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Handling Editor: Jonas Hagge 2. Previous acoustic methods such as paired sampling, microphone arrays and use
of call rate have been used to estimate bird abundances; however, these are less
suited for estimating large roost populations where hundreds of individuals are
calling in unison. To address this challenge, we explored using machine learning
techniques to estimate a roost population of the Javan myna, Acridotheres
javanicus, an invasive species in Singapore. While one may expect to use sound
intensity to estimate roost sizes, it is affected by various factors such as distance
to the recorder, local propagation conditions (e.g. buildings and trees), weather
conditions, and noise from other sources. Here, we used a deep neural network
to extract higher order statistics from the sound recordings and use those to
help estimate roost sizes. Additionally, we validated our method using automated
visual analysis with a dual-camera setup and manual bird counts.

3. Our estimated bird counts over time using our acoustic model matched the
automated visual estimates and manual bird counts at a selected Javan myna
roost, thus validating our approach. Our acoustic model estimated close to 400
individual mynas roosting in a single tree. Analyses of additional recordings of
Javan myna roosts conducted on two separate occasions and at a different roost
location using our acoustic model showed that our roost estimates over time also
matched our automated visual estimates well.

4. Practical implication: Our novel approach of estimating communal roost sizes
can be achieved robustly using a simple portable acoustic recording system.

Our method has multiple applications such as testing the efficacy of avian
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1 | INTRODUCTION

Communal bird roosts are prevalent in several avian families
(Beauchamp, 1999). They serve to provide protection and safety in
numbers against predators (Goodenough et al., 2017), provide ther-
moregulatory benefits against extreme climatic conditions (Brodsky
& Weatherhead, 1984; Merola-Zwartjes, 1998) and operate as in-
formation centres where knowledge on foraging sites for example
could be transmitted among members (Marzluff et al., 1996; Ward
& Zahavi, 1973).

Some undesirable species can form large roosts. The red-
winged blackbird (Agelaius phoeniceus) can depredate up to 360,000
tonnes of corn in North America annually in farms near their roosts
(Dolbeer, 1990). The red-billed quelea (Quelea quelea) is a wide-
spread migratory pest in Africa, depredating grain crops such as
millet, wheat and rice, and causing an economic loss of approxi-
mately US$ 90 million per annum (Cheke & El Hady Sidatt, 2019).
Communally roosting birds can also cause infrastructural damage
in urban areas. Feral pigeon (Columba livia) droppings are corrosive
and can damage bridges, walkways and buildings including those
of historical significance (Giunchi et al., 2012; Haag-Wackernagel
& Geigenfeind, 2008). Inhalation of Cryptococcus neoformans or
Histoplasma capsulatum fungal spores in dried excreta of commu-
nal roosters can also cause lung ailments and may be fatal in rare
instances (Deepe Jr., 2018; Denton & Di Salvo, 1968; Gurney &
Conces, 1996; Malik et al., 2003). The likelihood of bird-strikes at
airports also increases if there are nearby communal roosts of birds
(Burger, 1983).

Conversely, some species that roost communally are threat-
ened. Many parrot species roost communally and more than a
third are threatened from habitat loss or poaching for the pet trade
(IUCN, 2022). For the critically endangered yellow-naped parrot
(Amazona auropalliata) and endangered vinaceous-breasted parrot
(Amazona vinacea), roost counts provide a useful means of mon-
itoring their populations (Matuzak & Brightsmith, 2007; Zulian
etal., 2020).

Given the prevalence of communally roosting birds, estimating
roost populations reliably can guide the management of bird com-
mensals and species of conservation concern. For such species,
roost counts provide a more accurate population estimate than
other sampling techniques such as point counts or line transects,
as individual birds tend to be sparsely distributed or constantly on
the move (e.g. aerial feeders including swifts and swallows) when

not in roost. Roost populations tracked over time can also provide

roost population control measures (e.g. roost tree pruning) and monitoring the

populations of threatened bird species that roost communally.

Acridotheres javanicus, bird, communal, deep neural network, Javan myna, machine learning,

a clearer understanding of their phenology. A study revealed that
yellow-crested cockatoos (Cacatua sulphurea) regularly switch roost
sites depending on prevailing microclimatic conditions (Wang &
Chu, 2021). Over the course of 20years, pre-migration roosting
populations of swallows and martins have displayed a tendency
to shift earlier, a change likely attributed to climate change (Deng
et al., 2023). This shift implies that these birds had inadequate time
to accumulate sufficient food resources to support their upcoming
migration. Common starlings (Sturnus vulgaris), a bird commensal
species in Washington, USA, have been found to gather in dairies
to roost closer to late fall, winter, and early spring. Such information
could prompt farmers then to deter these birds from forming roosts
and lessen the likelihood of their excreta mixing with cattle feed and
spreading disease (Lichtenwalter et al., 2023).

However, performing accurate visual counts of birds roost-
ing can be challenging (Gregory et al., 2004; van Els & van
Turnhout, 2021). Birds that form large roosts in dense canopies
are often occluded in foliage or by other individuals. Aerial and
even satellite photos of roosts are alternatives, but are limited to
larger species and obstructed views persist for densely populated
roosts (Chabot & Francis, 2016). Visually tracking flocks of birds as
they return to their roost can also be confusing since individuals
often move in and out of their roost prior to eventually settling in.
The mere presence of surveyors may further bias counts as some
species or individuals may feel threatened. Additionally, detecting
birds after they have settled in their roosts can be difficult since
it usually occurs past sunset and is dark. Furthermore, even daily
estimates can be highly variable and several repeated counts are
needed (Cougill & Marsden, 2004). Weather radar had been used
for estimating roost populations of swallows, martins, blackbirds
and American robins (Turdus migratorius), but this approach is more
suited for larger roosts, usually numbering a hundred thousand or
more individuals (Clark et al., 2020; Russell & Gauthreaux, 1998;
Van Den Broeke, 2019).

Given the associated biases with visual or radar estimates of
abundance or density, researchers have also explored acoustic
methods to improve accuracy (Yip et al., 2020). Paired sampling,
where human observers conduct surveys synchronously with
acoustic recorders, apply a correction factor to account for their
different detection radii (Bombaci & Pejchar, 2019; Van Wilgenburg
et al., 2017). The correction factors are then used in generalized
linear models to help reduce biases between ARUs and traditional
point counts. Nonetheless, precise distances of the bird to the

recorder can be difficult to attain for elusive species particularly
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FIGURE 1 (a) Two roost sites chosen

in Singapore for data collection. Roost
site 1 was the primary target for visual
and acoustic data collection. Roost

site 2 had no clear view for visual data
analysis, but was used for acoustic data
analysis. lllustrative projections of the
microphone beamwidth and virtual
markers for Cameras 1 and 2 depicted

in orange dotted lines, and blue and red
frames respectively. Sample video frames
showing birds detected in yellow boxes on
Camera 1 (b) and Camera 2 (c) while flying
in and out of the roost site.

TABLE 1 Data collected for training and validating the acoustic model and validating the visual counts.

Data type Purpose

Date Audio Visual Training (acoustic) Validation (visual) Validation (acoustic) Remarks

3 September 2020 v v v v —

17 February 2021 v v — — v Primary data for
validation

20 August 2020 v v — — v Only 18 min of audio
recorded

31 August 2020 v Partial — — — Nearby vegetation
occluded roost tree

5 February 2021 v v — — v Wind cover used

in densely forested habitats (Pérez-Granados & Traba, 2021).
Microphone arrays in the field can pinpoint locations of different
calling individuals using time-of-detection and direction of arrival
(Dawson & Efford, 2009). Such data are analysed using spatially-
explicit capture recapture models to provide more precise esti-
mate densities (Dawson & Efford, 2009). However, microphone
arrays may be impractical for wide-scale deployments and costly
(Pérez-Granados & Traba, 2021). Additionally, both methods are
not designed to estimate abundances of large aggregations of
birds. Several studies have used number of vocalizations per re-
cording time (i.e. call rate) as a predictor for abundance or den-
sity typically in a general linear model (e.g. Borker et al., 2014;
Kloepper et al., 2016). However, such methods are less reliable
in estimating large communally roosting birds where several hun-
dreds or even thousands of individuals are vocalizing in unison.

In this study, we estimated the communal roost size of the
Javan myna (Acridotheres javanicus), in Singapore using passive
acoustic recorders and analysed the roost chorus in Singapore
by applying machine learning methods. Javan mynas are an in-
vasive bird species in Singapore and roost communally in trees

with dense canopies sometimes numbering in the thousands near

anthropogenic food sources (Lim et al., 2003; Yap & Sodhi, 2004).
They emit a loud and incessant roost chorus that can be intoler-
able to some residents that live in the vicinity of the roosts (Yap
et al., 2002). While sound intensity has previously been used to
estimate roost sizes (e.g. Sandoval et al., 2023), it is also affected
by various factors such as distance to the recorder, urban con-
ditions (e.g. buildings and street trees), weather conditions, and
noise from other sources. Hence, we developed a novel approach
and explored machine learning techniques that implicitly extract
higher order statistical information from the sound recordings
with a neural network, and use those to estimate the roost sizes

of the Javan mynas.

2 | METHODS

2.1 | Video analysis technique
To develop an acoustic technique to estimate myna roost sizes,
we had to ground truth the number of roosting mynas to calibrate

our acoustic model. To achieve this, we developed an automated
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visual technique to count mynas flying in and out of a roost site
early in the evenings, before mynas start arriving at the site. The
difference between the cumulative number of mynas arriving at
the site and leaving the site was the number of mynas at the roost
site.

While manually counting mynas coming in and out of a roost site
is possible, it is error prone and labour intensive. We therefore fo-
cused on the development of an automated visual technique based
on analysis of video recordings from two cameras pointed at the
roost tree from different angles. The two cameras together pro-
vided a full view of the tree from all angles, so all arriving and leaving
mynas could be counted. Addtionally, we validated the technique
by manually counting the mynas in one set of video recordings and
compared it against the visual automated analysis.

We chose a roost tree that was separated from nearby trees (i.e.
non-joining canopies) and other nearby occlusions, such that we
could see mynas coming in and out of the tree from all directions
(roost tree 1 in Figure 1a). Two cameras were deployed facing the
tree from about 1-2 h before sunset, until well after sunset. This cov-
ers the time during which the mynas arrive at the tree, and lasts until
the end of the acoustic measurements that we compare the cameras
counts against. Camera 1 was usually set up on the south-east of the
tree, and Camera 2 on the north-west (Figure 1a). We collected mul-
tiple datasets from the same roost site on different days, at different
times of the year (Table 1).

To automate our detection of birds flying in and out of the roost
site, we drew boundaries around the tree, and counted birds crossing
the boundaries in either direction. We call these boundaries “virtual
markers” (Figure 1). Whenever a bird crossed a marker, we estimated
its direction of flight and determined if it was flying in or out and
updated the estimated bird count at the roost site (Figure 1b,c).

Detecting dark birds against a light sky background (even in twi-
light hours with sufficient light) was reliably achieved with simple
image processing techniques. We used a rapid change in brightness
of pixels on the marker for bird detection. We added a minimum
required time gap between detections in the same location in the
image to avoid duplicate detections from the same bird flapping its
wings or moving in a way that causes the brightness to oscillate as
the bird crossed the marker.

While two cameras ensured that we had complete view of the
roost tree to see birds arriving from all directions, it also posed a
challenge. A single bird might be seen on both cameras and could
be double counted as shown in Figure 1b. Birds crossing the marker
from the south-west or north-east could be potentially detected on
both cameras. To avoid double-counting, we had to associate detec-
tions from both cameras and only count detections on one of the
cameras. This was achieved with heuristics such as proximity in time,
detection on opposite boundaries on the two cameras, and direction
of flight. The dataset collected on 3 September 2020 was used as
the primary dataset for validation of the visual analysis technique
(Table 1). For this dataset, we performed manual counting of birds
by carefully watching videos from both cameras and annotating the

arrival and departure of each bird.

2.2 | Acoustic recording analysis technique

The audio dataset collected on 3 September 2020 was used as train-
ing data in our acoustic analysis. An acoustic recorder was set up
close to Camera 1 during data collection. The exact locations of the
cameras and the acoustic recorder differed on different days, as the
intent was to make the techniques robust against small differences
in the recorder setup. Both cameras and the acoustic recorder were
synchronized in time.

The audio data was collected using a Zoom Hé recorder and an
Electro-Voice ND66 condenser cardioid instrument microphone
(Figure S1). The directional microphone was mounted on a tripod
and placed about 5-10m from the roost tree of interest and pointed
into the centre of the foliage of the tree. The acoustic technique
developed is not sensitive to the exact distance, as long as the roost
chorus is audible at the microphone and the roost does not span
more than a 90° angle from the microphone. The microphone has
a beamwidth of about 90°, which was sufficient to cover the roost
site, but not so wide as to pick up significant noise from other nearby
roost sites.

In the time series of the recorded data, the sound intensity
increased as the roost chorus got louder through the evening
(Figure S2). The sudden drop in intensity at the 1h 24-min mark
occurred during a disturbance, and then gradually increased as the
birds returned to their roost. After sunset, the roost chorus gradu-
ally fades till the birds stop vocalizing. Several loud events also can
be observed throughout the recording, representing noises that are
inevitable when recording in uncontrolled settings and public places.

While the data at first glance suggested we could use the acous-
tic timeseries amplitude to estimate roost sizes, it can be confounded
by multiple factors. These include the distance between the roost
site and the recorder, the environmental acoustic propagation con-
ditions, the local noise sources, the gain settings on the recorder, the
pointing direction of the microphone. Thus, the timeseries amplitude
might not represent a close proxy of roost size since these variables
were difficult to control operationally. As such, we considered other

properties of the acoustic timeseries in our analysis.

2.3 | Machine learning
A traditional approach to finding acoustic timeseries properties of
interest would be to handcraft features based on temporal statistics
of the timeseries data. Such features often include ratios of power
spectral densities at various frequencies, and other higher-order
temporal statistics. These handcrafted features can then be used for
regression analysis to calibrate a model. Here, we applied a deep
neural network (DNN) to learn the features from the timeseries data.
Before feeding the timeseries data to a DNN, we decided to
bandpass filter the data to remove frequencies that were domi-
nated by traffic and other urban sounds, and did not contain much
roost chorus. Since the roost chorus was mostly in the 1-5kHz

band (Figure S2), we applied a digital finite impulse response (FIR)
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bandpass filter (with 128 taps) to remove other sounds. The re-
cording was then down sampled at 16,384 Hz, well above Nyquist
frequency, to reduce the number of timeseries samples in the re-
cording. The recorded time series was then split into 4096 sample
blocks (250 ms blocks) and used as input to the DNN.

The architecture of the DNN is shown in Figure 2a. We used a 1D
convolutional DNN with three convolutional layers, one mean pool-
ing layer, followed by three dense fully-connected layers in the DNN,
working directly with the acoustic data at the input. This is quite
different from common approaches in DNN, where the data is first
converted to a 2D spectrogram image and fed to a 2D convolutional
DNN designed to work with images. Here, the 2D spectrogram
conversion was unnecessary, and potentially detrimental to the re-
tention of information in the acoustic recording as spectrogram con-
version loses phase information from the original time series data.
We used a normalization layer at the input of the DNN, removing
any cues on acoustic intensity, as we did not want the DNN to learn
to use the relationship with intensity for roost size estimation. While
the relationship with intensity was strong, it was unreliable due to
factors discussed earlier. We used a scaling layer at the output of
the DNN to convert a normalized output to a scale that is relevant
to typical roost sizes. This scaling was determined based on the
roost size estimates from the video analysis of the same dataset.
Appropriate scaling aids in training of the DNN and can be consid-
ered a hyperparameter of the model, but is not required to be very
accurate; we only needed to know the rough order of magnitude
roost size to choose the scale.

To train the network, we used a backpropagation-based learn-
ing algorithm (ADAM) with a learning rate of 0.002, early stopping,
and a mini-batch size of 128 samples. This learning rate, as well as
the DNN architecture, was obtained through many hyper-parameter
optimization runs. We used 85% of the available 250 ms blocks as
training samples, and the remaining 15% as validation samples.
Furthermore, we augmented the training data with four weakly fil-
tered (2-tap finite impulse response filters with weights [1.0, +1.0]
and [1.0, +0.5]) versions of the input data. The augmentation helped

to improve robustness of the DNN to changes in environmental

acoustic propagation and noise conditions. The trained DNN was
saved to disk for use in an acoustic roost size estimation model de-

scribed next.

2.4 | Acoustic roost size estimation model

The trained DNN from the previous section formed the heart of
the acoustic roost size estimation model outlined in Figure 2b. In
order to estimate the roost size, we bandpass filtered the acoustic
recording in the 1-5kHz band and split it into 1-min blocks. We then
further split each 1-min block into 250 ms chunks, as we did during
training. These chunks were fed to the trained DNN, and the bird
count estimates from each 1-min block were statistically pooled to
yield a median estimate and a 50% confidence interval. The process
was repeated for each 1-min block to yield a timeseries of bird count
estimates. The largest bird count during an evening of data collec-

tion could then represent our roost size estimate.

2.5 | Analysis of different data sets for model
validation

We first developed an acoustic roost size estimation model based on
training data recorded on 3rd September 2020 (Table 1). We tested
this model with datasets recorded at the same roost site on other
days, months later, and also on datasets recorded at other roost sites
to demonstrate the robustness of the trained model.

The primary dataset we used for validating our acoustic roost
size estimation model was a dataset collected on 17 February
2021, about 5months after the training dataset (Table 1). While
we collected this dataset at the same location, a lot had changed
between the two collections. The seasons had changed, the trees
were pruned, the acoustic recorder was set up at a different location
and a different directional microphone was used. So, for all practical
purposes, this acoustic dataset was independent of the dataset col-
lected on 3rd September 2020.

o . conv #1
NG fi

conv #2
5,8=>16

conv #3
™ 3,16-32 ’{

mean pool
+ flatten

dense #1
32=>32 16=>1

>{ dense #3

count
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32=>16

FIGURE 2

—— ( - . ] ( o ) statistically pool chunk . .
(b) recording bandpass filter spht into split into I DNN model I A s (o timeseries of
1-5 kHz 1 minute blocks 250 ms chunks . myna count
. L ) ( L each 1-minute block J

(a) Deep neural network (DNN) architecture to convert acoustic data to myna count. The input data size is 4096 samples

(250 ms) of acoustic data at a sampling rate of 16,384 Hz. Each convolution layer down samples with a stride of 2, while increasing the
number of filters from 1-8—16—32. The data from the 32 filters is mean-pooled, flattened and passed through 2 dense hidden layers with
32 and 16 neurons each, and then fed into an output dense layer with a single neuron. The output of that neuron is finally scaled to give

the myna count estimate. (b) Complete processing chain from acoustic recording to timeseries of myna count estimates. The recording is
bandpass filtered in the 1-5kHz band and then split into 1-min blocks, and further split into 4096 sample (250 ms) chunks. Each 4096 sample
chunk passes through the DNN (detailed in part a) to yield a point myna count estimate. The count estimates are statistically pooled over
each 1-min block to yield a timeseries of median and a 50% confidence interval.
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To further validate the acoustic model, we presented data
from yet another dataset collected at the same roost site on 20
August 2020, about 2 weeks before the training data was collected
(Table 1). This dataset, unfortunately, had a problem with the mi-
crophone cable after about 18 min, and so the comparison can
only be made until then. Data from a different roost site (site 2)
was collected on 31 August 2020 (Table 1). The site did not permit
full visual analysis due to occlusions on one side of the roost tree.
However, camera recordings were made to provide a rough visual
estimate.

We also collected a dataset on 5 February 2021, but it was very
windy. To reduce wind noise, we put on a wind cover (foam cover)
on the microphone during the data collection (Table 1). Later, it was
clear that it sounded more muffled than the usual recordings. A
spectral analysis of the recording showed that the high frequency
sounds were significantly attenuated in this recording. To test the
robustness of the acoustic model, we processed this recording using
the acoustic roost size estimation model and compared it with the

estimates from visual analysis of camera recordings.

3 | RESULTS

3.1 | Video analysis

Our manual counts agree closely (within 5%) with the counts from
the automated visual analysis in Figure S3, and we use visual analysis
for other datasets. The sudden dip in bird count at about 86 min cor-
responds to an event when the birds seemed to have been scared
by something, and many flew out of the tree. A manual visual check
of the video at that time confirmed this and the audio recordings at
that time also clearly showed a disturbance. The birds came back
within a few minutes and continued their roost chorus. Such sud-
den departures were a common occurrence, as seen in many of our
datasets. There was significant variability in the number of birds at
the roost across days, especially between the 2020 datasets and the
2021 datasets (separated by 5months; Figure S4). The differences
were consistent with the acoustic recording analysis as seen later
and may be potentially attributed to pruning of the trees between

the two data collection windows.

3.2 | Acoustic analysis
The acoustic model results matched the visual analysis results
closely, suggesting that roost size estimates can be obtained from
the acoustic data alone. The roost size estimate was the maximum
acoustic estimate during the entire dataset, which was close to 400
birds for this roost.

The same dataset was used in training the acoustic model, and
in evaluating its efficacy (Figure 3a). Although we separated the

training data from the validation data, as is the norm in machine

learning, both data came from the same day's recording (same data-
set recorded on 3rd September 2020). The correlation coefficient (r)
between the acoustic and visual estimates is 0.978 with a root mean
square error (RMSE) of 26.8 (6% of the roost size). Next, we see that
the acoustic roost size estimation model performed robustly with
datasets recorded on other days as well—even datasets collected

months later.

3.3 | Validation using different data sets

Figure 3b shows the time evolution of estimated bird count based
on the acoustic roost size estimation model, as compared with the
estimate from visual analysis using two cameras for the same data-
set collected on 17 February 2021. The roost estimate is about 210
birds and the match between the acoustic and visual models was
close (r=0.981, RMSE=18.4; 8% of roost size). This suggests that
the acoustic model is suitable for use in estimation of myna roost
sizes, without the need for the visual camera-based analysis to be
undertaken at other sites. Also, the acoustic model matched the
visual results closely at the same roost site with recordings collected
on a different date, 20 August 2020 (r=0.795, RMSE=5.6; 6% of
roost size; Figure 3c).

For site 2 data collected on 31 August 2020, our rough visual
analysis provided an order of magnitude estimate of the roost size
to be 300-400 birds. Based on the acoustic model, the roost size
was about 350 birds, consistent with the rough visual analysis
(Figure 3d).

If a windshield was added to our microphone, the acoustic
model underestimated the number of birds at any given time since
the recording had a significantly different frequency response
than the training data (left panel of Figure S5). On re-calibrating
the model for the difference (re-calibration requires availabil-
ity of visual estimates), we attained accurate results from the
model, even with the modified frequency response (right panel
of Figure S5).

4 | DISCUSSION

We conclude that the use of passive acoustic recordings of myna
roost chorus to estimate large roost sizes is indeed feasible, and we
have developed acoustic techniques to do this robustly using a sim-
ple portable acoustic recording system consisting of a tripod, digital
recorder coupled with a directional microphone. We validated the
machine-learning based acoustic techniques developed using an au-
tomated visual analysis with a dual-camera setup and with manual
bird counting. We also showed that the acoustic roost size estima-
tion technique developed attained accurate roost estimates on dif-
ferent datasets, if the equipment used is similar. If the microphone
frequency response is significantly different, the technique requires

a re-calibration for accurate results. In practice, one has to calibrate
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FIGURE 3 (a) Myna count estimates (median) from acoustic roost size estimation model (“Acoustic” in blue) as a function of time,

compared against the estimates from visual analysis (“Camera” in red). The light blue ribbon is the 50% confidence interval from the model.
Orange outline shows the count estimation using the training data while the other plots are representative of validation data. (b) Temporal
evolution of estimated bird count based on the acoustic roost size estimation model, as compared with the estimate from visual analysis,
for test datasets collected on 17 September 2021, (c) 20 August 2020 and (d) 31 August 2020 at roost site 2—a rough visual estimate of the
roost size is provided since part of the roost tree was occluded with foliage from another tree.

the technique for a chosen equipment. Once calibrated, equipment
type changes should be avoided, and if they become necessary, a
re-calibration should be performed.

The video analysis technique presented was suited for datasets
where the roost tree is clearly separated from nearby trees and
buildings. This is required to construct a virtual marker around the
tree, and to ensure that birds coming in and out from all directions
are visible on at least one of the two cameras. While this technique
alone may be sufficient to estimate roost sizes for some roosts, it is
logistically challenging to collect the required video data, and many
roost sites do not lend themselves to the visual separation needed
for this technique to work. Hence, our acoustic method is more
widely applicable given the many logistical constraints that rely
on visual or weather radar methods to infer population estimates.
Visual counts are manpower intensive and time consuming as sev-
eral surveyors are needed to count birds prior to roosting and radar
data are not suited for accurately estimating smaller roost sizes.

Nonetheless, there are some limitations in our acoustic applica-

tion to estimate the number of communal roosting birds. Firstly, not

all communal roosts are occupied by a single species. For example,
Javan mynas and common mynas (Acridotheres tristis) often share the
same roost tree. In this instance, monitoring the roost populations
of both species collectively may be sensible management-wise since
they are invasive and commonly roost in trees near residential areas
causing dis-amenities (Lim et al., 2003). Moreover, they are closely
related, of similar size and their calls are almost indistinguishable
even to seasoned bird watchers. However, our method may be less
suited in estimating populations of threatened species or species of
a particular interest if they roost with other species.

There are further considerations using roosts to infer popula-
tion estimates. For one, it is assumed that all roost locations within
a geographic area of interest are known, which is more attainable in
smaller or isolated areas. Additionally, not all individuals in the pop-
ulation may be roosting communally and roost sizes can also vary
temporally; if so, other methods should be considered. For non-
migratory species, breeding adults typically roost away from com-
munal roost sites thus population estimates at their roosts should

ideally be conducted during the non-breeding season (Saldanha
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et al,, 2019). However, for some migratory species, roost estimates
in their wintering grounds may provide a fairer reflection of their
population.

All in all, our approach provides less laborious and a more reli-
able method for estimating and monitoring changes in avian roost
populations than previous approaches. Possible ecological applica-
tions include monitoring roost site fidelity, population responses to
habitat loss or degradation and testing the efficacy of management
measures such as roost tree pruning to reduce undesirable roost
populations. While our model was developed for primarily gregar-
ious roosting birds, our approach with further testing, could be
adapted to estimate populations of other wildlife that also congre-
gate such as communally roosting bats and insect aggregations (e.g.

locust swarms, and temporary aggregations of crickets and cicadas).

AUTHOR CONTRIBUTIONS

Kenneth B. H. Er conceived the idea and Mandar A. Chitre designed
the methodology; Matthias Hoffmann-Kuhnt collected the data;
Mandar A. Chitre and Matthias Hoffmann-Kuhnt analysed the data;
Malcolm C. K. Soh and Mandar A. Chitre led the writing of the manu-
script. All authors contributed critically to the drafts and gave final

approval for publication.

ACKNOWLEDGEMENTS

The National Parks Board of Singapore funded this study. We
thank Sandra Chia for her assistance in this project. We also thank
our reviewers for their constructive comments on revising the

manuscript.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

PEER REVIEW

The peer review history for this article is available at https://www.
webofscience.com/api/gateway/wos/peer-review/10.1002/2688-
8319.12394.

DATA AVAILABILITY STATEMENT
Data and code available from the Dryad Digital Repository https://
doi.org/10.5061/dryad.12jmé63z77 (Chitre et al., 2024).

ORCID

Malcolm C. K. Soh
Mandar A. Chitre
Matthias Hoffmann-Kuhnt
org/0000-0001-9533-1248
Benjamin P. Y.-H. Lee " https://orcid.org/0000-0002-9952-1011
Kenneth B. H. Er ¥ https://orcid.org/0000-0003-4485-7260

https://orcid.org/0000-0002-9490-147X
https://orcid.org/0000-0001-6243-7871
https://orcid.

REFERENCES

Beauchamp, G. (1999). The evolution of communal roosting in birds:
Origin and secondary losses. Behavioral Ecology, 10(6), 675-687.
https://doi.org/10.1093/beheco/10.6.675

Bombaci, S. P., & Pejchar, L. (2019). Using paired acoustic sampling to
enhance population monitoring of New Zealand's forest birds. New
Zealand Journal of Ecology, 43(1), 3356.

Borker, A. L., McKown, M. W., Ackerman, J. T., Eagles-Smith, C. A.,
Tershy, B. R., & Croll, D. A. (2014). Vocal activity as a low cost and
scalable index of seabird colony size. Conservation Biology, 28(4),
1100-1108. http://www.jstor.org/stable/24480088

Brodsky, L. M., & Weatherhead, P. J. (1984). Behavioural thermoregu-
lation in wintering black ducks: Roosting and resting. Canadian
Journal of Zoology, 62(7), 1223-1226. https://doi.org/10.1139/
284-177

Burger, J. (1983). Bird control at airports. Environmental Conservation,
10(2), 115-124. https://doi.org/10.1017/50376892900012200

Chabot, D., & Francis, C. M. (2016). Computer-automated bird detec-
tion and counts in high-resolution aerial images: A review. Journal
of Field Ornithology, 87(4), 343-359. https://doi.org/10.1111/jofo.
12171

Cheke, R. A., & El Hady Sidatt, M. (2019). A review of alternatives to fen-
thion for quelea bird control. Crop Protection, 116, 15-23. https://
doi.org/10.1016/j.cropro.2018.10.005

Chitre, M. A., Hoffmann-Kuhnt, M., Soh, M. C. K., Lee, B. P. Y.-H., & Er,
K. B. H. (2024). A novel method for estimating avian roost sizes
using passive acoustic recordings. Dryad Digital Repository. https://
doi.org/10.5061/dryad.12jm63z77

Clark, B. A, Klug, P. E., Stepanian, P. M., & Kelly, J. F. (2020). Using bio-
energetics and radar-derived bird abundance to assess the im-
pact of a blackbird roost on seasonal sunflower damage. Human-
Wildlife Interactions, 14(3), 427-441. https://www.jstor.org/stable/
27316221

Cougill, S., & Marsden, S. J. (2004). Variability in Roost Size in an
Amazona Parrot: Implications for Roost Monitoring/Variabilidad en
el tamano de los dormideros de una Amazona: implicaciones para el
monitoreo de dormideros. Journal of Field Ornithology, 75(1), 67-73.
http://www.jstor.org/stable/4151245

Dawson, D. K., & Efford, M. G. (2009). Bird population density estimated
from acoustic signals. Journal of Applied Ecology, 46(6), 1201-1209.
https://doi.org/10.1111/j.1365-2664.2009.01731.x

Deepe, G. S., Jr. (2018). Outbreaks of histoplasmosis: The spores set sail.
PLoS Pathogens, 14(9), e1007213. https://doi.org/10.1371/journal.
ppat.1007213

Deng, V., Belotti, M. C. T. D., Zhao, W., Cheng, Z., Perez, G., Tielens, E.,
Simons, V. F,, Sheldon, D. R., Maji, S., Kelly, J. F., & Horton, K. G.
(2023). Quantifying long-term phenological patterns of aerial in-
sectivores roosting in the Great Lakes region using weather sur-
veillance radar. Global Change Biology, 29(5), 1407-1419. https://doi.
org/10.1111/gcb.16509

Denton, J. F., & Di Salvo, A. F. (1968). The prevalence of Cryptococcus
neoformans in various natural habitats. Sabouraudia: Journal of
Medical and Veterinary Mycology, 6(3), 213-217. https://doi.org/10.
1080/00362176885190411

Dolbeer, R. A. (1990). Ornithology and integrated pest manage-
ment: Red-winged blackbirds Agelaius phoeniceus and corn. Ibis,
132(2), 309-322. https://doi.org/10.1111/j.1474-919X.1990.
th01048.x

Giunchi, D., Albores-Barajas, Y. V., Baldaccini, N. E., Vanni, L., & Soldatini,
C. (2012). Feral pigeons: Problems, dynamics and control methods.
In Integrated pest management and pest control. current and future
tactics (pp. 215-240). InTechOpen.

Goodenough, A. E., Little, N., Carpenter, W. S., & Hart, A. G. (2017). Birds
of a feather flock together: Insights into starling murmuration be-
haviour revealed using citizen science. PLoS One, 12(6), e0179277.
https://doi.org/10.1371/journal.pone.0179277

Gregory, R. D., Gibbons, D. W., & Donald, P. F. (2004). Bird census
and survey techniques. In W. J. Sutherland, I. Newton, & R.
Green (Eds.), Bird ecology and conservation (pp. 17-56). Oxford
University Press.

95UddIT suowwo)) dAneal) a|qedijdde ayy Aq pausanob aie sapilie YO Bsh Jo sajnJ 1oy Aleiaqi] auljuQ A3Jip\ Uo (suonipuod-pue
-suuay/wodAspimAreiqijpuljuo//:sdny) suonipuo) pue swidl 3y 39S ‘[#202/LL/0L] uo Aseiqr aulug As|iM ‘sjeuinofsaq Ag ¥6£21'61£8-8892/2001 0L/10p/wodAajimAieiqijauljuosjeusnofsag//:sdyy wouy papeojumod v 'v202 '6L£88892



SOH T AL.

Gurney, J. W.,, & Conces, D. J. (1996). Pulmonary histoplasmosis.
Radiology, 199(2), 297-306. https://doi.org/10.1148/radiology.
199.2.8668768

Haag-Wackernagel, D., & Geigenfeind, I. (2008). Protecting buildings
against feral pigeons. European Journal of Wildlife Research, 54(4),
715-721. https://doi.org/10.1007/s10344-008-0201-z

IUCN. (2022). The IUCN Red List of Threatened Species. Version 2022-2.
https://www.iucnredlist.org

Kloepper, L. N., Linnenschmidt, M., Blowers, Z., Branstetter, B., Ralston,
J., & Simmons, J. A. (2016). Estimating colony sizes of emerging bats
using acoustic recordings. Royal Society Open Science, 3(3), 160022.
https://doi.org/10.1098/rs0s.160022

Lichtenwalter, C., Steensma, K., Marcondes, M., Taylor, K., McConnel,
C., & Adams Progar, A. (2023). Seasonal use of dairies as overnight
roosts by common starlings (Sturnus vulgaris). Birds, 4, 213-224.
https://doi.org/10.3390/birds4020018

Lim, H. C., Sodhi, N. S., Brook, B. W., & Soh, M. C. K. (2003). Undesirable
aliens: Factors determining the distribution of three invasive bird
species in Singapore. Journal of Tropical Ecology, 19(6), 685-695.
http://www.jstor.org/stable/4091842

Malik, R., Krockenberger, M. B., Cross, G., Doneley, R., Madill,
D. N., Black, D., Mcwhirter, P., Rozenwax, A., Rose, K., Alley,
M., Forshaw, D., Russell-Brown, I., Johnstone, A. C., Martin,
P., O'Brien, C. R., & Love, D. N. (2003). Avian cryptococcosis.
Medical Mycology, 41(2), 115-124. https://doi.org/10.1080/
mmy.41.2.115.124

Marzluff, J. M., Heinrich, B., & Marzluff, C. S. (1996). Raven roosts
are mobile information centres. Animal Behaviour, 51(1), 89-103.

Matuzak, G. D., & Brightsmith, D. J. (2007). Roosting of yellow-naped
parrots in Costa Rica: Estimating the size and recruitment of threat-
ened populations. Journal of Field Ornithology, 78(2), 159-169.
https://doi.org/10.1111/j.1557-9263.2007.00099.x

Merola-Zwartjes, M. (1998). Metabolic rate, temperature regulation,
and the energetic implications of roost nests in the Bananaquit
(Coereba flaveola). The Auk, 115(3), 780-786. https://doi.org/10.
2307/4089429

Pérez-Granados, C., & Traba, J. (2021). Estimating bird density using pas-
sive acoustic monitoring: A review of methods and suggestions for
further research. Ibis, 163(3), 765-783. https://doi.org/10.1111/ibi.
12944

Russell, K. R., & Gauthreaux, S. A. (1998). Use of weather radar to char-
acterize movements of roosting purple martins. Wildlife Society
Bulletin (1973-2006), 26(1), 5-16. http://www.jstor.org/stable/
3783794

Saldanha, S., Taylor, P. D., Imlay, T. L., & Leonard, M. L. (2019).
Biological and environmental factors related to communal
roosting behavior of breeding bank swallow (Riparia riparia).
Avian Conservation and Ecology, 14(2), 21. https://doi.org/10.
5751/ACE-01490-140221

Sandoval, N., Denyer, K., Dowling, S., Barot, D., & Fan, N. (2023).
Testing the effectiveness of a novel approach to measure a large
roosting congregation in a wetland ecosystem. New Zealand
Journal of Ecology, 47(1), 3513. https://doi.org/10.20417/nzjecol.
47.3513

Van Den Broeke, M. S. (2019). Radar quantification, temporal analysis
and influence of atmospheric conditions on a roost of American
robins (Turdus migratorius) in Oklahoma. Remote Sensing in Ecology
and Conservation, 5(2), 193-204. https://doi.org/10.1002/rse2.
99

van Els, P., & van Turnhout, C. (2021). Communal roost counts in the neth-
erlands: A summary of 10years of monitoring. 343, 3-8.

Van Wilgenburg, S., Solymos, P., Kardynal, K., & Frey, M. (2017). Paired
sampling standardizes point count data from humans and acoustic
recorders. Avian Conservation and Ecology, 12, 13. https://doi.org/
10.5751/ACE-00975-120113

E 9 of 10

Wang, S., & Chu, L. M. (2021). Microhabitat characteristics related to
seasonal roost switching: Implications from a threatened and in-
troduced cockatoo species in an urban landscape. Avian Research,
12(1), 35. https://doi.org/10.1186/s40657-021-00270-9

Ward, P., & Zahavi, A. (1973). The importance of certain assem-
blages of birds as “information-centres” for food-finding. Ibis,
115(4), 517-534. https://doi.org/10.1111/j.1474-919X.1973.
th01990.x

Yap, C. A. M., & Sodhi, N. S. (2004). Southeast Asian invasive birds:
Ecology, impact and management. Ornithological Science, 3(1), 57-
67. https://doi.org/10.2326/0sj.3.57

Yap, C. A. M., Sodhi, N. S., & Brook, B. W. (2002). Roost characteristics
of invasive mynas in Singapore. The Journal of Wildlife Management,
66(4), 1118-1127. https://doi.org/10.2307/3802943

Yip, D. A., Knight, E. C., Haave-Audet, E., Wilson, S. J., Charchuk, C.,
Scott, C. D., Solymos, P., & Bayne, E. M. (2020). Sound level mea-
surements from audio recordings provide objective distance esti-
mates for distance sampling wildlife populations. Remote Sensing in
Ecology and Conservation, 6(3), 301-315. https://doi.org/10.1002/
rse2.118

Zulian, V., Mller, E. S., Cockle, K. L., Lesterhuis, A., Tomasi Juanior, R.,
Prestes, N. P., Martinez, J., Kéry, M., & Ferraz, G. (2020). Addressing
multiple sources of uncertainty in the estimation of global parrot
abundance from roost counts: A case study with the Vinaceous-
breasted parrot (Amazona vinacea). Biological Conservation, 248,
108672. https://doi.org/10.1016/j.biocon.2020.108672

SUPPORTING INFORMATION

Additional supporting information can be found online in the
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Figure S1. Zoom Hé acoustic recorder and Electro-Voice ND66
condenser cardioid instrument microphone used for all audio
recordings analysed in this report and the field set up (right panel).
Figure S2. Above: Time series of the recorded acoustic data for
dataset collected on 3rd September 2020. The x-axis is time (hours),
relative to start of recording, and the y-axis is proportional to the
acoustic pressure measured by the microphone. The acoustic
pressure is uncalibrated and -1 to 1 is the full dynamic range. Below:
Spectrogram of the recorded acoustic dataset collected on 3rd
September 2020 using an 8192 sample window. The x-axis is time
(hours), relative to start of recording, and the y-axis is the acoustic
frequency in Hz. The colour corresponds to the acoustic intensity
at a given time and frequency, with darker red-orange colours
indicating higher intensity.

Figure S3. A plot of number of birds at the roost site as a function
of time using visual estimates only. The red curve is from automated
visual analysis, whereas the blue curve is from manual counting.
Both curves agree well. The sudden dip in bird count at about 86 min
corresponds to an event when the birds seemed to have been scared
by something, and many flew out of the tree, but returned within
minutes.

Figure S4. Bird count estimates at roost site 1 from 4 different
datasets, collected on 20th August 2020, 3rd September 2020,
5th February 2021 and 17th February 2021. Some variability is
observed across days, but the most significant differences may be
potentially attributed to pruning of the trees between the two data

collection windows.
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Figure S5. Time evolution of estimated bird count based on
How to cite this article: Soh, M. C. K., Chitre, M. A.,

Hoffmann-Kuhnt, M., Lee, B.-H., & Er, K. B. H. (2024). A novel

method for estimating avian roost sizes using passive acoustic

the acoustic roost size estimation model, as compared with the
estimate from visual analysis, for the dataset collected on 5th

February 2021 usinga microphone with wind cover. (a) The acoustic . . . .
recordings using deep neural network. Ecological Solutions and

Evidence, 5, €12394. https://doi.org/10.1002/2688-
8319.12394

model results are inaccurate due to the wind cover modifying the

frequency response of the microphone. (b) However, the acoustic
model results agree with the visual model more closely after

re-calibration.
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