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Abstract—Modeling acoustic propagation accurately is vital to
numerous oceanic applications. However, physics-based acous-
tic propagation models require accurate prior environmental
knowledge, which is often hard and expensive to acquire. Such
a requirement can be relaxed by using data-driven machine
learning techniques. Unfortunately, they are data-hungry and
extrapolate poorly. We can potentially train machine learning
algorithms with a lot less data and get them to extrapolate
well by imposing constraints based on our knowledge of acoustic
propagation. Our previous work proposed a physics-based data-
aided high-frequency acoustic propagation modeling recipe based
on the ray theory to do precisely this. The promising results
obtained motivate us to further tailor the recipe for low-frequency
applications. The theory of normal modes tends to be a more
appropriate choice to model acoustic propagation at low frequen-
cies. In this paper, we incorporate a modal acoustic propagation
model in the structure of a neural network. We demonstrate
the superiority of such an algorithm in estimating acoustic field,
as compared with conventional data-driven machine learning
techniques. We also show that this technique allows us to extract
information about the environment, such as estimating the sound
speed profile from acoustic observations.

Index Terms—Normal mode, acoustic propagation model, data-
aided acoustic modeling, SciML.

I. INTRODUCTION

Understanding acoustic propagation in the ocean is crucial
for numerous applications, such as communication channel
estimation [1], underwater source localization [2] and geo-
acoustic inversion [3]. Oceans offer rich multipath environ-
ments that exhibit complicated constructive and destructive
interference patterns. Conventional ocean acoustic propagation
models solve the acoustic wave equation [4] using vari-
ous mathematical techniques and simplifying approximations.
While conventional models have matured over the past few
decades, a key limitation for their effective use is the re-
quirement of having full and accurate prior environmental
knowledge. Accurately measuring required environmental pa-
rameters such as sound speed profile (SSP), seabed properties
and sea surface properties, is often hard and expensive in
practice.

Advances in data-driven machine learning (ML) resolve
many problems that can not be addressed by conventional
models. Modeling acoustic propagation through data-driven
ML approaches does not need environmental knowledge.
However, classical ML techniques are data-hungry and ex-
trapolate poorly, and therefore poorly suited for most oceanic
applications where data is difficult to obtain and consequently
sparse. Recently, a synergetic strategy that embeds underlying

domain knowledge into data-driven ML has emerged to handle
such a dichotomy. This emerging technique is in the field of
scientific machine learning (SciML) [5], [6]. Physics-informed
neural networks (PINNs) [7], a popular strategy in SciML,
encode scientific domain knowledge in the form of partial dif-
ferential equations (PDEs). The PDEs are added as additional
regularization terms in standard loss functions. There are a few
recent works that preliminarily demonstrate the feasibilities of
PINNs in learning solutions to the acoustic wave equation [8]–
[11]. However, the use of SciML in the context of ocean
acoustic modeling has not yet been extensively explored.

Augmenting the loss function is one of the possible strate-
gies in SciML to inform a neural network (NN) by under-
lying domain knowledge, but is not the only effective one.
Embedding the domain knowledge of acoustic propagation in
structures of NNs, and using ML algorithms to train the NNs
to solve the simplified wave equation also yields a promis-
ing strategy. Our previous work [12] extensively investigates
this idea in high-frequency acoustic propagation modeling
problems based on the ray theory [13]. It demonstrates the
applicability and superiority of the proposed ray-based data-
aided acoustic propagation modeling recipe in various case
studies by benchmarking against classical ML techniques.

Ray theory applies a high-frequency approximation to solve
the acoustic wave equation analytically [13], and is therefore
not very accurate a low frequencies where the approximation
is invalid. Normal mode models [14] are suitable and efficient
alternatives for low-frequency oceanic applications. In this
paper, we tailor the propagation modeling recipe based on the
normal mode theory. We illustrate the proposed mode-based
modeling framework in various scenarios and demonstrate
its use in ocean acoustic field estimation problems and a
SSP inversion problem. The proposed framework is flexible
to incorporate any known domain knowledge, and can also
embed smaller standard NNs to model unknown parameters.
Moreover, it is data-efficient and generalizes well as compared
to classical ML models.

II. METHOD

A. Normal mode theory

The acoustic wave equation is a second-order partial differ-
ential equation that describes acoustic propagation [13]:

∂2p

∂t2
= c2∇2p, (1)
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where p denotes acoustic pressure, t represents time and c is
sound speed.

We consider an acoustic propagation modeling problem
due to a point source in a horizontally stratified (range-
independent) two-dimensional (2D) ocean waveguide. A har-
monic wave is a feasible solution to (1):

p(r, z, t) = p̄(r, z)eiωt, (2)

where p̄(r, z) is complex pressure amplitude at a location
with range r and depth z, and ω = 2πf denotes angular
frequency. Substituting (2) back into (1) leads to the Helmholtz
equation [4]:

k2(z)p̄(r, z) +∇2p̄(r, z) = 0, (3)

where k(z) = ω
c(z) represents wavenumber at depth z.

Classical normal mode models apply the separation of
variables [15] to express acoustic field at location (r, z) as a
combination of a depth-dependent term and a range-dependent
term:

p̄(r, z) = Ψ(z)Φ(r). (4)

We substitute (4) into (3). After rearranging and simplifying,
we obtain the modal equation [14]:

ρ(z)
d

dz

!
1

ρ(z)

dΨ(z)

dz

"
+ k2z (z)Ψ(z) = 0, (5)

where
k2z (z) = k2(z)− k2r , (6)

and ρ(z) is density and kr represents horizontal wavenumber.
The modal equation derived in (5) is in the form of a clas-

sical Sturm-Liouville eigenvalue problem [16]. Theoretically,
there are an infinite number of distinct mode solutions (Ψ(z)
and kr) to the modal equation (5). Normalized mode solutions
form a complete set so that solutions to the wave equation can
be represented as an infinite sum of the normal modes:

p̄(r, z) =

∞#

m=1

Ψm(z)Φm(r), (7)

where m denotes mth mode. The range-dependent term Φm(r)
has a standard form in terms of the Hankel function [13]:

Φm(r) =
i

4ρ(zs)
Ψm(zs)H

(1,2)
0 (krmr), (8)

where zs denotes source depth and H
(1,2)
0 refers to the Hankel

function of first or second kind. The choice depends on
radiation conditions. We adopt the Hankel function of the
first kind since we assume energy is radiating outwards as r
approaches ∞. The asymptotic approximation to the Hankel
function is often used in literature and (8) is approximated by:

Φm(r) ≈ i

ρ(zs)
√
8πr

e−iπ
4 Ψm(zs)

eikrmr

√
krm

. (9)

Popular normal mode models, such as Kraken [17], seek all
significant eigenfunction solutions Ψm(z) and corresponding
eigenvalues krm to the modal equation (5) while satisfying
boundary conditions and environment setup.

B. Mode basis neural network

An imaginary krm makes eikrmr an exponentially decaying
term with respect to propagation range r. A real krm leads to
a propagating mode that oscillates instead. The infinite sum
in (7) can be approximated as a n-mode finite sum in far-field:

p̄(r, z) ≈ i

ρ(zs)
√
8πr

e−iπ
4

n#

m=1

Ψm(z)Ψm(zs)
eikrmr

√
krm

. (10)

Although analytical solutions to (5) are not always available,
general field solutions based on the normal mode theory
approximately follow [14]:

p̄(r, z) ≈
n#

m=1

$
Ameikzmz +Bme−ikzmz

%
Φm(r), (11)

where Am and Bm are scaling factors to make sure boundary
conditions and environment setup are satisfied.

Even though the approximated field expression is provided
in (11), the mode parameters Am, Bm, krm and kzm associated
with each mode are calculable only if boundary conditions and
all required environmental parameters are accurately known.
Any missing environmental parameter prevents the applica-
tion of the conventional normal mode model, or requires
the modeler to estimate the parameter through other means
(e.g. matched field processing). Such a requirement greatly
limits practical uses of normal mode models as operating
environments may not always be well understood.

We propose a mode basis neural network (MBNN) frame-
work to enable the use of normal mode modeling in situations
where accurate environmental knowledge is unavailable. The
idea of encoding the physics of acoustic propagation into struc-
tures of data-driven ML has been extensively explored in our
previous work [12], where we detail a hybrid modeling frame-
work based on the ray theory for high-frequency underwater
acoustic propagation modeling. Following a similar approach,
in the MBNN framework, we encode the domain knowledge of
acoustic propagation based on the normal mode theory into the
structure of a standard NN to model low-frequency acoustic
propagation in oceans. The MBNN model is differentiable so
that well-developed automatic differentiation techniques [18]
can be utilized to find optimal unknown mode parameters,
providing acoustic measurements and corresponding measure-
ment locations as training data.

The MBNN framework allows numerical propagation mod-
els based on the normal mode theory to be data-driven. At the
same time, the structure of MBNN encodes essential physics
and therefore improves the model’s data efficiency and gener-
alizability as compared to classical data-driven ML techniques.
This leverages complementary strengths of data-driven ML
and physics-based models to handle practical scenarios of
partially known physics and limited data availability.

We illustrate our MBNN model formulation through two
examples of 2D ocean waveguides with isovelocity SSP (Sec-
tion II-B1) and non-isovelocity SSP (Section II-B2) respec-
tively:

1) Isovelocity ocean waveguides: We consider an isoveloc-
ity ocean waveguide that has a constant sound speed c and
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density ρ with a water depth D. A general eigenfunction so-
lution to (5) in this isovelocity ocean waveguide follows [14]:

Ψm(z) = Am sin(kzmz) +Bm cos(kzmz). (12)

We assume a pressure-release surface:

Ψ(0) = 0, (13)

and a rigid bottom:

dΨ

dz

&&&&
z=D

= 0. (14)

Such boundary conditions further simplify (12) to:

Ψm(z) =

'
2ρ

D
sin(kzmz). (15)

The corresponding eigenvalue krm is derived as:

krm =

'(ω
c

)2

−
(
(m+ 0.5)

π

D

)2

,m = 1, 2, · · · , n. (16)

We assume that we do not know the exact values of c,
ρ and D. Due to missing environmental knowledge, conven-
tional normal mode models cannot estimate acoustic fields.
Fortunately, our proposed MBNN model can automatically
learn the best-fitted values of the unknown mode parameters
from acoustic data. We train a minimal set of unknown mode
parameters and numerically calculate other unknowns using
underlying physics to make sure our method generalizes well.

We denote the minimal unknown mode parameters whose
values are yet to learn from acoustic observations as MBNN
model trainable parameters:

T = {c, ρ, D} . (17)

We minimize the square difference between the estimated pres-
sure amplitude p̄(r, z; T ) and the acoustic field measurement
p̂ at a measurement location (r, z) by tuning T . The loss
function is defined as:

L(r, z, p̂; T ) = |p̄(r, z; T )− p̂|2 . (18)

Equation (18) is normally summed over a batch of training
data in each iteration as per ML standards [19]. With the opti-
mal trainable parameters T ∗ learnt from acoustic observations,
we can readily estimate acoustic fields using (6), (10), (15)
and (16).

2) Non-isovelocity ocean waveguides:
a) Known SSP: The MBNN framework is capable of

modeling non-isovelocity ocean waveguides as well. As the
modal equation cannot be analytically solved for ocean waveg-
uides with non-isovelocity SSPs, approximate solutions are
necessary. We use the WKB approximation [20] – one of the
most widely used approximation techniques in normal mode
literature, to approximate the depth-dependent term:

Ψm(z) ≈ Am
ei

! z
0

kzm(s)ds

*
kzm(z)

+Bm
e−i

! z
0

kzm(s)ds

*
kzm(z)

, (19)

where

kzm(z) =

+!
ω

c(z)

"2

− k2rm. (20)
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Fig. 1: The computational graph for (23) and (24) to estimate
acoustic fields with unknown SSP.

We assume boundary conditions are unknown. This missing
information introduces more unknown model parameters as
compared to the isovelocity waveguide case in Section II-B1.
When SSP is provided, we can use acoustic observations to
find the optimal value of the trainable parameters:

T = {A,B,kr} , (21)

where A = (A1, A2, . . . , An), B = (B1, B2, . . . , Bn) and
kr = (kr1, kr2, . . . , krn).

The missing environmental knowledge makes it hard to es-
timate the number of contributing modes n precisely. When A
and B are parts of the trainable parameters T , conservatively
setting n to an upper bound of its possible range and adding
L1-norm regularization terms of A and B to encourage sparse
solutions can help in model convergence. The loss function is
updated to:

L(r, z, p̂; T ) = |p̄(r, z; T )− p̂|2 + α ‖A‖1 + β ‖B‖1 , (22)

where α and β control the regularizations. With the trained
optimal model parameters T ∗, acoustic fields in a non-
isovelocity ocean waveguide with known SSP can be estimated
using (10), (19) and (20).

b) Unknown SSP: The detailed SSP across the water
column is often unknown. The unknown SSP makes the
calculation of kzm(z) infeasible, even though the eigenvalue
krm is provided. The MBNN is flexible to incorporate with
standard NNs to model unknown physics. For example, we
can implement a 1-input 1-output NN to model the SSP.
We name the NN which models SSP as sound speed neural
network (SSNN). Fig. 1 illustrates the overall structure of the
MBNN framework that incorporates SSNN.

In order to train the SSNN, the trainable parameter T
defined in (21) is modified to:

T = {A,B,kr,S} , (23)

where S contains all parameters (weights and bias) in the
SSNN model. Calculating kzm(z) is feasible now using the
trained SSNN:

kzm(z) =

+!
ω

SSNN(z)

"2

− k2rm, (24)
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Fig. 2: Key steps in the proposed MBNN framework in model
training stage and field estimation stage.

where SSNN(z) is the estimated sound speed at depth z.
We employ the same loss function defined in (22) to learn

optimal T ∗. We then use (10) and (19) with (24) to estimate
acoustic fields in a non-isovelocity ocean waveguide with
unknown SSP.

3) Generalization to other mode models: We have illus-
trated a few MBNN formulations in range-independent ocean
waveguides and demonstrated how flexible the proposed mod-
eling framework is in different scenarios. It is worth noting
that formulations of normal mode models are application
and environment specific. The idea of our MBNN modeling
framework generalizes well to tackle different scenarios and
can be applied to any variant of classical normal mode models.
For example, the MBNN framework can incorporate adiabatic
mode methods or coupled mode methods to model range-
dependent environments [21]–[23].

Fig. 2 describes the steps involved in the MBNN model
training stage and field estimation stage. For any ocean envi-
ronment, the key is to have an analytical field solution or an
approximated field solution based on the normal mode theory,
and use a small number of acoustic measurements as training
data to find the optimal MBNN trainable parameters T ∗. We
can calculate other necessary physical quantities based on the
trained MBNN parameters so as to estimate acoustic fields at
locations of interest.

III. SIMULATION STUDIES

In [24], the authors study acoustic propagation and hydro-
logical conditions at the Hans glacier front in Svalbard. This
paper lays a foundation for several follow-up studies at the
glacier [25]–[27]. We loosely use the environment described
in this paper as the basis for our simulation studies to illustrate
how one might model the acoustic propagation in a location
where full environmental knowledge may be unavailable.

We assume that a work boat anchors at a location 1 km from
the glacier. It carries an acoustic modem that emits 500 Hz
continuous wave signals for acoustic communication and envi-
ronmental monitoring. A peer survey boat executes exploration
tasks in a region that is further away from the glacier. The
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water seabed

modem

work ship glacier

peer vessel hydrophone array

25 m

Distance (m) * The schematic is not to scale.

Fig. 3: Schematic of the simulated environment.

bathymetry is approximately flat with a constant water depth
of 25 m in the region in which the peer vessel operates. Fig. 3
depicts a schematic of the simulated environment. We use
the Kraken normal mode model [28] to generate synthetic
acoustic measurements in the simulated environment (with full
environmental knowledge).

We then consider a scenario where the bottom properties
and boundary conditions are unknown (and so unavailable
to the model). We aim to model acoustic propagation from
the work boat to a nearby region around the peer vessel in
Section III-A and infer the SSP using acoustic measurements
collected at a constant depth in Section III-B.

In both cases, we need to train our MBNN using the
simulated data. We randomly split the acoustic measurements1

into a training dataset and a validation dataset based on a
70% : 30% ratio. The training dataset trains the MBNN train-
able parameters T , while the validation data is to implement
early stopping [29] to avoid over-fitting during the training.
We use 30 modes in the MBNN formulation.

A. Acoustic field estimation

We consider two acoustic field estimation problems, one
with known SSP and one with unknown SSP. We assume
a 24-element vertical hydrophone array with a 1 m inter-
element spacing to the peer vessel to collect acoustic field
measurements in the measurement region. We wish to accu-
rately estimate acoustic field in an area, without having to
make measurements at all points in that area. To illustrate
how this can be done, we define a measurement region where
we make several measurements, and two 100 m regions on
both sides of the measurement region as extended region to
demonstrate field extrapolation. The measurement region and
extended region together form the area of interest (AOI).

In [30], the authors find that the use of PINN does not
benefit acoustic field estimation performance as compared to
standard ML models. Our preliminary evaluation of PINN for
this application agrees with this finding. We thus benchmark
the field estimation performance of the proposed MBNN
framework against two classical data-driven ML techniques

1The synthetic acoustic measurements used in simulation studies are peak-
to-peak values from hydrophone output in millivolts.



5

D
ep
th
(m
)

550 752650

Range (m)

24

1

extended region measurement region
(2 m x 23 m)

-45

-50

-60

-70

-85

dB

X
training data
validation data

650 651 652

1

24

AOI

measurement
regionextended region

profile #1 profile #2 profile #3

Fig. 4: Ground truth field pattern in the AOI for field estimation problem with known SSP. The training data and validation
data used in the model training are labelled respectively.

TABLE I: Acoustic field estimation performance of the three models using a different number of profile measurements in the
field estimation problem with known SSP.

Model

Estimated field pattern

[RMS test error (mVpp)]

measurements with profile #1 measurements with profiles #1 & #2 measurements with profiles #1–#3

MBNN
[4.67] [4.80] [1.19]

GPR
[8.12] [7.50] [2.10]

DNN
[8.89] [6.51] [4.59]
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Fig. 5: Ground truth field pattern in the AOI for field estimation problem with unknown SSP. The collected training data and
validation data used in the model training stage are labelled respectively.

– Gaussian process regression(GPR) and deep neural net-
work (DNN). We design a composite kernel of a squared
exponential isotropic kernel and a Matérn 5/2 ARD kernel
for GPR, and implement a 2-input 1-output DNN with 3
hidden layers and ReLU activation function. We randomly
initialize the MBNN and the DNN model parameters in each
run. The hyper-parameters of the GPR model are fine-tuned
by minimizing validation error. We carry out 10 Monte Carlo
simulations for MBNN and DNN models, and present the field
estimation results with the smallest validation error.

1) Field estimation with knowledge of SSP: We consider an
ocean waveguide with a known non-isovelocity SSP, unknown
seabed properties and unknown boundary conditions. We use
the WKB approximation to formulate the MBNN model based
on (10), (19) and (20). We use acoustic measurements to find
optimal values of the trainable parameters T ∗ defined in (21).

We deploy the hydrophone array to collect acoustic mea-
surements in a 2 m × 23 m measurement region at three
profiles, each spaced by a 1 m range in between. Fig. 4 shows
ground truth field pattern in the AOI and the three profiles
where we collect the measurements. In order to investigate
the field estimation performance, we use the Kraken model
to generate 464,600 test data with a resolution of 0.1 m in
range and depth within the AOI. We investigate data efficiency
of the three models by estimating the field patterns in the
AOI using measurements collected at one profile (24 mea-
surements), two profiles (48 measurements) or three profiles
(72 measurements) in the measurement region.

Table I shows the estimated field patterns and the corre-
sponding root-mean-square (RMS) test errors in the AOI when
different amounts of acoustic measurements are given. When
acoustic measurements made at profile #1 & #2 are provided,
the GPR and DNN models fail to extrapolate field patterns
due to insufficient training data. The field estimated by the
MBNN shows a rough field pattern with low fidelity. When
the measurements made at profile #1–#3 are provided, the field
estimated by the MBNN model aligns well with the ground
truth field pattern. The GPR can extrapolate more details in the

extended region. The DNN still performs poorly in extrapola-
tion. The corresponding RMS test errors presented also justify
our observations that the MBNN model outperforms the GPR
and DNN models in terms of data efficiency and extrapolation
performance.

2) Field estimation without knowledge of SSP: Sound speed
in an ocean waveguide is measured by sending a conductivity,
temperature and depth (CTD) sensor at various depths. When
either the CTD sensor or equipment to survey sound speed
at various depths is lacking, we do not know the exact SSP.
In this case, we assume that no sound speed measurement is
available due to the lack of a CTD sensor. Instead, we only
have a rough understanding of a reasonable range that the SSP
may fall in. Our conservative initial guess of the SSP is that
it falls in a 100 m/s range between 1,400 m/s and 1,500 m/s
and SSP variation should not exceed 35 m/s over the 25 m
water depth.

One may expect that more acoustic data is required to train
the MBNN framework as the size of trainable parameter T
increases as compared to the previous scenario. As shown
in Fig. 5, we uniformly collect 1,224 acoustic measurements
(24 elements/profile × 51 profiles) within a 50 m × 23 m
measurement region. We assume the detailed SSP and seabed
properties are unknown. We use a simple 1-input 1-output
NN (SSNN) with 1 hidden layer and ReLU activation function
to learn the SSP in the water column. We formulate the
MBNN model based on the WKB approximation as (10), (19)
and (24). We aim to estimate the acoustic field pattern in the
AOI by learning the optimal trainable parameters T ∗ defined
in (23) through acoustic measurements. We generate 575,000
acoustic measurements, with a resolution of 0.1 m in range and
depth, as the test dataset over the AOI to rigorously quantify
the field estimation performance.

As shown in Fig. 6, all of the three models can interpolate
acoustic fields in the measurement region well. However, field
patterns extrapolated in the extended region shown in Fig. 7
highlight the superiority of our proposed MBNN framework
over the GPR and DNN models. The test errors shown in
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(a) Ground truth (b) Estimation by MBNN (c) Estimation by GPR (d) Estimation by DNN

Fig. 6: The estimated field patterns in the measurement region when SSP is unknown. Panel (a) shows the ground truth field
pattern. Panels (b)–(d) show the estimated fields by the MBNN, GPR and DNN models.

(a) Ground truth (b) Extrapolation by MBNN (c) Extrapolation by GPR (d) Extrapolation by DNN

Fig. 7: The estimated field patterns in the AOI when SSP is unknown. Panel (a) shows the ground truth field pattern. Panels
(b)–(d) show the extrapolated fields by the MBNN, GPR and DNN models.

TABLE II: Acoustic field estimation performance of the three
models in the field estimation problem with unknown SSP.

Model
RMS test error (mVpp)

In measurement region In AOI

MBNN 0.039 0.87
GPR 0.011 2.10
DNN 0.10 2.88

Fig. 8: The learnt SSP with the ground truth SSP in the
field estimation problem. The SSNN is trained using acoustic
measurements sampled across the water column in the mea-
surement region.

Table II support the observations we draw from Fig. 6 and
Fig. 7. Although estimation of the SSP might not be of interest
to the field estimation problem, the learnt SSP by the SSNN

is close to the ground truth SSP in the 100 m/s span as shown
in Fig. 8. It demonstrates the flexibility of the MBNN model
to incorporate with standard NNs to model unknown physics.

B. Inversion for entire SSP
In Section III-A2, we have demonstrated that our proposed

MBNN model can learn the SSP reasonably well using the
acoustic field measurements collected at 50 profiles when a
CTD sensor is not provided. However, consider a scenario
where measurements are not available through the entire
water column, but rather at a few shallow depths only. Could
one estimate the SSP in the entire water column with just
a few shallow measurements? The MBNN framework can
incorporate standard NNs to model unknown physics – in this
case, the SSP. This makes the MBNN framework a useful
tool for solving various inverse problems related to acoustic
propagation modeling.

To illustrate the idea, we assume that an autonomous un-
derwater vehicle (AUV) equipped with an acoustic sensor and
CTD is deployed from the peer vessel and dives to an operating
depth of 4 m. It then operates at a constant depth of 4 m, and
therefore does not have access to profiles through the water
column to make either CTD or acoustic measurements. Fig. 9
indicates the AUV’s trajectory in the measurement region.
The AUV uniformly makes 5 sound speed measurements at
depths between the water surface and the operating depth of
4 m. We aim to learn the entire SSP using the acoustic field
measurements collected at a nearly constant depth with the
aid of just a few sound speed measurements made at shallow
depths.

We assume boundary conditions and seabed properties are
unknown. We use the same model formulation, trainable pa-
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Fig. 9: The trajectory of AUV labelled as an arrow in the
inversion of SSP application.

Fig. 10: The learnt SSP with the ground truth SSP in the SSP
inversion application using acoustic measurements made at a
nearly constant depth and a few sound speed measurements.

rameters and initial guess of the SSP defined in Section III-A2.
The lack of strong spatial diversity of the collected field
measurements makes this inversion problem particularly chal-
lenging.

The learnt SSP, benchmarked against the ground truth SSP,
is shown in Fig. 10. We constrain the SSNN using the sound
speed measurements made at the water surface, 1 m, 2 m,
3 m and 4 m in the loss function. The learnt SSP over
25 m depth is very close to the ground truth SSP, even
for depths where no acoustic field measurement and sound
speed measurement are provided. Training the MBNN model
using acoustic measurements with stronger field variation can
potentially reduce the training data size and improve the
inversion accuracy.

IV. CONCLUSION

Conventional normal mode propagation models, although
are widely used, require accurate prior environmental knowl-
edge. Environmental uncertainties thus significantly affect
model estimation performance and thus limit its applicability
in practice. We proposed a physics-based data-aided modal
acoustic propagation modeling framework based on the normal
mode theory. The proposed framework embeds the normal
model theory of acoustic propagation into the structure of
a NN, so as to enable a data-efficient propagation modeling

framework. The proposed model is flexible to incorporate any
known environmental knowledge and standard NNs to model
unknown physics. At the same time, it extrapolates well and
brings interpretability to the trained model parameters. We
demonstrate the proposed modeling framework through several
simulated application examples, and by benchmarking against
classical ML techniques.
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