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Abstract—Re-localization is crucial to underwater vehicles
especially for short-range missions, such as inspection and
maintenance. While re-localization has been tackled successfully
in the land and aerial environments, it remains to be a challenge
in the underwater environment where radio communications
and global positional systems are unavailable. Traditionally,
underwater localization methods include dead reckoning (DR),
inertial navigation systems (INS) and acoustic sensors. However,
DR and INS tend to accumulate errors along time and are
vulnerable to changes in water speed while acoustic sensors often
require complex architectures which are expensive. Inspired by
recent progress in land re-localization methods, we implemented
a regression learning method, which is simple and cost-effective,
for re-localization in short-range missions. The method is able to
regress a 6-DOF pose from a single RGB image. We trained and
evaluated the method on datasets collected from an underwater
simulator. We also investigated its robustness towards changes in
lighting and made improvements.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) and remotely
controlled vehicles (ROVs) play an important role in marine
engineering [1], [2]. For both types of vehicles, localization
is an essential task as it is crucial to mapping, navigation,
inspection and intervention [3]. Localization remains a chal-
lenge in the underwater environment where radio commu-
nications and global positional systems (GPS) are unavail-
able [3]. Traditionally, underwater localization methods use
dead reckoning (DR), inertial navigation systems (INS) and
acoustic sensors [2]. However, DR and INS accumulate errors
with time while acoustic localization requires deployment of
additional infrastructure and is therefore often inconvenient or
expensive [2]. In recent years, there are some advancements
in underwater localization using optical sensors such as cam-
eras [4]. However, such methods often involve deployment of
active markers [5], [6], or careful setup using divers [4], [7].

This paper focuses on the problem of localization in a
known underwater environment for an inspection mission. An
environment is considered ”known” if information, such as a
3D map, of the environment is available. Such information is
normally collected from previous exploration and navigation
tasks. Underwater inspection refers to inspection on various
types of marine structures, ranging from ship to tunnels.
The main challenge for localization in underwater inspection
is that pose estimation must be accurate, as the vehicle is
close to the structure during an inspection mission. Moreover,
the presence of the structure makes acoustic navigation with
beacons difficult in practice. We wish to find a cost-effective

solution to this problem, using a simple RGB camera. As
we will be close to the structure in inspection missions,
poor underwater visibility of camera should have insignificant
impact on the effectiveness of our solution.

Camera-based localization methods can be separated into
feature-based methods such as Active Search [8], and deep-
learning methods such as PoseNet [9]. Active Search is
able to achieve state-of-the-art results in outdoor scenes, but
its performance deteriorates in indoor scenes, especially in
textureless scenes [9]. As underwater scenes are often tex-
tureless and featureless, we choose to implement a learning-
based regression method which was inspired by PoseNet,
which is able to regress a 6-degree-of-freedom (DOF) pose
from a single 224×224 RGB image. The method is able to
achieve real-time localization, and can obtain approximately
6 cm position accuracy and 1.7°orientation accuracy, for
small underwater scenes. Previous work has also shown that
PoseNet is able to perform well on navigation tasks in large
underwater scenes [14], giving us more confidence in applying
this approach on visual inspection tasks.

We implemented this learning-based regression localization
method on datasets collected from an underwater simula-
tor [15]. We showed that the implemented model is able to
work well on underwater scenes with limited visibility and
limited landmarks or features. Fig. 1 shows some examples of
underwater scenes. We also investigated the robustness of the
implemented method against changes in lighting conditions
and implemented different approaches to improve the model
performance and robustness.

II. RELATED WORKS

A. Visual-based re-localization

Visual-based re-localization is closely related to visual si-
multaneous localization and mapping (SLAM). While visual
SLAM focuses on mapping a new environment and tracking
poses of the sensors simultaneously [11], visual-based re-
localization focuses on estimating current poses of the sensors
using prior information, such as a 3D map, of an environ-
ment and current images captured by the camera. Recent
advancements in visual-based re-localization methods can be
categorized into feature-based methods and deep-learning-
based methods [10].
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Fig. 1. As compared with typical outdoor terrestrial scenes used in
PoseNet [9] (bottom panels), underwater scenes (top panels) have lower
visibility and less texture.

B. Feature-based re-localization

Most state-of-the-art feature-based localization methods rely
on local scale-invariant feature transform (SIFT) features.
Using a 3D model reconstructed from Structure-from-Motion
(SfM), one can estimate poses by firstly creating 2D-to-
3D matches between image features and 3D points in SfM
and then using a n-point solver for pose estimation inside a
RANSAC loop [10]. Using a visual-vocabulary-based quanti-
zation of descriptor space as the prioritization scheme, Active
Search speed up the 2D-to-3D matching process. It then
uses 3D-to-2D matching to improve the localization accuracy,
achieve the SOTA results [8].

C. Deep-learning-based re-localization

Deep-learning-based re-localization methods requires large
datasets about the environment [10]. Such methods usually
make use of deep convolutional neural networks (CNN)
as a feature extractor and then use an affine regressor to
regress poses of the camera. Using transfer learning, PoseNet
leverages models pretrained on ImageNet and reduce the
dependency on large datasets.

III. METHOD

We developed the model based on PoseNet [9]. Given a
monocular RGB image, I, the model outputs a pose vector y,
which contains a position vector, p, and a orientation vector,
q:

y = [p,q] (1)

We implemented the model using PyTorch to avail several
pretrained models in the package.

We constructed a composite loss function as a weighted sum
of the position loss and orientation loss [9], when regressing
the poses from images:

L = Lp + βLq, (2)

where β is used to balance between the position and orienta-
tion losses. We fine tuned β to find the optimal value for each
dataset. It was found that for underwater scenes, the optimal
β was typically between 1 and 10.

Fig. 2. Neural network architecture overview.

The position loss and orientation loss were calculated using
Euclidean distance:

Lp = ‖p̂− p‖2, (3)

and,

Lq =

∥∥∥∥q̂− q

‖q‖

∥∥∥∥
2

(4)

We use quaternions to represent rotation, to avoid wrap around
problems associated with Euler angles [12].

As shown in Fig. 2, we used deep CNN architectures,
such as GoogLeNet [13], pretrained on ImageNet as a feature
extractor and then used an affine regressor to predict 6-DOF
poses. Pretrained models were used to leverage the benefits of
transfer learning as large underwater datasets are not widely
available and it is computationally expensive to train the
model on underwater datasets from scratch. Even though the
ImageNet dataset is very different from underwater structure
images, using pretrained models has shown better performance
than training the model from scratch. This is probably because
pretrained model learned how to extract features which is
its sole purpose in our method. Before the last layer of the
deep CNN, another fully connected (FC) layer of size 2048
was inserted. This FC layer represents the features extracted
from the images. The last layer of the deep CNN was then
modified to a fully connected layer to output 7-dimensional
pose vectors.

The input images were rescaled to 256×256 pixels before
cropping to the 224×224 input using centre cropping. To speed
up the training, the images were also normalized using the
mean and standard deviation of ImageNet. The poses were
also normalized for the same reason. using the The outputs are
7-dimension pose vectors which contain 3-dimension position
vectors and 4-dimension quaternion vectors.

IV. DATASETS

To train and test our model, we collected datasets from an
underwater robotics simulator [15] as shown in Fig. 3. In
the underwater simulator, we placed a ROV 0.5 m from a
vertical pillar with 0.7 m diameter. We then operated the ROV
to inspect the pillar in a downwards spiral motion. The total
spatial extent covered by the ROV was about 2 m×4 m×2 m.
Using Robot Operating System (ROS), we recorded the images
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Fig. 3. Underwater simulator (left) and the image captured by the ROV
(right).

Fig. 4. Image from original dataset (left) and the image from dimmer dataset
(right).

captured by the front camera of the ROV as well as the poses
of the ROV in terms of position vectors and unit quaternions.

We first collected a dataset containing 14,400 images and
corresponding poses. We randomly selected 70% of the dataset
for training and used the remaining 30% for testing. We used
random selection to ensure that both train and test sets had
information of all scenes covered.

We made the light on the ROV dimmer and collected an-
other dataset. The only difference between these two datasets
is the lighting condition. We randomly selected 30% of this
dataset to test the robustness of the model against change in
lighting conditions.

V. EXPERIMENTS

We used a 22-layer GoogLeNet as the feature extractor for
our baseline model. We trained the model using stochastic
gradient descent with a base learning rate of 0.003 and with a
momentum of 0.9. Training took about an hour with a batch
size of 4. We set β as 4. The base learning rate and batch size
were chosen through hyper-parameter tuning using random
search while β was chosen using grid search. We found that
the implemented method was able to perform localization
effectively as it can achieve a 9 cm translational accuracy and
a 3°rotational accuracy. Also, Fig. 5 shows that the trajectory
predicted by the model is very close to the actual trajectory
performed. Fig. 6 shows cumulative histograms of position
and orientation error in scenes with both standard and dimmer
lighting conditions. We noted that the localization errors in-
creased significantly when the lighting became dimmer. Thus,
the model was not robust to changes in lighting.

As changing backbones, using data augmentation and apply-
ing dropouts are common techniques to improve performance
on test set, we applied these techniques separately to investi-
gate their effectiveness on our model and datasets.

Fig. 5. Predicted trajectory (orange) vs real trajectory (blue)

Fig. 6. Localization Performance. Localization on dimmer dataset (bottom)
has bigger and more widely distributed errors that on standard dataset (top).

A. Data Augmentation

We applied color jittering to the standard dataset during
training by randomly changing image brightness, contrast,
saturation and hue. As shown in Table I, after applying
color jittering, the robustness to changes in lighting condition
improved slightly. We also applied contrast limited adaptive
histogram equalization (CLAHE). The robustness was further
improved.

TABLE I
MODEL PERFORMANCE IN DIFFERENT LIGHTING CONDITIONS

Data Augmentation Dataset Accuracy
disabled standard 0.0891 m, 2.91°
disabled dimmer 0.468 m, 37.8°
enabled standard 0.125 m, 2.63°
enabled dimmer 0.389 m, 15.3°
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B. Using Deeper Network

To examine the effectiveness of deeper network on robust-
ness, we used ResNet models pretrained on ImageNet [16].
Using residual blocks, ResNets can be much deeper than
GoogLeNet without experiencing exploding or vanishing gra-
dient. They also achieved state-of-the-art results on various
visual recognition tasks, such as ImageNet localization [16].
From the results in Table II, we saw that using deeper networks
was effective on improving robustness of the model although
the improvement was small. We also noticed that deeper
networks can achieve much higher accuracy on standard
dataset during testing. Considering both training time and
model accuracy, for our subsequent experiments, we adopted
ResNet-50 as our backbone.

TABLE II
MODEL PERFORMANCE USING DIFFERENT BACKBONES

Standard Dimmer
Position Orientation Position Orientation

GoogLeNet 0.125 m 2.63° 0.389 m 15.3°
ResNet-18 0.0894 m 3.22° 0.421 m 17.0°
ResNet-34 0.0782 m 2.36° 0.330 m 21.3°
ResNet-50 0.0657 m 2.15° 0.348 m 11.1°

ResNet-101 0.0592 m 1.70° 0.370 m 6.59°

C. Using Larger Dataset

We combined the standard dataset and the dimmer dataset to
form a larger dataset and randomly selected 70% of the larger
dataset as the train set. We then tested the trained model on
test sets from both lighting conditions separately. The results
are shown in Table III.

TABLE III
MODEL PERFORMANCE USING LARGER DATASET

Dataset Position Accuracy Orientation Accuracy
Standard 0.211 m 1.83°
Dimmer 0.272 m 2.00°

D. Applying Dropouts

We found applying dropouts showed no improvement on
model robustness towards different lighting conditions.

VI. CONCLUSION

In this paper, we implemented a deep-learning-based re-
localization method in a simulated underwater environment.
We showed that our approach can achieve high accuracy for
both position and orientation. We found that using deeper
networks can significantly improve the model performance.
Moreover, data augmentation and using a larger dataset can
improve the robustness of the model towards changes in
lighting.

In the future, the research can be continued in several
directions. Firstly, we can improve robustness of the model
towards change in other factors such as distance. Secondly,
we can test our method in real underwater environments.

Thirdly, as the model does not restrict the input to be camera
images, we can also experiment with using sonar images or
point clouds. Lastly, We may explore how to improve the
model performance through changing the architecture such as
incorporating long short-term memory (LSTM) [17].
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