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Abstract

Acoustic propagation models are widely used in numerous oceanic and underwater applications. Most con-

ventional models are approximate solutions of the acoustic wave equation, and require accurate environmental

knowledge to be available beforehand. Environmental parameters may not always be easily or accurately measurable.

While data-driven techniques might allow us to model acoustic propagation without the need for extensive prior

environmental knowledge, such techniques tend to be data-hungry and often infeasible in oceanic applications

where data collection is difficult and expensive. We propose a data-aided physics-based high-frequency acoustic

propagation modeling approach that enables us to train models with only a small amount of data. The proposed

framework is not only data-efficient, but also offers flexibility to incorporate varying degrees of environmental

knowledge, and generalizes well to permit extrapolation beyond the area where data were collected. We demonstrate

the feasibility and applicability of our method through four numerical case studies, and one controlled experiment.

We also benchmark our method’s performance against two classical data-driven techniques – Gaussian process

regression and deep neural network.

Index Terms

Acoustic propagation modeling, scientific machine learning, data-efficient modeling, ray method, physics-

informed machine learning.

I. INTRODUCTION

Acoustic propagation in typical ocean environments exhibits strong spatial and temporal variability.

The dynamic nature of oceans across all spatiotemporal scales poses a difficult problem for underwater

acoustics. The ability to effectively model acoustic propagation is vital in many oceanic applications,
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and therefore necessary although often challenging. Applications related to oceanic acoustic propagation

modeling can be broadly categorized into two main classes – forward problems and inverse problems.

The forward problems seek to estimate acoustic fields at various receiver locations given environmental

information [1]–[3]. On the other hand, inferring unknown environmental parameters from acoustic mea-

surements is the goal of inverse problems [4]–[7]. Common inverse problems mainly focus on localization

and remote sensing of the ocean environments [8]. Matched field processing (MFP) is a generalized

beamforming method that is widely used in inverse problems. Conventional MFP employs acoustic

propagation modeling to search for environmental parameters that generate field replicas matching acoustic

measurements [9]–[11].

Physics-based acoustic propagation models estimate acoustic field by leveraging our physical un-

derstanding of acoustic propagation. Most physics-based models are derived from the acoustic wave

equation [12]. Closed-form solutions of the wave equation are typically analytically intractable in ocean

environments [13]. There are various widely used approximate solutions to the wave equation, most of

which can be seen as variants of the following four groups: ray methods [14], normal modes [15], parabolic

equations [16], and wavenumber integration [17].

There are two main limitations of the physics-based models – high computational complexity (especially

in complex three-dimensional (3D) environments), and the need for accurate environmental knowledge.

A common approach today is to approximate 3D propagation effects by applying two-dimensional (2D)

models to N azimuths. This idea is often referred to as 2.5D models or N×2D models in literature [18],

[19]. While it is computationally more efficient than full 3D modeling, 2.5D models can only be applied

in environments where the out-of-plane arrival energy is insignificant. Since the multipath structure of

an ocean environment leads to complicated constructive and destructive interference patterns that are

strongly dependent on the environmental parameters [20]–[22], conventional physics-based models require

accurate environmental knowledge to make good predictions of the acoustic field. Accurate measurement

of environmental parameters such as sediment properties, bathymetry, internal waves, suspended bubbles,

surface wave spectra, etc. may be difficult or expensive in practice. Even in cases where such information

is available, it may not always be straightforward to incorporate it into propagation models.

While the limitations in physics-based models pose a practical hurdle for many underwater applications,

the emergence of data-driven machine learning (ML) algorithms might offer a promising alternative. ML

algorithms allow computers to automatically learn from data and perform certain tasks that were previously
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considered difficult [23], [24]. We can model acoustic field using classical data-driven ML techniques such

as Gaussian process regression (GPR) [25], [26] and artificial neural networks (NNs) [27], [28], provided

sufficient acoustic field measurements are available as training data for the models. The Gaussian process

model is a probabilistic model widely used for regression and classification problems. GPR is capable

of capturing relations between inputs and outputs through non-parametric Bayesian inference [29]–[32].

Given a set of acoustic measurements and the corresponding measurement locations, GPR can interpolate

and extrapolate acoustic predictions with uncertainty distributions at unvisited locations. The computational

cost of the traditional GPR scales poorly with the size of training data, but sparse GPR models have been

proposed to counter such a limitation [33]. The availability of a large amount of accessible datasets has

driven the rapid growth in the development of NN algorithms over the past years. NNs are composed of

interconnected neurons arranged in layers. NNs learn to identify complicated patterns and relationships

in training data by properly adjusting weights and biases of all neurons [34]. The universal function

approximation theorem establishes that multilayer feed-forward NNs have the capability to approximate

any continuous function given a sufficient number of hidden units [35]. This suggests that a NN should

be able to approximate the solution of the wave equation by learning appropriate weights and biases from

the training data.

Since data-driven approaches only require acoustic measurements for training, they eliminate the need to

have full and accurate prior environmental knowledge. Once the model is trained, evaluating 3D acoustic

fields at unvisited locations is much faster than 2.5D numerical methods. These factors make data-driven

methods a feasible alternative for predicting acoustic fields in cases where physics-based models fail.

However, the two key problems that limit their use in practical acoustic propagation modeling are the

necessity of a large training dataset, and the inability to extrapolate well [36]. The cost of acoustic data

acquisition is inevitably high, as the ocean environment tends to be expensive to operate in. In this paper,

we address these two problems by developing hybrid propagation modeling methods that not only learn

from data, but also utilize the knowledge of the physics of acoustic propagation, without requiring full

environmental knowledge. We leverage the complementary strengths of physics-based propagation models

and data-driven ML to develop a hybrid approach that utilizes available environmental knowledge, requires

limited training data, and extrapolates well.

The need to combine knowledge of physics with data-driven ML is not limited to ocean acoustic

modeling, and is in fact the focus of an emerging field called scientific machine learning (SciML) [37].
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Fig. 1: The typical model structure of PINNs. Node u denotes the predicted output of the NN and node
f denotes the residual, measuring how well the predictions satisfy the underlying physical PDE. The
residual term becomes 0 in the loss function when NN prediction fully satisfies the underlying physics.

Researchers have explored synergistic ways that use scientific domain knowledge to aid data-driven

ML [38]–[43]. A popular SciML strategy, named physics-informed neural networks (PINNs), imposes

physics constraints in the form of partial differential equations (PDEs) to act as a regularizer in the loss

function of a NN [44]. Such an augmentation in the loss function helps to alleviate the problems of

requiring large amounts of data, and the inability to extrapolate. A typical structure of PINN models is

shown in Fig. 1. In the context of acoustic propagation, NNs can be informed by the acoustic wave equation

to generate data-efficient solution approximations [45]–[47]. However, as far as we are aware, there are

limited attempts at exploring the use of SciML for ocean modeling. One of the few works that assess the

effectiveness of PINNs in solving simple ocean-related modeling problems is [48]. Although there are

many successful implementations showing that imposing physics knowledge improves model training, the

authors of [48] found no significant benefits to the training error by having additional physics-informed

constraints in the loss function in their simulation studies. The authors of [49] explored the benefits of

using PINNs to solve three ocean modeling-related PDEs, including the wave equation.

PINNs encode the physics as part of the loss function, and strike a balance between data-driven and

physics-informed through hyper-parameters that control the weights of various terms in the loss function.

Hyper-parameter tuning is critical to the successful application of PINNs, but can often be difficult. We

take a different approach to incorporate underlying physics in our models. We design a class of ML
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algorithms where the physics is encoded in the structure of the algorithms. The functions these algorithms

learn are automatically solutions to the acoustic wave equation. We give up the universal approximation

property of NNs, and instead constrain our algorithms to only learn physically realistic functions. This

constraint enables learning from very little data, and extrapolation beyond the region where the data were

collected. Our approach is not only data-efficient, but also avoids the need for additional hyper-parameter

tuning. Moreover, the algorithm is computationally simple and we are able to fully model 3D acoustic

environments easily.

To the best of our knowledge, our previous preliminary works [50], [51] are the first attempts to explore

the feasibility of modifying the structure of neurons in a NN in order to incorporate the underlying

physics of ocean acoustics propagation. Ray models are computationally efficient and widely used in

high-frequency underwater applications [52]. They can be seen as an intuitive way to interpret the wave

equation solution as they track trajectories of a set of rays originating from the source as they propagate

in oceans [14]. In [50], we utilized ray models as the basis of our data-aided modeling. In this follow-up

paper, we investigate this idea further and develop a general recipe* that targets solving forward problems

in cases where there is a lack of environmental knowledge (but some acoustic measurements are available).

Although inverse problems are not the focus of our work here, our modeling approach can also help solve

some inverse problems as a by-product. The recipe presented in this paper is based on ray methods, but it

can be extended to other physics-based modeling approaches (e.g. normal modes) as demonstrated in [51].

The main contributions of this paper are summarized below:

1) We develop a recipe to generate physics-aided data-driven forward acoustic propagation models that

solve the acoustic wave equation in a desired number of dimensions (typically 1D, 2D or 3D).

2) The model does not require accurate environmental knowledge, but is able to utilize any available

environmental knowledge.

3) The model does not require a large amount of training data, and has the ability to extrapolate beyond

the region where data were collected.

4) The recipe supports composition, thus enabling us to combine purely data-driven ML models and

physics-aided ML models into a single propagation model. For example, we may use a standard

NN to model the reflection coefficient of the seabed, and combine it with a physics-aided model

for the overall propagation modeling.

*In this paper, the term “recipe” refers to a general approach that yields a class of physics-based data-aided propagation modeling
algorithms.
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TABLE I: ABBREVIATIONS USED IN THE PAPER.

Abbreviation Description

GPR Gaussian Process Regression
ML Machine Learning
NN Neural Network
DNN Deep Neural Network
SciML Scientific Machine Learning
PINN Physics-Informed Neural Network
PDE Partial Differential Equation
AOI Area Of Interest
CW Continuous Wave
RBNN Ray Basis Neural Network
RCNN Reflection Coefficient Neural Network
ISM Image Source Method
RMS Root Mean Square
MATE Mean Absolute Test Error

5) Our framework brings interpretability to trained model parameters. This is particularly useful in

inverse problems, where environmental information may be extracted from the trained model pa-

rameters.

6) We demonstrate our method with several numerical experiments, and benchmark it against two

popular data-driven techniques – GPR and deep neural network (DNN). We also carry out a

controlled experiment in a water tank to validate the performance of a generated propagation model.

The rest of the paper is organized as follows. In Section II, we introduce the modeling recipe and

illustrate three example formulations arising from the use of the recipe. In Section III, we numerically

demonstrate some use cases of the proposed framework for four common oceanic applications. This is

followed by an experimental validation in a water tank environment in Section IV. The field estimation

results are benchmarked against a GPR model and a DNN model. In Section V, we highlight the

assumptions and limitations of our proposed recipe. We also discuss potential solutions and possible

extensions. In Section VI, we summarize our findings and conclude this paper.

Some abbreviations and symbols used throughout the paper are listed in Table I and Table II.

Notation: Bold symbols and [·] denote vectors. Symbols in calligraphic font and (·) represent tuples.

Sets are written as {·}. We use the interval notation: [a, b) = {x ∈ R|a ⩽ x < b}. |c| denotes the

magnitude of a complex number c. For vectors a and b, a · b is the dot product. ∥a∥1 and ∥a∥2 denote

L1-norm and L2-norm of vector a respectively. The symbol ≡ denotes equivalence, and the symbol ∇2

This article has been accepted for publication in IEEE Journal of Oceanic Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JOE.2023.3292417

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

TABLE II: SYMBOLS USED IN THE PAPER.

Symbol Description Symbol Description

rs Source location ns Number of surface reflections
f Frequency eθ Error to pre-calculated nominal azimuthal angle θ′

r Spatial coordinate eψ Error to pre-calculated nominal elevation angle ψ′

c Sound speed ed Error to pre-calculated nominal distance d′

ω Angular velocity rtrain Measurement locations in training dataset
p̄(r) Complex pressure amplitude at location r ytrain Acoustic measurements in training dataset
k Wavenumber α Penalty coefficient of arrival ray amplitude
k Wave propagation vector ζ Penalty coefficient of angular error
A Amplitude of a ray β Penalty coefficient of distance error
ϕ Phase of a ray η Penalty coefficient of reflection energy
θ Azimuthal angle T Trainable parameters in RBNN model
ψ Elevation angle R Trainable parameters in RCNN model
d̄ Propagation distance of a ray ϵ Reflection coefficient
ro Reference location κ Reflection phase shift
s Image source location γ Incident angle of a reflection
d Distance between s and ro Γ Complex reflection coefficient
nray Number of arrival rays la Volume absorption loss term
nref Order of reflection lrc Reflection loss term
nb Number of bottom reflections lg Geometric spreading loss term

is the Laplace operator.

II. PROBLEM & SOLUTION FORMULATION

A. Ray-basis Neural Network Framework

We consider an acoustic propagation modeling problem where we have limited environmental knowledge

and a small amount of acoustic data collected within an area of interest (AOI). We assume an acoustic

source is located at position rs and omni-directionally transmits a continuous wave (CW) signal at

frequency f . The signal emitted from the source is scattered by the water surface and other boundaries

as it propagates through the acoustic channel. The received signal p(r) at location r is composed of a

sum of multipath arrivals, each with associated intensity and arrival time. The constructive and destructive

interference due to the multipath may lead to strong spatial variations in the acoustic field within AOI.

The acoustic wave equation determines the propagation of the acoustic energy from a source, and is

expressed as [12]:
∂2p

∂t2
= c2∇2p, (1)

where p represents acoustic pressure, t denotes time and c is the sound speed in water†. A solution to (1)

†In a general formulation, the sound speed c may vary with position and depth. While the method in this paper can be extended for
application in such cases, in this paper, we mostly restrict our discussion to the case where c is constant in the AOI for field estimation.
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Fig. 2: An example showing the superposition of 5 multipath arrivals at a receiver location r.

can be written as:

p(r, t) = p̄(r)eiωt, (2)

where r is the spatial coordinate, p̄(r) represents complex pressure amplitude, and ω = 2πf denotes

angular frequency. Substituting (2) back into (1), and rearranging, we get the Helmholtz equation [12]:

k2p̄(r) +∇2p̄(r) = 0, (3)

where k = ω
c

is called the wavenumber. Equation (3) can be solved by:

p̄(r) = Aeiϕeik·r, (4)

where A and ϕ represent amplitude and phase of a plane wave, and k is the wave propagation vector

pointing normal to the wavefront, such that ∥k∥2 = k.

Any function of the form (4) solves the wave equation. Due to the linearity of the wave equation, the

superposition of nray such plane-wave solutions (each associated with a ray) must also be a solution to

the wave equation. Thus, the field at a location r can be expressed as the sum of terms given by (4):

p̄(r) =

nray∑
m=1

Ame
iϕmeikm·r, (5)

where Am denotes the amplitude of mth arrival, ϕm refers to the corresponding phase term, and km = kk̂m

for some unit vector k̂m.

This is the well-known ray solution to the acoustic wave equation [14], with Ameiϕm being the complex

amplitude of the mth ray and k̂m being the direction of travel of that ray. Fig. 2 elaborates on the intuitve
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Fig. 3: The computation graph for computing total pressure amplitude as the sum of contributions from
each ray as shown in (5) using the proposed RBNN framework. The trainable parameters T include all
unknown RBNN model parameters yet to learn from data.

interpretation behind (5) from a receiver point of view. The acoustic field at a receiver location r can

be visualized as the superposition of nray multipath arrivals. Conventional ray models determine Am,

ϕm and km for all m, given detailed environmental knowledge. It is not generally possible to compute

Am, ϕm and km if partial or no environmental knowledge is available. Fortunately, ML provides us the

necessary tools to learn unknown parameters or functions from data. We can think of (5) as a function to

be modeled using a specialized NN with each term in the summation playing the role of a neuron‡ (with

parameters closely related to Am, ϕm and km). The values of the parameters can be learned from data

using a generalized backpropagation algorithm [53], [54] with automatic differentiation [55] applied to

this NN. Various optimization algorithms such as ADAM [56], SGD [57], L-BFGS [58], etc., commonly

used in ML, may be utilized for training (learning of the model parameters from data).

The functions that this NN can learn are guaranteed to solve the wave equation (1) by construction,

hence incorporating the acoustic domain knowledge in the structure of the NN. We term this specialized

NN as a ray basis neural network (RBNN), as the neurons in the network can be interpreted as acoustic

plane waves arriving at a given receiver location as shown in Fig. 3.

It is worth noting that our model structure is determined by the governing physics and is conceptually

different from a conventional PINN. Instead of imposing physical constraints using the loss function of

‡The term neuron, while originally inspired by biological neurons, is now used in the ML literature to denote a trainable unit of
computation in the NN. Layers of various types of neurons (e.g. fully connected layers, convolution layers, etc.) are commonly combined
together to form a NN. Each term in (5) is a trainable computational unit and hence plays the role of a neuron, and the summation of all
terms plays the role of a layer of neurons in a NN.
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a standard NN, we embed the constraints in the structure of the NN by making each neuron individually

obey the governing physics. We then use the same training strategies that standard NNs typically used to

find the best-fitted values of the unknown parameters of the resulting model by continuously minimizing

a loss function that measures the error between the model output and observed data. The dataset used in

the model training stage is comprised of a set of measurement locations rtrain and corresponding acoustic

field measurements ytrain. Furthermore, one can construct more sophisticated NNs with a mix of standard

neurons and RBNN-neurons, as we shall show later. Such NNs can be useful in solving problems with

partial environmental knowledge.

The formulation presented above forms a basic recipe to model high-frequency acoustic propagation

using SciML. The exact calculations of Am, ϕm and km of each ray are application-dependent, since

some of these terms may be calculated based on environmental knowledge, and others determined from

parameters learned from data. In Sections II-B and II-C, we apply the recipe to generate models to

handle three different application scenarios: plane wave (far-field propagation), spherical wave (near-field

propagation) without knowledge of geometry, and spherical wave with knowledge of geometry. In each

scenario, the exact details of RBNN-neurons change, but the overall RBNN structure and the training

process remain the same.

B. Plane wave RBNN

In the far-field of a point source, a ray arrival can be well approximated by a planar wavefront. So,

if the AOI is sufficiently far from the source, we can use a plane wave formulation for the unknowns

in (5). This formulation does not require any prior environmental knowledge, and is particularly helpful to

model practical scenarios where the environment is largely unknown. The unknown terms Am and ϕm are

treated as unknown model parameters to be determined during training. If the sound speed or frequency

is unknown, k may also be treated as an unknown parameter. The unit vector k̂m is parametrized in terms

of azimuthal angle θm and elevation angle ψm:

k̂m =


cos(θm) sin(ψm)

sin(θm) sin(ψm)

cos(ψm)

 . (6)
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The set of trainable RBNN model parameters in the plane wave formulation therefore is:

Tp ≡ (A,ϕ, k, θ,ψ), (7)

where A =
[
A1, A2, . . . , Anray

]
, ϕ =

[
ϕ1, ϕ2, . . . , ϕnray

]
, θ =

[
θ1, θ2, . . . , θnray

]
and ψ =

[
ψ1, ψ2, . . . , ψnray

]
.

The complex pressure amplitude predicted at location r can be expressed as (5).

Since we do not assume detailed environmental information, the number of rays nray is unknown, but a

conservative upper bound can often be estimated. Nevertheless, we find it better to think of nray as a model

hyper-parameter to be tuned during training, with the tuning guided by an estimate, if available. Due to

the strongly non-linear effect of parameters θm and ψm, the RBNN may get trapped in local minima or

saddle points during training if nray is small. A large nray and uniformly distributed random initialization

of θ and ψ ensure better convergence, but create potential for overfitting. A L1-norm regularization on

parameters A encourages sparsity, i.e., a trained model with only a small number of rays, and therefore

avoids overfitting.

The loss function we minimize during the training is therefore the sum-square difference in predicted

and measured pressure amplitudes at given receiver locations, combined with the L1-norm regularization

term to encourage sparsity:

Lp(r, y; Tp) = (|p̄(r)| − y)2 + α ∥A∥1 , (8)

where y is the observed pressure amplitude at location r, and α is a hyper-parameter that controls the

regularization. While we write (8) for a single training data point, it is usually summed over a training

mini-batch as per the standard practice in ML [59]. During validation and model evaluation, α in (8) is

set to 0 to only calculate the prediction error term.

C. Spherical wave RBNN

The acoustic propagation near a point source is best modeled using spherical waves. In a typical ocean

environment, there are three key factors that contribute to the overall transmission loss: geometric spreading

loss lg, volume absorption loss la and reflection loss lrc (net effect from all reflecting boundaries) [60]. In

contrast to the plane wave formulation, the amplitude Ā and phase ϕ̄ of an arrival ray in our spherical wave

formulation are functions of both source location rs and receiver location r. Therefore, (5) is re-written

as [12], [61], [62]:
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p̄(r) =

nray∑
m=1

Ām(rs, r)e
iϕ̄m(rs,r), (9)

where

Ām(rs, r) = lmg (rs, r)l
m
rc (rs, r)l

m
a (rs, r), (10a)

ϕ̄m(rs, r) = ϕmrc (rs, r) + kd̄m(rs, r). (10b)

Here, ϕmrc (rs, r) is the overall reflection phase shift along the trajectory of the mth ray, and kd̄m(rs, r)

corresponds to the phase change for a propagation distance of d̄m(rs, r). The 3D spherical geometric

spreading loss is [60]:

lmg (rs, r) =
1

d̄m(rs, r)
. (11)

The volume absorption loss generally depends on the operating frequency, propagation distance and

characteristics of the propagating medium. The widely used simplified expression of the attenuation per unit

distance due to volume absorption is given in [63]. The attenuation and phase shift when sound interacts

with scattering boundaries (e.g. seabed) can also be calculated if we know the angle of interaction and

the properties and structure of the boundary [64].

The spherical wave formulation can incorporate varying degrees of environmental knowledge. The model

parameters involved in the field prediction can be found through either data-driven learning strategies

or numerical calculations, depending on the environmental knowledge provided. We next illustrate two

examples that correspond to the scenarios with and without knowledge of the channel geometry:

1) Without knowledge of channel geometry: For the scenarios where the channel geometry is largely

unknown, the trajectories of rays from the source to the receiver are unknown. However, applying the

image source method (ISM) [65] to the problem, we can replace the unknown source location and channel

geometry by a set of unknown image sources as illustrated in Fig. 4. The problem then reduces to finding

the parameters of the unknown image sources to match with the training data.

Let ro be an arbitrary reference position within the AOI. We can parametrize each images source by a

pressure amplitude Am, phase ϕm, a direction vector (corresponding to azimuthal angle θm and elevation

angle ψm) and distance dm from this reference position. In the case of an isovelocity environment, the
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Fig. 4: An illustration showing two image sources, s1 and s2, corresponding to two reflected ray paths
between the source rs and the receiver r.

pressure amplitude at a receiver location r is then given by:

p̄(r) =

nray∑
m=1

Am
la(∥sm − r∥2)
∥sm − r∥2

ei(ϕm+k∥sm−r∥2), (12)

where:

sm = ro − dm


cos(θm) sin(ψm)

sin(θm) sin(ψm)

cos(ψm)

 (13)

and la(·) is attenuation due to volume absorption as given in [63]. The complete set of trainable parameters

for this model are:

Ts ≡ (k, θ,ψ,d,A,ϕ) , (14)

where d =
[
d1, d2, . . . , dnray

]
. The loss function to be minimized is identical to (8).

2) With knowledge of channel geometry: If the channel geometry and associated reflecting boundaries

are partially or completely known, we can incorporate available knowledge into our model. To illustrate

the idea, let us assume that we know the source location and the channel geometry. We also assume that

the sea surface is modeled well as a pressure-release boundary, but that we do not know the reflection

coefficient for the seabed.

Given the source location and channel geometry, we can compute the incidence angle γm for each ray

at the seabed. The reflection coefficient of the seabed is an unknown function of the incidence angle, and

may be modeled using a simple 1-input 2-output (magnitude and phase) feedforward NN with a single

hidden layer. We call this NN as the reflection coefficient neural network (RCNN). The same reflection

coefficient function applies to all rays incident on the seabed, and hence the RCNN weights are shared

across all the rays. The RCNN is implemented as an additional layer in the RBNN framework with shared
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Fig. 5: The computational graph for computing total pressure amplitude as the sum of contributions from
each spherical ray as shown in (17). We insert an additional RCNN layer to learn the unknown reflection
model.

weights, as illustrated in Fig. 5.

A ray may experience more than one reflections at the seabed. The overall reflection coefficient for mth

arrival ray is:

lmrc (r) =

nm
b∏

i=1

RCNNϵ(γ
m
i (r)), (15)

where nmb is the number of seabed reflections for ray m, γmi (·) is the incidence angle for reflection i, and

RCNNϵ(·) is the predicted reflection coefficient magnitude from the RCNN. The corresponding cumulative

phase shift is:

ϕmrc (r) = nms π +

nm
b∑

i=1

RCNNκ(γ
m
i (r)), (16)

where RCNNκ(·) is the reflection phase shift predicted by the RCNN, and nms is the number of surface

reflections for ray m. The phase change nms π is due to the pressure-release boundary assumption, and can

easily be replaced by a more sophisticated surface reflection model, if desired.

As in the previous section, we choose to apply the ISM to replace the source with multiple image

sources. This allows us to work with approximate knowledge of channel geometry and learn the exact

locations of the image sources from data, as we illustrate later in this section. The resultant pressure

This article has been accepted for publication in IEEE Journal of Oceanic Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JOE.2023.3292417

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



15

amplitude can be expressed as:

p̄(r) =

nray∑
m=1

lmrc (r)la(∥sm − r∥2)
∥sm − r∥2

ei(ϕ
m
rc (r)+k∥sm−r∥2), (17)

where the ray trajectory necessary for the evaluation of lmrc (·) can be computed by geometric ray tracing.

Since we are using a ray tracing model, it may be possible to extend the algorithm to non-isovelocity

sound speed profiles by changing the Euclidean distances terms ∥sm − r∥2 in (17) to actual propagation

distances along the curved ray paths.

The overall computation graph for (17) can be viewed as a NN with geometric ray tracer, RCNN layer

and RBNN layer as shown in Fig. 5. The set of trainable RBNN parameters in this model are:

Tsg ≡ (k, θ,ψ,d,R) , (18)

where R represents all trainable parameters in the RCNN layer.

The search spaces for θ and ψ span [0, 2π), and for d spans [0,∞). The knowledge of geometry and the

source location allows us to pre-calculate nominal arrival ray directions θ′, ψ′ and propagation distances

d′ prior to the model training stage. The calculated nominal directions and distances may deviate from

reality due to limited knowledge or measurement error. We model this with appropriate error terms eθ,

eψ and ed:

θ = θ′ + eθ, (19a)

ψ = ψ′ + eψ, (19b)

d = d′ + ed. (19c)

We then replace the trainable parameters θ, ψ, and d with the corresponding error terms, thus replac-

ing (18) with:

Tsg ≡ (k, eθ, eψ, ed,R) . (20)

The amount of error allowed in eθ, eψ and ed reflect how confident we are about our knowledge of the

channel geometry and source location. We impose L2-norm penalty terms in the loss function to constrain

values of eθ, eψ and ed learned during the training process. We also add a harsh penalty term to ensure

that the upper bound of reflected energy learned by the RCNN obeys energy conservation. The resulting
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Fig. 6: Summary of the application scenarios demonstrated via simulation studies.

loss function is:

Lsg(r, y; Tsg) = (|p̄(r)| − y)2 +
∥∥∥ζ√e2θ + e2ψ∥∥∥

2
+ β ∥ed∥2 + ηmax

{
0,

∫ 0.5π

0

RCNNϵ(γ)
2dγ − 1

}
, (21)

where ζ, β and η are hyper-parameters related to the three penalty terms. All elements in the hyper-

parameters are set to 0 during the validation and model evaluation. In general, the image sources corre-

sponding to higher-order reflections are assigned smaller penalty coefficients as angular errors are amplified

with an increasing number of reflections.

III. SIMULATION STUDIES

To study the effectiveness of our proposed method, we consider four common applications of ocean

acoustic propagation models. These are summarized in Fig. 6.

All four applications considered use a profiling float equipped with a single hydrophone, collecting

acoustic field measurements at a constant sampling rate. Such floats provide a cost-effective way of

sparsely sampling acoustic fields. We assume that the profiling float can control its motion vertically, but

not horizontally. The float freely drifts horizontally with ocean currents, thus following a zig-zag trajectory

as it moves up and down through the water column.

A. Far-field acoustic field prediction

The first application we shall consider is that of acoustic field prediction within an AOI at a long distance

from an acoustic source. Suppose we have acoustic measurements from a profiling float along a zig-zag

trajectory through the AOI with a known sound speed, but no other environmental knowledge. Conventional
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Fig. 7: Simulated environment for the far-field acoustic field prediction application. The trajectory of the
profiling float can be seen in terms of the training data points. The ground truth field pattern within the
AOI is also shown.

physics-based propagation models cannot be used for this application, as they require environmental

knowledge as input. As discussed in Section II-B, RBNN parameters Tp can be learned without prior

environmental knowledge, with acoustic field measurements as training data. We formulate our RBNN

model primarily based on (5). With a sufficiently large distance between the acoustic source and the AOI,

we may expect that the curvature and path loss for all rays is similar. However, we find that modeling

the curvature of the wavefront improves our field prediction accuracy. The set of trainable parameters is

defined as:

T ≡ (A,ϕ,θ,d), (22)

where A and ϕ represent amplitudes and initial phase of rays, θ and d are used to model the wavefront

curvatures of all rays. We use (8) as the loss function to train our RBNN model.

We simulate a profiling float performing 9 profiles through a 50 m × 30 m AOI at a distance of

1,000 m from a 10 kHz source deployed at a depth of 5 m. The simulation setup is detailed in Table III

and illustrated in Fig. 7. A total of 1,000 acoustic field measurements are collected along the trajectory

of the float, of which 70% are used to train the models, and the remaining 30% are used for validation.

We wish to predict the acoustic field in the entire AOI.

We benchmark the field estimation performance of the RBNN against two popular data-driven tech-

niques – GPR and DNN. We use a GPR with a composite kernel of a squared exponential isotropic
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TABLE III: SIMULATED ENVIRONMENTAL SETUP FOR THE FAR-FIELD ACOUSTIC FIELD PREDICTION APPLICATION.

Parameters Value

Environmental model 2D
Frequency 10 kHz
Seabed Sandy clay1

Bathymetry Range-dependent
Source depth 5 m
Sound speed 1,541 m/s
Distance between source and AOI 1,000 m
Dimensions of AOI 50 m × 30 m
Number of training data 700
Number of validation data 300
Number of test data in AOI 601,601
Number of rays in the RBNN layer 60

1 Sandy clay seabed is characterized by a relative density of 1.147, a relative
sound speed of 0.9849 and a dimensionless seabed absorption coefficient of
0.00242 [66].

kernel and a Matérn 5/2 ARD kernel§. The DNN model takes location data as input and outputs

corresponding pressure amplitude. It has 3 fully-connected hidden layers with ReLU as the activate

function. We try various initial learning rates and choose the one that yields the smallest validation

error. The trainable model parameters in RBNN and DNN models are randomly initialized. We therefore

carry out 20 Monte Carlo simulations for the RBNN and DNN models and present the results of runs

with the smallest validation errors. We implement early stopping [67] for RBNN and DNN model training

to avoid overfitting.

We use the Bellhop model [68] to generate the 1,000 synthetic acoustic measurements along the profiler’s

trajectory for training and validation. The high-frequency source produces a complex interference pattern.

To evaluate the field prediction performance in simulation, we generate a dense test dataset of 601,601

data points over a grid covering AOI, with a resolution of 0.05 m in depth and range. We also add a

random position error of up to 0.1 m on each dimension of the measurement locations of the training and

validation data to evaluate model robustness.

The root mean square (RMS) test error and the model complexity (number of model parameters) of the

three models are reported in Table IV. The acoustic field patterns estimated by the three approaches are

§Among the several commonly used kernels we tried, this type of composite kernel yields minimal validation error for our field estimation
problems. We optimized the hyperparameters of this composite kernel using the L-BFGS technique based on training data.
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Fig. 8: The estimated field patterns for the far-field acoustic field prediction application. Panel (a) shows
the ground truth field pattern within the AOI, while panel (b) shows the ground truth field within a 50 m
extended area on both sides of the AOI. Panels (c)–(e) show the estimated fields by RBNN, GPR and
DNN. Panels (f)–(h) show the corresponding extrapolated field by RBNN, GPR and DNN in the extended
region. Panels (i)–(k) show the estimated field when the training data have positional errors.
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TABLE IV: MODEL COMPLEXITY AND RMS TEST ERROR OF THE THREE MODELS FOR FIELD PREDICTIONS WITHIN THE
AOI.

Method
Number of RMS test error (dB)
model parameters Error-free data Noisy data

RBNN1 60 1.346 1.678
GPR 14002 1.783 1.637
DNN 6421 2.121 2.180

1 Plane-wave RBNN.
2 Dimensionality of each data point × training data size.

shown in Fig. 8. All three methods are able to learn key features of the acoustic field within the AOI. The

RBNN model recovers most of the details in the AOI and extrapolates well in an extended region beyond

the AOI. The GPR learns the field pattern well within the AOI where training data are available, but fails

to extrapolate the field in the extended region. The field pattern reconstructed by the DNN has the lowest

fidelity among the three approaches. The extrapolated field by the DNN also deviates significantly from

the ground truth. The extrapolated field patterns shown in Fig. 8 (f), (g) and (h) highlight the unique

ability of the RBNN to not only interpolate well, but also to extrapolate.

The field estimation performance of the GPR and the DNN, as quantified by RMS test error, is not

significantly affected by position errors in the dataset. On the other hand, the field estimation accuracy of

the plane wave RBNN was found to be vulnerable to position errors. The qualitative field patterns seen

in Fig. 8 (i), (j) and (k) show that the RBNN captures the overall field pattern best.

B. Near-field acoustic field prediction

We next consider an acoustic field prediction application within an AOI from a less distant source

assuming that the channel geometry is known. Acoustic measurements are collected along a zig-zag

trajectory within AOI using a profiling float. Since some of the environmental parameters (e.g. seabed

properties) are unknown, we cannot employ physics-based propagation models for field prediction. We

can, however, use the spherical wave RBNN from Section II-C2 with the knowledge of channel geometry.

We can calculate the nominal arrival ray directions θ′, ψ′ and propagation distances d′ prior to the training.

This significantly reduces the training time and improves prediction accuracy.

For this application, we use a simple spherical wave RBNN model based on (17), without the RCNN

layer. The overall effect of the reflections and absorption is modeled with a set of trainable parameters A,
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Fig. 9: Simulated environment for the near-field acoustic field prediction application. The trajectory of
the profiling float can be seen in terms of the training data points. The ground truth field pattern within
the AOI is also shown.

TABLE V: SIMULATED ENVIRONMENTAL SETUP FOR THE NEAR-FIELD ACOUSTIC FIELD PREDICTION APPLICATION.

Parameters Value

Environmental model 3D
Frequency 5 kHz
Seabed Sandy clay
Bathymetry Range-independent
Water depth 30 m
Source depth 15 m
Sound speed 1,541 m/s
Distance between source and AOI 100 m
Dimension of AOI 50 m × 28 m
Number of training data 116
Number of validation data 51
Number of test data in AOI 561,561
Number of rays in RBNN 60

associated with the set of rays. To model geometrical measurement errors, we also add error parameters

for nominal direction and propagation distance. The set of trainable parameters therefore is:

T ≡ (eθ, eψ, ed,A,ϕ). (23)

We use (21) as the loss function to train the trainable parameters and set η in (21) to 0 as we do not have

RCNN as part of the network.
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Fig. 10: The estimated field patterns for the near-field acoustic field prediction application. Panel (a)
shows the ground truth field pattern within the AOI, while panel (b) shows the ground truth field within
a 50 m extended area on both sides of the AOI. Panels (c)–(e) show the estimated fields by RBNN, GPR
and DNN. Panels (f)–(h) show the corresponding extrapolated field by RBNN, GPR and DNN in the
extended region. Panels (i)–(k) show the estimated field when the position and geometry measurements
have random errors.
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TABLE VI: RMS TEST ERROR FOR THE NEAR-FIELD ACOUSTIC FIELD PREDICTION APPLICATION.

Method RMS test error (dB)
Error-free data Noisy data

RBNN 1.889 6.219
GPR 7.119 7.066
DNN 7.074 7.127

The setup of the simulated environment is shown in Fig. 9 and summarized in Table V. A profiling float

performs 2 profiles across a 50 m × 28 m AOI at a distance of 100 m from a 5 kHz source deployed at a

depth of 15 m to collect 167 acoustic field measurements. We use the Pekeris ray model [69] to generate

synthetic data. We use 70% of the collected measurements to train the RBNN, and aim to estimate the

acoustic field in the entire AOI. We benchmark the field estimation performance of the RBNN against

GPR and DNN with the same model configurations as discussed in Section III-A.

A dense test dataset of 561,561 data points on a 0.05 m spacing grid covering the AOI is generated to

evaluate the field prediction performance. As RBNN and DNN may be sensitive to random initialization,

we carry out 20 Monte Carlo simulations for each, and present the results with the best validation error.

The initial values of hyper-parameters in the GPR kernel are tuned to yield the best validation error. We

then use the L-BFGS technique to further optimize hyper-parameters by minimizing the training error

of the GPR model. To evaluate model robustness, we add random measurement errors in the source

location (0.3 m in horizontal directions, 0.1 m in depth), measurement locations (maximum of 0.4 m in

all directions) and water depth (1 m) of AOI.

The RMS test errors of the estimated fields within the AOI by the three models are shown in Table VI.

The acoustic field patterns within AOI estimated by the three approaches are shown in Fig. 10 (c), (d)

and (e). Fig. 10 (f), (g) and (h) show extrapolated fields by the three models. The RBNN model is able

to predict and extrapolate the spatially fast-varying field patterns well, even with a much smaller training

dataset as compared to the far-field acoustic field prediction application in the previous section. However,

the GPR and DNN show poor performance in terms of the estimated field pattern and RMS test error,

for both interpolation and extrapolation of the acoustic field. The results highlight the data-efficiency of

the RBNN model – the model can effectively incorporate knowledge of channel geometry and therefore

train with very little data. The conventional GPR and DNN models, on the other hand, fail to predict field

patterns as they do not benefit from partial environmental knowledge.
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TABLE VII: SENSITIVITY OF RMS TEST ERROR OF FIELD ESTIMATION TO RANDOM POSITION ERROR FOR THE NEAR-
FIELD ACOUSTIC FIELD PREDICTION APPLICATION.

Maximum position error1(m) RMS test error (dB)

0.0 1.889
0.1

√
3 3.401

0.2
√
3 4.665

0.3
√
3 5.423

0.4
√
3 6.219

1 Maximum position error per dimension ×
√
3.

Fig. 11: Simulated environment for geo-acoustic inversion for seabed reflection model. The trajectory of
the profiling float can be seen in terms of the training data points. The ground truth field pattern within
the AOI is also shown.

As one would expect, measurement noise worsens the prediction accuracy for the RBNN model. The

sensitivity of field estimation to position errors is summarized in Table VII. However, the qualitative field

pattern can still be recovered even with large measurement errors as seen in Fig. 10 (i).

C. Geo-acoustic inversion for a seabed reflection model

The third application we demonstrate is to extract a seabed reflection model from acoustic measurements.

While our proposed model primarily targets forward problems, it also has the potential to solve geo-

acoustic inversion problems as a by-product.

Seabed reflection depends on the seabed structure and material properties, which are often unknown. In

applications where multipath arrivals overlap and cannot be separated, we cannot measure the reflection

coefficient directly. Our proposed recipe can, however, learn a reflection model from observed total

transmission loss at a number of observation points. We use the RBNN model from Section II-C2 together

with the RCNN layer, where the RCNN models the unknown reflection coefficient (as a function of
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reflection angle). By training the composite spherical wave model described in (17), we can recover a

trained RCNN as a model for the seabed reflection.

We assume that the channel geometry and source location are known. A profiling float is employed to

perform 12 profiles through a 300 m × 28 m AOI from a 5 kHz source deployed at a depth of 15 m. The

simulation setup is illustrated in Fig. 11. A total of 1,112 acoustic field measurements are collected along

the trajectory, and 70% of them are used to train the composite RBNN model. The environmental setup

is similar to the near-field acoustic field prediction application in Section III-B, and the synthetic data are

generated using the Pekeris ray model. We pre-calculate the nominal arrival directions and propagation

distances, and use acoustic data to optimize the trainable model parameters T :

T ≡ (R). (24)

We use (21) as the loss function to learn the reflection model.

In Table VIII, we present the inferred reflection coefficient curves and phase shift curves for various

amounts of position measurement error. In an ideal scenario with no measurement errors, we can accurately

recover the seabed reflection model. The modeling errors increase with the amount of position measurement

error, with phase of the reflection coefficient being more sensitive to errors than its amplitude. The effect

of measurement error can be partially mitigated by increasing the size of the training dataset.

D. Geo-acoustic inversion for seabed properties

The last application we shall consider is a geo-acoustic inversion problem, where we wish to deter-

mine geo-acoustic seabed properties from acoustical field measurements. We consider a simple Rayleigh

reflection model to illustrate the idea. The complex Rayleigh reflection coefficient is given by [64]:

Γ =
ρr cos γ −

√
( δ̄
cr
)2 − sin γ2

ρr cos γ +
√

( δ̄
cr
)2 − sin γ2

, (25)

where

δ̄ = 1 + iδ, (26a)

ρr =
ρseabed

ρseawater
, (26b)

cr =
cseabed

cseawater
, (26c)
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TABLE VIII: EFFECT OF MEASUREMENT POSITION ERROR ON THE SEABED REFLECTION MODEL.

Maximum position
error (m)

Reflection coefficient Reflection phase shift

0.00

0.01
√
3

0.05
√
3

0.10
√
3

where δ denotes dimensionless seabed absorption coefficient, ρr denotes relative density, cr represents

relative sound speed. We assume ρr, cr and δ are unknown and to be determined from acoustic field

measurements.

We assume that the source and receiver locations, as well as the channel geometry are known. An

profiling float is employed to take 166 acoustic measurements over 100 m × 28 m AOI along a zig-zag

trajectory from a 5 kHz acoustic source deployed at a depth of 15 m. As in previous applications, 70%

of the measurements are used to train the RBNN model, while the balance 30% is used for validation.
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Fig. 12: Simulated environment for the geo-acoustic inversion of seabed properties. The trajectory of the
profiling float can be seen in terms of the training data points. The ground truth field pattern within the
AOI is also shown.

Fig. 12 depicts the simulated environment and the sampling trajectory of the profiling float.

In Section III-C, we modeled the angle-dependent complex reflection coefficient using a RCNN. While

this is useful for acoustic propagation modeling, this approach does not yield estimates of geo-acoustic

properties such as ρr, cr and δ. We therefore replace the RCNN layer in (17) with the expression for

complex reflection coefficient from (25), and train the resultant composite RBNN.

We use (8) as the loss function to learn the best-fitted geoacoustic parameters. The set of trainable

parameters for this RBNN is:

T ≡ (ρr, cr, δ). (27)

Table IX summarizes the estimated values and percentage error for the three unknown geo-acoustic

parameters for various levels of position measurement errors. With accurate measurements, the model is

effective in accurately determining the geo-acoustic parameters. In the presence of position errors, we need

to increase the training data size to improve model robustness. The robustness of geo-acoustic inversion

depends on the sensitivity of the acoustic field to each geo-acoustic parameter. In this example, ρr and cr

affect the acoustic field more strongly than δ. Increasing training dataset size improves the robustness of

the estimates of ρr and cr, but much less so for δ.

IV. EXPERIMENTAL VALIDATION

To further validate the acoustic field estimation performance of the proposed framework, we undertook a

controlled experiment in a water tank. This allows us to make careful repeatable measurements to validate

the method – something that is very difficult to do at sea due to time variability.
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TABLE IX: ESTIMATED SEABED PARAMETERS AS A FUNCTION OF MAXIMUM POSITION MEASUREMENT ERROR.

Maximum Training Distance ρr cr log(δ) (dB)
error (m) data size travelled (m) [% error] [% error] [% error]

0.00 167 100 1.147 0.985 -2.616
[0.0%] [0.0%] [0.0%]

0.01
√
3 167 100 1.125 0.989 -2.444

[-1.9%] [0.4%] [6.6%]
0.05

√
3 250 150 1.036 0.998 -2.728

[-9.7%] [1.3%] [-4.3%]
0.10

√
3 334 200 1.209 0.962 -1.485

[5.4%] [-2.3%] [43.2%]
0.20

√
3 375 250 1.084 0.993 -2.742

[-5.5%] [0.8%] [-4.8%]
0.50

√
3 417 300 1.249 0.962 -1.432

[8.9%] [-2.3%] [45.3%]

The tank environment is strongly reverberant and surprisingly complicated to model. While acoustic

rays in the rectangular geometry can be modeled with a 3D ray-tracer, multiple reflections lead to

strong sensitivity to minor geometrical irregularities of the tank wall. The tank walls are made of an

inhomogeneous composite material (fiberglass) with complicated reflection properties. This provides us

with a challenging acoustic propagation modeling problem to demonstrate our proposed method.

Before undertaking experimental validation, we developed a simplified simulation model of the tank

to establish the feasibility of applying our method to the tank environment. The simulation results are

presented in Section IV-A. Once we had established the feasibility and developed an understanding of

what performance we might expect, we undertook experimental validation in the tank. The results from

the experiment are presented in Section IV-B.

A. Feasibility study

We simulate a 3D water tank environment with the dimension of 2.5 m × 1.2 m × 0.8 m and a 10 kHz

CW signal source, as illustrated in Fig. 13. A 0.36 m × 0.9 m × 0.44 m AOI is located 0.5 m from the

source. The sound speed is assumed to be 1, 505 m/s, in accordance with conductivity and temperature

measurements in our tank. We split the AOI into non-overlapping training and test regions. The training

and validation data (250 and 28 data points respectively) are obtained from the training region, whereas
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(a) Side view (b) Top view

Fig. 13: Tank experiment setup.

the test region is used to test (222 data points) how well the model extrapolates beyond the training region.

We adopt the spherical wave formulation with the knowledge of geometry based on (17) and (20)¶ to

predict the field in AOI. The loss function we minimize is (21).

We adopt a geometrical ray model to simulate the acoustic propagation in the tank environment, and

generate synthetic acoustic measurements|| within the AOI. We assume the water-air interface to be a

perfect reflector with a reflection coefficient of −1. We adopt a simple tank sidewall and bottom reflection

model, and assume the reflection coefficient to be given by (25), with ρr = 1.5, cr = 0.9 and δ = 0.0.

For benchmarking, we use GPR and DNN similar to those described in Section III-A. We generate a

dense test dataset of 30, 303 points over the entire AOI with a resolution of 0.01 m in range and width,

and 0.05 m in depth. It is not practical to collect such a dense dataset during the latter experiment, and

so we also generate a sparse test dataset of 222 points in the test region for later benchmarking of the

experimental results.

Since the measurement accuracy of tank dimensions and transducer locations in the tank is limited, we

introduce measurement errors in the tank size, source location and measurement locations in simulation

too. The simulated tank dimensions are mismatched from the geometrical knowledge available to our

algorithm by 0.010 m, 0.015 m and 0.020 m in the three dimensions. The source location deviates by

0.02 m from the location provided to the algorithm. Due to practical considerations, the measurement

errors in shallower hydrophone locations in our tank are expected to be less than that for deeper locations.

We therefore introduce a random error of up to 0.02 m per dimension for acoustic measurements with

depths shallower than 0.36 m, and 0.04 m per dimension for deeper locations. We calculate the nominal

¶We assume k is known as sound speed c is measurable in this experiment.
||The acoustic measurements are shown in Volts, as we measure the pre-amplified output from the hydrophones in Volts during the

experiment. These can be converted to µPa by multiplying by the gain-corrected acoustic sensitivity of the hydrophone.
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(a) Ground truth field within the AOI

(b) RBNN field estimates within AOI

(c) GPR field estimates within AOI

(d) DNN field estimates within AOI

Fig. 14: Ground truth and estimated acoustic field at four different depths. The depth of 0.45 m is in the
test region, where no training data were made available to the three models. The other three depths are
in the training region.
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(a) Ground truth field in the AOI and extended region

(b) RBNN extrapolated field estimates

(c) GPR extrapolated field estimates

(d) DNN extrapolated field estimates

Fig. 15: Ground truth and extrapolated field within the entire tank at four different depths.
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TABLE X: MATE OF THE ESTIMATED ACOUSTIC FIELD FOR THE FEASIBILITY STUDY.

Method
MATE (Vpp)

Sparse Dense

RBNN 0.351 0.292
GPR 1.846 1.196
DNN 1.426 0.919

incoming ray directions and propagation distances prior to the training. We allow our RBNN model to

train the error to the nominal directions and propagation distances to cope with the erroneous source

location and tank size measurements, as discussed in Section II-C2. To allow for a few measurement

outliers during the experiment, we opt to minimize the mean absolute error in the training process, rather

than the RMS error. This encourages the model to focus on fitting the majority of the training data well,

and ignore a few outliers.

The rich multipath in the simulated water tank environment yields a complicated field pattern. Cross-

sections of the ground truth field and the estimated field at four different depths within the AOI are shown

in Fig. 14. Note that the estimated field at the depth of 0.45 m is extrapolated as none of the training

data or validation data falls in this test region. We see that the RBNN model can recover and extrapolate

the field reasonably well, whereas the GPR and RBNN methods fail to do so. The mean absolute test

error (MATE) of the sparse and dense test datasets is shown in Table X. The sparse test error and dense

test error are based on error-free measurements. The two types of test errors are in a similar range for all

of the three models. This suggests that the sparse test error is a representable measure of field estimation

performance. We also extrapolate the field to the entire water tank environment as shown in Fig. 15. Not

surprisingly, the two classical data-driven techniques – GPR and DNN fail to extrapolate the field in the

region away from the AOI, whereas the RBNN model can generalize well and predict the field in the

entire water tank.

B. Controlled experiment

With the feasibility established via simulation, we carried out an experimental validation in a water

tank using the same setup described in Section IV-A. The equipment setup used in the experiment is

shown in Fig. 16. We used a National Instruments Data Acquisition (NI-DAQ) system to transmit a CW

signal at 10 kHz with an amplitude of 1 Vpp. A pair of TC4013 acoustic transducers were used as the
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Fig. 16: Equipment setup for the controlled experiment.

Fig. 17: Water tank used for the controlled experiment.

transmitter and receiver. 500 acoustic measurements were collected at the same locations as the data

generated in the feasibility study. Each acoustic transducer was attached to a fishing line, with a reel and

sliding block mechanism to control the 3D position of the transducer as shown in Fig. 17. The water

tank was located outdoors and experienced a light breeze on occasion. This led to slight measurement

errors due to small-scale oscillations of the source and receiver. The oscillations manifest themselves as

fluctuations in the amplitude and phase of the recorded signal. We computed the average envelope over a

40 s period to reduce the impact of oscillations on the measurement. We assign different weights to the

500 measurements to capture the confidence levels of our measurements. The measurements with smaller

standard deviations over the 40 s recorded signals weigh more. The RBNN model allows for errors in

direction of arrival to be estimated during training.

In addition to angular errors, we also expect some errors (a few cm) in the measurement of the location

of the transducers. We design a two-stage training strategy to deal with such location measurement errors.
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TABLE XI: PERFORMANCE EVALUATION OF THE ESTIMATED ACOUSTIC FIELD FROM THE CONTROLLED EXPERIMENT.

Method
MATE
(Vpp)

MATE
(dB)

Spearman’s
correlation coefficient

RBNN 0.003 0.376 0.961
GPR 0.021 3.764 -0.021
DNN 0.031 5.316 -0.207

Fig. 18: Trained absolute position error of the sparse test data using the RBNN model.

The first stage aims to optimize the trainable parameters T , specified in the designed RBNN model, using

measured location data. We train our model using weighted MAE. We freeze the trained RBNN model

at the end of this stage, and focus on estimating measurement errors in the second stage. We feed the

corrected locations (measured locations offset by the estimated location errors in all dimensions) into the

RBNN model to predict the acoustic field in this stage. A L2-norm penalty term of absolute position errors

is added in the loss function to constrain the range of position errors. By minimizing the loss function, the

second stage aims to estimate the most appropriate location errors using the RBNN model parameterized

by the parameters trained in the first training stage.

To benchmark the RBNN performance, we use a GPR model and a DNN model** as in the feasibility

study. For each of the three methods, Figs. 19 and 20 show the estimated fields within the AOI and the

extrapolated fields in the entire tank respectively. The field pattern extrapolated by the RBNN model looks

reasonable in the sense that the region with the strongest pressure amplitude is consistent with the source

location. The GPR and DNN fail to reconstruct any discernable field pattern in the tank. In line with this,

the MATE of the RBNN model is significantly lower than that of the GPR and DNN models, as shown

**We found that the DNN performed better with experimental data if we replaced the ReLU activation function with a hyperbolic
tangent (tanh) activation function, and therefore we present results for the tanh-activated DNN in this section.
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(a) RBNN field estimates within AOI

(b) GPR field estimates within AOI

(c) DNN field estimates within AOI

Fig. 19: Estimated field patterns within AOI using the experimental data by the three models.

in Table XI. The absolute trained position errors for the 222 sparse test data points are shown in Fig. 18.

Most errors are below 4 cm, as we would expect from our measurement procedure.

Fig. 21 shows the learned reflection coefficient for the water tank walls. While we do not have ground

truth to validate the reflection coefficient curve, the learned model works well to estimate the acoustic

field in the tank. We observe this in the good agreement between RBNN prediction and measured data

in Fig. 22, and also as a Spearman’s correlation coefficient of 0.961 between the prediction and data in

Table XI. On the other hand, the GPR and DNN simply learn to predict average values regardless of the

measurement location. The results obtained from the controlled experiment thus validate the efficacy of

our proposed method to model acoustic propagation in unknown or partially known environments.
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(a) RBNN extrapolated field estimates

(b) GPR extrapolated field estimates

(c) DNN extrapolated field estimates

Fig. 20: Extrapolated field patterns of the entire tank environment using the experimental data by the three
models.

V. DISCUSSION

If perfect environmental knowledge is available, one can use physics-based models for field estimation.

In the absence of environmental knowledge and when field interpolation is of interest, data-driven methods

can be employed to interpolate fields at unvisited locations. Our proposed method is particularly advanta-

geous in practical scenarios where only partial environmental knowledge is available and extrapolation is

required. It enables field interpolation and extrapolation using a limited number of acoustic observations

by incorporating the available domain knowledge.

The RBNN framework offers a high-frequency physics-based acoustic propagation modeling approach
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Fig. 21: Estimated reflection coefficient based on the trained RCNN layer of the composite RBNN.

Fig. 22: Comparison between test data and model predictions

that can incorporate known environmental information and be trained with observed data, making it

suitable for solving acoustic modeling problems with limited data. The approach that we took to derive

the RBNN from a high-frequency approximation to the solution of a wave equation can also be applied to

other approximations. For example, applying the same approach to a normal-mode approximation yields

normal-mode neural networks that may be used for low-frequency acoustic propagation problems [51].

The RBNN framework could incorporate environmental complexities such as range-dependent bathymetry,

non-isovelocity sound speed profiles, and various geo-acoustic models. When the physics is fully or

partially known, explicit expressions can be included in the computational graph, with potentially some

unknown parameters. On the other hand, when physics is unknown, NNs can be used as components of the

computational graph to model arbitrary functions. The resulting computational graph can be automatically

differentiated with respect to the model parameters, thus making it suitable for training with standard

gradient-descent-based NN training algorithms.
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The specific components that constitute RBNN trainable parameters are determined by the problem

formulation. There are several factors that can affect the model training time, including the number of

training epochs allowed, the size of training data and the size of trainable parameters. In general, on

typical personal computers today, it takes at most a few minutes to train the three models for studies

evaluated in this paper. For example, on a MacBook Air with an M2 chip and 16 GB RAM, it takes

58.8 s, 2.23 ms and 31.9 s†† to train the RBNN model, GPR model and DNN model respectively for the

near field estimation problem in Section III-B.

Our method is robust to noise, as the loss function minimizes noise regardless of its level. Our approach

can be applied at various propagation ranges as we make no implicit assumptions about it. Typically field

patterns become less complicated with range, and so become easier to model. The approach can be applied

across a vast range of frequencies. However, we require more training data for higher frequencies, as the

field structure becomes more intricate at smaller scales as frequencies increase.

In our current work, we assumed quasi-static environments. This assumption could lead to serious

performance degradation in environments that undergo significant changes over the period during which

acoustic observations are collected, particularly at high frequencies. One of the possible ways to address

environmental dynamics is to incorporate the knowledge of environmental changes into the modeling. This

would allow us to generate a time-varying physics-based data-aided propagation model. For example, if

an environmental parameter undergoes a first-order linear change over time, one could model RBNN

parameters as linear functions of time.

VI. CONCLUSIONS

Modeling acoustic propagation in underwater environments is particularly challenging in partially

unknown environments. Physics-based acoustic propagation models have limited practical uses as they

require accurate prior environmental knowledge to estimate acoustic fields in a given area. While classical

ML techniques such as GPR and DNN can use data to approximate an unknown acoustic propagation

model, they lack the ability to incorporate scientific domain knowledge (in our case, the acoustic wave

equation) and environmental knowledge (e.g. known channel geometry). Without incorporating the domain

or environmental knowledge, these techniques tend to be data-hungry during training, and extrapolate

poorly. They can also make predictions that are physically unrealistic.

††We measure the minimum elapsed time during the benchmark for the three models.
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To address the limitations in physics-based models and data-driven modeling techniques, we proposed

a modeling recipe that embeds scientific domain knowledge into data-driven ML to leverage their com-

plementary strengths. We showed that our RBNN method can learn from very little data, extrapolate

well beyond the region where training data are available, and always make predictions that are consistent

with physics. We demonstrated a few applications of the RBNN framework, highlighting the flexibility

it provides in modeling acoustic propagation scenarios with varying degrees of environmental complexity

and knowledge. We believe that the framework can be applied to solve a much wider variety of acoustic

propagation problems.
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