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A B S T R A C T   

Passive acoustics is an effective method for monitoring marine mammals, facilitating both detection and pop
ulation estimation. In warm tropical waters, this technique encounters challenges due to the high persistent level 
of ambient impulsive noise originating from the snapping shrimp present throughout this region. This study 
presents the development and application of a neural-network based detector for marine-mammal vocalizations 
in long term acoustic data recorded by us at ten locations in Singapore waters. The detector’s performance is 
observed to be impeded by the high shrimp noise activity. To counteract this, we investigate several techniques 
to improve detection capabilities in shrimp noise including the use of simple nonlinear denoisers and a machine- 
learning based denoiser. These are shown to enhance the detection performance significantly. Finally, we discuss 
some of the vocalizations detected over three years of our acoustic recorder deployments using the robust de
tectors developed.   

1. Introduction 

The presence of marine-mammals in a region, including apex pred
ators such as dolphins, is indicative of the health of the marine 
ecosystem (Sergio et al., 2008; Alves et al., 2023). Our study focuses on 
the warm coastal waters around Singapore, which have documented 
sightings of several delphinid species, mostly the Indo-Pacific humpback 
dolphins (Sousa chinensis; IPHD) (Lee and Ooi, 2020; Tay and Ong, 2014) 
and bottlenose dolphins (Tursiops aduncus), but also the Irrawady dol
phins (Chua and Lim, 2014), long-beaked common dolphins, false killer 
whales (Lim and Tay, 1996) and finless porpoises (Ming and Ng, 1990). 
This region has also documented recent visitations of dugongs (Dugong 
dugon) and a rebounding population of smooth-coated otters (Lutrogale 
perspicillata) (Ng et al., 2022; Khoo and Lee, 2020; Shivram et al., 2023). 

The paucity of baseline data on marine-mammal populations due to a 
lack of research impedes assessment of their status and delays conser
vation action, particularly in developing countries. Degradation and loss 
of existing habitat due to human activities including construction, noise 
pollution, and vessel activity have been identified as growing issues for 
marine-mammals in some areas (Marsh and Sobtzick; Piwetz et al., 
2021). For example, the IPHD, which inhabit tropical waters from the 
eastern Indian Ocean throughout Southeast Asia to central China 

(Jefferson and Rosenbaum, 2014), are deemed vulnerable in terms of 
extinction risk (Jefferson et al., 2017). In recent years, their global 
population has decreased and is severely fragmented. Dugong pop
ulations are considered endangered in many parts of Southeast Asia (Ng 
et al., 2022; Marsh and Sobtzick), and the populations of dugongs and 
smooth-coated otters are deemed vulnerable to extinction (Marsh, 2002; 
Khoo et al., 2021). This accentuates the need to study and estimate the 
populations of these animals in order to understand ecosystem health 
and the effect of anthropogenic activities, and inform conservation 
efforts. 

In our study region in Singapore, there are no reliable current esti
mates of the local population or visitation patterns of most marine- 
mammal species (Ng et al., 2022; Marsh, 2002). In nearby Malaysia, 
IPHD numbers have been estimated in various regions (Kuit et al., 2021; 
Zulkifli Poh et al., 2016; Kamaruzzan and Jaaman, 2013) and they have 
been documented at various locations along Borneo’s coast, including 
Sarawak, Sabah in Malaysia, Indonesia and Brunei (Minton et al., 2016). 
Most of the abundance estimates in the Southeast Asia region have been 
based on photo-identification of individuals with mark-recapture 
methods (Chan and Karczmarski, 2017; Kuit et al., 2021). 

The first step towards estimating the visitation patterns and popu
lation density of marine-mammals is detecting them. Passive acoustics is 
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one of the best-available techniques to detect and monitor marine- 
mammals, who regularly vocalize during foraging, travelling, or 
communication. Bottlenose dolphins and IPHDs are known to produce 
vocalizations classified as whistles, click-trains and burst pulses (Sims 
et al., 2012; Parijs and Corkeron, 2001). The vocalizations of IPHD and 
another dolphin species found in neighbouring waters, the Australian 
humpback dolphin (Sousa sahulensis) (Jefferson and Rosenbaum, 2014) 
have been studied across Asia (Sims et al., 2012; Li et al., 2013; Stead, 
2013; Wang et al., 2015; Yuan et al., 2021; Caruso et al., 2020b; Bono 
et al., 2022) and Australia (Parijs and Corkeron, 2001; Van Parijs and 
Corkeron, 2001), and their whistle features can vary significantly as seen 
from the differences between Wang et al. (2013), Van Parijs and Cor
keron, 2001 and Seekings et al. (2010). Dugongs, too, produce sounds 
classified into chirp-squeaks, barks and trills (Ichikawa et al., 2006) 
which can be used to monitor them acoustically (Tanaka et al., 2021). 
Otters are also known to produce a wide repertoire of sounds (Lemasson 
et al., 2014). 

Passive acoustic monitoring (PAM) of marine-mammals is well- 
studied in the literature - for a detailed review, see Fleishman et al. 
(2023), Au and Lammers (2016), Shiu et al. (2020), Sousa-Lima et al. 
(2013) and references therein. PAM has several advantages - it is a 
non-invasive method that can provide wide area-of-coverage monitoring 
over a long time duration, unhindered by bad visibility, time of the day, 
cloud cover or rough weather, with good temporal resolution. PAM has 
been integrated with standard population abundance/density estima
tion techniques (Hildebrand et al., 2015; Küsel et al., 2016). Sound data 
is relatively cheap to acquire and store. Furthermore, marine-mammals 
like dugongs and dolphins are often difficult to spot or monitor visually 
due to limited surface expression, and the turbidity of Singapore’s wa
ters makes underwater visual monitoring infeasible, but they may be 
detected acoustically over much larger ranges. In this sense, acoustics is 
a good complement to other population-assesment techniques. 

In order to study the marine-mammal populations in the waters 
around Singapore, we collected 54.2 months of ambient noise re
cordings from several sites using single-hydrophone recording systems. 
Interpreting this data effectively involves sifting through large amounts 
of data to detect the marine-mammal vocalizations, which have large 
variability within individuals as well as species. Manual inspection of 
such large amounts of data is time-consuming and infeasible. This ne
cessitates an automated method to detect a large class of marine- 
mammal vocalizations, for which machine-learning (ML) approaches 
are a great fit (Fleishman et al., 2023). Amongst ML methods, con
volutional neural networks (CNNs), which are shift-invariant, are shown 
to perform well in detecting classes of patterns in timeseries and images 
with suitable training, and hence are one of the natural choices for 
marine-mammal vocalization detection (Shiu et al., 2020). 

A large chunk of PAM-based marine-mammal detection studies have 
focused on waters where the ambient noise has been low enough to 
allow detection at high signal-to-noise ratios (SNR). The warm tropical 
Singapore waters offer an additional challenge in this regard in terms of 
the loud ambient noise levels. At frequencies above 2 kHz, the noise is 
dominated by snapping shrimp spread across Singapore’s waters in large 
colonies, with the levels sometimes exceeding 70 dB re 1 μPa2 at 10 kHz 
(Potter et al., 1997a, 1997b). These shrimp shut their claws, collapsing a 
bubble and creating a loud impulsive snap sound with a source level of 
around 187 dB re 1 μPa (Au and Banks, 1998) that can be heard over 
large distances. Snapping shrimp-generated ambient noise has been 
studied throughout the world (Au and Banks, 1998; Ferguson and 
Cleary, 2001; Readhead, 1997; Bohnenstiehl et al., 2016; Yuan et al., 
2018), and in regions such as Singapore, it drastically hinders detection 
of underwater signals (Chitre et al., 2006). 

In this work, we develop an ML-based detector to detect marine- 
mammal vocalizations in long-term sound recordings. In order to sur
mount the challenge posed by the noise, we highlight the use of existing 
denoising approaches (Mahmood et al., 2016) to reduce the effect of 
shrimp snaps on the sound. We further develop an ML-based denoiser to 

mitigate the effect of shrimp noise and aid detection. This jointly trained 
denoiser-detector system, named DEVMAN (detector for vocalizations of 
marine-mammals using neural networks) offers enhanced performance, 
and is successfully applied to long-term acoustic recordings from 
Singapore waters to assess the occurrence and diversity of 
marine-mammal vocalizations. In the future, this will pave the path 
towards understanding the visitation patterns of local marine-mammals. 

Section II of this paper focuses on the recording setup for collecting 
long-term acoustic data in Singapore waters. Section III focuses on 
design of an automated ML detector for marine-mammal vocalizations, 
and denoising techniques to improve their performance. In Section IV 
we discuss the results obtained using the detector, and we conclude the 
paper in Section V. 

All spectrogram plots shown in this paper are computed using 1024 
Fast Fourier transform (FFT) points with 70% overlap, and a Hann 
window. Each spectrogram is normalized by its 70th percentile value. 

2. Experimental setup and data collection 

Single-hydrophone stand-alone LS1 model recorders acquired from 
Loggerhead Instruments(shown in Fig. 2) were deployed across ten is
land sites (shown in Fig. 1) for several months intermittently between 
June 2019 to August 2022. Each recorder contains a hydrophone from 
High-Tech Inc with a sensitivity of − 179.90 dB re V/μPa, and was set to 
a gain of 16.77 dB, sampling frequency of 96 kHz and a bit-depth of 16 
bits. The system also recorded the depth, temperature and ambient light. 
The recorder was deployed at the ocean bottom for approximately 1 
month per deployment. In total, 54.2 recorder-months of data were 
obtained over this period from the island sites, details of which are 
shown in Table 1 (column 4). The acoustic recordings, of which a sample 
1-s timeseries and spectrogram are shown in Fig. 3, show significant 
snapping shrimp activity. Snaps from a large number of shrimp manifest 
as randomly occurring impulses in the recordings, and the statistics of 
this noise cannot be well-modelled by a Gaussian distribution (Bertilone 
and Killeen, 2001; Chitre et al., 2006). 

3. Detector design 

3.1. Detector architecture 

We assessed two standard CNN-based detector architectures for 
detection - one based on LeNet (LeCun et al., 1995) and one which is a 
variant of the Visual-Geometry-group (VGG) architecture (Shiu et al., 
2020). LeNet has three convolutional layers, whereas the VGG-based 
detector has six layers, and both are terminated with two 
fully-connected layers and an output layer. Our focus is specifically on 
frequency-modulated (FM) sounds such as whistles and chirp-squeaks, 
because dolphin clicks are harder to distinguish in snapping shrimp 
noise (Caruso et al., 2020a). With this in mind and based on the 
acoustics of local marine-mammals from the literature, we focus on the 
2–20 kHz frequency range. The input timeseries is first normalized with 
respect to its median absolute deviation, so that the detector can work 
independently of the amplitude scale of the input. A spectrogram of the 
input timeseries, computed with 2048 FFT points with no overlap, and 
cropped to lie within the above-mentioned frequency band, is the input 
to the CNN detectors. The architecture of the VGG-based detector is 
shown in Fig. 4. The output layer yields a single detector score value 
which can be thresholded to yield a detection decision on whether the 
sound clip contains (1) marine-mammal vocalizations, i.e. a ‘signal’ 
(embedded in noise), or (0) only ambient noise and sounds that are not 
of marine mammal origin. Training of the network is done using Ten
sorflow in Python, and the Adam optimizer is used with a learning rate 
that decreases with the number of epochs. No pretrained models are 
used. During training, a sigmoid nonlinearity is added to the output 
layer to limit its output within the [0, 1] range, and the cost function 
used for training is the cross-entropy between the detector’s output and 
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a binary digit indicating whether a signal was present in the input 
timeseries or not. We add batch normalization after each convolutional 
layer, use ReLu nonlinearities, and dropouts during training to improve 
generalization. Through the course of detector development, it was 
found that VGG-based detectors yielded better performance than LeNet 
(as will be presented in the results in Table 2), so further assessment was 

performed only with the VGG-based detectors. The metric used to 
evaluate the trained detectors is the recall at a probability of false alarm 
(PFA) of 1%, following the Neyman-Pearson criteria (Kay, 1998). The 
intuition here is that operating at a low PFA allows us to keep the volume 
of data shortlisted by the detector manageably low for further 

Fig. 1. Map of island sites across Singapore where single-hydrophone passive acoustic recorders were deployed (blue markers), and (inset) zoomed out map of the 
region around Singapore showing the area studied marked by a red box. 

Fig. 2. (a) The recorder used for the study, and (b) the recorder shown deployed underwater.  

Table 1 
Island-sites at which acoustic data was recorded, with number of vocalizations 
detected and number of days on which these were detected.  

Location No. of vocalizations 
detected 

No. of days with 
detections 

Months of data 
recorded 

Subar-Darat 860 68 6.4 
Subar-Laut 255 25 3.9 
Seringat 383 24 6.8 
Kusu 783 49 4.6 
Jong 182 41 5.2 
Hantu 493 55 7.7 
Terumbu 

Pempang 
Tengah 

497 37 5.6 

Semakau 
Northwest 
(NW) 

0 0 4.4 

Semakau 
Southwest (SW) 

2 2 4.4 

Raffles Lighthouse 65 15 5.2  
Fig. 3. (a) Sample 1 s recorded timeseries showing snapping shrimp noise 
background and (b) corresponding spectrogram of the recording showing 
broadband nature of the snaps. 
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downstream tasks, such as abundance estimation. 

3.2. Training data and augmentation 

The data used for training, validation and testing are generated 
synthetically by mixing available recordings of marine-mammal vocal
izations with that of ambient noise recorded at different locations 
around Singapore waters. The motivation for this approach is that very 
few recordings of vocalizations typical of Singapore waters were avail
able beforehand. Hence, the data is compiled by mixing the available 
vocalization recordings and noise to develop a detector capable of 
handling a shrimp-dominated noise background representative of local 
waters. 

In the initial stage, the vocalization sounds were obtained (1) from 
online open repositories (Sayigh et al., 2016; NOAA [National Oceanic 
and Atmospheric Administration]. NOAA Fisheries and N.N.F.S.C, 2023) 
containing clips spanning 17 dolphin species and 2 porpoise species, and 
(2) from previously obtained tank recordings of IPHD vocalizations in 
Singapore (Seekings et al., 2010). Later, as vocalizations of interest were 
detected in the initial set of underwater recordings, they were incor
porated into the training dataset so that the detector could be retrained 
and fine-tuned to search for vocalizations from local marine-mammal 
species. Each such iteration of the detector involved first manually 
sorting through the clips scored the highest by the detector from 
amongst a subset of the newly obtained recordings spread across time 
and geographical locations, and annotating the true positives and false 
alarms. The top-scored 100 clips per day were considered for the addi
tional annotation. Annotators also listened to the recordings in the vi
cinity of true positives to pick up possible missed detections. These 
additional annotated sound clips were added into the existing train
ing/validation dataset. During retraining of the detector, the previously 
trained weights were used to initialize the neural network so that the 
training would be faster, i.e., the detector would not need to be trained 
from scratch, but just fine-tuned. These iterations were done once every 
3–4 months when the recorders were retrieved from the recording sites. 

The data consists of 1-s segments of “signal + noise” and “noise-only” 
samples. At the beginning of the detector development, the noise-only 
sound samples for training, validation and testing, were selected from 
the only available ambient noise recordings from four locations in local 
waters, namely, Subar-Darat, Subar-Laut, Raffles Lighthouse, and St. 
John’s island which constituted 8.9 h of data (corresponding to 32,040 
noise-only samples). Later on, as more data was collected, noise-only 
data from the other sites were also incorporated into the training data 

after manual verification. 
To generate the signal + noise training data, we employ a mix-and- 

match approach in order to efficiently use the available data and obtain 
maximum diversity in training, which will consequently improve the 
generalization of the detector. Sound clips containing vocalizations are 
broken into 1-s segments, and randomly mixed in different ratios with 1- 
s ambient-noise segments selected from the hours of recording, to 
generate signal + noise samples of varying SNRs within the [− 10, 0] dB 
range. Different signal segments are randomly mixed with different 
noise segments in each iteration. As an indicator of the diversity of data - 
we use about 200 million unique permutations of the signal + noise 
samples for training. In addition to the above approach, the data is 
augmented by applying random flipping and shifting operations to the 
signals to further increase the training data diversity. 

The validation and test datasets both consist of ten thousand 1-s 
sound segment samples each, of which five thousand samples contain 
noise, and five thousand contain vocalizations at SNRs within [− 5, 0] dB 
synthetically generated by mixing vocalizations with ambient noise. The 
validation and test datasets are non-overlapping with the training set. 
The validation data is used to determine the criterion for stopping 
training to avoid overfitting - the training is stopped when the recall 
evaluated on the validation set begins to reduce consistently, or is 
saturated (with an increase of less than 0.001 over two thousand 
training samples). 

3.3. Nonlinearity based denoising 

Snapping shrimp noise hinders the detection of vocalizations, as 
demonstrated visually in the first column of Fig. 5 which are spectro
grams of dolphin whistles in snapping shrimp noise. The whistles are 
corrupted by the broadband snap noise, and in some cases (such as 
example 1), the whistle is not easy to spot in the noisy spectrogram. 

Linear processing with spectral bandpass filtering is not effective in 
denoising snapping shrimp noise because it spans a very large band
width. Some earlier approaches used techniques such as wavelet 
denoising (Seekings et al., 2010) and spectrogram-denoising (Malla
waarachchi et al., 2008) to tackle shrimp noise. Nonlinear zero-memory 
nonlinear processors such as sign and stochastic-resonance based de
tectors (Chitre et al., 2006; Hari et al., 2012) have been shown to 
improve signal detection in impulsive non-Gaussian noise. We adopt the 
clipper nonlinearity, a simple and easy-to-implement function parame
terized by a threshold T, applied on the time-domain waveform of the 
recorded data. The output of a clipper for an input time-domain data 
sample x(n) at sample n is 

y(n) =

⎧
⎨

⎩

− T for ​ x(n) < − T
x(n) for ​ − T ≤ x(n) ≤ T
T for ​ x(n) > T

(1)  

The clipper output is bounded at large values of the input and linear at 
small values. Thus, it limits the effect of large outliers. Inappropriate 
selection of T may affect detection performance, and hence this 
parameter needs careful selection. Based on an analytical study of the 
SNR improvement obtained by using a clipper in impulsive noise (Ap
pendix A), an effective threshold for clipping would increase with in
crease in the noise scale σ. Based on this, the threshold is selected as a 
multiple of the value σ estimated for each sound clip. It is effective in 
suppressing the effect of shrimp noise to some degree, as shown in the 
improved visual quality of spectrograms in Fig. 5 column 2 as compared 
to column 1. 

While the clipper is effective at limiting large outliers, it is a zero- 
memory nonlinearity which does not take into account the informa
tion that shrimp snaps often occur in bursts, each consisting of a bunch 
of consecutive outlier samples in the timeseries. In other words, the 
noise is not independent and identically distributed in time, but has 
some temporal memory. Later work exploited knowledge on the 

Fig. 4. Architecture of the VGG-based detector.  

Table 2 
Performance comparison of ML vocalization detector using different denoising 
approaches on test data.  

Detector type Recall at PFA of 0.01 

LeNet detector using clipper denoiser 0.537 
VGG detector with no nonlinear preprocessing 0.710 
VGG detector using clipper denoiser 0.763 
VGG detector using ISC-denoiser 0.772 
VGG detector using separately trained ML-based denoiser 0.818 
VGG detector trained end-to-end with ML-based denoiser 0.830  
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memory of the shrimp noise to design memory-based nonlinear deno
isers (Mahmood et al., 2017) of which the Isotropic Sign Correlator (ISC) 
is the simplest one. Using the ISC on a noisy sound segment also im
proves the spectrogram quality, as seen in Fig. 5 column 3 in comparison 
to column 1. 

Applying the clipper and ISC as preprocessors before the VGG-based 
detector yields a significant improvement in the detector’s recall 
(Table 2). Using the clipper with a preset data-adaptive threshold of T =
5σ yields a recall of 0.763, an improvement of 7.5% over using no 
denoising before detection. Furthermore, a comparison between the 
LeNet and VGG architectures with the clipper showed that the latter 
performed 42% better. Using the ISC yields a minor improvement over 
the clipper. 

3.4. ML-based denoising 

The success of the clipper and ISC indicates that incorporating prior 
knowledge of the ambient noise can yield detection performance 
improvement. We argue that a more sophisticated denoiser that effec
tively incorporates the environment-specific information on noise to 
remove snaps may yield further improvement. With this in mind, we 
explore an ML-based denoising approach, inspired by the approach of 
convolutional denoising autoencoders (Zhou and Yang, 2020; Li et al., 
2020). Denoising CNNs that operate directly on time series data (Li 
et al., 2020) or spectrogram data (Zhou and Yang, 2020; Testolin and 
Diamant, 2020) have been explored. Since shrimp impulses are tempo
rally concentrated and hence easier to isolate in the time-domain, in this 
work, a one-dimensional (1D) CNN denoiser is used, which denoises the 
noisy timeseries data provided as input. 

The architecture of the denoiser used is described in Fig. 6(a). It 
consists of five 1D convolutional layers with a bottleneck in the middle. 
The denoiser takes a 1 s sample of input audio signal at a time. The 
numbers within the blocks in Fig. 6(a) indicate the size of each con
volutional layer, starting from 96000 samples corresponding to 1 s of 
input. The kernel size used in each layer is seven and stride is four, 
leading to gradual reduction in each layer’s size as one moves from the 
input towards the bottleneck while there is an increase in the depth of 
each layer. ReLu nonlinearities are used after each layer. After the 
bottleneck, there is a layer-by-layer increase in layer size and a corre
sponding decrease in depth, until at the output there is a denoised 1-s 
timeseries. Fig. 6(b) illustrates how training data is generated for the 
denoiser. A clean 1-s signal s(n) (chosen from the available library of 
high SNR sounds) is used at the input to generate a clean signal spec
trogram S(f, n). It is then mixed with an ambient noise timeseries w(n) to 
generate a noisy timeseries, which is the input to the denoiser. For each 
training sample, the SNR of the noisy input segment is randomly chosen 

from the interval [ − 10, 5] dB. Furthermore, the data is augmented by 
applying flipping and random shifting to signals. The cost function is the 
mean squared error between the spectrograms of the denoiser’s output 
and the clean signal. The intuition behind this is that the denoiser’s 
designed objective is to generate a denoised timeseries with as clean a 
spectrogram as possible, which is expected to improve the performance 
of the detection downstream. 

As in the case of the detector, the validation dataset is used here to 
determine the stopping criterion for training. The training is stopped 
when the cost function evaluated on the validation dataset begins to 
increase, or is determined to be saturated. The trained denoiser is found 
to be effective in generating denoised signals with clean spectrograms as 
shown in Fig. 5, column 4. 

The trained ML-based denoiser can be used as a preprocessor to 
denoise sound segments before the VGG-based detector is applied to 

Fig. 5. Examples showing effectiveness of nonlinear denoising techniques on a signal corrupted by shrimp noise: columns show spectrograms of (1) noisy sound 
segment, and denoised sound segments using (2) clipper, (3) ISC denoiser and (3) ML-based denoiser. 

Fig. 6. (a) Architecture of ML-based denoiser with 5 convolutional layers with 
a bottleneck in the middle. The numbers in front of the blocks indicate the 
convolutional layer sizes. (b) Block diagram illustrating how training data is 
generated for the denoiser. A clean 1 s signal of high SNR is used at the input to 
generate a clean signal spectrogram. It is then mixed with an ambient noise clip 
to generate a noisy timeseries, which is the input to the denoiser. The cost 
function is the mean squared error between the spectrograms of the denoiser’s 
output and the clean signal. 
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them. We can go one step further in this approach, by training the 
combined denoiser-detector system end-to-end to maximize detection 
performance on the validation dataset. This joint system approach, 
referred to as DEVMAN henceforth, fine-tunes the denoiser and detector 
components to work better together, and ensures that the denoiser is 
tuned more towards improving signal quality in a way that aids detec
tion, rather than the quality of the spectrogram alone. Both these ap
proaches are evaluated with the test dataset for detection. 

4. Results and discussion 

When the ML-denoiser is applied to the sound segments as a pre
processor before applying the VGG-based detector, its performance is 
6% better than the clipper and ISC (Table 2). The end-to-end trained 
DEVMAN system performs better than all other detectors considered, 
yielding a recall of 0.83. This advantage is owing to the fact that the ML- 
based denoiser of this system is tuned to the specific characteristics of 
shrimp noise and working towards improving detector performance 
rather than just spectrogram quality or SNR. 

The 17% of missed detections from the test dataset were analyzed to 
assess the reason they were missed by the detector. In most cases, these 
samples were found to be of very low-SNR and too challenging for the 
detectors to pick up, examples of which are shown in Fig. 7. 

The DEVMAN detector was applied to the long-term acoustic re
cordings obtained from the 10 island sites. The detected sounds were 
manually examined by experts to weed out the false alarms, and trim
med down to a smaller subset of valid vocalization sounds. In total, 
about 3520 detections of biological origin were picked up by the system 
over 54 recorder-months (the breakup for individual sites is shown in 
Table 1 column 2). Marine-mammal vocalizations were detected in the 
frequency band of interest on 316 days added across all locations. An 
additional limited evaluation of DEVMAN’s performance was conducted 
on the datasets obtained from the recorders. This was done by picking 
nine days of deployments spread over four different geographic loca
tions (Subar-Darat, Seringat, Subar-Laut and Hantu), annotating this 
data fully, and comparing it against the detections by DEVMAN to 
evaluate its performance. The evaluation showed that the detector 
yielded a recall of 0.892 at a PFA of 1%, which is higher than the recall 
observed on the test dataset. 

While there is very little published literature on the distribution of 
IPHD and other dolphins in Singapore waters to compare these de
tections against (except for Lee and Ooi, 2020 at Jurong Island, where 
we did not place recorders, and Tay and Ong, 2014 at Seringat), some of 
the detections picked up by the recorders roughly correspond to loca
tions where dolphins and other marine mammals have been reported in 
the anecdotal literature and news media previously, eg. near Seringat 
(Ee, 2024; Straits Times, 2024) where we detected vocalizations on 24 
days. Furthermore, smooth-coated otters have been spotted in many 
parts of Singapore in recent years (Khoo and Lee, 2020; Shivram et al., 
2023) 

We categorize the detected vocalizations into 6 classes labelled a to f, 

whose spectrograms are shown in Fig. 8. Sound class (a) is a family of FM 
sounds with centre frequencies between 4 and 7 kHz. Class (b) encom
passes high-FM sounds with centre frequencies of at least 18 kHz, and 
usually heavily modulated with bandwidths of up to 3 kHz. Class (c) 
consists of FM sounds with a fundamental frequency usually around 2–3 
kHz, and several (about 8–15) harmonics, which is similar to the sound 
of small-clawed otters found around Asia (Lemasson et al., 2014). Class 
(d) and (e) are both series of broadband transients with a constant 
repetition rate. The timeseries of class (e) reveals a set of closely-spaced 
broadband impulses with a nearly constant inter-impulse interval of 
about 2.5–4 ms which exhibit numerous harmonics in the spectral 
content spanning between 1 and 20 kHz, closely matching descriptions 
of dolphin burst click pulses (also referred to as barks or buzzes) as re
ported in the literature (Van Parijs and Corkeron, 2001; Sims et al., 
2012; Wang et al., 2015). Barks are reported mostly during IPHD so
cializing and foraging. Class (f) is a broadband dolphin click-train with 
an inter-click-interval of between 2.5 and 4 ms, as revealed in the 
timeseries plotted in Fig. 8(h). Low-FM sounds of class type (a) were also 
sometimes observed along with these click-trains. 

Fig. 9 shows 6 example types of FM sounds picked up by the DEV
MAN detector over our deployment period, which form a subset of the 
sounds described in Fig. 8 (a). The spectrograms are computed after 
denoising the sounds. Fig. 9(a) describes FM sounds with an ascending 
span over 1 kHz, followed by a relatively flat zone and then a descending 
span, similar to the IPHD whistle class (d) described by Wang et al. 
(2013). Fig. 9(b) encompasses relatively flat sounds with less than 1 kHz 
fluctuation, sometimes with an upward inflection at the end. These are 
comparable to the “flat”-type IPHD whistles described by Wang et al. 
(2013). Fig. 9(c) covers FMs with a slight downward slope with the 
frequency falling by about 1 kHz over the duration of the signal, com
parable to class (b) described by Wang et al. (2013). Fig. 9(d) is similar 
to (c) but with a short upward and then downward inflection at the end. 
Fig. 9(e) consists of FMs with a short fast upward rise in frequency, 
followed by a zone of slow upward slope, comparable to class (f) in 
Wang et al. (2013) and some of the classes described by Sims et al. 
(2012), but with lower frequency variation. Fig. 9(f) are “U-shape” FMs 
followed by a zone of downward slope, also exhibiting similarities to 
some classes in Wang et al. (2013) and Sims et al. (2012). 

Most of the vocalizations were detected in the first half of each year 
(January to May) as compared to the later parts, and the detections were 
mostly picked up in the Sisters island area around Subar-Darat (50%), 
Kusu (20%) and Subar-Laut (16%). Relatively fewer detections were 
picked up at Hantu (30%), TPT (30.3%) and Jong (11.1%), whereas 
there were only two detections picked up near Semakau island, where an 
anchorage is located. 

5. Conclusion 

ML-based detectors facilitate effective monitoring of marine- 
mammals via passive acoustics. Snapping-shrimp generated noise in 
tropical waters such as those in Singapore impedes the detection of 

Fig. 7. Spectrograms of test samples missed by the VGG-detector, which are of very low SNR.  
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marine-mammal vocalizations. We have explored three approaches to 
mitigate this noise: (1) simple, fixed nonlinear denoising methods, (2) 
ML-based denoising trained independently from the detector, and (3) 
ML-based denoiser trained end-to-end with the detector (DEVMAN). The 
DEVMAN yielded the best performance amongst the approaches 
explored, and can facilitate downstream tasks for assessing behavioral 
patterns or population density. Some ongoing efforts are leveraging 
DEVMAN for assessing the presence of multiple vocalizing individuals 
using a recently deployed hydrophone-array system (Hexeberg et al., 
2023), and integrating DEVMAN into stand-alone PAM systems as an 
edge-detector for real-time monitoring. 

Furthermore, it was illustrated that employing simple preprocessor 

nonlinearities such as the clipper and ISC also yield a significant per
formance benefit in comparison to no denoising. These provide a good 
low-complexity alternative when the computational complexity of the 
ML-based denoiser may be a constraint, such as in low-cost edge 
computation devices. A comparative analysis of two architectures - VGG 
and LeNet - highlighted the superior performance of the VGG-based 
architecture in terms of detections in local waters. 

Future work in this direction will pivot towards the development of 
classifiers for differentiating the vocalizations picked by the detector, a 
comprehensive evaluation of the detector across different marine 
mammal vocalization classes, and confirmation of the identities of the 
species corresponding to each of the sound classes. Furthermore, an in- 

Fig. 8. (a)–(f) Spectrograms of 6 classes of sounds detected, and (g) and (h) sound timeseries corresponding to classes (e) and (f).  

Fig. 9. Different types of FM sounds picked up by the detector.  
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depth spatio-temporal analysis of the detections is planned. This analysis 
can uncover potential temporal patterns (eg. diel/seasonal/annual, and 
correlations of these with known environmental events, for example). It 
can also identify spatial patterns and possible correlations with envi
ronmental variates, distributions of known local species and anthropo
genic and biological ambient noise. This can help elucidate the 
behavioral factors leading to these variations. The work in this paper 
lays the groundwork for such studies in the future, which will help us 
better understand the data in the context of the regional biodiversity, 
and provide important information for policy makers in decision making 
and for aiding conservation efforts. 
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Appendix A 

Snapping shrimp noise cannot be adequately modelled by a Gaussian distribution, and heavy-tailed distributions such as the symmetric α-stable 
family of distributions have been shown to better model this noise instead (Chitre et al., 2006). This family is parameterized by an impulsiveness 
parameter α and a scale parameter σ, and the probability density functions (pdf) do not have a closed form expression except for two cases, one of 
which is the Cauchy distribution (when α = 1). The Cauchy distribution represents highly impulsive data, so a clipper robust in Cauchy-distributed 
ambient noise may be expected to be robust in snapping-shrimp dominated environments. Here, we use the example of Cauchy-distributed ambient 
noise to highlight the dependence of an effective value of the clip nonlinearity’s threshold on the scale σ of the noise. 

Consider the clipper function defined in (1). Assume the nth sample of the noisy signal x(n) consists of the clean signal s(n) embedded in ambient 
noise w(n), described as 

x(n) = s(n) + w(n) (A.1)  

where w(n) is distributed with pdf fσ and distribution function Fσ. 
Based on the insights from the signal detection literature (Kay, 1998; Hari et al., 2012), we can obtain intuition on the suitable threshold T to be 

used by considering the optimal threshold T′ that maximizes the SNR of the clipper output y(n), given by 

Sy(n) =
(E[y(n)] )2

E[y2(n)] − (E[y(n)] )2 (A.2)  

where E[.] denotes the expectation operator. In (A.2), the denominator signifies the variance of y(n). From (1), the pdf of y(n) can be obtained as 

f̃y =

⎧
⎨

⎩

Fσ( − T − s(n)), y(n) = − T
fσ(y(n)), − T < y(n) < T
Fσ(T − s(n)), y(n) = T

(A.3)  

For the case when w(n) is Cauchy distributed, the expressions for fσ and Fσ are known in closed form, hence the expression (A.2) is tractable in closed 
form and can be used to analytically obtain T′. It can be shown that for a weak signal (s(n) → 0), T′ is equal to the value that maximizes a cost function 
given by 

Tʹ = argmaxT

⎡

⎢
⎢
⎢
⎣

tan− 1
(

T
σ

)2

T
σ +

0.5πT2

σ2 − tan− 1
(

T
σ

)(

1 + T2

σ2

)

⎤

⎥
⎥
⎥
⎦
. (A.4)  

By finding the maximum of the expression in (A.4), we obtain T′ = 0.4σ for Cauchy-distributed noise. Note that this is independent of the signal 
amplitude, but depends on σ. Though T′ is not necessarily equal to the optimal threshold that maximizes the detection of vocalizations in spectrograms, 
it provides a rule of thumb that the selection of the threshold must scale with the scale parameter σ of the noise. In practise, it is time-consuming to 
estimate σ for a large number of sound segments during training and inference, so we use a robust proxy of the scale in impulsive noise which is the 
median absolute deviation of the timeseries (Pham-Gia and Hung, 2001). 
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