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Abstract—Underwater vehicles usually rely on acous-
tics for communication and navigation. Reliable com-
munication and accurate navigation require the vehicle
to plan a path through areas with good acoustic cover-
age from communication gateways and beacons. Plan-
ning such a path can be challenging in areas with com-
plex acoustic propagation, especially when the signal
strength does not monotonically reduce as a function of
distance from a transmitter. When the environmental
parameters are not fully known, traditional acoustic
propagation models are unable to provide accurate
predictions. We develop an online physics-informed
data-driven method to predict acoustic signal quality
in a region ahead of the underwater vehicle to inform
the vehicle’s path-planning algorithm.

I. Introduction
While most autonomous underwater vehicles (AUVs) to-
day use acoustics for communication and navigation, op-
erators find that the performance of acoustic systems
can be highly variable and often cannot be relied upon.
Especially in littoral waters, multipath arrivals interfere
constructively and destructively, creating zones of high
and low signal strength and highly variable delay spread.
Acoustic performance in such channels does not monoton-
ically reduce with range, but is a complicated function
of source and receiver location. If an AUV can predict
acoustic performance as a function of its own location,
it may be able to plan a path to provide guarantees on
navigation and communication performance [1], [2].

If the acoustic environment is well understood, physics-
based acoustic propagation models such as BELLHOP [3]
may be used to predict performance. However, in practice,
sufficiently detailed environmental knowledge is usually
not available a priori to plan an acoustically performant
path. While signal quality measurements may be available
as the vehicle executes its mission, physics-based acoustic
propagation models cannot readily incorporate these mea-
surements to improve their predictions. In this paper, we
demonstrate how an online data-driven method may be
used to predict acoustic signal quality in a region ahead of
the vehicle to inform the vehicle’s path-planning algorithm.
The method is informed by acoustic propagation physics
to enable it to learn about the acoustic environment with
only a few measurements.

II. Problem Formulation
In a small region in the far field of a source, the acoustic
pressure amplitude measured at frequency 𝑓 and location r

can be expressed in terms of a sum of pressure amplitudes
of 𝑀 plane waves (each represented by a ray):

𝑝(r, 𝑓) = ∣
𝑀

∑
𝑚=1

𝐴𝑚𝑒𝑖𝑘k̂𝑚⋅r∣ , (1)

where 𝐴𝑚 is the complex amplitude of the 𝑚th ray, 𝑘 =
2𝜋𝑓/𝑐 is the wavenumber, 𝑐 is the speed of sound, and k̂𝑚
is a unit vector along the direction of travel of the ray. If
we make measurements ̂𝑃𝑗𝑛 of acoustic field amplitude at
various frequencies 𝑓𝑛 and locations r𝑗, we can estimate
the unknown pressure amplitudes 𝐴𝑚𝑛 as a solution to a
non-linear optimization problem:

arg min
{𝐴𝑚𝑛}

∑
𝑗,𝑛

( ̂𝑃𝑗𝑛 − ∣∑
𝑚

𝐷𝑗𝑛𝑚𝐴𝑚𝑛∣)
2

, (2)

where 𝐷𝑗𝑛𝑚 ≡ 𝑒𝑖𝑘𝑛k̂𝑚⋅r𝑗 , and 𝐴𝑚𝑛 is the complex ampli-
tude of the 𝑚th ray for frequency 𝑓𝑛.

In general, we do not know the number of rays 𝑀 or
the direction vectors k̂𝑚. We can, however, take 𝑀 to
be large and spread the k̂𝑚 uniformly over the range of
possible directions, and allow the optimization to set 𝐴𝑚𝑛
for directions without a ray to be 0. Since we know a priori
that 𝑀 is small, we desire solutions to (2) that exhibit
row sparsity in matrix [𝐴𝑚𝑛]. Once we have the estimated
values of 𝐴𝑚𝑛, we can determine the pressure amplitude
(and hence acoustic signal strength1) at any frequency and
location using (1).

III. Optimization
Row-sparse solutions to the non-linear optimization prob-
lem in (2) can be obtained adding a 1-norm regularization
term ℛ to the original optimization problem:

arg min
{𝐴𝑚𝑛}

⎡⎢
⎣

∑
𝑗,𝑛

( ̂𝑃𝑗𝑛 − ∣∑
𝑚

𝐷𝑗𝑛𝑚𝐴𝑚𝑛∣)
2

+ ℛ⎤⎥
⎦

, (3)

where
ℛ ≡ 𝜉 ∑

𝑚
√∑

𝑛
|𝐴𝑚𝑛|2,

is the 1-norm of the vector formed from the 2-norms of
each row of matrix [𝐴𝑚𝑛] and 𝜉 is a hyper-parameter to
control the degree of sparsity.

1We use acoustic signal strength as a measure for signal quality in
this paper. However, other measures such as delay spread, impulse
response, etc. may also be obtained from 𝑝(r, 𝑓) through an inverse
Fourier transform.
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Figure 1: Simulation setup.

The resulting problem is non-convex and is solved itera-
tively using gradient descent based methods in machine
learning, such as the ADAM optimizer [4]. While these
methods do not guarantee a global minimum, we find that
the minimum they find is usually a very good one, as long
as the measurements are scaled appropriately, and the
ADAM step size and 𝜉 are chosen carefully2. The gradient
of the loss function can easily be obtained via automatic
differentiation [5].

IV. Simulation Study
A. Simulation setup
Consider an AUV operating in mid-water column, at a
range of about 2 km from a mother ship, in a water depth
of 200 m and an iso-velocity sound speed profile. The
AUV is assumed to know the sound speed in the local
area around it, but not the bathymetry or the location
of the mother ship. The AUV communicates with the
mother ship via an acoustic communication link in the
9–14 kHz band (consistent with the JANUS standard [6]).
The mother ship transmits regularly, and the AUV makes
acoustic signal strength measurements at every 1 m, over
a 100 m distance, and uses this as training data { ̂𝑃𝑗𝑛}.
To provide some diversity in the depth axis and to break
symmetry, we bootstrap the measurements by asking the
AUV to slowly vary its depth by ±2 m as shown in
Figure 1. With only 100 measurements in a very small
region (100 m range) along its path, the AUV is then
asked to predict the signal strength in a much larger region
(250 m range × 50 m depth) around it. These predictions
may then be used for the AUV’s path planning.

B. Results
The ground truth acoustic signal strength field (Figure 2) is
produced over the region of interest using BELLHOP. The
AUV path is shown in blue, and the 100 simulated mea-
surement locations are marked with solid dots. The model
parameters [𝐴𝑚𝑛] are obtained by solving the optimization
problem in (2) as described in the previous section. Solving
the problem involves discretization of frequency and ray
angles. We discretize frequency in steps of 500 Hz, and
choose ray angles from -20∘ to 20∘ in steps of 0.5∘. At a
range of 2 km from the source in shallow waters, we do not

2For all examples shown in this paper, we scale the signal strength
measurements to have unit mean, and use a ADAM step size of 0.5
and sparsity parameter 𝜉 = 5.

Figure 2: Ground truth signal strength integrated over
the 9–14 kHz band, as obtained from BELLHOP over the
region of interest. The AUV path is shown in blue, with
solid dots showing the measurement locations. The white
rectangle shows a region marked for closer inspection.

Figure 3: Predicted signal strength integrated over the 9–
14 kHz band, over the region of interest. The AUV path is
shown in blue, with solid dots showing the measurement
locations. The white rectangle shows a region marked for
closer inspection.

expect much energy arriving at steeper angles. We perform
the optimization over 500 epochs of the training data. The
model in (1) is then used to predict the acoustic signal
strength field shown in Figure 3. The similarity between
the two fields is clearly seen.

The white rectangles in Figure 2 and Figure 3 show regions
just ahead of the AUV that we choose for closer inspection
at specific frequencies. Figure 4 and Figure 5 show the sig-
nal strength field in the corresponding zoomed in regions
at 9 kHz. Figure 6 and Figure 7 show the signal strength
field at 14 kHz. The interference structure is clearly visible
in both cases, with deep nulls separating regions of good
signal strength. We observe the similarity in field patterns
between the ground truth and the predictions. While
some of the detailed structure in the ground truth is



Figure 4: Zoomed in view of the region ahead of the AUV
showing ground truth field strength at 9 kHz.

Figure 5: Zoomed in view of the region ahead of the AUV
showing predicted field strength at 9 kHz.

not reproduced in the prediction, the overall pattern is
accurately predicted and can be used effectively for AUV
path planning or adaptation.

We visualize the recovered model parameters (matrix
[𝐴𝑚𝑛]) in Figure 8. The row-spare structure of the matrix
is clearly seen in terms of the horizontal bands at specific
ray angles. The angles are consistent with the expected
arrival angles based on our knowledge of the channel
geometry.

V. Discussion
The problem at hand requires us to predict signal strength
in a region around the AUV by observing the signal
strength at a few locations. This is essentially a regres-
sion problem, but traditional machine learning algorithms
such as deep neural networks (DNN) or Gaussian pro-
cess regression (GPR) are unable to tackle it effectively.
DNNs and GPR are extremely effective at interpolating
data, but do not extrapolate well. Our problem requires
extensive extrapolation. By incorporating knowledge of
the physics of acoustic propagation in the structure of the

Figure 6: Zoomed in view of the region ahead of the AUV
showing ground truth field strength at 14 kHz.

Figure 7: Zoomed in view of the region ahead of the AUV
showing predicted field strength at 14 kHz.

algorithm, we are able to not only extrapolate well, but
also learn from very little data [7]. DNNs are universal
approximators, and are able to learn to approximate any
function. Unlike DNNs, our algorithm is only able to learn
to approximate a class of functions that are solutions to
the acoustic wave equation. This aids in extrapolation, as
the solution discovered is constrained by the acoustic wave
equation in regions where no data points are available. The
algorithm presented in this paper is closely related to that
in [7], but uses a fixed set of direction of arrivals and
combines data from multiple frequency bands to enable
learning from data from a very small spatial region (as
discussed next).

We observe the signal strength at only a few locations,
but we collect data at each location at many frequencies.
This is critically important for the algorithm to work. In
most cases, the problem of determining the ray directions
with only a few observations at a single frequency is
vastly under-determined and therefore not uniquely solv-
able. However, by combining information over a range of
frequencies and imposing a row-sparse structure on the



Figure 8: Learnt model parameters (matrix [𝐴𝑚𝑛]) show-
ing discrete ray arrivals at specific angles. The row-sparse
structure of the recovered matrix is clearly seen.

model parameters, we provide additional constraints that
enable the problem to be solved.

The problem formulation and optimization approach de-
scribed in Section II and Section III are quite general, and
can be customized for the problem at hand. In the next
few paragraphs, we illustrate how the approach can be
modified to relax some of the assumptions made in this
paper.

We assumed the region of interest to be small, and far
away from the source. This enabled us to approximate the
acoustic propagation in the region as plane waves, and to
ignore spreading loss and absorption over the region of
interest. The effects of these simplifying approximations
are clearly seen by comparing Figure 2 with Figure 3.
Firstly, we see a gradual decrease in signal strength in
the ground truth field with increasing 𝑥, while we do not
see this in the predicted field. Secondly, the wavefront
curvature causes the angle of arrival of rays at the near
end of the region of interest to differ from the ones at
the far end by about 0.6∘. This model mismatch leads
to some errors in prediction of detailed structure. Should
prediction in a larger region of interest, or operations at
shorter ranges be desired, a more sophisticated model that
includes wavefront curvature and spreading loss has to be
adopted. This is easily done by modifying (1) and following
the steps outlined in Section II and Section III, also at the
cost of an increased number of model parameters.

We explicitly assumed an iso-velocity profile in our simula-
tion study. By allowing sound speed 𝑐 to be a function of
depth and/or range, we can model channels with non iso-
velocity sound speed profiles. This has to be coupled with
adoption of a ray tracer that determines the refraction
of the wavefront through the medium, instead of the
plane wave model we used in (1). Since our optimization
technique uses automatic differentiation to obtain gradi-
ent estimates, one must use a differentiable ray tracer
(e.g. RaySolver [8], [9]) during training.

For low frequency long range acoustic applications, it is
common to use the method of normal modes for propaga-
tion modeling. In modeling low frequency communication
performance, one may substitute the ray model in (1)
with the equivalent expression from a normal mode model
[10]. The rest of the method described in Section II and
Section III can then be applied to find the parameters of
the modes propagating through the region of interest.

VI. Conclusions
We have shown that it is possible to predict acoustic signal
quality in a region of interest around an AUV by simply
observing the signal strength at a few locations along the
AUV’s trajectory, as long as the observations are made at
many different frequencies. While we demonstrated this
with a simple plane wave propagation model in an iso-
velocity channel, the same approach can be adapted for use
with spherical wave models, non iso-velocity channels, and
even normal mode models. By incorporating knowledge of
physics of acoustic propagation into the model, the AUV
is able to make predictions with very little data, and with
measurements made in a small subset of the region of
interest. As new measurements flow in, the model may
be updated through online training. The model output
may then be used in path-planning algorithms for adaptive
missions honoring acoustic navigation and communication
guarantees.
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