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Abstract—Passive acoustics is an effective, robust, non-invasive
technique to detect and monitor vocalizing marine mammals.
The tropical waters around Singapore are visited or inhabited
by several species of marine megafauna. This paper presents
a passive acoustic monitoring system developed for real-time
detection of marine mammals in Singapore waters. The sys-
tem is cloud-enabled, and contains machine-learning capable
edge-computing systems with surface cameras and underwater
hydrophone arrays which were deployed at Sisters’ Islands in
Singapore. A set of online and offline software tools have been
developed to facilitate monitoring, visualization, annotation and
data curation to support continual training of the detector.
The paper discusses the design, architecture, development, and
deployment of this system, offering a comprehensive solution to
enhance the monitoring and study of marine megafauna in the
region.

Index Terms—PAM, acoustics, ML, marine mammal, Indo-
Pacific humpback dolphin, dolphin, edge-computing

I. INTRODUCTION

The shallow tropical waters around Singapore are known to
be visited or inhabited by several species of marine megafauna,
including Indo-Pacific humpback dolphins (Sousa chinensis)
[1], bottlenose dolphins, Irrawaddy dolphins, finless porpoise,
dugongs and otters [2]. Some of these species, including the
Indo-Pacific humpback dolphins and dugongs, are considered
vulnerable to extinction [3], [4] and need to be monitored
closely in order to inform conservation actions. While some
of the other megafauna species in the region are not clas-
sified as endangered yet, it is crucial to understand their
population trends, given their role in the food chain and
habitat. However, there is a lack of reliable baseline estimates
of the population of most marine mammal species in local
Singapore waters [4]. Most of the estimates in the Southeast
Asia region rely on photo-identification of individuals with
mark-recapture methods [5]. Given the low visibility in local
waters, monitoring megafauna using the underwater visual
approach is exceptionally challenging.

Passive acoustics is an effective means of detecting and
monitoring vocalizing marine mammals. Passive acoustic
monitoring (PAM) of marine mammals is well-studied [6], [7],
and specifically, machine-learning (ML) based approaches to
mining large acoustic data for their vocalizations has been
researched in detail. While visual and photo-identification
surveys provide information only on surface activities over

Fig. 1: Two locations near Sisters’ Islands in Singapore waters
(designated ‘North’ and ‘South’) where PAM unit was deployed.

small time periods and may be limited by visibility conditions
or rough weather, PAM can be applied continuously over
extended periods of time even in such conditions. It is non-
invasive and can remotely sense these animals, providing infor-
mation with good spatiotemporal resolution [8]. Vocalizations
of marine mammal species such as Indo-Pacific humpback
dolphins have been studied across Asia [9], and these creatures
are known to vocalize via whistles, click-trains and barks (or
burst pulses). Dugongs also produce sounds classified into
chirp-squeaks, barks and trills [10]. Thus, these species can
be potentially monitored using PAM.

PAM can be used for detection and classification of marine
mammal vocalizations, and potentially for population esti-
mation or behavioural assesments. Such assessments benefit
highly from multi-modal data spanning other forms of sensory
detection and verification, and data on environmental parame-
ters such as water quality, time of the day, weather conditions
and ambient noise conditions. Real-time detection of marine
mammal visitations can also enable conservation bodies and
biodiversity analysts to better understand these occurences.

With these considerations in mind, we developed a cloud-
enabled ML-capable edge-computing system with a surface
camera and underwater hydrophone array. Two of these sys-
tems were deployed at the Sisters’ Islands in Singapore waters,
to perform real-time detection of marine mammals comple-
mented with environmental data. The locations of the deployed
PAM systems are shown in Fig. 1. A set of online and offline



Fig. 2: Overview of the cloud-enabled passive acoustic monitoring array with the computation node surface sensors on the left, underwater
acoustic array with underwater environmental sensors on the right and web interfaces for remotely controlling the setup offsite in the middle.

tools were developed to facilitate monitoring, visualization,
annotation, and data curation to support continual training
of the detector. This paper discusses the design, architecture,
development and deployment of this system and its supporting
software. Section II describes the PAM system hardware,
setup and deployment. Section III details the software tools
employed on the PAM and at the user end to visualize outputs
from the system. Section IV discusses the system’s detection
and direction estimation performance, and section V concludes
the paper.

II. PAM SYSTEM DEPLOYMENT AND HARDWARE

The PAM systems were deployed off Small Sisters’ Island
(Subar Darat) from February 2022 to November 2022. Each
system consisted of a surface station (highlighted in green in
Fig. 2, and also shown in Fig. 3) that housed an Automatic
Identification System (AIS) receiver to collect ship traffic
data, a weather station, a camera, and a computation node.
The surface unit was installed on a pole that was bolted and
cemented on a nearby water breaker (see Fig. 3). It contained
a weatherproof electrical box that held all the electronics. The
surface unit had a power management module that allowed us
to shut down individual components in the setup for power
conservation, including the two PAM arrays connected to
it. It had two edge computers (NVIDIA Jetson Nano) for
command and control and processing of data from each PAM
array. One of the edge computers also received data from a
camera mounted on the top for opportunistic ground truthing
of detected vocalizations. The computation node ran an ML
model locally to detect whistle-like vocalizations in real-time,
and stored the collected acoustic data locally. A mobile router

Fig. 3: Photo of the PAM surface unit.

was used to provide internet connectivity that linked the PAM
to our cloud server and allowed users to access the PAM
remotely via virtual private network (VPN). It also periodically
transmitted its status to the cloud and notified the user of any
vocalization detection or system error.

Two underwater acoustic arrays with environmental sensors
were deployed in the coastal waters about 100 m from the
shore and cabled to the surface station (see Fig. 4, array is



highlighted in red in Fig. 2). The array contained (a) four
hydrophones configured into a 1-meter tetahedral shape, (b)
depth sensor, (c) attitude-heading-reference system (AHRS)
sensor, (d) chlorophyll sensor, (e) turbidity sensor, (f) Phyco-
erythrin, and (g) temperature sensors. The depth and AHRS
sensor provided crucial information on the location/orientation
of the array, allowing accurate estimation of the direction
of the sound in the world frame. The depth sensor also
provided valuable tidal cycle information. The chlorophyll
sensor allowed us to correlate the chlorophyll content and
biological productivity against dolphin occurrence and the
soundscape of the location. The humidity sensor allowed early
detection of water leakage in the system during long-term
underwater deployments. Each array recorded signals at a
sampling rate of 400 kHz - this allowed us to detect whistle-
like frequency modulated sounds, and detect as well as localize
the high-frequency sounds like dolphin clicks by utilizing the
time-difference-of-arrivals of signals at the hydrophones.

The system was powered by photovoltaic systems with
enough lead-acid batteries to buffer up to seven days of bad
weather and support night operations. Ten solar panels were
deployed to power the PAM-array system, and their energy
consumption-generation ledger was monitored continuously.
Since we were able to control the power of individual sub-
systems, the setup allowed us to keep operating the critical
components when the energy reservoir was low by powering
down less important sensors.

Two 120 m underwater cables were used to connect each
underwater hydrophone array to the surface station’s edge
computers. These were hybrid optical and power cables rated
for the harsh underwater environment. This cable transmit-
ted power and network communications over long distances
for the underwater unit while maintaining good throughput.
Hence, the data could be transmitted to the shore for real-time
processing and storage. It allowed easy data retrieval since the
data was stored on shore instead of underwater.

III. SOFTWARE

A comprehensive set of essential software tools were de-
veloped and integrated with the system to support data ac-
quisition, vocalization detection, real-time event alert, event
annotation, environmental monitoring, diagnostics, and visu-
alization of primary data (acoustics and visual) and secondary
data (such as environmental and shipping data). These will be
detailed here. A list of software tools developed is also men-
tioned in Table I with a description of each one’s functionality.

A. ML-based vocalization detector

The PAM system ran an ML-based detection algorithm
named DEVMAN [11] onsite to detect marine mammal vocal-
izations in real-time and alert the marine mammal supervisors
and/or biodiversity stakeholders to assess the event remotely.
A data processing flow was set up to handle data collection,
labelling, and quality checks (QCs) of local detections. After
verification, these events could be reintroduced into the train-
ing data to revise and continuously improve the ML detector.

Software name Functionality
DEVMAN ML-based vocalization detection
EViz Storage and online visualization these onsite-

triggered events-of-interest with photos and summary
diagnostics

Iceberg Acquire, summarize and visualize AIS data
Prometheus Monitoring and time-series display
ReCorD Control and diagnostics
Baywatch Batch labelling and online annotation of snippets of

data for quality checking
Barreleye Mass labelling of detector-flagged audio clips offline

TABLE I: Summary of software tools and apps developed to com-
plement the monitoring system

The detector was deployed on a Jetson Nano single-board
computer.

Fig. 4: Underwater photo of the installed 4-channel PAM hydrophone
array for real-time monitoring.

The ML-based detector on the system is trained in a su-
pervised fashion, which needs large amounts of labelled data.
Due to the lack of sample vocalizations from local waters, we
initially started the training with a curated set of whistles from
different dolphin species found in online sound libraries [12],
[13]. We augmented this data by applying random flipping,
shifting and adding locally recorded ambient noise data, to
increase the diversity of training and validation data and
improve the generalization of the detector. Later on, data was
collected using single-hydrophone recorders deployed across
several locations in Singapore waters [11]. The training and
validation dataset were iteratively improved by adding newly
detected signals from local waters into these datasets, and
regularly revamping the dataset to remove ambiguous or less
useful samples. They were then used to retrain the detector
and evaluate its performance on a control dataset. The high
levels of impulsive noise generated by snapping shrimp in
local waters makes detection challenging [14]. Thus, an ML
based denoiser and detector was trained to be robust to
this and pick up frequency-modulated (whistle-like) marine
mammal vocalizations within this background noise [11]. The
broadband nature of the echolocation clicks of dolphins makes
it hard to distinguish it from snapping shrimp snaps unless
detailed characteristics of the pulses are analyzed [15]. On the



other hand, whistles are narrowband and hence are easier to
pick up from the spectrogram as compared to snapping shrimp
noise.

B. Visualization and annotation tools

An online browser-based visualization app called EViz was
developed to store and visualize onsite-triggered events-of-
interest (EOI) (see Fig. 5(a)). Using this, researchers or super-
visors could choose to investigate the event and label/annotate
the snippet online. The user could also access Prometheus,
a monitoring tool with time-series plots of sensor states and
some summarized sensors values obtained from the PAM array
for diagnosis (Fig. 5(b)). A conservative detection threshold
was established for the onsite operation of the edge detector
(more details are given in Section IV). When the edge detector
flagged a detection, subscribed users were notified of these
events via a message on the Telegram app. The acoustic clip
that triggered the detection was uploaded online, along with a
photo acquired at the time of the detection from the camera,
and the recorded environmental parameters of interest during
the event.

A companion software named Iceberg was also developed
to visualize the information available on local shipping activity
from the AIS (Figs. 5(c) and (d)).

Fig. 5: (a) EViz, a cloud service to store events and provide visualiza-
tions of onsite-detected events of interest, (b) Prometheus, a remote
system diagnostics software for the PAM-array, (c) login screen and
(d) information screen with ship vessel tracks from Iceberg, a tool to
store and visualize AIS information.

A minimalist online annotation tool named Baywatch was
developed to support batch labelling and QC of the data
recorded and flagged by the detector. This data could undergo
several versions of annotations before being categorized into a
final form suitable for interpretation. Users wishing to solicit
feedback on the data acquired by them, can curate and upload
a subset of snippets into this app and invite peers to review
them via an online link. The app displays the time-series and
spectrogram of the audio snippet with a set of audio playback
control buttons (play, pause and stop), a list of predefined
labels the user can choose from, and a text box for adding in

additional comments (shown in Fig. 6). In addition to quality-
checking of a small number of snippets, it is also required to
annotate a large amount of ground truth data for the purpose
of further training and validation of the ML detector. With this
in mind, we also developed Barreleye, an offline application to
help developers swiftly review, annotate, and cluster snippets
en-masse.

Fig. 6: Baywatch, a cloud service focuses on over-the-cloud anno-
tations of audio clips with predefined labels: (a) the summary panel
and (b) annotation screen of the software.

IV. PAM ARRAY DETECTION AND DIRECTION ESTIMATION

The tetrahedral constellation of the PAM allows direction-
of-arrival (DOA) estimation of source signals, which can aid
in localization tasks. Besides characteristics of the source
signal such as SNR, bandwidth and frequency, the estima-
tion accuracy is affected by the accuracy of the position
and orientation of the PAM – neither of which was known
precisely. Therefore, a calibration exercise was undertaken to
correct the positions and orientations of the array, using a
controlled acoustic source. A series of communication signals,
comprising a Linear Frequency Modulated (LFM) header fol-
lowed by a pseudo-random sequence with the timestamp and
GPS position encoded, was transimitted approximately 0.5 m
below the surface from 26 locations in the neighbourhood of
the PAM at the North location (Fig. 7a). Signals with low
received SNR were discarded, while DOA was estimated for



the remaining signals using the DETSAC algorithm developed
in [16]. DOA estimates with high uncertainty were ignored
and the remaining 51 DOAs were used for calibration. These
shortlisted signals were used to adjust the PAM’s position
(longitude, latitude, depth) and orientation (roll, pitch, yaw)
by minimizing the mean absolute error between the estimated
DOAs and ground-truth DOAs calculated using the signals’
GPS locations. The resulting DOA estimates are shown in
Fig. 7b and achieved a median absolute error of 4.9◦, which
is within the error margin imposed by GPS uncertainty.

(a)

(b)

Fig. 7: (a): The PAM at the North location (red) and the approximate
location for each series of signal transmissions during the PAM
calibration process. The same signal was transmitted multiple times at
each location but not all transmissions were used for calibration. (b):
DOA estimates and corresponding GPS-based ground truth directions
for the 51 shortlisted signals after calibration.

In order to (1) test practical issues with the in-field per-
formance of the detector and the complete PAM process-
ing chain including event detector, cloud upload and online
event-reporting, and (2) evaluate performance variability with
different detector thresholds and signal types, a controlled
experiment was done with the PAM array in the coastal waters
near Sisters’ islands, Singapore. We deployed the array from a
boat onto the seabed and tied it to a mooring buoy. We then de-
ployed a transmitter in the vicinity of the array and played back
ten types of frequency modulated signals (dolphin whistles)–
this consisted of 1 baseline high-SNR signal obtained from an
online source, and 9 signals recorded locally using the single-
hydrophone system (with relatively lower SNR), denoted as
signals 1-9. The signals were transmitted at different source

levels. Due to this controlled variation in source levels and
variability in the local ambient noise, the PAM received the
vocalizations at different SNRs, allowing us to assess how the
detector would perform with variation in SNR.

First, we plot the histogram of the detector scores for
clips containing only ambient noise (Fig. 8(c)). The plot
demonstrates that the scores show a high amount of variability
due to ambient noise, which is expected in the challengingly
noisy and variable Singapore waters with high biological
and shipping activity. This histogram guides an appropriate
selection of detector score to obtain a preferred operating
false-alarm rate. For example, the histogram shows that setting
the threshold to a value of 2.5 yields a false-alarm rate
of about 0.1%. We choose this score to be the operating
point for the detector’s real-time operation which would alert
stakeholders via the cloud app, with the intuition that we want
to minimize the number of false alerts. For post-processing and
interpretation of the data, however, we set a lower threshold
of 1 which yields 1̃% false-alarm rate, as this yields more
detection probability, and the irrelevant data can be further
filtered out later in post-processing as necessary.

The baseline signal was transmitted at different SNRs within
the range (-15, 15) dB, with repetitions at some SNR values,
to test the variability in detector score. It can be seen from
Fig. 8(b) that even for the same signal at the same received
SNR, there can be considerable variability in the detector
scores. This is because detectability of the signal (and thus
the detector score) is not only a function of the SNR, but also
depends on multiple other factors such as whether the noise
obscures important signal features that aid detection.

We fit a third-order polynomial curve to the individual
scores variation obtained with the baseline signal in Fig. 8(b),
and this is plotted in Fig. 8(a) alongside the detector scores for
other signals. The detector thresholds that yielding false-alarm
rates of 0.1% and 1% are plotted in the figure too, along with
the median score corresponding to ambient noise. It is seen
that at an operating detector threshold corresponding to 1%
false-alarm rate, the baseline signal is detected at an SNR of -
7.5 dB at least. Fig. 8(a) shows that the different signals exhibit
variability in detector scores. This is because the scores also
depend on the frequency variability or shape of the signal itself
that is considered to be a convincing evidence of the signal
being of marine mammal origin by the detector (based on the
training data). This signal shape varies between the different
signals considered.

Overall, Fig. 8 gives us a summary and evaluation of
the system’s performance variability in realistic operating
conditions. The score variation for a single signal roughly
follows an S-shaped (or sigmoidal) curve, as seen in the plot
for the baseline signal. This variation is on somewhat expected
lines and is explained as follows. At very low SNRs, the signal
is almost undetectable and flattens out at a score matching the
ambient noise, and its performance does not further degrade
with decrease in SNR. At very high SNRs, the signal is
clearly detected, and further increase in signal strength doesn’t
improve detectability further. Within these two extremes, the



Fig. 8: Variation of detection score versus received signal SNR (in dB) of signals played back during the field-test of the PAM, (a) for all
10 dolphin signals considered, and (b) for only the baseline signal transmitted, and (c) histogram of detector scores with ambient noise (no
transmissions) at the test site. The green line with triangle markers corresponding to the baseline signal in (a) is a third-order polynomial fit
of the points in (b).

SNR does affect the detectability of the signal.

V. CONCLUSION AND FUTURE WORK

This paper describes a comprehensive PAM monitoring
system that combines an acoustic array for vocalization de-
tection, an optical sensor for opportunistic ground truth, at-
mospheric and underwater environmental sensors to correlate
the detections with environmental factors, and a machine-
learning capable edge computation platform to support real-
time detection, including its design, architecture, development
and deployment. A comprehensive set of essential software
tools was developed and integrated with the system to support
data acquisition, vocalization detection, real-time event alert,
event annotation, environmental monitoring, diagnostics, and
visualization of primary data (acoustics and visual) and sec-
ondary data (such as environmental and shipping data). The
calibration of the position and orientation of the PAM array
via field trials, as well as performance analysis of the variation
in the detector’s performance with variability in signal types
and SNRs is detailed. These provide a summary evaluation of
the system’s performance in realistic operating conditions.

Subsequent to calibration and performance verification, the
PAM was successfully deployed for continuous long-term
operation. The data from this system was used to estimate
the direction-of-arrival of detected sounds, and the likelihood
that multiple marine mammals were vocalizing at the same
time, detailed in [16].
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