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Abstract—Understanding iceberg melt is crucial for assessing
climate change effects in polar regions. This paper investigates the
geometric reconstruction and volume estimation of icebergs using
multi-view imagery, combining Structure-from-Motion (SfM)
and Neural Radiance Fields (NeRFs). High-resolution multi-
view datasets are processed through SfM techniques to estimate
camera poses, which are subsequently used to generate a 3D
model of the object using NeRF. The proposed framework
successfully reconstructs iceberg geometry and estimates its
volume, ultimately providing estimates of melting rates. This
study demonstrates the possibility of applying SfM and NeRFs
for monitoring iceberg dynamics, offering a new approach to
analyzing iceberg volume and volume flux.

Index Terms—3D model, computer vision, iceberg, Arctic,
climate change, neural radiance field, structure from motion

I. INTRODUCTION

In tidewater glacial bays, calving and submarine-melting
account for most of the ice loss via frontal ablation. Calving
generates floating ice in the bay in the form of ice-mélange,
icebergs and bergy-bits. Iceberg melting has complex feedback
effects on the global climate system and marine ecosystems
[1]–[3]. The freshwater from melting icebergs contributes
to freshwater fluxes and alters seawater salinity, potentially
affecting ocean properties and mechanisms, such as the At-
lantic meridional overturning circulation and sea level [4]–[6].
These oceanic changes redistribute heat, influence the carbon
cycle, and affect the global climate. Additionally, melting
icebergs also impact local flora and fauna habitats in terms
of physical and biological parameters, consequently affecting
entire ecosystems [3], [7]–[9].

Various approaches have been proposed to calculate iceberg
melting rates. Simulations have been used to model envi-
ronmental factors affecting iceberg melting, with controlled
variables such as water flow velocity, water temperature,
salinity, forced convection conditions, and iceberg shape [10]–
[13]. Though these laboratory studies simulate real-world
conditions as closely as possible, they primarily explore the
influencing factors and the approximate magnitude of their
effects, making it challenging to accurately apply them in the
real-world environment. Acoustic [14] and direct techniques
[15] are also being studied for in-situ iceberg melt estimation.

With advances in artificial intelligence, direct approaches
to calculating iceberg melting rates using Synthetic Aperture

Fig. 1: Locations in Svalbard where field campaigns were
undertaken - Hornsund fjord and Kongsfjorden (marked by
yellow stars).

Radar (SAR) and aerial photogrammetry combined with GPS
iceberg geometry reconstruction [16]–[18] are being explored.
SAR is regularly and effectively used to measure the surface
area covered by ice sheets, but may struggle to detect small
icebergs, particularly against the ocean background [18].

Compared to SAR, multi-view images captured by cam-
eras can capture the complete geometric shape of icebergs,
allowing for surface reconstruction and direct measurement
of their above-water size reduction over time [19]. These
images also capture iceberg surface texture and morphology.
SfM techniques can use these images to recover camera poses
and a sparse 3D structure of the scene, while multi-view
stereo algorithms can generate a dense point cloud, enhancing
the model’s detail and accuracy. Various commercial software



Fig. 2: Iceberg images from the four videos (rows 1-4) after frame extraction, resizing, and masking.

tools such as COLMAP [20], combine these steps to automate
surface reconstruction and have been widely applied to fields
like coral reef [21], river reach studies [22], and forest canopy
analysis [23].

In 2021, a 3D novel-view-synthesis method called NeRF
[24] was proposed, using neural networks to simulate and
render volume density and color distribution in scenes from
a series of 2D images. The advantage of this is that (1) it
does not require active imaging techniques like LIDAR, and
can be done even with simple phone-based cameras in the
field, which are less bulky, inexpensive and easily available,
(2) it is non-invasive, and does not add any pollutant into
the environment. This algorithm has been applied to 3D
reconstruction for fields as varied as cultural heritage artefacts
and scenes [25], [26] and analysis of damage in aviation [27].
Compared to traditional multi-view stereo, NeRF performs
better in reconstructing texture-less and reflective surfaces [28]
such as those of icebergs.

Field campaigns were undertaken in 2023 in Svalbard to
record visual and acoustic data near the glacier termini. During
these campaigns, we collected videographic survey data of
icebergs at different time-points, during which the icebergs
melt a certain amount. This paper presents the reconstruction
of geometries and the estimation of above-water volume of
these icebergs using this video data. Based on these data, the
difference in iceberg volume, and thus meltwater volume flux
during the duration between which the videos were acquired,
can be estimated.

In Section II, we describe the dataset used in this study.
Section III outlines the methodology including the camera
pose estimation and NeRF reconstruction technique, including

a detailed parametric study and discussion of the effective pro-
cessing chain. The melt-rate estimation results are presented
in section IV. Finally, section V summarizes and concludes
the paper.

II. DATA COLLECTION

We undertook field campaigns in two regions in Svalbard
– (1) Hornsund fjord and (2) Kongsfjorden, shown in Fig. 1,
to conduct in-situ melting studies and passive acoustics, visual
data, active acoustics, and robot-based surveys near the glacier
termini [14], [29], [30]. The Hornsund campaign was staged
from the Polish Polar Research station, and the Kongsfjorden
campaign was staged from the Norwegian Polar Institute
research station in Ny-Ålesund. The video data used here
consists of:

1) Dataset 1: Two videos captured using a handheld GoPro
10 camera from a boat while it was driven around an
iceberg named #1 at Hornsund fjord, on July 24, 2023
at 14:25 hrs and 15:18 hrs UTC, and

2) Dataset 2: Two videos shot with an Android phone
around an iceberg (named #2) in Kongsfjorden along
with GPS data recorded every second, filmed on 7th
August 2023 at 6:27 hrs and 9:15 hrs UTC.

In both cases, the water depth was determined to be large
enough that the iceberg was floating. Video footage in Horn-
sund was acquired by driving the Polish station’s Zodiac boat
to a spot within safe distance from the glacier terminus, and
surveying an iceberg in the bay. Footage in Kongsfjorden was
acquired by using a Polarcirkel boat from the Norwegian Polar
Institute station to drive out to Kongsfjorden and surveying
icebergs.



# Features with SIFT # Features with DSP-SIFT
Dataset 1, video #1 1508881 1394973
Dataset 1, video #2 1860827 1696885
Dataset 2, video #1 1165122 1079960
Dataset 2, video #2 1912056 1760838

TABLE I: Number of feature points obtained for each video
using the two approaches of SIFT based feature extraction.

III. METHODOLOGY

In recent years, deep learning-based algorithms have
emerged as the dominant method for generating 3D scenes
from 2D images without requiring knowledge of its 3D struc-
tural ground truth. One of the emerging techniques is NeRF
[24] which maps each point and view information in 3D space
into the corresponding color and density values, so that images
from different viewpoints can be synthesized. This method
learns the scene by training a neural network model, and uses
volume rendering techniques to convert this information into
realistic images with details and features captured accurately.

The basic methodology used in this paper is to apply NeRF
to reconstruct the 3D volume of icebergs exposed above the
water surface. The steps involved in this include

1) Collecting the videos collected from the scene surveying
each iceberg in two separate runs, converting them into
photo frames, and downsampling or downsizing them.

2) Estimating the camera pose for each of the photos using
COLMAP SfM [20], [31], within an artificial reference
frame defined for each video by the software.

3) Building a 3D reconstruction of the scene from the
estimated camera poses using NeRF.

4) Exporting the reconstruction into a mesh form where it
can be edited and post-processed further.

5) Post processing and repairing the mesh.
6) Estimating volume of the iceberg object in the COLMAP

reference frame.
7) Estimating the scaling relating the real-world size to the

COLMAP reference frame.
8) Comparing iceberg volumes from the two runs and

estimating the volume flux.
In the following sections, these steps will be detailed.

A. Dataset preprocessing

Video datasets acquired from each location are converted
into a set of individual frames, which can be treated as
if captured by multi-view cameras with consistent intrinsic
parameters, assuming the scene is quasi-static. The frame
rate and resolution of the cameras are higher than required
for the current problem, yielding too many images which
makes pose estimation and 3D reconstruction computationally
expensive and infeasible. Thus, the video frames are down-
sampled, preserving just enough information for accurate 3D
reconstruction. The first video is downsampled in time by a
factor of 14, and resized from 3840 × 2176 to 1920 × 1088.
The second video’s frames are downsized by a factor of 15.
The initial resolution of the second video is 1920× 1088, and
no resizing was done.

Fig. 3: Feature extraction results: SIFT (top rows) and DSP-
SIFT with affine shape estimation (bottom rows) - the location
points of the features are marked as red dots.

Fig. 4: Incorrect feature matching results with SIFT’s feature
points.

B. Camera Pose estimation

SfM is a computer vision technique used to reconstruct 3D
structures from a series of 2D images taken from different
viewpoints. SfM estimates camera positions and creates a
sparse 3D point cloud of the observed scene. COLMAP [20],
[31] is an SfM software that pairs all images together and
measure the cosine similarity of each feature point descriptor
to determine whether they are the same point in the 3D world.
We utilize COLMAP for the camera pose estimation prior
to NeRf - this involves feature extraction, feature matching,
and sparse reconstruction steps. Although the ground truth of
the camera pose is unavailable, we evaluate the quality of
the estimated poses by assessing their consistency, comparing
them with GPS data (for dataset 2), and qualitatively analyzing
the quality of the resulting 3D reconstructions. These methods
help guide adjustments to the parameters used in the estimation
process.

COLMAP allows the use of masks to define which regions
to ignore or include when generating camera pose estimates
from the images. We use the segmentation software Sefexa to
mask out the sea surface pixels in each frame, retaining only
the iceberg and background in each image. This is because
we find that the background, which is static and more feature-
rich, plays a crucial role in providing enough features for
estimating camera poses. The water surface was not quasi-
static due to changing sea surface-waves in each frame, which
interferes with the pose estimation, so the sea water has to be
masked. This will be discussed more under point (2) below. We



Fig. 5: Feature matching results using default parameters in COLMAP, with an example pair of images. The matches are
shown in the form of the green lines connecting the corresponding red dots in the two images.

also manually remove images that were far from the iceberg
because these contribute too little information and add to the
computational complexity.

Now, we discuss each step, and compare the selection
of different parameters in COLMAP to obtain good pose
estimates.

Fig. 6: Mismatch between water surface and iceberg features.

1) Feature extraction: In Table I, we compare the total
number of feature points obtained by the feature matching
algorithm using a (i) standard shift-invariant feature transform
(SIFT) algorithm and (ii) domain-size pooled (DSP)-SIFT
with affine shape estimation. Using DSP-SIFT with estimating
affine shape, the total number of feature points has decreased
because affine shape estimation introduces more constraints
for extracting feature points. However, after DSP-SIFT feature
extraction, the number of feature points on the glacier has
increased and the number of unstable feature points along
the mountains’ boundary has decreased slightly as shown in
Fig. 3. Furthermore, results from the feature matching stage
(discussed next) further proves the better stability of using
DSP-SIFT with affine shape estimation. SIFT produces a
significant number of false matches as shown in Fig. 4 which
DSP-SIFT does not. Hence, moving forward, we will use DSP-
SIFT with affine shape estimation in the feature extraction
step.

2) Feature matching: Matching results using default
COLMAP parameters are shown in Fig. 5. Some of the good
matched pairs appear in the background, which shows the im-
portance of the background for achieving effective matching.
One of the reasons for this is that there are not enough sharp
and distinct features on the iceberg itself for matching, whereas
the background has richer and unambiguous features that
enable good matching. This is why we retain the background

in the mask during the feature extraction stage. The sea water
features, on the other hand, are noisy because (1) the color
of seawater does not change over different regions and in
different poses and (2) the surface waves keep changing from
frame-to-frame, removing the consistency needed to estimate
poses correctly. As shown in Fig. 6, sea surface features are
very weak under different light and shadow conditions and
there are some mismatch between sea surface features and
iceberg features. This is the reason why we mask the sea
surface part out.

Another important parameter to be fine-tuned is the con-
fidence level used for matching. If the level is set too high,
fewer points will be matched. Conversely, if it is too low,
more inaccurate points may be matched and hence the overall
matching results may become inaccurate. Both situations can
negatively impact the subsequent estimation, so we need to
find the sweet-spot in terms of this parameter.

For dataset 1, a confidence level of 0.993 yields the most
continuous camera poses, with no noticeable gaps between
frames. In dataset 2, when the level exceeds 0.992, the camera
poses remain continuous, and increasing the level further
does not improve performance. However, a closer look at
the 3D reconstructed mesh reveals that while the performance
difference between using levels of 0.992 and 0.993 is minor,
the mesh volume generated is inconsistent between the two.
While this does not necessarily have a bearing on the quality of
the feature matching, it shows the importance of maintaining
a consistent confidence level within the same dataset to ensure
uniformity in the resulting mesh volumes. Based on this, we
decide to set the matching confidence level of the two videos
in dataset 1 to 0.993, while that of the two videos in dataset 2
is set at 0.992. The camera pose estimates are shown in Fig. 7,
and the corresponding mesh generated in Fig. 8.

3) Camera pose estimation: First, images where the iceberg
is far away are removed because they lead to errors in the
final camera pose estimation. The pose estimates and sparse
reconstruction of iceberg 1 are shown in Fig. 9. Reconstruc-
tions from both videos show good consistency as assessed in
COLMAP.

For dataset 2, apart from assessing the consistency of the
camera poses, the estimated camera trajectory is compared



Fig. 7: Camera pose estimates using feature matching with confidence level 0.993. The grey point cloud in the center is the
sparse reconstruction of the iceberg, and the surrounding red triangles show the pose estimates.

Fig. 8: Mesh generated using 0.993 confidence level in feature
matching.

Fig. 9: Camera pose estimates for dataset 1.

with the movement trajectory indicated via GPS to verify the
performance. As shown in Fig. 10, the estimated trajectory is
very close to the GPS-based trajectory, validating the estimated
poses. There is a slight mismatch in the trajectories in one
section. By visual comparison of the images at this point of

(a) (b)

Fig. 10: (a) Camera pose estimates and (b) GPS track of
dataset 2.

mismatch, we conclude that the COLMAP estimates seem
more accurate for these images, and the inconsistency is likely
due to slight errors in the GPS data.

C. 3D reconstruction result evaluation

1) NeRF reconstruction result: The rendering quality of
the reconstruction is usually measured using three quality
indicators, namely (i) Peak Signal to Noise Ratio (PSNR), (ii)
Structural Similarity (SSIM) [32] and (iii) Learned Perceptual
Image Patch Similarity (LPIPS) [33]. These are mainly used
to measure the similarity between the real image and the
corresponding image synthesized by NeRF. PSNR measures
the pixel-level differences between images, with higher values
indicating more similar images, while SSIM measures the
structural similarity of the images. The closer the SSIM is to
1, the more similar the images are in terms of feature structure.
LPIPS detects image differences through deep networks, and
smaller values indicate more similar images.

PSNR SSIM LPIPS
Dataset 1, run #1 21.26 0.76 0.316
Dataset 1, run #2 20.47 0.758 0.31
Dataset 2, run #1 18.13 0.85 0.307
Dataset 2, run #2 19.05 0.838 0.297

TABLE II: Evaluation metrics of NeRF rendering output.

The three metrics evaluated for the NeRF reconstructions
are tabulated in table II and the rendering results are shown
in Fig. 11. The metrics indicate the rendering results are of
reasonable quality to proceed with the objective in this work.
By comparing with the original frame in Fig. 2, we find that all
the details of the iceberg surface are well reconstructed. This
demonstrates that NeRF rendering performs effectively from
various viewing angles and that the overall 3D reconstruction
of the scene is of high quality. There are some inaccuracies
such as black points visible in the sky - however, these are an
artefact of the masks used in the images, and inconsequential
to our problem.

The NeRF 3D reconstruction is exported into a mesh form,
shown in Fig. 12. For each mesh, we remove the black parts
(artefacts of the masks used) and isolated pieces in the mesh
with a radius smaller than 0.08 pixel units in MeshLab. Most
of the iceberg details are preserved. However, some holes are
observed at the top of the mesh for dataset 2, because the



Fig. 11: NeRF rendering results.

Fig. 12: Two example top views of exported mesh before
repairing (top row) and after repairing (bottom row).

captured images are taken at eye-level and cannot provide
any color and density information at these locations for NeRF
to train, so the NeRF assumes these parts of the iceberg are
empty, or ‘hollow’. After this, we convert the mesh into a solid
object, fill the holes on the upper surfaces and the missing
bottom surface, and calculate its volume.

Fig. 13: The object of known dimensions in the real scene,
described in [15], and the point cloud exported after NeRF
reconstruction.

IV. SCALE RECOVERY AND MELTING RATE ESTIMATION

For dataset 1, based on the known camera model and pa-
rameters, the scaling factor is calculated to be 6.17 m/pixel and
4.55 m/pixel for horizontal and vertical scaling respectively.
We also verify this based on an object of known dimensions



that was present in the scene as shown in Fig. 13 - the
scale factor estimated based on the dimensions of this object
matched the scaling calculated for the camera model.

Iceberg 1’s volume is thus estimated as V1 = 3.05 m3 and
V2 = 2.67 m3 in the first and second videos respectively. The
volume reduction in the surface-exposed part of iceberg 1 is
estimated as 0.43 m3/hour.

For a floating iceberg with a given density (assumed
902.5 kg/m3 for fresh glacier ice), the submerged ice fraction
is equal to the ice density relative to sea water, estimated as
0.879. Therefore, the absolute melt rate across the total iceberg
volume can be estimated as 0.43

1−0.879 = 3.55 m3/hour. The melt
rate relative to the initial volume for iceberg 1 is estimated as
V1−V2

V1×0.88 = 14.2 %/hour.
For dataset 2, the camera’s parameters are not known for

us to be able to calculate the scale directly. However, we
can estimate the scale from the GPS data by comparing the
distances of the camera tracks in COLMAP with those in the
GPS data. Although there are small errors in the GPS data,
they are within acceptable margins for the sake of this problem
because the track span is large enough.

Iceberg 2’s volume in the first and second videos is es-
timated as V3 = 1.15 m3 and V4 = 0.58 m3 respectively.
The reduction in volume of the surface-exposed portion for
iceberg 2 is estimated as 0.2 m3/hour. Thus, the absolute
melt rate across the total iceberg volume is estimated as
1.653 m3/hour. The melt rate relative to initial volume is
estimated as V3−V4

V3×2.8 = 18% /hour for iceberg 2.

V. CONCLUSION

In this study, we used NeRF combined with SfM to suc-
cessfully reconstruct the 3D geometry of the above-water
portion of two icebergs from video acquired with hand-
held cameras. Thereby, we demonstrated the feasibility of
accurately reconstructing complex iceberg shapes and surfaces
and estimating meltwater volume flux, and validated NeRF’s
performance in handling ice surfaces with less color diversity
and reflectiveness. The technique developed herein is shown
to perform well on the aerial imagery data acquired from the
field.

The advantage of this technique is that (1) it does not require
active imaging techniques like LIDAR for volume estimation,
and can be done even with simple phone-based cameras in the
field, which are less bulky, inexpensive and easily available,
(2) it is non-invasive. Its drawback is that it can only directly
estimate the volume (and melt-rate) based on the part of
the iceberg above water - however, this can also be used to
infer the overall melting of the iceberg by using assumptions
on the density of the ice which allows us to estimate the
volume of ice submerged (assuming the iceberg is floating,
and not grounded). The experimental results indicate that the
methodology can provide an easy way for iceberg volume
estimation, making it a valuable tool for iceberg monitoring
studies. This method also requires access to the region near the
iceberg, and may be sensitive to visibility conditions. Careful
acquisition of the iceberg video from sufficient viewing angles

is also necessary for good performance. This technique may
also be used to estimate the retreat rate (in m/day units)
of ice-boundaries (such as glacier termini) by estimating the
real-world coordinates of the estimated 3D mesh, or that of
3D objects like icebergs by dividing the volume flux by the
average surface area of the iceberg, but these have not been
attempted in this work.

Some of the steps that helped improve the technique in-
cluded

• Masking the sea surface pixels in the images prior to
SfM,

• Using DSP-SIFT feature extraction with affine shape
estimation,

• Parametric study on the confidence level which yielded
the reconstruction of the best quality, and

• Weeding out images that were too far away to provide
useful features.

Future research could focus on validating the volume es-
timates against estimates obtained from other techniques, to
benchmark its accuracy.
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