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Abstract—We explore Neural Radiance Fields (NeRFs) for
synthesizing novel views of underwater structures. This learning-
based approach relies on a sparse set of camera views to model
the 3D geometry of underwater structures and scenes. Real-
world underwater scenes exhibit significant temporal variations,
introducing challenges in maintaining visual consistency. We
investigate three NeRF implementations: 1) nerfacto, which rep-
resents the baseline; 2) nerfacto with transient embeddings and 3)
nerfacto with a robust loss, which are designed to deal with scene
inconsistencies. We evaluate these implementations using datasets
collected in 1) a controlled environment and 2) a real underwater
setting. The modified implementations consistently outperform
the original nerfacto across both datasets. The performance im-
provements are particularly pronounced in the dataset obtained
from the real underwater setting where scene inconsistencies are
more prevalent. This underscores the importance of robustifying
NeRF implementations to ensure consistent performance in the
challenging underwater environments.

I. INTRODUCTION

Significant effort is expended to monitor and maintain
underwater structures in freshwater or oceanic environments,
both natural and man-made. Natural underwater structures
such as coral reefs and underwater caves provide important
habitats for marine life and play an important role in the
ocean ecosystem. Man-made underwater structures such as
offshore oil and gas platforms and submarine cables are
essential for the global economy and have a crucial impact on
human life. Mapping of these structures using photogrammetry
is one of the underpinning technologies enabling accurate
and high resolution inspections, such as identifying damage
and tracking changes in the structures over time [1], [2],
[3]. Traditional photogrammetry constructs a 3D model of a
target structure by deriving measurements from a dense set
of overlapping images. The 3D model explicitly stores color,
reflectivity, texture, and other properties of the structure in
the discrete 3D space. Projecting the discrete representations
along camera rays onto a 2D plane enables the synthesis of a
novel view of the structure. However, for realistic and complex
scenes, such a model can consume a significant amount of
memory to produce a representation with sufficient fidelity.
This is especially problematic on vehicular platforms, such
as remotely operated vehicles and autonomous underwater
vehicles due to limited memory and computational power.

Neural radiance fields (NeRFs) offer a computationally
efficient alternative for synthesizing novel views of scenes.
NeRFs store and represent the scene in terms of a continuous
volumetric scene function that typically represents the color

and density of light at every point in space, and can be
trained using a sparse set of images [4]. Novel views can
be synthesized by querying the function along camera rays
and rendering the corresponding images using classical volume
rendering techniques. Despite its potential as a powerful tool
for synthesizing photorealistic images, NeRFs may sometimes
perform poorly on some types of real-world scenes due to
different issues. The main issue that can affect NeRFs is
inconsistencies in the different input views of a scene [5]. This
creates significant challenges in underwater environments,
where dynamic changes in the scenes due to movement of
objects such as plankton, sediment, algae, fish, and variable
illumination due to lighting changes are particularly common.
These factors may lead to inaccuracies in NeRF-based novel
view synthesis.

In this study, we investigated the feasibility of novel view
synthesis for underwater structures using NeRFs. To collect
data for the study, we conducted an experiment in a large
state-of-the-art Deepwater Ocean Basin (DOB) at the Tech-
nology Centre for Ocean and Marine, Singapore [6] in which
an underwater vehicle was made to inspect an underwater
structure while capturing images of it. The experiment also
had transient objects in the scene and variations in illumina-
tion. Subsequently, we trained different models of the scene
using improved NeRF variants with the acquired dataset, and
assessed the novel view synthesis performance of each model.
For further investigation in a realistic environment, we also
trained and evaluated the models using a real-world dataset
obtained from a marine environment.

Section II of this paper briefly introduces the formulation
of NeRFs and their different flavors. Section III describes the
experiments and data used by us to assess NeRFs in this paper,
and the results. Section IV concludes the paper.

II. NEURAL RADIANCE FIELDS

Let p = [x, y, z] be a 3D point, d = [dx, dy, dz] be a unit-
norm camera viewing direction, c = [r, g, b] be color in red
green and blue, and σ be a density. NeRFs leverage multilayer
perceptrons (MLPs) to map (p, d) to (c, σ). By aggregating
colors and densities along a camera ray, denoted by r, through
a pixel on the camera plane, the model predicts the color of
the pixel, represented by Ĉ(r). The model is typically trained
by minimizing an L2 reconstruction loss [4]:

L = ∥Ĉ(r)−C(r)∥22 (1)



where C(r) is the observed pixel color of ray r from an input
image. As a baseline model for our comparative study, we
employed nerfacto, which is a modular NeRF implementation
that adopts recent advancements to improve computational ef-
ficiency and handle unbounded scenes [7]. Figure 1 illustrates
the nerfacto model structure. Nerfacto integrates per-image
appearance embeddings to effectively address the impact of di-
verse lighting conditions. Each appearance embedding, which
is denoted by la, is a trainable real-valued vector of length na.

Fig. 1. Model structure of nerfacto.

To make nerfacto more robust to image inconsistencies, we
explored two of its variants, namely nerfacto with transient
embeddings [8] and nerfacto with a robust loss function [9].
While the model structure of nerfacto with transient embed-
dings is similar to NeRF in the Wild (NeRF-W) [8], as shown
in Fig. 2, the processing pipeline of nerfacto with transient
embeddings is rooted in the framework of nerfacto. Each
transient embedding, which is denoted by lt, is a trainable
real-valued vector of length nt. The transient head emits a
field of uncertainty, denoted as β, enabling the model to
adaptively adjust its reconstruction loss function by ignoring
pixels and 3D points that are likely to involve occluders. The
color of the pixel is calculated by aggregating not only the
static components (c, σ) but also the transient components (ct,
σt). The loss function of nerfacto with transient embeddings
is written as

Lte =
∥Ĉ(r)−C(r)∥22

2β(r)2
+ log(β(r)) + λug(r) (2)

where β(r) is obtained by accumulating β and σt along r,
g(r) represents the average of σt along r, weighted by a
non-negative scalar denoted as λu. In (2), the second term
is to balance the reconstruction loss and the third term with a
multiplier λu enforces sparsity on the transient density.

Instead of incorporating transient embeddings into the ner-
facto model structure for representing transient objects in the
scene, nerfacto with a robust loss merely replaces (1) with

Lrl = w(r)∥Ĉ(r)−C(r)∥22 (3)

where w(r) is a binary weight function of r [9]. The robust
loss function, characterized as a squared sum of trimmed
entries, automatically distinguishes inconsistent image regions

Fig. 2. Model structure of nerfacto with transient embeddings.

and treats them as optimization outliers during the training
process which can be neglected. Specifically, the weight func-
tion w(r) dynamically adjusts during model fitting, facilitating
the rapid learning of fine-grained image details that are not
considered outliers. It categorizes pixels along the rays as
either inliers or outliers, guided by an inductive bias towards
the smoothness of the outlier process. The weight function
captures the spatial smoothness of the outlier process, taking
into account that inliers generally exhibit large magnitude
residuals but limited spatial extent, whereas outliers tend to
have weaker residuals but extend over larger spatial regions.
It is essential to note that this assumption may not hold true
for small transient objects, such as marine snow in underwater
scenes.

III. EXPERIMENTS AND RESULTS

We developed a hybrid underwater vehicle named Hydra,
equipped with a wide-angle, low-light camera using commer-
cially available, off-the-shelf components. The vehicle was
deployed within the DOB, and navigated around a bottom-
mounted rectangular structure constructed from steel drums,
with the camera directed towards the structure. It captured a se-
ries of images during the run emulating a real-world inspection
mission. During the mission, there were occasional transient
objects picked up at the scene apart from the structure. For
example, there were instances where the tether connecting the
vehicle to the top-side controller was incidentally captured on
the camera (see Fig. 3, row 3, column 1), which is a challenge
that may occur in a regular underwater inspection mission.
Additionally, to study the robustness of NeRFs to variable
illumination conditions as is often encountered in real-world
scenarios, the DOB lighting was dimmed during some of the
runs, and we sporadically toggled the vehicle’s own lighting
on and off.

To evaluate the performance of nerfacto and its variants,
we conducted training and testing on novel view synthesis
tasks, focusing on the underwater structure during the in-



spection mission. The NeRF models were either built upon
or adapted from nerfstudio version 1.0.0 [7]. We used the
hyperparameters na = 32, nt = 32, λu = 0.1 to train the
models, respectively. The full set of DOB data, consisting of
899 images, underwent a division into training and test sets
using a 90− 10 split. The estimation of camera poses for the
images was accomplished using COLMAP, a structure-from-
motion package. [10], [11]. Number of rays per batch used
for training iterations is 16384. The training set was used to
train the NeRFs while the test set was used for performance
evaluation.

Fig. 3 illustrates the novel view synthesis performance of
the models on the test dataset collected at the DOB. The first
column contains ground-truth images captured by the camera,
while the subsequent columns display images synthesized by
different NeRF models from the same camera viewpoints. We
evaluated the models across four scenarios:

• vehicle light on,
• vehicle light off,
• vehicle light off with the tether present,
• vehicle light on with the tether present,

presented respectively in the four rows in the figure. All the
models demonstrate robust performance under varying lighting
conditions. In the third and last scenario, nerfacto exhibits
artifacts in the image when the vehicle tether is present. These
artifacts likely stem from the presence of the tether, as it was
incidentally captured in some training images taken by the
vehicle’s camera in close proximity to the pose corresponding
to the capture of the third and last scenario’s image. In
contrast, the models equipped with transient embeddings or
a robust loss function outperform nerfacto by consistently
generating photorealistic images without the artifact for all
four test scenarios. For quantitative analysis, we compared the
camera images with the synthesized images based on PSNR,
MS-SSIM [12], and LPIPS [13] as summarized in Table I.
Given that camera images may include variable lighting and
transient objects that might not be present in the synthesized
counterparts, we took several preprocessing steps. Firstly,
we standardized each synthesized image based on the mean
and standard deviation of the corresponding camera image.
Subsequently, to remove any transient objects present in the
camera image, we applied a manually labeled binary mask on
both images. This approach mitigates the potential differences
in lighting and transient elements between the two sets of
images. The resulting modification to the nerfacto showcases
a slight enhanced image quality compared to the original
nerfacto. The improvement is marginal as inconsistencies in
the scene represent only a small fraction of the overall training
data.

It is worth noting that the DOB represents a controlled
environment with clear water. In real underwater settings, con-
ditions tend to be murkier with the presence of suspended par-
ticles in the water, often referred to as marine snow. We applied
the same preprocessing, training and evaluation procedures to
the Torpedo Boat Wreck (TBW) dataset, comprising publicly

TABLE I
QUALITATIVE RESULTS ON THE DOB TEST DATASET.

PSNR ↑ MS-SSIM ↑ LPIPS ↓

nerfacto 29.382 0.915 0.468

nerfacto + transient embeddings 30.074 0.934 0.446

nerfacto + robust loss 30.679 0.929 0.458

available images obtained from the Hybrid Remotely Operated
Vehicle survey of the wreck of a torpedo boat [14], [15]. The
TBW data consists of 442 images, with 90% allocated for
training and 10% for testing. The performance gap between
nerfacto and the models with improved features becomes even
more apparent with this dataset, as shown in Fig. 4. Nerfacto
with transient embeddings yields sharper results compared to
nerfacto with the robust loss technique. However, the former
method tends to produce images with a darker tone which
are not true to the scene. The qualitative results based on
the TBW test dataset are shown in Table II. The enhanced
nerfacto models demonstrate a superior ability to handle the
presence of marine snow in the training images, resulting in
the generation of synthesized images with significantly higher
quality compared to the original nerfacto model.

TABLE II
QUALITATIVE RESULTS ON THE TBW TEST DATASET.

PSNR ↑ MS-SSIM ↑ LPIPS ↓

nerfacto 26.269 0.863 0.507

nerfacto + transient embeddings 30.068 0.930 0.434

nerfacto + robust loss 29.926 0.896 0.447

IV. CONCLUSION

We have conducted a feasibility study focused on mapping
structures for intricate underwater operations utilizing NeRFs.
Being able to incorporate or ignore scene inconsistencies
is crucial for enhancing the robustness of NeRF models,
enabling the synthesis of high-quality, novel views of under-
water structures. This capability presents exciting possibilities
in the realms of underwater inspection and intervention. In
particular, with a known vehicle pose, we can now generate
NeRF-rendered images to serve as priors for compressing
the respective camera image before transmission. This could
substantially reduce data transmission requirements, paving
the way for virtual tethering in underwater vehicles [16].
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