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In underwater acoustic localization via matched-field-processing, given a propagation model and a suitable 
environmental parameterization, one searches for the location (of the transmitter or receiver) whose replica 
field is closest to the observed one. The high computational complexity of such non-gradient-based 
optimization methods renders them infeasible for many real-time scenarios, especially when an accurate 
solution is desired, due to resolution of the search grid required, or as the search dimensionality increases 
(e.g., when it is necessary to optimize over uncertain environmental parameters such as sound speed or 
bathymetry). In this work, we propose a ray-based, differentiable model for acoustic propagation for the 
purpose of a gradient-based optimization for localization. For localization applications in which accurate 
times of arrivals might not be available, the proposed method can be adapted to work without requiring this 
information. In such a scenario, it seeks the location (and possibly environmental parameters) that minimize 
the squared-error between the observed signal and its estimate via the differentiable model. We leverage the 
PyTorch optimization and auto-differentiation tools for the implementation and demonstrate successful 
localization on synthetic data inspired from a real-world scenario in a dense multipath environment.
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1. INTRODUCTION

Conventional model-based underwater acoustic (UWA) localization algorithms such as matched field
processing (MFP)1 are highly dependent upon accurate environmental knowledge2–4 that is rarely available.
To perform localization using MFP, one needs to generate replica fields for different candidate locations
using an underwater propagation model, such as Bellhop5 or KRAKEN,6 whose parameters are set based on
the environment of interest. The accuracy of finding the best matching location is sensitive to the mismatch
of these model parameters, which may not be known at all, or not known accurately.

Tackling the lack of prior knowledge and overcoming sensitivity to mismatch involves including an ad-
ditional search over the unknown parameters to find the best set of parameters that match the measurements.
However, this leads to a substantial increase of the search space dimensionality relevant for the optimiza-
tion. The optimization involved becomes impractical when the dimensionality increases, in part because
one cannot use gradient-based (GB) methods to find the optimum, due to non-differentiability of propaga-
tion models, like Bellhop. Tackling this typically requires using brute-force methods or non-gradient-based
optimization methods such as simulated annealing (SA)7 or genetic algorithm (GA),8 which require a high
computational effort, often rendering them infeasible for real-time applications. To address this computa-
tional challenge, we propose an alternative method by developing a differentiable model for acoustic wave
propagation, which allows us to make use of GB optimization methods for localization. In this approach,
the model parameters are tuned based on the gradient of the incurred cost, thus reducing the complexity
involved in the previously-mentioned approaches.

This GB optimization comes with challenges of its own. One such challenge is the risk of getting stuck in
local minima if the cost function is not well-behaved, i.e, if it is not locally convex in a neighborhood around
the global minimum that encompasses the initial point. The cost functions used in this paper are non-convex
over each of the spatial dimensions. Faced with such a cost function, we propose a smoothing technique to
make the cost function more amenable to the GB optimization by broadening the local convexity interval
around the ground-truth, thus making the method feasible.

While some MFP-based methods exploit hydrophone arrays,2, 3 deploying an array may not be possible
in some cases, and the compact setup offered by a single-hydrophone9–12 may be more attractive. Examples
of such scenarios include applications that need to cover large areas (e.g. bioacoustics) or where the plat-
forms are small,10 and usually with broadband sources or in shallow waters where multipath information can
be leveraged for source localization. We focus on the single-hydrophone case as a starting point, although
the proposed approach can be extended to the array-based localization as well.

The multipath structure in shallow water environments leads to interference between arrivals that can
make them unresolvable, which in addition to low signal-to-noise ratio (SNR)9 can impede accurate estima-
tion of the arrival times. Nevertheless, for successful single-hydrophone localization, it is not necessary to
directly estimate the times of arrival; for instance localization can be performed by correlating the received
waveform and a model predicted waveform as performed by Jesus, et al.9 In Fig. 1, we show an example
of such unresolvable arrivals in real data recorded in the Scripps Ocean Atmosphere Research Simulator
(SOARS) at the Scripps Institution of Oceanography (SIO), where the transmitter is an ITC-1032 and the
receiver is an HTI-96-Min hydrophone.

In this work, we develop a differentiable model for the received signal using a ray-based approach that
takes the environmental parameters, transmitted signal waveform, and the transmitter and receiver’s loca-
tions and synthesizes the received signal by combining raypaths. We then estimate the parameters of interest,
e.g., the transmitter location, via GB optimization on a target cost function involving the difference between
the model-synthesized and recorded signals at the receiver. Specifically, we use the Adam optimizer, imple-
mented in PyTorch. Note that in single-hydrophone scenarios with multipath, the frequency diversity of the
broadband sources can compensate for the spatial diversity provided by arrays.9, 10 Thus, we use a Gaussian
pulse-shaped waveform as a broadband transmitted signal.

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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(a) (b)

Figure 1: (a) Experiment setup in the SOARS tank. It consists of a transmitter (ITC-1032 transmitter on the left),
and two HTI-96-Min receivers on the right of the picture. (b) The Gaussian pulse response of the channel in the
frequency range of 26 − 38 kHz, along with model-predicted arrival times and amplitudes for different raypaths
in the tank. A negative amplitude indicates a surface interaction in the arrival. The first peak, around 1 ms,
corresponds to the interference of the direct path and the surface reflected arrival. Furthermore, the two sidewall
reflections seem to have merged with each other and with higher-order reflections to give a larger peak at around
2 ms.

The rest of the paper is organized as follows. In Section 2 we present the problem formulation. We then
propose a GB algorithm in Section 3, followed by simulation results in Section 4. We finish the paper with
some concluding remarks in Section 5.

2. PROBLEM FORMULATION

Notation: Vectors are denoted by bold letters. Also, subscripts “s” and “r” refer to “source” and “re-
ceiver”, respectively. In addition, a subscript 0 indicates an initial estimate or belief of the value for an
unknown parameter. For a temporal signal x(t), t denotes the continuous-time variable and the correspond-
ing discrete-time signal is x[k] = x(k/Fs), where Fs is the sampling frequency.

In the current scenario, we use a single receiver to localize a source that emits a modulated Gaussian

pulse s(t) = e−
B2t2

2 cos(2πfct), where B is the pulse bandwidth and fc is the central frequency. The
received signal can be expressed as a sum of contributions from multiple raypaths13 and the ambient noise
η(t) as

r(t,θs,θr) =
N∑
i=1

βi (θs,θr) s (t− τi(θs,θr)) + η(t), (1)

where N is the number of paths in the multipath received signal, θs = [xs, ys, zs] is the source’s location,
θr = [xr, yr, zr] is the receiver’s location, and βi and τi indicate the i-th path attenuation coefficient and
delay, respectively. βi and τi can be represented13 as

βi =
ρie

−αℓi

ℓi
, τi = ℓi/c, (2)

where ℓi is the i-th path length, α is the (known) frequency-dependent volume attenuation, ρi is the product
of all reflection coefficients corresponding to all reflecting surfaces encountered along the i-th path, and c

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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is the sound speed. Note that in well-mixed shallow waters and confined spaces like water tanks, c can be
assumed constant.

For notational simplicity, since the receiver’s location is fixed in forthcoming analysis, we represent
r(t,θs,θr), τi(θs,θr), and βi(θs,θr) by the shorter versions r(t,θs), τi(θs), and βi(θs), respectively.
Note that βi can be positive or negative and depends on the transmit signal parameters, path length, and
the reflection coefficients.13 Given the transmitted signal s(t), we can simplify the received signal model,
and thereby the localization problem, by incorporating only the paths with significant contributions to the
received signal; for instance Weiss, et al.14 considers only the direct path, bottom reflection, and the surface
reflection for short ranges in shallow ocean environments. Considering the Np most significant paths (Np <
N ), the noiseless received signal is modeled by

r̂(t,θ′
s) =

Np∑
i=1

βi
(
θ′
s

)
s
(
t− τi(θ

′
s)
)
. (3)

Given the environmental parameters, the problem of localization reduces to finding the values θ∗
s of θ′

s

for which r̂(t,θ′
s) is the “most similar” to the measured signal r(t,θs). To combat noise and perform

pulse-compression, we matched-filter r(t) and r̂(t) with the known s(t), which yield rm(t) and r̂m(t),
respectively.

By defining a cost function C (rm, r̂m), which characterizes the difference between the estimated and
recorded received signal in some sense, the source localization problem can be formulated as

θ∗
s = argmin

θ′
s

C (rm, r̂m) , (4)

where rm = [rm[k]]M−1
k=0 and r̂m = [r̂m[k]]M−1

k=0 , and M is the total number of time samples considered,
which is assumed long enough to cover Np paths. In order to solve (4) via GB optimization, we introduce a
GB localization algorithm in the following section.

3. GRADIENT-BASED APPROACH

Assuming that: (1) the model that generates r̂(t,θ′
s) can be differentiated w.r.t. θ′

s; (2) the cost function
C is convex in an interval around the global minimum θ∗

s ; and (3) there is an initial estimate of the θs that
lies in that interval, we can use a GB algorithm to achieve θ∗

s , as illustrated in Fig. 2. In the rest of this
section, we develop a feasible GB algorithm by ensuring that these assumptions hold.

We build our model using the differentiable programming framework provided by PyTorch. The pro-
posed algorithm includes three stages. In the first stage, we rely heavily on the prior knowledge and as-
sumptions (discussed next) to find an initial estimate. As the algorithm progresses, it uses finer information
obtained from the observed signal to improve this estimate; in the second stage, it uses the signal envelope,
and in the third stage it uses the temporal signal as it contains all available information (envelope and phase).
Moreover, in stages 2 and 3, as the algorithm progresses, the step size in the optimizer is gradually reduced,
allowing it to make fine-tuned changes to arrive at the cost function minimum.

A. STAGE 1: INITIAL ESTIMATE USING TIMES-OF-ARRIVALS

The initial stage involves using the times-of-arrivals (TOAs) extracted from the received signal. The
approximate TOAs are obtained from the peaks in the envelope of rm(t) defined as

re(t) = ∥rm(t) + ȷH(rm(t))∥2 ,

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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Figure 2: The block diagram of the proposed localization approach. The algorithm currently assumes prior knowl-
edge of the source signal s(t), receiver’s location θr, and the set of environmental parameters E including the
sound speed, geometry, etc. However, if there is uncertainty in any of the parameters, those can be additionally
included in the set of parameters to be estimated via optimization.

where H(.) indicates the Hilbert transform operation and re(t) is the envelope of r(t). Note that there is
not a bijection between the arrivals and the peaks because some arrivals are unresolvable. In addition, each
peak must be labelled, which is a difficult problem in general. These significantly affect the initial estimate,
and necessitate further refining of this estimate, which will be addressed in next stages.

Nevertheless, we are able to achieve a reasonable initial estimate using maximum a posteriori (MAP)
estimation by assuming that for each θ′

s, the peak corresponding to the i-th path in the received signal will
occur at t = pi and

pi ∼ N (τi(θ
′
s), σ

2),

where τi is calculated based on the geometry and σ depends on the signal bandwidth and the SNR (assuming
σ is fixed, it becomes irrelevant in the MAP estimation). Although such assumptions might not hold in
general, they still yield an acceptable initial estimate.15 Consequently, our approach is as follows:

1. We assign the first peak to the direct path and determine a grid A of points that can yield that TOA. If
there is a priori information about θs, it can be used in this stage to reduce the grid size. For instance,
the prior information can be in the form of zs ∈ [zmin,0, zmax,0].

2. For each grid point, we obtain the τi’s for all paths. Note that, we use only first-order reflections
in this stage. For example, in a two-dimensional environment provided in Fig. 3, we calculate τi
for the bottom reflected and surface reflected paths. Then, we use a nearest neighbor approach to
assign each τi to the most-likely peak of re(t). Based on the assignment, we calculate an error of
ei(θ

′
s) = (τi(θ

′
s)− pi)

2, and, e(θ′
s) =

∑
i ei(θ

′
s).

3. Finally, the initial estimate is
θs,0 = arg min

θ′
s∈A

e(θ′
s).

Note that since our model is differentiable, even in this stage, we leverage the GB optimization with a
target cost of e(θ′

s) to refine each grid point.

Figure 4 shows an example of this stage for localization in the 3-ray environment of Fig. 3. It is observed
that although the set of TOAs approximately matches that of the peaks, the error in the peak assignment has
resulted in a discrepancy between re(t) and r̂e(t) that will be addressed in next stages. The performance of
this stage of the algorithm highly depends on the geometry; symmetries in the geometry adversely affect the
performance, because the algorithm does not distinguish between different reflections.

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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Transmitter
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Receiver
(Rx)

depth

bottom
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Figure 3: The 3 paths in the illustrative 3-ray model with flat surface and bottom and iso-velocity channel.

Figure 4: An example of the first stage in the 3-ray environment of Fig. 3, with SNR=20 dB. Although the peaks of
re(t) and r̂e(t) coincide, there is a discrepancy between re(t) and r̂e(t).

B. STAGE 2: ESTIMATE REFINING USING SIGNAL ENVELOPE

If the initial estimate of θ̂s is less than half a wavelength apart from the true θs, one can use a squared
error (SE) cost function to refine this estimate and achieve a more accurate solution. The SE cost is defined
as

CSE (rm, r̂m) = ∥rm − r̂m∥22. (5)

However, the initial estimate does not necessarily lie in the half-wavelength interval around the true
solution (for example, if it is obtained by the TOA-based method of stage 1). Moreover, since the received
signal is a passband signal, the SE cost function highly fluctuates around the true θs, making the problem
non-convex. As an illustrative example, consider the two-dimensional 3-ray model provided in Fig. 3, and
assume that the water depth is D = 200 m, ys = yr = 0, xr, xs and zr are known, and the only unknown
is zs. Figure 5 shows the SE cost surface for this problem, where the ground truth is zs = 20 m. Evidently,
the SE cost function can fluctuate significantly.

To tackle the challenge posed by the fluctuations in cost function due to the passband signal, we propose
to first refine θs,0 using the signal envelope re(t) instead of rm(t) in the cost function. Therefore, we
define another cost function based on the Kullback-Leibler (KL) divergence16 between the envelopes of the

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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Figure 5: The SE cost surface, in the 3-ray environment in the presence of AWGN at an SNR=20 dB. The true
source depth is 20 m.

estimated and received signals as

CKL (re, r̂e) = DKL

(
re
C
,
r̂e

Ĉ

)
+DKL

(
r̂e

Ĉ
,
re
C

)
, (6)

where C =
∑M−1

k=0 re[k] and Ĉ =
∑M−1

k=0 r̂e[k] are the normalizing factors that make the areas under
the envelopes equal to 1, and DKL denotes the KL divergence. The intuition behind using the SE and KL
divergence is that the SE corresponds to the maximum likelihood solution in the presence of additive white
Gaussian noise, and the KL divergence (6) for Gaussian pulses takes into account the difference in the peak
locations, i.e., time of arrivals, that is usually used for localization.17, 18

Although using the envelopes changes the optimization landscape, it does not completely remove the
fluctuations, as observed in Fig. 6. Therefore, in this stage, we use a smoothing technique, where the cost is
defined as

CW(θ′
s)

(
r, r̂θ′

s

)
=

∑
θw∈W(θ′

s)

CKL (re, r̂e,θw) , (7)

where W(θ′
s) denotes the smoothing window around the θ′

s. This means that at each round of the optimiza-
tion, we evaluate the cost function not only for a single point, but also for its neighboring points, which
in turn increases the complexity. However, as the algorithm converges, smaller window sizes can be used
to reduce complexity. The results in Fig. 6 verify the efficacy of this approach in the problem of source
depth estimation. Note that although this method works well for low-dimensional problems like source
depth estimation (and with no uncertainties in the parameters), it is not as effective for higher dimensional
problems.

Alternatively, one can perform a grid search around the initial estimate θs,0, W(θ′
s), and for each grid

point and run the GB algorithm to descend to the neighboring local minimum on the cost surface. Finally, an
estimate of the global minimum can be obtained by comparing the local minima obtained from the grid. We
use this method in our source localization problem with uncertainties in the parameters, which is presented
as “KL + grid” or “SE + grid”, according to the cost used.

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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Figure 6: The KL cost surface, before and after smoothing, in the 3-ray environment in the presence of AWGN at
the SNR=20 dB. For smoothing, we have used the window defined in (8) with W = 40 and δ = 0.2.

C. STAGE 3: FINE-TUNING USING TEMPORAL SIGNAL

We assume that the coarse estimate θ̂s, obtained via the envelope of the received waveform, is within
the half-wavelength vicinity of the true estimate. We can then obtain a finer estimate of the source location
by minimizing the SE cost on the temporal waveform (see Fig. 5) to exploit both the envelope and phase
information and achieve a more accurate final estimate.

4. SIMULATION RESULTS

In this section, to show the effectiveness of our algorithm through simulations, we compare the per-
formance in terms of the root mean-squared-error (RMSE) of our GB localization (GBL) to that of the
TOA-based method (stage 1) and the Crameŕ-Rao Lower Bound (CRLB). Specifically, we show that 1)
given a good initialization, we can achieve the CRLB, and 2) the algorithm improves the performance of the
simple TOA-based method. The CRLB derivations will be provided in an extended version of this paper.
Note that for all experiments, we have simulated data and assumed an AWGN channel.

A. THREE-RAY ENVIRONMENT

In this section, we generate simulations for the simple geometry shown in Fig. 3 with a depth of D =
200 m, c = 1500 m/s, ys = yr = 0 m, xs = 0 m,xr = 600 m, zs = 20 m, zr = 120 m, and a Gaussian
pulse with fc = 500 Hz and B = 100 Hz. We denote the step-size of the Adam optimizer by µ.

i. Source Depth Estimation

In the first scenario, we assume the only unknown is zs and an initial estimate of zs,0 = 30 m is available.
We begin by localizing using a smoothed KL cost and perform the optimization with the parameters provided
in Table 1. In this experiment, the smoothing window is defined as

W(z′s) = {z′s + δw | w ∈ [−W,−W + 1, ...,W ], δ > 0,W ∈ N}. (8)

The results in Fig. 7 show that this method can achieve the CRLB for this setup when the SNR ≥ 15 dB.

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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Optimization Step Parameters Cost Function Stage

1 ≤ i ≤ 2 W = 50, δ = 0.2, µ = 4 Smoothed KL 2

3 ≤ i ≤ 4 µ = 0.2 KL

3
5 ≤ i ≤ 22 µ = 0.1 SE
23 ≤ i ≤ 38 µ = 0.01 SE
39 ≤ i ≤ 100 µ = 0.005/(i− 38) SE

Table 1: Optimization parameters for the source depth estimation.

Figure 7: Depth estimation performance of the proposed approach in the presence of AWGN shows that it achieves
the CRLB at high SNR.

ii. Source Localization with Mismatch in The Sound Speed

In the second scenario, we assume that xs and zs are unknown, and our prior knowledge includes
c0 = 1495 m/s, zmin,0 = 5 m, and zmax,0 = 35 m. We use the TOA-based method to obtain an initial
estimate of θs = [xs, zs], then use a grid around the initial estimate defined similar to (8) as

W(θ′
s) = {θ′

s + δw | w ∈ [−W,−W + 1, ...,W ], δ = [0, δ],W ∈ N}, (9)

and run the GB algorithm for those points to achieve a more accurate result, as detailed in Table 2.
Figure 8 shows that if the prior soundspeed c0 is used without modification, GBL can improve on the

TOA estimate. However, if we account for the uncertainty in c0 and include this parameter along with the
unknown location in the optimization procedure (with a corresponding step-size of µc in the optimizer), we
can further improve the estimate.

iii. Source Localization with Mismatch in The Water Depth

In this scenario, we assume that the sound speed is known accurately beforehand, but there is uncertainty
in the water depth, with the prior belief of D0 = 198 m, and the unknowns are xs and zs. Figure 9 shows
that if the prior depth D0 is used without modification, GBL can improve on the TOA estimate. However,
by accounting for the uncertainty in D0 and including this parameter along with the unknown location in
the optimization procedure (with a corresponding step-size of µd in the optimizer), we can further improve
the estimate. The implementation details are provided in Table 3.

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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Optimization Step Parameters Cost Function Stage

1 ≤ i ≤ 20 W = 7, δ = 1.3, µ = 0.04, µc = 0.6 KL + grid

2
21 ≤ i ≤ 50 W = 7, δ = 1.3, µ = 0.02, µc = 0.12 KL + grid
51 ≤ i ≤ 70 W = 7, δ = 1.3, µ = 0.01, µc = 0.06 SE + grid
71 ≤ i ≤ 150 W = 7, δ = 1.3, µ = 0.005, µc = 0.03 SE + grid

151 ≤ i ≤ 350 µ = 0.002, µc = 0.12 SE 3

Table 2: Optimization parameters for the localization with the mismatch in the sound speed.

Figure 8: Localization performance in the presence of uncertainty in the sound speed; The true sound speed is
1500 m/s, while we have assumed a prior of 1495 m/s in the localization algorithms. The orange curve shows the
performance of the GBL when not modifying the sound speed is c0 during the optimization, while the green curve
shows the performance of the GBL when we include c in the set of parameters to be optimized.

Optimization Step Parameters Cost Function Stage

1 ≤ i ≤ 20 W = 7, δ = 1.3, µ = 0.2, µd = 0.4 KL + grid

2
21 ≤ i ≤ 100 W = 7, δ = 1.3, µ = 0.1, µd = 0.4 KL + grid
101 ≤ i ≤ 120 W = 7, δ = 1.3, µ = 0.1, µd = 0.2 SE + grid
121 ≤ i ≤ 200 W = 7, δ = 1.3, µ = 0.05, µd = 0.2 SE + grid

201 ≤ i ≤ 400 µ = 0.05, µd = 0.08 SE 3

Table 3: Optimization parameters for the localization with the mismatch in the water depth.

B. SOARS TANK-BASED SIMULATION SCENARIO

In this experiment, we implement a simulation environment that approximates the localization experi-
ment done in the SOARS tank. This scenario is a 3-dimensional localization problem; xs, ys, and zs are
unknowns. The transmit signal is a modulated Gaussian pulse with fc = 32 kHz and B = 12 kHz and
Table 4 provides the details of the geometry.

Figure 10 presents the performance of the GBL, when used with different number of reflections and
initialized by θs,0 = [0.01,−0.03, 0.46], i.e., 0.0117 m away from the ground truth. The results show that
for SNR ≥ 25 dB, the GBL achieves the CRLB. Note that if we use only the direct path and first-order

D. Kari et al. A gradient-based optimization approach for underwater acoustic source localization
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Figure 9: Localization performance in the presence of uncertainty in the water depth; The true depth is 200 m,
while we have assumed 198 m in the localization algorithms. The orange curve shows the performance of the GBL
when not modifying the depth D0 during the optimization, while the green curve shows the performance of the
GBL when we include c in the set of parameters to be optimized.

θs [0.000,−0.0376, 0.4611] [m]

θr [1.4239,−0.0224, 0.4440] [m]

right wall y = 1.228 [m]

left wall y = −1.228 [m]

bottom z = 1.2630 [m]

surface z = 0 [m]

sound speed 1513.12 [m/s]

wall reflection coefficient 0.93

Table 4: Details of the geometry of the simulation mimicking the SOARS tank geometry.

reflections, we cannot significantly improve this initial estimate.

5. CONCLUSION

We have developed a single-sensor GB localization algorithm that leverages the automatic differentiation
tools in PyTorch, along with a smoothing technique to make the cost function more amenable to optimization
via GB methods. The proposed GB method is a generic framework for localization using differentiable
models, that has the capacity to offer computationally faster localization by avoiding costly brute-force
searches or GA/SA kind of approaches. Furthermore, the proposed method can be extended to similar
problems such as wall or scatterer localization in a water tank. This technique is general enough to be used
with any differentiable propagation model, which can also include machine-learning models trained from
recorded data, for example.
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Figure 10: The RMSE of the proposed approach in the simulation environment modeled on SOARS tank shows
that it achieves the CRLB at high SNR. Note that if we use both first-order and second-order reflections, we can
greatly improve the initial estimate.
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