528/Water interaction
model for boats in video games.php

[8] Quigley, Morgan & Conley, Ken & Gerkey, Brian & Faust, Josh & Foote,
Tully & Leibs, Jeremy & Wheeler, Rob & Ng, Andrew. (2009). ROS: an
open-source Robot Operating System. ICRA Workshop on Open Source
Software. 3.

[9] Shah S., Dey D., Lovett C., Kapoor A. (2018) AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles. In: Hutter
M., Siegwart R. (eds) Field and Service Robotics. Springer Proceedings
in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/
978-3-319-67361-5 40

[10] Tselegkaridis, S.; Sapounidis, T. Simulators in Educa-
tional Robotics: A Review. Educ. Sci. 2021, 11, 11.
https://doi.org/10.3390/educsci11010011

[11] Liu, Lanbo & Zhou, Shengli & Cui, Jun-Hong. (2008). Prospects and
problems of wireless communication for underwater sensor networks.
Wiley WCMC Special Issue on Underwater Sensor Networks. Wireless
Communications and Mobile Computing. 8. 977-994. 10.1002/wcm.654.

[12] Unity Technologies, Image Synthesis for Machine Learning, Bitbucket,
Dec 30, 2016. Accessed on: Oct. 5, 2020. [Online]. Available: https:
//bitbucket.org/Unity-Technologies/ml-imagesynthesis/src/master/

[13] KONGSBERG, EM 2040 MKII Multibeam echosounder.
Accessed on: Dec. 15, 2020. [Online]. Available: https://www.
kongsberg.com/contentassets/e8fa4f09f25f4b1e86eda52cc1355dc7/
em-2040-mkii---data-sheet.pdf

[14] A. Hornung,. K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees” in Autonomous Robots, 2013; DOI: 10.1007/s10514-012-9321-
0. Available: http://octomap.github.com


