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Abstract—Physics-based ocean acoustic propagation
models take in the location of an acoustic source and
an environmental description, and yield estimates of
acoustic field at points of interest. In many cases, acous-
tic field measurements are available but the environ-
ment is not completely known. Determining unknown
environmental parameters given field measurements is
of interest in inverse problems. Techniques for solving
inverse problems are usually based on iterative opti-
mization of a loss function, and greatly benefit from
the availability of the gradient of the loss function
with respect to the unknown parameters. Traditional
acoustic propagation models are complicated programs
that do not provide any easy way to obtain gradients.
While gradients can be estimated using finite difference
techniques, such estimates suffer from poor numerical
accuracy and are computationally expensive to obtain.
Recent advances in machine learning have led to the
development of automatic differentiation techniques
that yield gradients of complicated mathematical al-
gorithms efficiently and accurately. We present two
open-source ocean acoustic propagation models that
are designed ground-up to work well with automatic
differentiation. These models not only work well with
gradient-based optimization techniques, but also can be
used together with machine learning techniques such
as neural networks to learn from data. To illustrate
the value of such models, we present four application
examples where the gradients are used to solve inverse
problems.

I. Introduction
Since electromagnetic waves are rapidly absorbed by sea-
water, acoustics is very commonly used for remote sens-
ing and communication applications underwater. Sound
strongly interacts with the sea surface and seabed, typ-
ically resulting in complicated interference patterns due
to multipath. It also refracts in the water column due to
changes in sound speed caused by temperature, salinity
and pressure changes. In order to understand or predict
the underwater acoustic field due to a sound source, we
use well-established ocean acoustic propagation models
such as ray/beam tracing or method of normal modes [1].
These models typically take in an environmental descrip-
tion in terms of the source location, sound speed profile,
bathymetry, seabed properties and sea surface properties,
and estimate the acoustic field at various receiver loca-
tions.

In many cases, the environmental information may only
be partially known, but some acoustic field measurements
may be available. In such cases, the environmental infor-
mation may be inferred from the available measurements.

Such problems are known as inverse problems, and are of
great interest in the field [2]. Techniques such as matched
field processing (MFP) incorporate incorporate inference
of environmental information into the processing of the
acoustic signals [3]. Most such techniques rely on iterative
evaluation of acoustic propagation models to test various
hypothesized environmental parameters to reduce the er-
ror between the model predictions and field measurements.
Mathematically, one can generalize this approach as an
optimization problem:

min
Θ

ℒ(Θ),

where ℒ is a loss function that measures the mismatch
between predictions and measurements. A typical sum-
square loss may be written as:

ℒ(Θ) = ∑
𝑖

|ℳ(x𝑖, Θ) − 𝑦𝑖|
2 , (1)

where 𝑦𝑖 are field measurements made at locations x𝑖,
Θ contains environmental knowledge (including source
location), and ℳ(x, Θ) is the acoustic propagation model
that predicts the acoustic field at location x given environ-
mental knowledge Θ.

While the non-linear global optimization problem in (1)
is generally hard to solve, local optima may be read-
ily found using gradient-based optimization techniques
[4]. With partial environmental information to guide the
initialization of the search, the resulting local optimum
may often provide the desired result. Even in cases where
global optimization methods are invoked, the availability
of the gradient ∇ℒ can significantly speed up the opti-
mization. Other approaches to solving inverse problems
include Bayesian inference using Markov Chain Monte
Carlo (MCMC) sampling and variational inference [5], [6].
Efficient MCMC techniques such as HMC [7] or NUTS [8]
require gradient ∇ℒ to be available. Variational inference
also requires ∇ℒ.

The challenge, however, is that ℳ is generally not avail-
able in closed-form, and therefore cannot be symboli-
cally differentiated. In most cases, ℳ is a complicated
algorithm involving numerical differential equation solvers
(e.g. to solve the Eikonel equation) and optimization
techniques (e.g. to find eigenray launch angles). While
numerical differentiation is possible, it requires multiple
evaluations of the model per degree of freedom in Θ and
becomes computationally expensive as the dimensionality
of Θ increases. Moreover, the gradient estimates from



numerical differentiation suffer from poor accuracy due to
floating point errors.

Automatic differentiation (AD) is a powerful tool to
automate the calculation of derivatives of complicated
mathematical algorithms [9]. For AD to be applied to a
computational propagation model, the model needs to be
written in a way that is designed for AD. Well-established
acoustic propagation models such as Bellhop [10] are writ-
ten in Fortran and not easily amenable to AD techniques
available today. We present two new open-source differen-
tiable acoustic propagation models developed in the Julia
programming language, and designed to be compatible
with popular AD tools in the Julia ecosystem.

The acoustic propagation models are not only amenable to
gradient-descent based optimization techniques, but also
support uncertainty propagation [11] and can be used as
part of probabilistic programs [12], [13]. Since modern
machine learning tools rely on AD during training, these
acoustic propagation models can be used together with
machine learning models such as neural networks to learn
from data. For example, if a seabed reflection model or a
sound speed profile is unknown, it may be substituted by
a neural network that is trained end-to-end using observed
acoustic data.

In the next section, we present the two propagation models
in detail. This is followed by four illustrative application
examples to show how these models may be used together
with machine learning techniques to solve inverse or MFP
problems.

II. Propagation Modeling Toolkit
The acoustic propagation modeling toolkit
(UnderwaterAcoustics.jl) [14] is an open-source project
that provides a common interface for various acoustic
propagation models, including popular models such as
Bellhop and Kraken [15]. We have two differentiable
propagation models available with the toolkit:

A. Pekeris Ray Model
The PekerisRayModel is a fast differentiable ray prop-
agation model for 3D range-independent iso-velocity
ocean environments, and is available out-of-the-box in
UnderwaterAcoustics.jl. It implements the model de-
scribed in [16].

The PekerisRayModel models high-frequency acoustic
propagation in an environment with constant bathymetry
and sound speed. Ray paths from a source to a receiver in
such an environment can be computed analytically from
knowledge of the channel geometry. This yields closed
form expressions for path length, spreading loss, time of ar-
rival, angle of arrival, number of seabed and surface inter-
actions, and incidence angles at surface and seabed [16]. By
employing appropriate volume absorption (e.g. Francois-
Garrison [17]) and geo-acoustic (e.g. Rayleigh reflection

[18] with absorption [19]) models, we compute each ar-
rival intensity and phase at the receiver. We then sum
the arrivals to compute the received acoustic field. The
interface exposed by the PekerisRayModel permits other
more comprehensive geo-acoustic models to be plugged-in,
if desired.

The PekerisRayModel is fully differentiable with
forward-mode and reverse-mode AD packages such as
ForwardDiff.jl [20] and Zygote.jl [21]. It is also
compatible with probabilistic programming tools such as
Turing.jl [12] and measurement uncertainty propagation
tools such as Measurements.jl [11].

B. Ray Solver
In environments with a depth-dependent sound speed
or range-dependent bathymetry, we need a full-featured
ray/beam propagation model for high-frequency acoustic
propagation modeling. The RaySolver is an open-source
ray/beam propagation model for 2.5D ocean environments
with complex bathymetry and sound speed profile. It im-
plements a similar model as Bellhop, but is differentiable
using AD tools such as ForwardDiff.jl. It is available by
installing the Julia package AcousticRayTracers.jl [22].

The RaySolver implements a ray model as described in
[1, Ch. 3]. It traces ray paths between the transmitter
and the receiver by solving a system of first-order non-
linear partial differential equations (PDE) in cylindrical
coordinates (range 𝑟, depth 𝑧):

𝑑𝑟
𝑑𝑠 = 𝑐𝜉(𝑠), 𝑑𝜉

𝑑𝑠 = − 1
𝑐2

𝜕𝑐
𝜕𝑟 ,

𝑑𝑧
𝑑𝑠 = 𝑐𝜁(𝑠), 𝑑𝜁

𝑑𝑠 = − 1
𝑐2

𝜕𝑐
𝜕𝑧 ,

where 𝑐 is the sound speed, 𝑠 is the path length along the
ray, and 𝜁(𝑠), 𝜉(𝑠) are auxiliary variables to convert the
PDE into a first-order form. The system of PDEs is solved
using either Runge-Kutta [23] or Rosenbrock methods [24],
based on user configuration.

The absorption along ray paths is computed using the
Francois-Garrison volume absorption model [17], and each
interaction with the seabed and sea surface is governed
by a reflection model (e.g. Rayleigh reflection [18] with
absorption [19]). Other geo-acoustic models can be used
in place of Rayleigh reflection, if desired.

When computing the acoustic field at a small number of
receivers, the RaySolver computes eigenrays between each
source and receiver pair by iterative optimization of ray
launch angles. This results in an accurate arrival structure
and acoustic field estimate, but is computationally expen-
sive. When computing the acoustic field over a large area,
RaySolver follows a similar approach as Bellhop to use
a rectangular grid of virtual receivers, each accumulating
contributions from Gaussian beams fanning out from the



(a) PekerisRayModel

(b) RaySolver

Figure 1: Comparison of ray traces from the
PekerisRayModel and the RaySolver for an environment
with an iso-velocity sound speed profile. The transmitter
is at a 5 m depth and the receiver is at a 10 m depth, in a
water depth of 20 m. The range between the transmitter
and receiver is 100 m.

source [1, Sec. 3.3.5.5]. This is significantly faster, but less
accurate.

The RaySolver is compatible with forward-mode AD
(using ForwardDiff.jl), but with one limitation: it is cur-
rently unable to compute gradients with respect to change
in launch angle of eigenray. If gradients with respect to
geometry changes are required, numerical differentiation
using FiniteDifferences.jl [25] may be used instead.
This limitation may be removed in future versions of
RaySolver.

C. Model comparison
Figure 1 shows a comparison of the ray traces from
PekerisRayModel and RaySolver for an environment
with an iso-velocity sound speed profile in 20 m of water
depth. The transmitter is placed at a 5 m depth and the

(a) PekerisRayModel

(b) RaySolver

Figure 2: Comparison of transmission loss estimates from
the PekerisRayModel and the RaySolver for an envi-
ronment with an iso-velocity sound speed profile. The
transmitter is at a 5 m depth in channel with 20 m water
depth.

receiver is placed at a 10 m depth. The range between the
transmitter and receiver is 100 m. We see that the ray
traces produced by both models are identical.

Figure 2 shows a comparison of transmission loss estimates
from PekerisRayModel and RaySolver for the same envi-
ronment. While the estimates are not identical, they are
very similar. The small differences are due to the Gaussian
beam approximation used by the RaySolver, as against
exact eigenrays used by PekerisRayModel.

Figure 3 shows a comparison of ray traces from the
RaySolver and Bellhop for an environment with Munk
sound speed profile (Figure 4). The transmitter is placed
at a depth of 1 km and the receiver is placed at a depth of
800 m. The water depth is 5 km, and the range between
the transmitter and receiver is 100 km. Only the strongest
9 rays are shown to avoid cluttering the figure. We see that



(a) RaySolver

(b) Bellhop

Figure 3: Comparison of ray traces from the RaySolver
and Bellhop for an environment with Munk sound speed
profile (Figure 4). The transmitter is at a 1 km depth and
the receiver is at a 800 m depth, in a water depth of 5 km.
The range between the transmitter and receiver is 100 km.
Only the strongest 9 rays are shown.

the ray traces from both models are essentially identical.

III. Application Examples

To illustrate the usefulness of differentiable acoustic prop-
agation models, we present four simulated application
examples next. The examples have been intentionally kept
simple to focus on key ideas, and not on practical issues
that no doubt have to be dealt with in real experiments.
A detailed tutorial and the source code for all four appli-
cation examples is available online [14].

A. Tracking a drifting transmitter
Consider a scenario where a drifting probe acoustically
transmits its sensor data periodically to a static receiver.
We assume that the initial position of the probe is perfectly
known, and so is the environment, but the path of the

Figure 4: Munk sound speed profile.

Figure 5: Estimated and actual drifter positions.

probe as it drifts is not known. We wish to estimate the
path from the received acoustic communication signals.

The simulated environment is an iso-velocity channel with
a constant depth. The probe uses a 1–2 kHz band for data
transmission, and includes 𝑁 = 101 pilots at 10 Hz spacing
to aid with channel estimation. The transmission loss 𝛾𝑖
can be accurately measured at those pilot frequencies 𝑓𝑖,
since the transmit source level is assumed to be known,
but phase information is assumed to be unavailable at each
pilot.

The location of the probe x𝑡 at each transmission is esti-
mated by using gradient descent to solve the optimization
problem:

x𝑡 = arg min
x

ℒ(x; 𝛾1𝑡, 𝛾2𝑡, ⋯ , 𝛾𝑁𝑡),

where

ℒ(x; 𝛾1, 𝛾2, ⋯ , 𝛾𝑁) =
𝑁

∑
𝑖=1

|ℳ(x, 𝑓𝑖) − 𝛾𝑖|
2 .



Here, ℳ(x, 𝑓𝑖) is the modeled transmission loss at location
x and frequency 𝑓𝑖. For for each transmission 𝑡, 𝛾𝑖𝑡 is the
measured transmission loss at frequency 𝑓𝑖.

The modeled transmission loss is computed using the
PekerisRayModel, and forward-mode AD is used to ob-
tain the gradient ∇ℒ for gradient descent. At each trans-
mission 𝑡, 10 iterations of gradient descent are used to
estimate position x𝑡 with initial guess x𝑡−1.

The estimated and actual range of drifter from the receiver
is shown in Figure 5, as the sensor slowly drifts over 30 m.
We see good agreement between the two.
B. Geo-acoustic inversion with an acoustic profiler
We next consider a geo-acoustic inversion problem where
we have a static omnidirectional broadband acoustic
source transmitting in a 5–7 kHz band, and a single
omnidirectional receiver that records the signal at a fixed
range. The receiver is able to profile the water column,
and therefore makes transmission loss measurements at
various depths. We wish to estimate seabed parameters
(relative density 𝜌, relative sound speed 𝑐, and dimension-
less absorption coefficient 𝛿)1 from the transmission loss
measurements. Do note that although we have acoustic
measurements at various depths, they cannot be used for
beamforming to separate out the bottom reflected arrival
from other arrivals. We therefore only have transmission
loss at each depth for our inversion.

In geo-acoustic inversion problems, we usually have some
priors on the range of values that the geo-acoustic param-
eters might take. In this example, we assume 𝜌 ∼ 𝒰(1, 3),
𝑐 ∼ 𝒰(0.5, 2.5), and 𝛿 ∼ 𝒰(0, 0.003), where 𝒰 represents a
uniform distribution. We also assume uncorrelated Gaus-
sian transmission loss measurement noise with variance
𝜎2 = 0.5. The problem can then be written as:

y ∼ 𝒩(x, 𝜎2I),
where x is a vector containing the modeled transmission
loss at various depths, y is a vector with measured trans-
mission loss at those depths, 𝒩 represents the multivariate
Normal distribution, and I is the identity matrix. The
modeled transmission loss 𝑥𝑖 at depths 𝑑𝑖 can be computed
using an acoustic propagation model ℳ:

𝑥𝑖 = ℳ(𝑑𝑖; Θ),
where Θ = (𝜌, 𝑐, 𝛿) are the geo-acoustic parameters of
interest.

Given model ℳ and prior distributions over parameters
Θ, we can formulate the geo-acoustic inversion problem as
a Bayesian inference problem:

𝒫(Θ|y) = 𝒫(y|Θ)𝒫(Θ)
∫Θ 𝒫(y|Θ)𝒫(Θ) . (2)

1The relative sound speed is the ratio of sound speed in the seabed
to the sound speed in water. Similarly, the relative density is the ratio
of density of seabed to density of water.

Table I: Estimated geo-acoustic parameters.

Θ Ground truth Estimated
𝜌 1.300 1.2929 ± 0.0043
𝑐 1.100 1.1024 ± 0.0002
𝛿 0.001 0.0014 ± 0.0002

Bayesian inference problems are readily solved with prob-
abilistic programming [26] using either MCMC sampling
or variational inference. We use the Turing probabilistic
programming language [12] with automatic differentiation
variational inference (ADVI) [13] to solve problem (2).

The resulting estimated distributions of the seabed param-
eters are shown in Table I. We see that the estimated
values of the parameters agree well with the simulated
ground truth seabed parameters.

C. Estimating channel geometry from impulse response
In the previous example, we had perfect knowledge of
channel geometry and needed to estimate seabed param-
eters using probabilistic programming. We now consider
an example where we estimate channel geometry using a
similar technique.

Consider a scenario where a bottom-mounted sensor is
deployed on a sub-surface mooring at an unknown altitude
over the seabed. The exact location of the sensor is un-
known, but we know the general area where it is deployed.
The sensor is equipped with an acoustic transponder that
we can query from a surface unit when we are within a
250 m range of it. We deploy the transducer of the surface
unit from the boat on a 7 m rope with a weight attached.
Due to currents, the transducer is not hanging perfectly
vertically, and so it’s exact depth 𝑑1 is not known. The
depth sounder of our boat tells us that the water depth
ℎ = 20 m, and the Captain of the boat assures us that
the bathymetry is quite flat. We query the transponder
and get a response. The broadband acoustic response from
the transponder allows us to estimate the delays {𝑦𝑖} of
4 multipath arrivals. We wish to estimate the depth 𝑑2
of the sensor and the range 𝑟 between the boat and the
sensor using the multipath arrival delays {𝑦𝑖}.

We can model this as a Bayesian inference problem of
the form (2), with parameters Θ = (𝑑1, 𝑑2, 𝑟, ℎ) and
measurement vector y of the arrival delays. The acoustic
propagation model ℳ(Θ) predicts the arrival delays x
given the channel parameters Θ. So:

y ∼ 𝒩(ℳ(Θ), 𝜎2I),
where 𝜎 = 0.1 ms is the measurement noise in arrival
delays.

We solve the probabilistic program using Turing and ADVI
as in the previous example. The priors used, ground truth



Table II: Estimated channel geometry.

Θ
Ground

truth Prior Estimated
ℎ 20.00 m 𝒩(20, 0.1) 19.99 ± 0.05 m
𝑟 97.30 m 𝒰(0, 250) 97.87 ± 0.64 m
𝑑1 7.20 m 𝒩(7, 1) 7.20 ± 0.15 m
𝑑2 12.70 m 𝒰(0, 20) 12.67 ± 0.15 m

simulated values, and estimated values are shown in Ta-
ble II. We see that the estimated values of the parameters
agree well with the ground truth.

D. Inferring sound speed profile from impulse response
In the previous three examples, we worked with iso-
velocity sound speed environments and hence adopted
PekerisRayModel for acoustic modeling. In the next ex-
ample, we simulate a long-range deep water channel with
a Munk sound speed profile as shown in Figure 4. We use
the RaySolver for acoustic modeling.

Consider a setup with a 1 kHz acoustic source at 1 km
depth that sends a broadband pulse once every week.
A receiver 10 km away at a depth of 800 m measures
the impulse response from the received broadband pulse.
We assume that we have an initial sound speed profile
measurement with a CTD at the start of the experiment.
The sound speed profile changes over the weeks of the
experiment, and we wish to track the changes using the
measured impulse response every week.

Since the sound speed profile is an unknown function
of depth, we model it using a small 3-layer neural net-
work with parameters Θ. We initialize the parameters Θ
by training the neural network on the known/estimated
sound speed profile from the previous week. We use
the neural network to provide sound speed estimates to
RaySolver, thus effectively creating a model ℳ that
combines a numerical physics-based differential equation
solver with a data-driven neural network. The hybrid
model returns a vector x of predicted delays of the first 4
multipath arrivals in the impulse response:

x = ℳ(Θ)
Let y be a corresponding vector of measured delays of the
multipath arrivals in the impulse response. We wish to
minimize a loss function ℒ that measures the difference
between the predictions and measurements:

min
Θ

ℒ(Θ),

where
ℒ(Θ) = ‖ℳ(Θ) − y‖2

2.
The optimization problem is solved using gradient descent,
with the gradient ∇ℒ obtained using AD through the
RaySolver acoustic propagation model. This essentially

Figure 6: Estimated (blue), ground truth (black) and
initial (greed dashed) sound speed profiles. The initial
profile is from CTD measurements at the start of the
experiment, or the estimated profile from the previous
week. The estimated sound speed profile is obtained from
the neural network.

trains the neural network to approximate the sound speed
profile via a loss function that utilizes the propagation
model ℳ. At the end of each week’s training, we get a
revised estimate of the sound speed profile.

The simulated ground truth sound speed profile (solid black
line), learnt estimate of the profile (solid blue line), and
the initialization from previous week (dashed green line)
are shown in Figure 6. While we see that the estimate
does not match the ground truth perfectly, it is a very
good match considering that it was obtained from a single
measurement from a single hydrophone!

IV. Conclusion & Future Work

The availability of an open-source differentiable acoustic
propagation model opens up new possibilities for algo-
rithms that exploit the gradient of the modeled quantities
with respect to the input parameters of the model. We
illustrated the use of AD with such models to solve geo-
acoustic inversion, source localization and sound speed
profile estimation problems using well-known techniques
such as ADVI and gradient-descent. We also demonstrated
how a physics-based acoustic propagation model can be
combined with a neural network into a single hybrid
model that can be trained end-to-end. However, this only
scratches the surface of what is possible with differentiable
acoustic modeling. Other than solving inverse problems,
such models can also be used for sensitivity analysis. We
cam propagate measurement or knowledge uncertainties
through the model, yielding uncertainties on the model
prediction.

Differentiable acoustic propagation modeling is still in its
infancy. Much remains to be done in terms of improving



model accuracy, computational performance, differentia-
bility with respect to all parameters, and compatibility
with the scientific machine learning software ecosystem.
Normal mode models can also be made differentiable.

The purpose of this paper was to introduce an open-
source tool, and demonstrate some ways in which it can
be used. The hope is that this leads to exciting new
techniques that leverage decades of understanding of how
to model underwater acoustic propagation, as well as
modern developments in the area of machine learning,
Bayesian inference and automatic differentiation. Being
an open-source project, we also hope to attract researchers
and developers who may be willing to contribute to further
development and testing of the tool.
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