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Abstract—We introduce an architecture designed for wireless
Remote Operated Vehicle (ROV) operations during intervention
surveys. Using the recent advancements in 3D modeling, visual
odometry, video compression, and underwater communication,
our approach aims to facilitate fully wireless ROV operations.
The proposed architecture comprises several modular blocks,
each with versatile applications spanning diverse domains, includ-
ing multiplayer gaming, remote rover control and video trans-
mission over a low-bandwidth connection. This comprehensive
framework signifies progress in ROV operations, replacing the
traditional physical tether with a software-defined virtual tether.

I. INTRODUCTION

ROVs play a crucial role in facilitating underwater inspec-
tions and interventions in offshore operations. These vehicles
are typically operated using a tether, requiring substantial on-
site infrastructure such as tether management systems and
support vessels with ROV operators aboard. While tethers
ensure comprehensive control over ROV operation, they are
susceptible to entanglement with subsea obstacles and pose
an operational risk.

Autonomous Underwater Vehicles (AUVs) offer the advan-
tage of operating without tethers, suitable for tasks like site
surveys or seabed scanning in certain offshore operations.
However, intricate subsea tasks still require human-in-the-loop
control, such as manipulating valves or maneuvering precisely
near subsea infrastructure. The necessity for a solution drove
the ongoing development of Hybrid ROVs (HROVs), which
aim to combine the advantages of tetherless operation with
human-controlled precision.

Early attempts at HROV development involved substitut-
ing wired tethers with acoustic links [2]. However, acoustic
modems’ lower data throughput posed challenges for real-time
video streaming and limited Frames Per Second (FPS) using
off-the-shelf compression algorithms. While offering wireless
connectivity, this approach fell short in delivering real-time
video due to inherent acoustic communication limitations.

Integration of optical modems with an acoustic modem
aimed to overcome the throughput limitations [3], enabling
low-latency wireless connections between base stations and
underwater vehicles. This technology combination demon-
strated ROV operation without wired tethers [4], using op-
tical modems for real-time video transmission and acoustic
modems for manipulator control. However, the operational ra-
dius remained constrained as the optical modem’s throughput
diminished with increasing turbidity.

Fig. 1: Our hybrid ROV and the base station, equipped with
optical and acoustic modems, used during the experiments at
the ocean basin in the Technology Centre for Offshore and
Marine, Singapore (TCOMS) [1].

The challenge of replacing wired tethers with alternatives
offering extensive operational areas and responsive control
remains unresolved.

The offshore inspection and intervention missions utilizing
ROVs typically cover the same geographical area in successive
runs. During the initial inspection run, the ROV is equipped
with additional instrumentation, such as acoustic modems for
positioning and tethers for power, control commands, and
communication. With these instruments, the ROV can gather
extensive information to characterize the baseline state of
the survey area and conduct thorough inspections of target
infrastructure. The collected data usually includes visual and
sonar profiles, along with navigational information. In contrast,
intervention missions occur more frequently, often requiring
the ROV to execute precise maneuvers. Wireless operation
during these intervention missions becomes imperative, and
our primary focus is on enabling wireless operations during
these interventions.

In recent years, machine learning algorithms have gained
significant traction in various fields, including robotics and
computer vision. These algorithms have demonstrated remark-
able capabilities in tasks such as generating 3D models using
Neural Radiance Fields (NeRFs) [5]–[7], estimating positions
[8]–[10], and even image compression [11] using solely image



Fig. 2: A graphical depiction of our architecture for virtual tethering of ROVs.

data. Building upon these recent advancements, we introduce
an architecture that can function as a virtual tether, providing
operational benefits comparable to a wired connection and
facilitating remote human-in-the-loop wireless operations.

Our proposed architecture processes streaming data from in-
dividual components such as cameras and positioning systems,
extracting only novel information from this stream and trans-
mitting solely this condensed data, which is smaller compared
to transmitting the entire data stream directly. This processing
is aimed at optimizing data packet size for efficient trans-
mission over acoustic links, thus expanding the operational
area while maintaining control over the ROV. Additionally, we
integrate an auto-switch mechanism to transition to an optical
link when the vehicle approaches a base station and requires
low-latency communication. Following are the contributions
of this work -

1) Use of NeRF model as a Database of Views.
2) Compressing and reconstructing camera view for trans-

mitting it over low-bandwidth communication link.
3) Demonstration of the virtual tether framework through

field experiments.
4) An auto-switch mechanism for opportunistic short-range

and low-latency communication.
Details of this architecture are provided in Section II,

while implementation specifics and experimental results are
discussed in Section III. Moreover, the versatility of this archi-
tecture and its constituent components extends beyond wireless
ROV operations to applications such as remotely controlling
robots with limited connectivity and video transmission over
constrained bandwidths.

II. VIRTUAL TETHERING ARCHITECTURE

We are interested in making the intervention missions com-
pletely wireless and thus replace the physical tether with an
virtual alternative. One straightforward approach is to utilize
the data collected during inspection runs and train a machine
learning models for successive missions that compresses the

incoming data stream. For instance, the utilization of autoen-
coder based compression for scientific data has demonstrated
compression ratios of up to 50% [12]. However, even with
this degree of compression, it remains infeasible for acoustic
modems to provide a high FPS video stream. Consequently,
this simple architecture, utilizing an environment-specific com-
pression and decompression model, can provide a virtual tether
with a large operational area but with lower FPS.

Broadly, a physical tether is used for transmitting live
camera images, pose information and vehicle control status
for ROV operators to maneuver the vehicle underwater. The
bandwidth required for transmitting pose information and
control commands is low, and thus, these can be transmitted
using an acoustic link. However, the camera images require
significant compression to achieve high FPS and make fully
functional wireless ROV control feasible.

Interestingly, pose information and camera images are cor-
related. This correlation means that for a particular pose, there
will be a corresponding camera view. One way to exploit this
correlation is to make use of the data collected during the first
inspection run and maintain a bag-of-poses with correlated
views. Then, whenever the vehicle is in a particular pose
during an intervention mission, we can query this bag-of-
poses and render the equivalent camera view. However, such
an approach will have two major challenges. First, during the
inspection mission, we will have to visit each and every pose
in the area to build a comprehensive bag-of-poses, which is
infeasible. Second, there may be dynamic components in the
view, such as schools of fish or new obstacles, that were not
present during the intervention mission and thus render an
incorrect view without the dynamic components.

We overcome the first challenge by learning a 3D model
representation that can be queried to render an equivalent
camera view using the pose information only. This represen-
tation is learned using the data collected during the inspection
task, details about this model are discussed in Section II-A.
During the intervention mission, we can use the vehicle pose
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Fig. 3: Flowchart diagrams depicting the implementation process within the vehicle and operator side. (a) illustrates
the implementation flow within the vehicle before transmitting information via the virtual tether, while (b) depicts the
implementation on the operator side. Vehicle and user control commands are transmitted using conventional underwater
communication methods.

to render a view using the learned 3D representation and
compute the difference between this rendered view and the live
view captured using the camera. Calculating this difference in
information can help in overcoming the second challenge of
dynamic components, details about this difference calculation
are discussed in Section II-B. Finally, we stack the difference
and other information such as pose as discussed in Section II-C
to successfully recover the live camera view by transmitting
only the pose and the novel information instead of raw, live
camera views. The level of compression offered by such an
approach makes it feasible to transmit data over an acoustic
link. Fig. 2 shows a graphical representation of our virtual
tethering implementation.

A. NeRF model as a Database of Views

NeRF represents a scene in term of a continuous volumetric
scene function through a fully-connected neural network [5].
This enables the learning of complex 3D representations
using only a partial set of images and corresponding pose
information. Once trained, NeRF models can generate novel
views based solely on pose information. Essentially, a NeRF
model captures the information of a complex 3D scene within
the weights and biases of the neural network. This compact
and easily queryable representation makes NeRFs well-suited
for use as a database for rendering views.

A recent feasibility study demonstrated the applicability of
NeRFs to underwater structures [13]. Building upon this study,
we utilize data collected during the initial inspection mission



to train a NeRF model for learning a 3D representation of
the underwater site. Subsequently, this trained NeRF model
enables operators to render synthetic views solely based on re-
ceived pose information from the vehicle. However, additional
information is required for rendering a camera view from this
synthetic view, as discussed in the following section.

B. Extracting Novel Information for Rendering Camera View

NeRF models offer the capability to generate synthetic
representations of underwater structures. However, the live
camera view may deviate from this synthetic representation
due to two primary factors: the dynamic nature of underwa-
ter scenes, including fluctuations in lighting conditions, and
inaccuracies in the vehicle’s pose estimates. This discrepancy
between views necessitates the extraction of novel information
to reconstruct the live camera view from a given synthetic
representation, with a critical requirement being that the
representation remains compact enough for transmission via
acoustic links.

A direct method for computing this novel information in-
volves determining the pixel-wise differences between the live
camera view and the synthetic representation. This approach
is particularly effective in addressing the dynamic nature of
underwater scenes. Ideally, the computed differences would
manifest as a sparse matrix, making them well-suited for com-
pression algorithms such as WebP [14], which allocate fewer
bits to segments with low entropy. However, inaccuracies in
pose estimates may result in slight shifts or tilts in the synthetic
image, potentially diminishing the sparsity and increasing the
size of the compressed image.

To mitigate the impact of noisy pose estimates, we compute
an affine transformation of the synthetic view that effectively
preserves the salient features observed in the live camera
view while simultaneously minimizing the size of the resulting
compressed image. Remarkably, the parameters of the affine
transformation necessary for reconstructing the camera view
are independent of the image dimensions. They rely solely
on the specific transformations required such as translation or
rotation, rendering it highly suitable for our intended purpose.

C. Transmitting and Reconstructing the View For Operator

For a fully functioning virtual tether, ensuring that operators
can view live camera images while transmitting all required
data via underwater wireless communication is imperative. We
deploy two components to achieve this, one operating on the
vehicle side and the other on the operator or top side. The
flowchart for these individual components is depicted in Fig.
3.

The implementation process commences with training a
NeRF model using the dataset collected during the initial
inspection mission. Once trained, a copy of this model resides
both on the vehicle and on the operator side. During successive
missions, when a new camera and pose image are captured
on the vehicle, our vehicle-side framework first utilizes the
pose to generate the corresponding synthetic view using the
NeRF model. Subsequently, it calculates the novel information

and corresponding affine transformation parameters using the
method outlined in Section II-B. The framework then encap-
sulates the novel information, transformation parameters, and
vehicle pose into a data packet, which is transmitted via the un-
derwater wireless link. It is noteworthy that training the NeRF
model is necessary only at the outset of the process and may be
repeated only if the size of data packets continually increases,
suggesting significant overall changes in the underwater scene
compared to the NeRF representation.

On the operator side, the framework receives the data packet
containing vehicle pose, novel information, and transformation
parameters via the underwater wireless link. Utilizing the
copy of the trained NeRF model, the framework generates the
synthetic view based on the received pose information. Sub-
sequently, it applies the affine transformation to the synthetic
view using the received transformation parameters. Finally, the
framework decompresses and integrates the novel information
into this transformed image to provide the operator with a live
camera view. The flow of information and processes for both
the vehicle-side and operator-side frameworks are depicted in
flowchart diagrams in Fig. 3.

D. Vehicle Controls and Hybrid Underwater Communication

The bandwidth required for transmitting vehicle controls
and other sensory information, such as battery levels, is
generally low. In practice, such vehicle data can be transmitted
using fewer bytes. We leverage on these well-established con-
ventional methods to send vehicle data across, rendering our
architecture capable of transmitting live camera views, vehicle
poses, and control information using acoustic communication
links only.

However, operators may occasionally require low-latency
communication for downloading or uploading certain files to
the ROV during inspection missions. Utilizing an acoustic
link may not be feasible but an optical modem can provide
this, given the vehicle is within a certain operational range.
Consequently, our framework incorporates an optical modem
alongside our acoustic modem for opportunistic low-latency
and short-range communication. The framework seamlessly
switches between acoustic and optical communication, en-
abling operators to take advantage of the auto-switch feature
by navigating to areas where optical communication is viable
to download large files such as mission logs. This hybrid un-
derwater communication approach fulfills the final requirement
of a physical tether, providing a viable virtual alternative to it.

III. EXPERIMENTS & RESULTS

We retrofitted a commercially available ROV with both
an optical and an acoustic modem and used NVIDIA Orin
to run the vehicle-side framework exclusively. The low-level
controls on the vehicle were managed using ROS 2 [15] and
associated packages. Additionally, we deployed a base station
equipped with hydrophone array, an acoustic modem and an
optical modem for communication and vehicle localization.
On the operator side, we connected the base-station with
a GPU-enabled system to run our operator-side framework.
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Fig. 4: Results from the field experiments showcasing the efficacy of our virtual tether architecture. (a) depicts the live camera
view, while (b) presents the synthetic view generated using pose information and our trained NeRF model. The computed
novel information is illustrated in (c), revealing the presence of the safety tether obstructing the camera view, which was not
present during the initial data collection used for training the NeRF model. Finally, (d) displays the successfully reconstructed
image achieved using the method outlined in Section II-C.

Implementation of the framework on both sides utilized the
Julia programming language.

Our experiments took place in an ocean basin at TCOMS
[1], where we employed our hybrid ROV to conduct underwa-
ter structure inspections, as depicted in Fig. 4a. The first in-
spection mission involved data collection to learn a NeRF rep-
resentation, as detailed in Section II-A. Subsequent missions
utilized our virtual tether architecture for data compression,
resulting in significantly reduced throughput requirements. For
instance, 720×320 pixel images were transmitted using only
16 to 35 kilobits after applying our compression techniques.
During the experiment, we demonstrated video transmission
at 1 to 2 FPS.

Fig. 4 provides insight into the process facilitated by our
framework. The image displayed in Fig. 4a represents the live
camera view, while the image in Fig. 4b is generated using
the NeRF model. Subsequently, our vehicle-side framework
computes novel information, depicted in Fig. 4c. The gray
area in this image denotes segments with low entropy, demon-
strating the compression potential as compared to the original
camera image. Conversely, the non-gray portion represents
novel information absent from the synthetic view, such as
the safety tether obstructing the camera’s perspective that
was not present during the intervention mission. Finally, this
novel information, along with other data points, is transmitted,
resulting in the rendered image shown to the operator in
Fig. 4d, employing the method outlined in Section II-C. It
is evident that the final rendered image closely resembles the
camera view. This experiment serves as proof-of-concept for
our proposed virtual tether system and establishes a baseline
for future optimization to achieve higher FPS.

IV. CONCLUSION

Our approach introduces a novel machine learning-based
video compression architecture that leverages the repetitive
nature of ROV missions. By transmitting only novel informa-
tion in real-time alongside data necessary for reconstructing
the vehicle’s camera view, our architecture optimizes band-
width usage, enabling effective low-bandwidth communica-
tion. Through our virtual tether framework, we achieve robust
image reconstruction and provide satisfactory FPS for ROV
operators to navigate the vehicle wirelessly. Utilizing NeRF

models as a database, combined with our data manipulation
techniques for image compression and transmission, demon-
strates the efficacy of our framework. Field experiments vali-
date the feasibility of our approach, showcasing that modern-
day embedded computing capabilities have reached a practical
point for implementing such techniques.
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