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Abstract—This study focuses on the estimation of floating
ice distribution on the sea surface from aerial imagery at
tidewater glaciers. The presence of ice-mélange in the glacial
bay affects ice-loss at the glacier terminus via buttressing of the
glacier face, insulation from ocean heat and breaking of oceanic
currents. Thus, estimation of its formation, evolution, distribution
and dissipation will aid an understanding of climate-change
mechanisms at glacial bays. Given the challenges stemming from
lack of data and labeled training samples, we employ a pre-
trained vision model with zero-shot performance, the Segment
Anything Model (SAM). SAM is fine-tuned to perform automatic
estimation of floating-ice distribution on a dataset of images
collected in Svalbard at various locations and through various
modalities, by segmenting the images into floating ice and ocean
surface not covered by ice. The Low-rank adaptation technique is
employed on the image encoder structure to reduce the training
data and hardware resources needed for model fine-tuning. This
approach opens new avenues for real-time analysis of glacial
dynamics and their implications on global climate patterns.

Index Terms—glaciers, ice-mélange, Arctic, tidewater, climate-
change, segmentation, SAM

I. INTRODUCTION

The rapid changes occurring in polar regions due to climate-
change are of global significance, affecting not only local
ecosystems but also global sea-levels and weather patterns.
A significant component of global sea-level rise is attributed
to melting glaciers. In tidewater glacial bays, calving and
submarine-melting account for a large percentage of the ice
loss via frontal ablation. Understanding these ice loss mech-
anisms and the dissipation of the ice formed is useful to
understand climate-change mechanisms and their impact at a
global scale, including via sea-level-rise.

The calving at tidewater glaciers leads to floating ice in
the bay, often in the form of ice mélange — a mix of
floating icebergs and smaller ice fragments floating around
in the bay [1]. The presence of this mélange in the glacial
bays in turn affects the ice-loss via a feedback mechanism
involving buttressing of the glacier face [2], insulation from
ocean heat and breaking of oceanic currents and tidal mixing.
Furthermore, the mélange also affects the biological habitat of
local flora and fauna, and changes the underwater soundscape
of the bay due to the sound generated by its melting [3] and
changes in sound propagation in the underwater channel [4].
Thus, understanding the distribution and dissipation rate of
floating ice in the bay is important to assess and model climate-
change impacts in these regions.

Visual methods are a good way to assess the distribution
of floating ice. Recent technological advances, particularly in
machine-learning (ML) aided computer vision techniques and
camera-based imagery using drones or land or ship-mounted
systems, open up new means for assessing the floating ice.
This paper focuses on employing computer vision techniques
to analyze the distribution of floating ice in the glacial bay, via
semantic segmentation. Semantic image segmentation involves
classifying each pixel in an image into a predefined category.
Modern image segmentation techniques often leverage deep
learning methods, particularly Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs).

In order to compile a dataset from glacial bays for visual
estimation of floating ice, aerial photographs were taken
during field campaigns to Hornsund fjord and Kongsfjorden
in Svalbard in June to August, 2023. Photos were taken
through different modalities, including through drone-surveys
and ship top-mounted cameras. This paper outlines the de-
velopment of an automatic ML vision-based technique using
this data to segment and estimate floating ice coverage in
glacial bays from aerial imagery. We use an adaptation of a
foundational model developed by Meta named the Segment-
Anything-Model (SAM) [5], and fine-tune the Vit-L model
from Meta using a Low-Rank Adaptation (LoRA) approach.
This segmentation can then be used to estimate the coverage
percentage of floating ice in the bay.

The technique developed in this work is shown to perform
well on the aerial imagery data acquired from the field, and
outperform a benchmark segmentation model available in the
literature. The technique may also be used on permanent land-
mounted camera systems for long-term ice-distribution moni-
toring. The goal is to estimate the floating ice distribution of
ice mélange, providing methods and insights to refine models
of ice dynamics. Section II details the field campaigns for data
collection in Svalbard. Section III details the literature review
on visual estimation and outlines the development of the
proposed method for floating ice segmentation and coverage
estimation, including fine-tuning techniques. In Section IV we
discuss results using the proposed technique and compare it
to another benchmark technique available in the literature, and
in Section V we conclude the paper.



Fig. 1. Locations in Svalbard and tracks of drone-based video surveys undertaken during the field campaign at (a) Hansbreen glacier at Hornsund fjord and
(b) four tidewater glaciers at Kongsfjorden. The background maps were obtained from www.planet.com, Planet Labs PBC, under a CC BY-NC-SA 2.0 license

II. DATA COLLECTION

Field campaigns were undertaken in 2023 in two regions in
Svalbard – (1) Hornsund fjord and (2) Kongsfjorden, shown
in Fig. 1, to record passive acoustics, visual data, active
acoustics, and conduct robotic surveys near the glacier termini.
The Hornsund campaign was staged from the Polish Polar
Research station, whereas the Kongsfjorden campaign was
staged from the Norwegian Polar Institute research station
in Ny-Ålesund. We analyze data from videos and photos
taken during this field campaign, specifically from 5 glacier
termini - (1) Hansbreen at Hornsund fjord, and (2) Kronebreen,
(3) Kongsvegen, (4) Conwaybreen and (5) Blomstrandbreen
at Kongsfjorden, whose locations are shown in Figs. 1(a)
and (b). Our dataset comprises image collections taken from
different locations and modalities, which includes drone-
mounted camera (from Hansbreen, Kronebreen, Kongsvegen,
Blomstrandbreen and Conwaybreen) and ship-mounted camera
photographs (Kronebreen). The drone-transects of the surveys
are shown in Fig. 1. Drone footage in Hornsund was acquired
by walking on foot to a spot within safe distance from the
glacier terminus, and flying the drone to survey the terminus.
Drone footage in Kongsfjorden was acquired by using a
Polarcirkel boat from the Norwegian Polar Institute station
to get to within ∼500 m of the glacier termini, and flying
the drone from the boat. Ship-mounted camera photographs
were taken by mounting the camera on the R/V MS Teisten
operated by Kingsbay AS at the Ny-Ålesund station.

III. VISUAL ESTIMATION OF FLOATING ICE

A. Prior work

The photogrammetric assessment of ice distribution has
received attention in the literature due to potential applica-
tions in hydrology, geography, and environmental sciences.
Research in this area has increasingly adopted ML techniques.
For example, Li et al. explored a semi-supervised approach

for ice-water classification [8], and Evans et al. has applied
unsupervised ML methods to detect and analyze iceberg
populations [9]. These primarily focused on analyzing satellite
imagery. Recent advances have seen the development of meth-
ods tailored for aerial photography. Ansari et al introduced a
CNN-based framework for river ice classification [10]. Panchi
et al utilized CNNs to classify close-range optical images of
ice, focusing on textural and pattern recognition [11].

These works and the approaches employed therein, while
insightful, rely on large datasets for training, which is chal-
lenging in the current scenario given the smaller scale and
specific environmental settings of our data. The data available
from our field campaign are representative of the locations
surveyed, but not necessarily enough to train a full segmenta-
tion model from scratch. Hence, we use adaptable techniques,
namely, pre-trained ViTs models for this task, with the aim
of training a generalized end-to-end semantic segmentation
model. The design objective is that this model must be
capable of identifying ice mélange, including large icebergs
and smaller ice fragments, from images taken in the glacial
bay. Additionally, it should be able to distinguish sea surface
that is not covered by ice, as well as other regions (such as
glacier cliffs or rocky shores), so that we can use this to
compute the percentage cover of floating ice in the bay by
area.

B. Segment Anything Model

SAM is a foundational model for visual segmentation
launched by Meta [5], [6]. Primarily, this model is trained by
utilizing prompt engineering to facilitate segmentation based
on prompts provided to a pretrained large-scale model. It
has the potential to be applied in downstream segmentation
tasks and can be integrated with other visual tasks to develop
solutions for visual analyses. The model exhibits zero-shot pre-
dictive capabilities, and is able to perform semantic segmen-
tation, instance segmentation, and panoramic segmentation



Fig. 2. SAM segmentation output with a sample image using the demo provided on the website [6]

Fig. 3. Illustration adopted from [7] demonstrating LoRA fine-tuning proce-
dure using matrices A and B, for pretrained weights W, input x and output
h. A and B are initialized with a random normal distribution and zeroes,
respectively.

concurrently. Moreover, it allows for real-time adjustments
to the outcomes based on user prompts [5]. Based on these
considerations, we adopt SAM for our task.

SAM comprises of 3 components- an image encoder, a
prompt decoder, and a mask decoder [5]. The Image encoder
is a pre-trained ViT which processes each image once to
extract embeddings for segmentation. The Prompt encoder
can encode diverse user inputs, including points, bounding
boxes, and text, into prompt embeddings. The points and
boxes given through prompts are represented in the network
using positional encoding. Dense prompts like masks can also
be embedded into the model. The Mask decoder employs a
modification of a transformer decoder block followed by a
dynamic mask prediction head. It computes the mask proba-
bility for each image location. The prompt encoder and mask
decoder are computationally light-weight, relatively, ensuring
rapid response to user prompts upon the pre-computed im-
age embeddings. This architecture enables SAM to perform
accurate and efficient interactive annotation processes.

When applied on the image datasets described in Section II,
the vanilla SAM performs well, broadly speaking, in terms of
accuracy of distinguishing different components of the image,
as demonstrated in the example in Fig. 2. It successfully
separates the glacier cliff, sea water, and floating ice, using
natural color and textural differences in the image with the
capabilities endowed during its pre-training. However, as far
as our application is concerned, the segmentation is incomplete
- eg. SAM treats some of the large ice pieces and floating ice
as separate objects, which need to be combined into a single
category. The final model is intended to perform a three-way
segmentation of the scene into three categories:

1) floating ice,
2) the ocean surface that is not covered by ice, and
3) other elements in the scene.

Thus, we fine-tune the SAM to achieve this three-way seg-
mentation required of our system.

C. Fine-tuning

While large models pre-trained on extensive datasets
demonstrate substantial capabilities, their general training pro-
cess and the diverse dataset used often limit initial effective-
ness on specific, nuanced downstream tasks. Fine-tuning, a
form of transfer learning, addresses this by training the large
models using the datasets for the specific downstream task.
Common fine-tuning strategies include altering the model’s
architecture or freezing a subset of the model’s parameters,
significantly reducing the number of trainable parameters,
therefore the training is feasible even with limited computa-
tional resources. Leveraging the emergent abilities of large pre-
trained model, the necessity for large datasets also diminishes,
and the model can perform well with small amount of training
data. Most importantly, performance in downstream tasks can
be improved.

We fine-tune the ViT-L model provided by Meta [5], [6],
using the LoRA approach [7], to achieve a three-way segmen-
tation into the categories mentioned previously. LoRA is an
efficient way to adapt pre-trained models to downstream tasks,
inspired by the idea that the change in weights during model
adaptation has a low “intrinsic rank”. This approach introduces
rank decomposition matrices to dense layers, in order to train
these layers in the pre-trained model indirectly by freezing the



ML architecture MIOU
SAM-based model fine-tuned with training dataset 0.89
UNet model trained on training dataset 0.54

TABLE I
PERFORMANCE COMPARISON BETWEEN SAM AND UNET-BASED MODELS

original weights W and optimizing the weights in the matrices
alone. As shown in the illustration in Fig. 3, only the low-
rank matrices A and B are trainable, and the inference result
computed by A and B are added to the original result output
by the pre-trained weights. LoRA is computationally efficient,
as only small low-rank matrices need to be trained [7]. At
the same time, the simple linear design introduces minimal
inference latency compared to adapters.

In order to fine-tune SAM to develop a segmentation model
to meet our design objectives, we create a training set by
manually annotating a number of images from the acquired
dataset using MobileSAM [12], a lightweight variant of SAM
that accepts user prompts. These are used to fine-tune the ViT-
L model [5]. First, the image encoder component is fine-tuned,
as this is the stage at which the information from the image
at the input is encoded in the first stage. This fine-tuning
is done using the LoRA approach because the encoder has
a large number of parameters. LoRA matrices are added to
every 24 attention layers and the rank is set to 512 during
fine-tuning with the annotated images. The loss function used
during training is a combination of Dice loss [13] with cross-
entropy (DiceCE loss) [14], and the Adam optimizer is used.

While fine-tuning the image encoder leads to an improve-
ment in the model performance, the test performance does
not yet achieve the desired specifications. This is likely be-
cause modifying the image encoder only adjusts the model’s
capability in perceiving images of our task, but the model’s
interpretation of these images which generates the segmented
mask outputs remains unchanged. In order to tackle this, we
next fine-tune the mask decoder component, which takes the
image embedding and the output from the prompt encoder,
and outputs the mask and score as segmentation results.
The prompt encoder endows SAM with potent interactive
capabilities. However, for our application, we require a fully
automatic segmentation model to segment floating ice. Hence,
in our case, it’s necessary for the mask decoder to be able to
produce the desired outcomes even without prompts and the
prompt encoder component is not used.

IV. RESULTS

The final model obtained after sequential fine-tuning of
the encoder and decoder components using only 10 images,
spread across different glaciers and acquired using drone
and ship-mounted camera, performs well on images obtained
from multiple locations, as seen on results with images from
Hansbreen (Fig. 4), Kronebreen (Fig. 5), and Conwaybreen
and from images acquired from ship-mounted camera (Fig. 6).
Specifically, we also observe the following about the model’s
performance:

1) As seen by comparing across multiple figures, the model
is robust to changes in color of the water, spread of the
ice-mélange, and size of ice pieces.

2) As seen in Fig. 5, the model is robust to variation
in lighting, shadow and color, even when these occur
within the same image.

3) The model is robust to reflections on the water surface,
as seen in Fig. 5(b) and (c), and Fig. 6(c).

4) The model is robust to the modality based on which the
image was acquired (aerial/ship-mounted) - in Fig. 6(a)
and (b), the model is able to identify the water and ice
correctly, and also delineate the ship as part of category
3 correctly.

Overall, the segmentation model exhibits satisfactory robust-
ness in performance to several possible variations in the input
images. Minor flaws can be spotted in some cases - eg. in
Fig. 6(c), the extreme glare of the sky causes the model
to wrongly classify a small portion near the terminus as
category 3 instead of 2 towards the center portion of the
image. Likewise, in Fig. 5(b), a few pixels in category 2 are
misclassified as category 3. However, such errors are observed
to be rare, and the performance is reasonable enough for usage
on field data.

Based on the three-way segmentation by the fine-tuned
SAM, we compute a naive metric of the percentage cover of
ice over the ocean surface within each image assessed, the ice
coverage percentage C, computed as

C = 100× P1

P1 + P2
(1)

where P1 and P2 are the number of image pixels segmented
under categories 1 (floating ice) and 2 (uncovered ocean
surface) respectively. We note that this metric does not exactly
correspond to the percentage cover of ice over the ocean
surface in terms of area, but is a simple proxy for it that
is easily computable from the segmented outputs.

The whole training process can be done with limited com-
putational resources. Our training was conducted on a NVidia
L40 GPU with 48 GB of RAM, over 40 epochs. Given the
small training dataset and the reduction of the number of
parameters by using methods like LoRA, the whole training
process required only 630 seconds to complete. Deploying the
SAM requires about 1385 MB of memory, which would be a
consideration to take into account when deploying it on low-
power edge-computational devices for real-time monitoring
and processing.

In order to benchmark the performance, this technique was
compared against a standard CNN-based segmentation model
based on the UNet architecture [15]. The UNet architecture
consists of an initial contracting path of neural network
weights (with a bottleneck) to capture context in the image,
and a symmetric expanding path following that for precise
localization. We train the UNet model for 50 epochs using the
same training set we used to fine-tune the SAM.

We also quantify the performance of segmentation using
the Mask-intersection-over-union (MIOU) metric, as shown in



Fig. 4. Ice-segmentation results with drone images from Hansbreen - row 2 shows the original images, and row 1 shows the segmented outputs. Red semi-
transparent mask indicates the areas labeled as ”floating ice” (category 1), blue mask indicates ”ocean surface not covered by ice” (category 2), and green
indicates ”other areas” (category 3). The pixel-based coverage percentage C is estimated as 46.4%, 38.9% and 90.6% respectively for the three images.)

Fig. 5. Ice-segmentation results with drone images obtained at Kronebreen - row 2 shows the original images, and row 1 shows the segmented outputs. The
segmentation color convention is the same as Fig. 4. The pixel-based coverage percentage C is estimated as 10.5%, 3.67% and 31.0% respectively for the
three images.

Table I. The metric was computed on fully annotated test data
consisting of 17 images from Hansbreen. It can be seen that
the fine-tuned SAM-based model obtains a reasonable MIOU
of 0.89 with the test data. The fine-tuned SAM performs much
better than the UNet model trained from scratch, which only
obtains an MIOU of 0.54. This is clearly because the SAM
has the advantage that comes with pre-training, whereas the
number of images was not enough to train the UNet adequately
from scratch.

V. CONCLUSIONS AND FUTURE WORK

We developed and showcased the capabilities of an ML-
based image segmentation model to segment floating ice and
ice-melange in tidewater glacial bays. The model is based

on the Segment-Anything-Model, fine-tuned from the Vit-L
model using a Low-Rank Adaptation approach. It is able to
work with a low amount of training data, and carries out three-
way segmentation of the images into floating ice, uncovered
ocean, and other regions. The model was shown to perform
robustly, handling images from different glaciers in different
regions, and obtained using various modalities, with different
lighting and color conditions. The model was also shown to
outperform another benchmark model architecture for seg-
mentation without pretraining. This underscores the superior
performance and nuanced recognition abilities of advanced
pretrained models like SAM in complex image segmentation
tasks. Field campaigns in polar regions are challenging and
expensive, and collecting a large amount of data from such



Fig. 6. Ice-segmentation results with (a) and (b) images obtained from ship-mounted camera near Kronebreen and (c) drone images obtained at Conwaybreen.
Row 2 shows the original images, and row 1 shows the segmented outputs. The segmentation color convention is the same as Fig. 4. The pixel-based coverage
percentage C is estimated as 8.89%, 2.43% and 4.76% respectively for the three images.

regions is not easy. Given this, the approach outlined herein
based on the minimal available data to develop a segmentation
model, would help efficiently utilize the valuable data collected
from such campaigns to develop robust systems for vision-
based analysis.

This model can be deployed on land- or aerial- based camera
systems to estimate the formation, movement, and dissipation
of floating ice in glacial bays resulting from climate-change
mechanisms and hydrological circulation in the bay due to
forces such as tidal pumping, subglacial discharge plumes [16]
or submarine melt-induced factors. In the long run, a vision-
based system using this model could help study these factors
effectively to better understand climate-change mechanisms in
glacial regions.

An important future step would involve using the segmented
outputs to compute the percentage cover of ice over the
ocean surface in terms of surface area, which is a metric
that may aid a better understanding of ice dynamics in the
region. This would involve using additional information on
the geometry and the camera used for the data collection.
Tracking the movement of individual icebergs so as to estimate
the circulation in the bay would also be a research problem
with potential applications.
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“Rapid iceberg calving following removal of tightly packed pro-glacial
mélange,” Nature Communications, vol. 10, no. 1, 2019.

[3] H. Vishnu, G. B. Deane, M. Chitre, O. Glowacki, D. Stokes, and
M. Moskalik, “Vertical directionality and spatial coherence of the sound
field in glacial bays in Hornsund Fjord,” The Journal of the Acoustical
Society of America, vol. 148, no. 6, pp. 3849–3862, dec 2020. [Online].
Available: http://asa.scitation.org/doi/10.1121/10.0002868

[4] M. C. Zeh, O. Glowacki, G. B. Deane, M. S. Ballard, E. C. Pettit,
and P. S. Wilson, “Model-data comparison of sound propagation in a
glacierized fjord with a variable ice top-boundary layer,” The Journal of
the Acoustical Society of America, vol. 145, no. 3, pp. 1887–1887, mar
2019. [Online]. Available: http://asa.scitation.org/doi/10.1121/1.5101839

[5] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick,
“Segment anything,” arXiv:2304.02643, 2023.

[6] “Segment Anything,” 2024. [Online]. Available: https://
segment-anything.com/

[7] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “LoRA: Low-rank adaptation of large language
models,” in International Conference on Learning Representations,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2106.09685

[8] F. Li, D. A. Clausi, L. Wang, and L. Xu, “A semi-supervised approach
for ice-water classification using dual-polarization sar satellite imagery,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2015, pp. 28–35.

[9] B. Evans, A. Faul, A. Fleming, D. G. Vaughan, and J. S. Hosking, “Un-
supervised machine learning detection of iceberg populations within sea
ice from dual-polarisation sar imagery,” Remote Sensing of Environment,
vol. 297, p. 113780, 2023.



[10] S. Ansari, C. Rennie, S. Clark, and O. Seidou, “Icemasknet: River ice
detection and characterization using deep learning algorithms applied to
aerial photography,” Cold Regions Science and Technology, vol. 189, p.
103324, 2021.

[11] N. Panchi, E. Kim, and A. Bhattacharyya, “Supplementing remote
sensing of ice: Deep learning-based image segmentation system for
automatic detection and localization of sea-ice formations from close-
range optical images,” IEEE Sensors Journal, vol. 21, no. 16, pp. 18 004–
18 019, 2021.

[12] C. Zhang, D. Han, Y. Qiao, J. U. Kim, S.-H. Bae, S. Lee, and C. S.
Hong, “Faster segment anything: Towards lightweight sam for mobile
applications,” arXiv preprint arXiv:2306.14289, 2023.

[13] J. Ma, J. Chen, M. Ng, R. Huang, Y. Li, C. Li, X. Yang, and A. L.
Martel, “Loss odyssey in medical image segmentation,” Medical Image
Analysis, vol. 71, 2021.

[14] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein,
“nnU-Net: a self-configuring method for deep learning-based biomedical
image segmentation,” Nature Methods, vol. 18, no. 2, pp. 203–211, 2021.
[Online]. Available: http://dx.doi.org/10.1038/s41592-020-01008-z

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Horneg-
ger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International
Publishing, 2015, pp. 234–241.

[16] D. A. Slater, F. Straneo, S. B. Das, C. G. Richards, T. J. W.
Wagner, and P. W. Nienow, “Localized Plumes Drive Front-Wide
Ocean Melting of A Greenlandic Tidewater Glacier,” Geophysical
Research Letters, vol. 45, no. 22, nov 2018. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080763


