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Abstract

Underwater acoustic channels exhibit significant temporal and spatial

variability, making it challenging to design a single communication scheme

that works well everywhere and at all times. Adaptive Modulation and

Coding (AMC) techniques offer a solution by dynamically selecting the optimal

scheme for specific channel conditions. Data-driven models are commonly used

in AMC for their simplicity. A key dilemma in AMC is that of exploration

versus exploitation. Exploration means trying new Modulation and Coding

Schemes (MCSs) for potentially better communication performance under the

prevailing channel conditions while exploitation involves utilizing the best MCS

known so far, based on past experiences and collected data. Popular policies

such as random, greedy, ϵ-greedy, Upper Confidence Bound (UCB) are employed

in AMC. We propose a new algorithm framework based on Monte Carlo Tree

Search (MCTS), K-MCTS, which builds a K-level look-ahead tree for every

simulation in MCTS. Simulation results demonstrate the superiority of the

K-MCTS for balancing the exploration and exploitation, but the inherent

dependency of data-driven methods on substantial training data makes this alone

unsuitable for underwater communication applications.

Recognizing the limitations of data-driven methods, particularly the

extensive data requirements, we incorporate channel physics knowledge into

the AMC algorithm design. We propose a Bit Error Rate (BER) estimation

iv



model that fuses channel physics knowledge in Orthogonal Frequency Division

Multiplexing (OFDM) system. In complex sea conditions, we enhance the

reliability of AMC by extending our BER prediction model from a point

prediction to an interval predictor. This extension involves incorporating

Gaussian Process Regression (GPR) to address the uncertainty in BER

estimation. Predictions from such an algorithm are used to drive AMC to

maximize communication throughput reliably.

For effective AMC, consistent receiver-to-transmitter feedback is vital for

Channel State Information (CSI) collection. However, feedback sent too often

can diminish throughput in channels with huge propagation delays, while

inadequate feedback can compromise AMC decisions. Addressing this, we

propose an algorithm incorporating Tree Search with Deep Q-Network (DQN),

namely TS-DQN, to strike an optimal feedback balance, subsequently optimizing

communication performance.

We demonstrate the advantages of our algorithm through experiments in a

test tank and at sea. Simulations further corroborate its robustness across varied

underwater settings. Our TS-DQN framework also offers a generalized solution

for any MDP prioritizing long-term rewards, particularly in scenarios with

exploration and exploitation challenges and expansive action or state spaces.
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Chapter 1

Introduction

1.1 Background

The oceans, covering 70% of Earth’s surface, remain largely unexplored.

As interest in underwater research, exploration, and commercial activities

grows, there is an increasing demand for more advanced technologies. While

electromagnetic waves work well for wireless communication in the air, they

face challenges such as limited propagation range and increased signal loss

in underwater environments. Acoustic waves, however, can propagate long

distances with comparatively low attenuation, making them ideal candidates

for maintaining underwater communication links. As a result, Underwater

Acoustic communication (UAC) has gained prominence in research, essential

for fields like oceanography, marine biology, offshore exploration, and defense.

These domains require high-speed data transfer and real-time communication for

operational success. However, UAC faces challenges due to limited bandwidth,

high signal attenuation, and ambient noise, combined with the dynamic nature

of underwater environments influenced by factors like temperature gradients,

salinity, and water currents [1]. These factors make real-time, reliable

communication and high data-rate transmission in UAC especially complex

and necessitate sophisticated communication strategies to ensure robust UAC

1



CHAPTER 1. INTRODUCTION

systems.

Adaptive Modulation and Coding (AMC) techniques present a viable

solution to navigate the dynamic characteristics of UAC channels, promoting

efficient data transmission. Channel behaviors vary based on diverse factors,

including location, depth, temperature/salinity profiles, modulation techniques,

operational frequency, tidal influences, and a myriad of other factors. Therefore,

a modulation scheme optimally designed for specific channel conditions can

not maintain robust performance in the long-term deployment of UAC

systems [2]. When a modulation scheme is defined for ensuring successful frame

transmission under adverse channel states, such as those influenced by strong

underwater currents leading to water turbulence, communication reliability can

be guaranteed. However, this conservative approach compromises spectrum

efficiency when channel conditions subsequently improve. Instead, AMC permits

the dynamic selection of appropriate Modulation and Coding Schemes (MCSs)

based on real-time assessment of channel conditions [3]–[7]. By continuously

adapting to changing channel characteristics, AMC strives to attain an optimal

trade-off between communication reliability and throughput, thus enhancing

UAC system performance. In the wireless communication system, efforts have

been directed to optimize the following parameters:

• Modulation schemes (e.g., Phase-Shift Keying (PSK), Frequency Shift

Keying (FSK), and Quadrature Amplitude Modulation (QAM)).

• Error correction methodologies and associated coding rates.

• Power levels for transmission.

2



1.1. BACKGROUND

• Allocated channel bandwidth.

• Frame length.

• Parameters in Orthogonal Frequency Division Multiplexing (OFDM)

systems, encompassing cyclic prefix length, number of subcarriers, number

of nulls, etc.

Collectively, these parameters form an extensive array of potential modulation

configurations. Nonetheless, the absence of a universally accepted UAC channel

model presents an obstacle in accurately evaluating communication system

performance. Furthermore, there appears to be a research gap concerning

modems that automate AMC. In most current works, modulation configurations

are typically predetermined and retained for transmission, or tuned manually.

The effectiveness of AMC heavily relies on the precise and prompt acquisition

of Channel State Information (CSI) [8]–[10]. Feedback-based mechanisms are

commonly employed in AMC to obtain real-time channel data. This feedback

facilitates the transmission of channel metrics to the source, enabling informed

decisions on MCSs. The speed of sound in water is approximately 1500 m/s,

resulting in propagation delays that are 200000× higher than those experienced

in terrestrial radio communication networks [11]. These propagation delays are

comparable to typical frame duration in UAC. Extensive research has addressed

the ill effects of large propagation delays, impacting handshaking protocols and

retransmission schemes [12], as well as medium-access control layer protocols

preventing data collisions [13]. In a one-to-one communication system, where

data frames are exchanged between a transmitter node and a receiver node,

3
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the time taken for data frames to be received is influenced not only by the

frame transmission time but also by the distance between the transmitter and

receiver [14]. The transmitter awaits CSI feedback before performing AMC and

initiating frame transmission. In such scenarios, the introduction of two-way

propagation delays can substantially degrade the channel throughput. However,

to our knowledge, there is a limited amount of research focused on mitigating

the ill effects stemming from propagation delays in one-to-one communication

systems.

1.2 Motivation

Consider an UAC system where information frames are exchanged between a

transmitter (TX) node and a receiver (RX) node. Our goal is to transmit a large

file containing N bits from the TX node to the remote RX node, situated at a

distance l, in the shortest possible time, thereby optimizing channel throughput.

Modulation and Coding techniques encode these bits onto frames to ensure

reliable communication. As detailed in Section 1.1, modulation in UAC systems

can be characterized by either individual or combined tunable parameters. For

instance, modulation schemes may comprise phase, frequency, or amplitude

modulation, such as PSK, FSK, or QAM. In the context of OFDM systems,

modulation can be influenced by parameters like the number of subcarriers,

cyclic prefix length, the designated channel bandwidth, or diverse modulation

orders assigned to subcarriers. After the modulation process, error correction

mechanisms, like Forward Error Correction (FEC), embed redundant bits into

the modulated frames. This redundancy facilitates the RX node in detecting

4



1.2. MOTIVATION

and correcting potential transmission errors.

Given the dynamic nature of UAC channels, it is impractical to design a

one-size-fits-all modulation scheme that performs optimally across all scenarios.

We employ the AMC techniques to enable tuning the MCSs based in line

with prevailing channel conditions. Research on AMC in UAC channels

predominantly investigates the relationship between channel characteristics, like

the Signal-to-Nosie Ratio (SNR) information, and system design. Typically,

there is a limited amount of MCSs available for AMC and data-driven approaches

are applied to figure out the relationship between the channel characteristic

and each MCS. Data-driven methods have gained prominence due to their

simple input requirements, such as some basic metrics SNR or Bit Error

Rate (BER), capability for various problems without or with limited knowledge

about underlying physics, and ability to learn and extract insights from provided

datasets. This perspective spurred our development of an innovative data-driven

AMC algorithm, as discussed in Chapter 3.

Data-driven methods generally rely on statistical and Machine Learning (ML)

analyses, necessitating heavily on data availability. Their inherent demand for

extensive training data intensifies when transitioning to real-sea applications.

For instance, [15] documents that, to calibrate just four MCSs (JANUS, BPSK,

QPSK, OFDM) in a long-range UAC system, approximately 100000× data

points were collected for ML-driven channel classification, supplemented by 900

simulated channels due to a limited number of channels from sea trials. As

for operating AMC in an expansive MCS landscape, like tuning the number of

subcarriers and cyclic prefix length parameters in OFDM systems, the number

5



CHAPTER 1. INTRODUCTION

of available MCSs can be 1000× more than that in [15] and hence the dataset

required will be a prohibitive size. The time required to collect such data for

purely data-driven AMC strategies challenges the goal of transmitting N bits

in the shortest possible time. The incorporation of physics-informed methods

offers an advantage by leveraging prior channel knowledge, often reducing the

reliance on extensive training data typically demanded by purely data-driven

approaches. As shown in [16], the inherent physics of the OFDM system can act

as an initial filter, narrowing down the feasible MCSs domain. Simultaneously,

channel physics helps build correlations among MCSs with similar values,

fostering expedited convergence rates for the AMC model when synergized with

data-driven techniques. Motivated by these findings, our focus shifts to delving

into the underlying channel physics of UAC channels and presents it as an

appealing substitute to exclusively data-driven approaches, aiming for a more

effective AMC.

Research involving AMC in wireless communication has predominantly

revolved around single-carrier systems [17] as well as multi-carrier systems

like OFDM. Nowadays, OFDM has emerged as a preferred alternative to

single-carrier transmission, particularly for the forthcoming generation of

commercially available UAC modems. This preference for OFDM stems from

its straightforwardness and robustness in handling unique UAC characteristics,

such as multipath and frequency-selective fading, without the need for intricate

equalization procedures [18], [19]. Therefore, we first focus on physics-informed

AMC in OFDM systems. The properties of OFDM have been detailed in works

such as [16],[20]. Specifically, they underline that the duration of the cyclic prefix

6
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should surpass the channel’s delay spread. Furthermore, it is imperative that the

channel remains relatively consistent throughout the symbol’s duration, implying

that this duration should not exceed the channel coherence time. Moreover, to

ensure flat fading on each subcarrier, the bandwidth allocated to each subcarrier

should not surpass the channel’s coherence bandwidth. Armed with these

theoretical underpinnings, we propose a physics-informed AMC algorithm in

the OFDM system.

Frames are transmitted from the TX node to the RX node after modulation

and coding. The CSI is subsequently obtained at the RX node through feedback,

as performing AMC heavily relies on obtaining accurate CSI for communication

performance evaluation. Given the considerable propagation delays in certain

UAC channels, it is impractical to expect feedback after every frame transmission

and still achieve high throughput. There is also an inherent trade-off between

CSI feedback periodicity and the accuracy of channel estimation for AMC.

Increasing the periodicity of CSI feedback reduces the overhead due to the

long propagation delays. However, obtaining feedback more often enables more

frequent updates of the channel information, providing better tracking of channel

variations. This allows the system to gain faster convergence speed of AMC

strategy and optimize performance. On the other hand, if the channel variations

are relatively slow or the AMC model has been well-trained, increasing the

feedback periodicity may be sufficient to capture the relevant changes, thereby

conserving resources. The research on dynamically scheduling feedback is still

relatively limited which motivates us to propose a feedback scheduling strategy

and determine relevant decision parameters to address the trade-off between
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communication performance and resource utilization.

Feedback typically comprises metrics like BER, SNR, and throughput to

guide the transmitter in assessing communication performance and determining

the optimal MCS. Throughput assessment is vital in optimizing data

transmission rates among these metrics, especially when accounting for two-way

propagation delays. The computation of throughput entails the measurement of

successful bit transmission over a specified duration. For a given transmission

range with fixed propagation delay, the AMC strategy can opt for MCSs with

higher coded data rates for better throughput. The coded data rate comprises

uncoded data rate and error correction overhead. BER knowledge of MCSs

aids in the selection of appropriate error correction techniques and coding rates.

Therefore, accurate BER estimation is indeed crucial for improving AMC for

optimal throughput in communication systems. However, the time-varying

behavior of UAC channels introduces significant fluctuations in the actual BER.

Consequently, we emphasize the need for BER distribution prediction which

provides a range of possible BER values given any modulation configuration.

Such AMC algorithms select MCSs leveraging this predicted BER distribution,

synchronizing data rates and reliability with prevailing channel conditions.

1.3 Thesis Contributions

The objective of this thesis is to develop and implement an AMC algorithm

together with the feedback scheduling mechanism, targeted at maximizing

channel throughput for the transmission of large files of fixed bit size in the

shortest possible time. The key contributions can be outlined as follows:

8
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1. We utilize Markov Decision Processes (MDPs) for AMC and feedback

scheduling formulation. Drawing inspiration from prevalent MDP

algorithms, we introduce the K-MCTS algorithm in Chapter 3, adeptly

balancing exploration and exploitation, particularly when channel

information is limited.

2. In light of the extensive data requirements of data-driven algorithms

presented in Chapter 3, we introduce an AMC strategy that incorporates

channel physics in the OFDM system in Chapter 4. Within the AMC

strategy, we formulate a heuristic BER estimation model that aligns well

with empirical BER findings, underscoring the augmented efficacy of AMC

as evidenced by simulations.

3. We then assess the practical challenges of using our AMC algorithm in

real-sea scenarios in Chapter 6. Emphasizing the criticality of robustness

and reliability in MCS selection in real-sea experiments, we introduce

a BER distribution predictor, which harnesses the power of GPR. This

methodology quantifies BER uncertainties, ensuring a reliable AMC

performance evaluation and throughput optimization as evidenced by

real-sea experiments.

4. With knowing the importance of AMC efficiency and two-way propagation

delays in throughput optimization within one-to-one communication

systems, heuristic feedback scheduling strategies are previously explored

in Chapters 3 and 4. We further introduce an algorithm, TS-DQN, which

merges tree search and Deep Q-Network (DQN) in Chapter 5 to schedule

9
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the MCSs tuning and feedback timing. TS-DQN is specifically tailored

for long-term throughput optimization in AMC, addressing the challenges

posed by high-dimensional action and state spaces in MDPs.

5. We set up a 2-node UAC network in a test tank and at sea. Using

our TS-DQN-based AMC algorithm, we observed significant throughput

improvements across various experiments. Additionally, we test the

algorithm in diverse simulated UAC channels with varying propagation

structures and BER profiles in Chapter 6.

6. Previous works addressed the exploration-exploitation trade-offs for MCS

selection and feedback scheduling separately within our MDP framework.

In Chapter 7, we integrate these trade-offs under the TS-DQN framework

and test the enhanced approach in diverse simulated UAC channels with

distinct propagation structures and BER profiles.

10



Chapter 2

Literature Review

Research on AMC in wireless communication systems has highlighted

its capability to enhance communication efficiency and reliability. This

review summarizes some recent studies on the success of AMC in wireless

communication. Numerous studies perform AMC in a data-driven style that

depends on the availability and quality of data to figure out the modulation

and setup selection based on the channel conditions. However, limited literature

has been done on incorporating channel physics to enable the MCS selection

in AMC. AMC also enables the feedback loop between the transmitter and

receiver in the communication system for updating the AMC strategy iteratively.

In UAC systems, papers in the literature pay less attention to the latency

introduced by obtaining feedback given the huge propagation delays in the

one-to-one system. Since in subsequent chapters of this thesis, we formulate

the AMC with feedback scheduling in UAC as a MDP, we will also explore

state-of-the-art algorithms employed in MDPs to propose an appropriate solution

for the potential challenges in our problem.

2.1 AMC Methodologies

The development of AMC techniques for wireless communication has

witnessed significant progress. Existing literature reviews highlight two primary
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approaches for implementing AMC: data-driven methods and physics-informed

methods.

2.1.1 Data-driven Methods in AMC

Data-driven methods rely on ML techniques and statistical analysis to

make adaptive decisions for MCSs based on real-time channel measurements

and feedback. These methods utilize large datasets of empirical channel data

to train models that can predict channel conditions and optimize the choice

of MCSs accordingly. In Data-driven AMC approaches, various branches of

ML such as supervised learning, unsupervised learning, and Reinforcement

Learning (RL) [21] or other statistical techniques have been applied to achieve

AMC.

In the terrestrial wireless communication area, data-driven approaches have

shown promising results in AMC. Prior research has struggled to find channel

quality parameters and constructed look-up tables to simultaneously provide

the mapping to channel performance metrics in a classification fashion. For

example, in [22], a supervised learning method, Artificial Neural Network, aided

SNR estimation of different MCSs and operated AMC accordingly. In [23],

supervised learning helped AMC to exploit past observations of error rate and the

associated channel state information to predict the ordered SNR and choose the

best MCSs in a Multiple-Input Multiple-Output system. A fast link adaptation

algorithm based on a support vector machine aiming to minimize computational

time was proposed in [24]. However, AMC algorithms in both [22]–[24] require

sufficient training data. Although in [25], the same support vector machine-based
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algorithm was employed and it assisted AMC without any external training while

this method is only applicable in cognitive radio networks and not generalized.

Unsupervised learning attempts to divide inputs into clusters having common

factors and to extract frequent patterns. The author of [26] presented a

clustering algorithm, the k-means algorithm, to do AMC via modem grouping in

different channel conditions in a wired OFDM system. The k-means algorithm

was also employed in [27] to split the mobile stations into clusters where the

mobile stations were selected to maximize the capacity. Unlike supervised and

unsupervised learning, RL trains the AMC strategies in an online style via

interaction with the environment and lowers the dependence on the training

data [28]. [29] first proposed RL as a possible and practical strategy for solving

AMC problems. The work presented in [30] utilized RL in AMC which is able

to optimize the channel performance in terms of BER, transmission time, and

the energy consumption of the transmitter. Similar works have been done in 5G

network [31] and an OFDM system [32]. When dealing with higher dimensional

problems, a Neural Network-based extension of an RL scheme, i.e., DQN, is well

established for balancing between the convergence time of the algorithm and the

dimensions of the search space [33]. [33] employed DQN for link adapting based

on mapping the different SNR rate regions to optimal modulation schemes.

The unique propagation characteristics posed by UAC create significant

barriers to directly applying AMC technologies developed for air-based

communication systems. AMC techniques for UAC must be specifically designed

to account for the complexities and uncertainties inherent to underwater

communication environments. As a result, the development of AMC in UAC
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is far behind its terrestrial-based counterpart. So far, AMC in UAC research

has generally focused on data-driven methods. Unlike terrestrial wireless

communication, the high attenuation, multipath propagation, variable channel

conditions, and long propagation delays in underwater environments pose

challenges to performing data-driven AMC algorithms in the UAC channels.

Some existing works of AMC in UAC are summarized as follows. Several

works perform AMC selection in UAC as a classification problem for which the

mode selection metric is produced by ML models [7], [15], [17], [34]. In [34], the

AMC procedure is formulated as a classifier that has been trained by a labeled

database which helped map the real-time channel state to the corresponding

optimal MCSs. The author of [17] proposed a decision tree that was trained to

associate channels with modulation schemes under a target BER and all relevant

channel characteristics were extracted from large amounts of transmissions from

a PSK modem. [7] performs joint key features selection and extraction of CSI

instead of all the measured ones via sparse principal component analysis to

obtain a faster convergence speed in the AMC system. Work in [15] classified the

channels into different types and identified the best MCSs for each channel type

in a long-range UAC. These studies employ unsupervised learning to simplify

UAC channel characteristics, albeit with constraints on the amount of available

MCSs. In [3], recursive least squares, a ML technique, was used to model the

statistical properties of the underlying random process of the channel fading and

the obtained CSI aided the adaptation of modulation schemes. Limitations of

this method were also addressed in that the proposed scheme required sufficient

data to estimate the channel coefficients and predict the CSI. However, collecting
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high-quality underwater acoustic channel data can be challenging due to factors

like changing environmental conditions, equipment limitations, and the cost of

conducting sea trials. RL algorithms have also been attempted in designing

AMC strategies in UAC. The advantages of applying RL in operating AMC

of UAC are demonstrated in [30], [35], [36]. In [35], an online algorithm in

a model-based RL framework was proposed to recursively estimate the model

parameters of the channels, track the channel dynamics, and compute the

optimal transmission parameters to minimize the long-term system costs. A

Dyna-Q algorithm that was based on an UAC AMC strategy was developed

in [36], which selected the modulation order based on the feedback CSI from the

receiver to maximize the long-term throughput. The Dyna-Q algorithm jointly

played two roles: predicting CSI and calculating the communication throughput

of each modulation order under different channel states for AMC selection. In

[30], the authors proposed an RL-based adaptive MCS that can consider multiple

quality of service factors, including information Quality of Service requirements,

previous transmission quality, and energy consumption. These works prove the

ability of RL algorithms to adapt to the highly dynamic and varying underwater

channel conditions, learn directly from experience without requiring a precise

model of the underwater channel, and handle complex AMC-related variables.

However, inevitably, as a purely data-driven approach, the training speed of

RL is relatively slow because of the extensive data samples required to account

for the time-varying and unpredictable nature of the underwater environment.

Given the long propagation delays in UAC, the feedback (or rewards) associated

with specific actions may be considerably postponed, complicating the agent’s
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ability to associate actions with consequences effectively. These delays, coupled

with sparse feedback opportunities, limit the RL agent’s data collection rate,

hampering swift learning.

It is worth knowing that incorporating unsupervised and supervised learning

and RL strategies together is an alternative solution in UAC to improve AMC. In

[37], facing the outdated CSI problem in UAC channels, an unsupervised learning

algorithm helps extract channel features and a Deep Learning (DL) model is

trained to find out the relationship between the channel measurements and BER

performance in UAC based on a huge data set, and modulation is switched to

satisfy BER requirements in a RL framework. [38] proposed a DQN-based AMC

method for UAC given the outdated CSI and a long short-term memory neural

network was integrated to mitigate any decision bias that was caused by partial

observations of UAC channels. A CSI prediction model that is based on online

deep learning has been proposed [10] for UAC adaptive orthogonal frequency

division multiple access. Considering the channel correlations in both the time

and frequency domains, the authors designed a neural network that integrated

a one-dimensional convolutional neural network and a long short-term memory

network. However, the substantial requirement for training data is an intrinsic

limitation of data-driven approaches, often hindering their practical application

in real-world scenarios.

2.1.2 Physics-informed Methods in AMC

Traditional data-driven methods rely on the availability and quality of data

as we mentioned in the previous literature works, without fully exploiting the
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underlying channel physics. On the contrary, physics-informed methods, which

incorporate prior knowledge about the underlying physical processes, can be a

useful alternative to data-driven methods in the AMC of wireless communication.

Although data-driven approaches have gained more popularity than

physics-driven approaches in air-based wireless communication, there are some

works attempting to consider channel physics. The work in [39] discussed

channel estimation for OFDM systems, which inherently requires understanding

the physical propagation parameters of the air-based communication channel

such as path delays, path phases, path frequencies, path angles of arrival,

etc. The proposed channel estimation methods could be useful for improving

the accuracy of AMC algorithms. Like in [40], authors exploited the channel

property from [39] to improve the path delay estimation accuracy and reduced

the dependency on plenty of pilots to estimate both path delays and path gains

via employing the sparse nature of wireless channels to acquire the path gains

by only a very small amount of pilots.

The existing literature demonstrates a limited exploration of incorporating

channel physics with AMC specifically in the domain of UAC. UAC channels

are characterized by unique propagation characteristics governed by aspects

like multipath reflections, delay spread, and the influence of ambient noise.

Papers [41]–[43] have spotlighted the growing interest in physics-aware paradigms

in underwater communication. By embedding channel physics into the AMC

design, the models become significantly more reflective of the real-world behavior

of these channels. Some researchers have deftly employed physics-based models

in conjunction with AMC to mitigate the effects of channel uncertainties.

17



CHAPTER 2. LITERATURE REVIEW

For instance, authors of [44] proposed the use of the product of Doppler

and multipath spreads as a determinant for the adaptive transition between

coherent and non-coherent communication techniques. Meanwhile, another

study [45] utilized foundational channel attributes, such as received signal

strength and noise power spectral density, to estimate frequency domain SNRs,

which subsequently informed the adaptive parameter selection.

The synthesis of data-driven methods with foundational channel physics

emerges as a potent strategy in the development of AMC techniques. While

data-driven methods leverage large datasets and ML algorithms to adapt to

varying channel conditions, incorporating channel physics provides a solid

foundation rooted in the understanding of how signals propagate in different

environments. This union potentially diminishes the AMC design’s reliance on

expansive training datasets. An illustrative example from [3] revealed how the

sparse structure of the channel impulse response can be harnessed to enhance

AMC, even with reduced feedback. Here, they put forth a predictor for

channel tap coefficients which accounted for channel frequency selectivity and

Doppler shifts attributable to the relative motion of transmitters and receivers.

This approach noticeably reduced both computational demands and memory

overheads. Another compelling case can be drawn from [16], where the authors

introduced a hybrid algorithm. It capitalized on channel physics parameters in

an OFDM system, including delay spread and channel coherence time, along

with methodologies inspired by data-driven algorithms. The primary advantage

of integrating channel physics was a noticeable reduction in the number of MCSs

needed for AMC, culminating in a faster convergence speed of the AMC strategy.
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Collectively, these studies underscore the potential of channel physics-informed

approaches, revealing their capacity to offer insights into propagation dynamics.

Such approaches undoubtedly bolster the versatility and efficiency of AMC

strategies in the intricate domain of UAC.

2.1.3 AMC in OFDM Systems

Recently a great demand for high data rate services has stimulated the

development of wideband wireless communication. However, one of the facts

that wideband wireless channels always face is frequency selective fading.

Therefore multi-carrier modulation technology, especially OFDM has recently

emerged as a promising alternative for wideband wireless communications

as it can help convert a frequency-selective wideband channel into a set

of orthogonal frequency-flat fading channels [46]–[48]. Moreover, OFDM

technologies efficiently contrast the ISI [49]. More emphasis is being given

to developing efficient coding and modulation schemes in the OFDM system.

SNR has been used as the standard measure of the final demodulation signal

quality in an OFDM system for a long time. See [49]–[52], a sampling of

literature from the field of adaptive modulation, particularly in the cognitive

radio domain, employed SNR information which was predicted as the working

modem indicator for OFDM systems and helped select the best modulation

and coding scheme. Typically, the SNR degradation caused by ISI and ICI

due to multipath propagation and channel Doppler spread is often evaluated

by the BER or symbol error rate. [53], [54] have shown that BER or SER

can characterize the performance degradation more accurately and analytical
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approaches to evaluate BER in the OFDM system were implemented to help

select the modulation schemes. Similarly, in [55], BER performance comparison

of various modulation schemes was proposed and then used to distinguish the

SNR ranges matching with different modulation schemes.

2.1.4 Key Performance Indicators in AMC

In the context of AMC, there are multiple Key Performance

Indicators (KPIs). These KPIs provide insights into how well the system

is adapting its MCSs to the changing channel conditions. Some important KPIs

in adaptive modulation include

• BER or Packet Error Rate (PER): BER measures the ratio of incorrectly

received bits to the total number of transmitted bits and PER extends

the concept of BER to the level of packets. BER or PER are used as the

KPI in communication systems that aim to achieve reliable and error-free

communication [29], [30], [33]. However, it is worth noting that optimizing

solely for low BER might come at the cost of reduced data rates, as higher

modulation schemes with lower error rates usually have lower achievable

data rates.

• Coded data rate: The coded data rate represents the effective transmission

rate after accounting for the error correction coding. The coded data rate

can be used as a KPI of the transmission that transfers a large volume of

data within a limited time frame [56]–[58].

• Throughput: Throughput refers to the amount of data that can be

successfully transmitted over a communication channel within a given
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period of time. Currently, maintaining a higher throughput is the main

concern in the wireless communication field [36]. In the case of addressing

transmission scheduling problems, throughput was often used as the

channel performance metric in [3], [59], [60]. Similarly, throughput is

provided as the performance metric in a time allocation problem of a

wireless-powered communication network [61].

The selection of KPIs must align with the specific aims and prerequisites of a

wireless communication system. Given the huge propagation delays in UAC,

the time cost to obtain feedback in achieving effective AMC is indispensable.

It entails careful transmission and feedback scheduling in the UAC systems.

Consequently, throughput is adopted as the assessment metric for our AMC

and transmission scheduling. When the propagation delay in the UAC channel

is determined, a higher coded data rate usually indicates a potentially higher

throughput. Meanwhile, BER facilitates the coding technique, such as the

Forward Error Correction (FEC) [62], [63], adaptation [64]–[66] and thereby

enables AMC to optimize the channel throughput. However, due to the inherent

variability of BER in UAC channels, understanding its distribution instead of

relying solely on point predictions is crucial for effective modulation strategy

selection under UAC conditions.

Researchers have proposed several models and techniques to estimate the

BER in wireless communication systems. For example, [67] proposed an

empirical model on BER on the basis of extensive experiments to identify

the impact of various parameters, such as the impact of turbo code and
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environmental conditions on the BER. Some statistical models proposed in

[68]–[70] utilized posterior estimation techniques when no prior knowledge of

the channel is available, but need to assume a specific distribution prior or

require a huge training set. Specifically, the Monte Carlo error count is regarded

as a robust BER estimation strategy [71], [72]. The MC strategy, however,

also requires a significant amount of training data to estimate BER [73], [74].

Recently, ML-based approaches have become more popular which employ

algorithms like GPR [75], [76], Neural Networks (NN) [77], or support vector

machines [78] to estimate BER. They aim to learn the complex relationships

between input parameters (such as transmission parameters, channel conditions,

and noise levels) and the corresponding BER. Usually, ML is applied in a purely

data-driven manner and relies on the availability and quality of data. With

channel physics knowledge incorporated, a BER estimation model is proposed

in [79] which loosens the demand for the data availability.

2.2 Adaptive Feedback Scheduling

AMC is a prevalent physical layer technique for achieving high throughput

over wireless channels. When performing AMC, CSI plays a vital role in

facilitating the UAC system to dynamically tune the modulation scheme based

on the current channel conditions. Obtaining CSI typically involves feedback

from the receiver after decoding frames. In the air-based wireless communication

system, conventional AMC systems have the transmitter node requiring CSI from

the receiver node in every time slot, causing energy waste. This prompts the

emergence of adaptive feedback scheduling algorithms, which determine optimal
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instances to adjust MCSs and acquire necessary feedback. In the context of

avoiding obtaining CSI feedback very often, there exist some channel-dependent

transmission strategies [80]–[82] that exploit temporal correlation in channels to

decide on transmission and waiting intervals. However, these adaptive feedback

scheduling algorithms were proposed with no channel-dependent variation of

MCSs. The authors in [83] use an ML-based feedback scheme that dynamically

changes the CSI feedback interval to reduce the feedback overhead, but ignores

propagation delays. [84] estimated the interval between consecutive feedback

frames along with tuning the modulation orders to optimize energy efficiency.

In UAC channels with larger propagation delays compared with air-based

wireless communication, constant feedback incurs more impractical time costs

while aiming for high throughput. To this end, the air-based wireless

communication protocols that ignore the effects of propagation delays have

poor performance in UAC channels. Thus, strategies that balance the need

for accurate CSI with the practical constraints of feedback delay are crucial for

enhancing the performance and reliability of AMC in UAC systems [85],[86]. The

research on dynamically scheduling feedback is still relatively limited. Our goal

is to propose a feedback scheduling strategy and determine relevant decision

parameters to address the trade-off between communication performance and

resource utilization.

2.3 State-of-the-art Algorithms in Markov Decision Processes

Formulating the AMC problem with feedback scheduling as an MDP

establishes a structured framework for addressing the intricate decision-making
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required to optimize communication performance. MDPs encompass states,

actions, transition probabilities, rewards, and policies. States denote system

conditions, actions are choices, transition probabilities describe state changes

after actions, rewards quantify immediate desirability, and policies dictate action

strategies. In MDPs, the cost and transition functions depend solely on the

present system state and action. Our aim is to enhance channel throughput in

a one-to-one transmission setup, minimizing the time required for transmitting

a number of bits. MDPs offer a mathematical representation for sequential

decisions, modeling interactions between decision-makers and environments for

MCS selection and feedback scheduling. In this section, we explore established

algorithms used to find optimal or near-optimal policies in MDPs, particularly

from the Tree Search and RL domains. Drawing inspiration from these

methodologies, we introduce Tree Search with Deep Q Network (TS-DQN),

which merges the planning capabilities of tree search with the generalization

potential of DQN.

In the context of MDP, early research has mostly focused on dynamic

programming algorithms, such as value iteration [87] and policy iteration [88],

which are optimal but impractical for MDPs with extensive state spaces

due to memory limitations. The asynchronous variant of value iteration

provides a solution for MDPs with large state spaces by avoiding exhaustive

state space exploration [89]. Notably, in the significant state spaces,

asynchronous approaches like real-time Dynamic Programming demonstrate

successful application [90] but still require offline optimization over a variety

of training data sets [91]. Recently, tree search and RL have emerged as popular
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alternatives to dynamic programming for MDPs. These methodologies extend

their applicability by embracing online learning, adaptability, and exploration

strategies, which are crucial for addressing intricate real-world challenges

featuring large or uncertain state spaces.

Tree search algorithms are well-suited for solving MDPs due to their ability to

optimize long-term rewards and effectively manage the exploration-exploitation

trade-offs inherent in decision-making problems. These algorithms construct

a tree-like search space with nodes representing states and actions, guiding

the search process by iteratively simulating state-action trajectories to explore

different paths. This exploration balances with exploiting known information

to maximize cumulative rewards [92]. However, traditional tree searches face

challenges in high-dimensional action or state spaces, entailing uncertainty and

computational complexity [93]. Such limitations hinder real-time applications.

Efforts have been made to enhance tree search efficiency, as exemplified by the

study of state aggregation to reduce stochastic branching [94]. Additionally,

Monte Carlo Tree Search (MCTS), originally proposed in the work [95] and

[96], stands as a specific tree search variant that often surpasses traditional

counterparts. MCTS finds applications in planning [97],[98] and scheduling [99],

[100] domains. Therefore, MCTS is one of the core building blocks of

games, such as the AlphaGo algorithm [101] while the integration of a Deep

Neural Network (DNN) in the AlphaGo algorithm enhances MCTS simulation

performance via estimating the value network given the huge action or state

space. Similarly, [102] used a NN to estimate the value network for simulations

in MCTS. Combining tree search structures with ML techniques has gained
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traction for real-time planning and scheduling optimization [103].

RL provides another set of tools for solving MDP problems. RL agents

learn to act over time through interactions with the environment, without

explicit knowledge of the environment dynamics [104]. Either when a model

is not available, or when an explicit representation of the policy is required,

the usual approach to applied RL success has been to use expert-developed

task-specific features of a short history of observations in combination with

function approximation methods. As a widely used RL method, Q-learning is

bedeviled by the curse of dimensionality: The computational complexity grows

dramatically with the size of state-action space. To combat this difficulty,

an integrated hierarchical Q-learning framework is proposed based on the

hybrid MDP using temporal abstraction instead of the simple MDP [105]. [106]

adapted Q-learning with UCB-exploration bonus to infinite-horizon MDP with

discounted rewards without accessing a generative model. However, Q-learning

can struggle when faced with environments that have continuous or large action

spaces [107]. To address these limitations and enhance the performance of

Q-learning, there has been a trend toward combining Q-learning with DL

techniques [108]. This combination, often referred to as DQN aims to leverage

the strengths of both Q-learning and DL [79], [109]. The use of a Convolutional

Neural Network for state representation learning and function approximation in

DQN enhances its ability to generalize to unseen states. The authors in [110]

proposed a DQN-based MAC protocol for UAC networks, aiming to maximize

the total network throughput. Similarly, in [111], DQN is explored in the

MAC protocol for UAC to exploit propagation delays inherent in acoustic
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communications to improve the network throughput and packet success rate.

However, in DQN, quick but possibly biased action selections without planning

the potential consequences and future states may result in short-sighted decisions

and suboptimal long-term outcomes [112]. Ignoring long-term rewards can lead

to suboptimal decision-making that offers immediate gains but hinders long-term

success. A look-ahead tree can be a valuable structure for designing long-term

rewards in certain scenarios. This planning aspect complements the learned value

estimation of DQN and can lead to more informed and strategic decision-making.

We emphasize the importance of integrating RL techniques into search tree

structures to address MDPs, particularly in high-dimensional action or state

spaces, with a focus on achieving long-term success. Relevant research includes

[113], which employs RL and self-play to train value and policy functions within

a search tree. Similarly, [114] utilizes a look-ahead tree for guided exploration

in RL within complex manipulation tasks. Additionally, the integration of DQN

into tree search structures for solving MDPs has been explored. Initial efforts,

such as [115], have demonstrated the potential of training DQN via MCTS.

2.4 Summary

In this chapter, a comprehensive literature review on AMC in wireless

communication systems is presented, emphasizing the specific application of

AMC with feedback scheduling in UAC, which is modeled as an MDP within

this thesis. While data-driven AMC has garnered notable accomplishments

in terrestrial wireless systems, the unique characteristics of UAC preclude

the direct adoption of these terrestrial strategies. Numerous research studies

27



CHAPTER 2. LITERATURE REVIEW

predominantly focus on data-driven AMC methodologies across terrestrial

and underwater domains, but these approaches are often marked by high

computational demands and a dependence on the volume and quality of training

data. A subset of the literature accentuates the clear benefits of integrating

channel physics into AMC, while the fundamental importance of channel physics

is frequently neglected. Feedback scheduling in AMC, integral for optimizing

channel throughput, remains sparsely explored in the literature. Consequently,

considering the formulation of AMC with feedback scheduling as a MDP, this

review delves into potential ML algorithms that have demonstrated success in

the MDP domain.
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Chapter 3

Data-driven AMC with Heuristic Feedback Scheduling

Strategy

In Chapter 2, we presented some unique properties of UAC channels such as

limited bandwidth, significant propagation delay, and variability. A modulation

scheme optimally designed for specific channel conditions may perform poorly

when the channel changes which motivates the development of AMC techniques.

There is a trade-off between exploration and exploitation in AMC. Exploration

involves actively exploring different MCSs to gain knowledge about their

performance in varying channel conditions. Exploitation focuses on leveraging

acquired knowledge to make optimal decisions and select the most suitable MCS.

Excessive exploration wastes resources and time, while excessive exploitation

may lead to suboptimal performance if the system fails to adapt to changing

conditions.

In this chapter, we apply AMC to enhance the average data rate within a

static UAC channel. Initially, we delve into various data-driven strategies and

present a novel data-driven method rooted in MCTS. This method prioritizes

the long-term maximization of the data rate when determining the sequence of

MCSs. A crucial element of effective AMC is the consistent feedback from the

receiver to the transmitter, which offers CSI. Yet, in UAC channels characterized
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by prolonged propagation delays, regular feedback expedites the AMC model

training but potentially extends transmission waiting periods. On the other

hand, sparse feedback can result in suboptimal AMC decisions, impacting

throughput adversely while conserving time. We, therefore, also introduced

an initial integration of feedback scheduling with AMC, supplemented with an

overview of heuristic feedback scheduling techniques. This further demonstrates

the impact of obtaining feedback for AMC given the propagation delays in UAC

systems.

3.1 Problem Formulation

We begin by focusing on a problem where a transmitter and a receiver

are placed at a distance l in a static underwater environment. A total of

|A| MCSs in action space A are available to transmit N bits of information

between the transmitter and receiver and each MCS is denoted by ai ∈ A, where

i = 1, · · · , |A|. For the j
th

transmission frame, scheme ai associated with data

rate di is selected to transmit frame within a fixed time duration τ and thus

each frame might carry a different number of bits. We consider finite-horizon

MDPs (file transfer applications) with state space and MCS space denoted by

S and A respectively. Total N bits will be transmitted in J frames where J is

unknown until N bits are all transmitted and j = 0, 1, · · · , J denotes the index

of a state. The probability of frame success γi of each scheme ai is unknown

initially. Frames that are successfully received or not can only be known when the

feedback information is collected. However, receiving feedback information from

the receiver after every transmission turns out to be expensive due to two-way
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propagation delay, and therefore we consider feedback frames to be received

only when h frames have been transmitted. The number of frames h is named

by Feedback Report Interval (FRI) in the following content.

State sj ∈ S is arrived at when the j
th

frame is transmitted. Each state

sj = {N ′
j , Gj} is defined by two parameters N ′

j and Gj . Here, N ′
j is the total

number of bits transmitted till state sj , and Gj = {m1
j , m̃

1
j , · · · ,m

|A|
j , m̃

|A|
j }

denotes a summary of the knowledge of the channel. mi
j is the number of times

scheme ai has been tried and m̃i
j is the number of times scheme ai has been

successful, i.e., no bits were in error after forward error correction at the receiver.

Now, at state sj , the probability of success pij of each scheme ai is estimated as:

pij =
m̃i

j

mi
j

. (3.1)

When scheme ai is selected at state sj , the immediate reward rj = diτ bits if

transmission is successful and 0 bits otherwise. The expected reward Dj when

scheme ai is selected is approximated by:

Dj = pijd
iτ. (3.2)

An agent makes decisions on which scheme to select from MCS space A

available at the current state sj . The policy Π is a function that maps from

state space to MCS space Π : S → A. Guided by different policy functions, a

scheme Π(sj) = ai is selected by the agent for the next h frames. After the h

frames are transmitted, the receiver responds with an outcome v and the agent
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transitions to a new state sj+h. The outcome v records the number of successful

transmissions during those h transmitted frames. Therefore, the state transition

function is represented as Γ(sj , a
i, h, v) : sj → sj+h. The updated parameters

of the state sj+h = {N ′
j+h, Gj+h} are now represented as:

Gj+h = {m1
j , m̃

1
j , · · · ,mi

j + h, m̃i
j + v, · · · ,mn

j , m̃
n
j }, (3.3)

N ′
j+h = N ′

j + vdiτ. (3.4)

Now, the expected reward Dj+h in the new state sj+h is:

Dj+h = pij+hd
iτ. (3.5)

We aim to maximize the average data rate over the entire communication

sequence through continuous improvement. Exploitation of the gained

knowledge through feedback from the receiver usually means selecting valuable

schemes to get a maximal immediate reward while exploration is defined as trying

new schemes in the MCS space which may bring a greater benefit at the cost of

time. Therefore, the policy to select scheme ai must balance between exploration

and exploitation. As shown in (3.3), only when the transmitter obtains the

outcome v, the agent can update the next state sj+h and our estimate of pij gets

closer to γi.

The cost involved in gathering feedback comprises of the propagation delay

τpd and the feedback duration τfd as illustrated in Fig. 3.1. Rather than

following either an exploration or an exploitation strategy, the objective is to
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Figure 3.1: An illustration of the delays involved in a typical frame exchange
between transmitter and receiver nodes.

investigate policies that target maximizing the long-term average data rate W

while transmitting N bits. Now, using a policy function would result in a

sequence of MCSs such as Π = {Π(s0),Π(s1), . . . }. Similarly, an outcome

sequence V is also generated. The outcome sequence V consists of 1 or 0

indicating either a frame success or a failure. The corresponding data rate

sequence is denoted by d. In transmitting N bits of information, it takes a

total of J data frames and H feedback frames (both of which are unknown).

Therefore, the objective function is formulated as minimizing the total time

T = Jτ +H(τfd + 2τpd) in transmitting N bits of information:

min
∑
J

τ +H(τfd + 2τpd),

s.t.
J∑

q=0
V[q]d[q]τ = N.

(3.6)

3.2 Comparison of Data-driven AMC Strategies

We describe and compare a few well-known strategies here:
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3.2.1 Random

An MCS ai is randomly selected from MCS space A.

Π(sj) = ai,with probability 1
n . (3.7)

For this policy, if a sufficient number of frames are transmitted, the average data

rate W tends to be the mean of n scheme data rates:

W =

∑n
i=1 d

i

n
. (3.8)

3.2.2 Greedy

A greedy approach always selects a scheme with maximal expected reward

Dj , therefore

Π(sj) = argmax
ai∈A

Dj . (3.9)

With this approach, when a good scheme fails, the agent is easy to be deceived

and it is possible that sub-optimal schemes are recommended.

3.2.3 ϵ-Greedy

ϵ-Greedy policy is more proficient in dealing with the exploration-exploitation

dilemma via:

• exploring schemes randomly to avoid missing better choices with

probability ϵ;

• adopting greedy policy to help the agent select a scheme with the maximal

immediate estimated reward with probability 1− ϵ.
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Π(sj) =


argmax
ai∈A

Dj , with probability 1-ϵ

Random, with probability ϵ

. (3.10)

3.2.4 Upper Confidence Bound

Upper Confidence Bound (UCB) is the most widely used solution for the

exploration-exploitation dilemma in MDPs. The series of transmission successes

and failures is formulated as a Bernoulli process. UCB is a family of algorithms

and the Wilson score interval developed by Edwin Bidwell Wilson [116]

has the asymmetric analytical representation which avoids the overshoot and

zero-width interval problems. Therefore, the Wilson score interval can be safely

employed with small samples and skewed observation in our initial transmission

phase [117]:

Π(sj) = argmax
ai∈A

(
m̃i

j +
1
2z

2

mi
j + z2

+
z

mi
j + z2

√√√√m̃i
j(1− m̃i

j)

mi
j

+
z2

4

 diτ, (3.11)

where z = 1.96 for 95% confidence. The second term inside the bracket is for

confidence or used as a measure of the knowledge of every scheme, i.e., for each

scheme, the less we understand, the greater the second term. Therefore, this

policy selects schemes that have been tried less and continually tends to select

schemes with higher estimated rewards. Therefore, UCB policy balances the

exploration and exploitation and eventually leads to the optimal scheme.
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3.2.5 K-levels Look-ahead in Monte Carlo Tree Search

MCTS is a powerful approach to designing game-playing bots or solving

sequential decision problems. Based on the roll-out-based Monte-Carlo planning

algorithms [118], we propose a new K-MCTS algorithm that builds its

K-level look-ahead tree by repeatedly sampling a sequence with length K of

state-action-cost triplets from the current state by Bellman equation (3.13).

In such trees, every node denotes one state and at one state, a pair of edges

represent successful and failed outcomes with an action selected. Our generic

scheme K-MCTS is shown in Fig. 3.2. An action at each state is selected using

(3.12) to minimize the cost function:

Π(Sj) = argmin
ai∈A

C(Sj), (3.12)

where C(Sj) is the cost involved in a state to adjust the estimated remaining

transmission time. During the K-level look-ahead tree, the cost of sj to Sj+K−1

is calculated using (3.13), i.e.,

C(sj) = min
ai∈X̂

τ + C(Sj+1)

= min
ai∈X̂

τ + pijC(Γ(sj , a
i, h = 1, v = 1)) + (1− pij)C(Γ(sj , a

i, h = 1, v = 0)),

(3.13)

but in Sj+K , unless the terminal state has arrived the cost of which is 0, the cost

is approximated by the average remaining transmitted time with the selected

schemes, i.e.,

C(Sj+K) =
N −N ′

j+K

pijd
i

. (3.14)
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The success probability is estimated by UCB method to avoid zero estimation if

the selected m̃i
j = 0 using (3.1) when evaluating the cost using (3.13) and (3.14):

pij =
m̃i

j +
1
2z

2

mi
j + z2

+
z

mi
j + z2

√√√√m̃i
j(1− m̃i

j)

mi
j

+
z2

4
. (3.15)

For each K-level look-ahead tree, there are four phases shown in Fig. 3.2:

• Selection - A scheme is selected according to (3.12) at each depth. This

phase terminates when a terminal state of the problem has been reached.

• Expansion - Before reaching a terminal state, expansion determines all

possible child nodes (states) in K levels. When expansion comes to the

terminal state (all N has been transmitted), it skips to backpropagation

phase.

• Simulation - Compared with traditional MCTS, our K-MCTS follows an

approximate way to implement iterative deepening within K look-ahead

levels using (3.13) and (3.14). However, with a larger action space n, the

computational complexity increases since all possible actions are considered

at each state. Consequently, to narrow down the searching space and decide

which ones to throw away, we used the 70th percentile in our simulation,

which means that we only sample the 30% with higher results in (3.15)

than 70% of the others for k = 0, · · · ,K. Then, a smaller set of actions X̂

is used for expansion.

• Backpropagation - Propagate the costs back to all states along the path.

Following these 4 phases, ai is selected and employed for the transmission of
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Figure 3.2: Monte Carlo Tree Search phases.

h frames. With feedback, the agent transfers to a new state and backpropagates

costs to the initial state. Since the K-MCTS algorithm adjusts between

exploration and exploitation by comparing the expected rewards of each scheme,

its strategy favors exploration initially and gradually switches to a pure

exploitation mode. Algorithm 1 presents a step-by-step procedure to determine

an optimal scheme using K-MCTS policy.

Algorithm 1 K-MCTS algorithm

Initialization: k = 0, j = 0.
while N bits not finished, do

if sj is the terminal state then
cost(sj) = 0.

end if
if k = K then
cost(sj) according to (3.14).

else
cost(sj) = τ + search(Sj+1, k+1).

end if
C(sj) =cost(sj).
Action Π(Sj) = argmin

ai∈X̂
C(Sj).

Calculate FRI h.
Transmit h frames by Π(Sj),
Feedback is obtained and new state sj+h is arrived;

end while
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3.3 Heuristic Feedback Strategies Comparison

The frequency and reliability of feedback information are crucial to perform

adaptive modulation efficiently in UAC systems. Due to the large propagation

and feedback delay, it is unrealistic to obtain feedback information for every

frame that is transmitted. Therefore, an adaptive delay-aware feedback strategy

to determine the appropriate number of transmission frames h to be transmitted

until the next feedback is necessary. Intuitively, when the channel information

is insufficient, providing feedback actively from the receiver is necessary. As the

agent gathers more channel information, the feedback interval can be reduced.

Therefore different feedback strategies can be employed and are studied as

follows.

3.3.1 Fixed Feedback Strategy

A näıve strategy is to have a fixed number of transmission frames between

every 2 feedback frames. The transmitter will receive the feedback frame after

h frames have been transmitted.

3.3.2 Time-varying Feedback Strategy

With an increasing number of frames transmitted, the agent gathers channel

information. Active feedback helps the agent learn the UAC environment quickly

in the initial phase and the agent gradually reduces its dependence on the

feedback to make decisions in the later phases. Therefore h is approximately

given by:

h = ⌈βj⌉, (3.16)
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where β is to determine the change rate of h versus transmitted frames.

3.3.3 Target-oriented Feedback Strategy

A change in channel conditions can render previously learned knowledge

invalid, and consequently, the Time-varying feedback strategy might become a

poor choice to adopt. We need a more adaptive feedback strategy to adjust

h according to the varying channel conditions. If we have an estimate for an

achievable data rate wa in the channel (we call this the target data rate), we can

calculate the ratio rw between the immediate data rate wc of the transmitted h

frames and wa, and use it to adapt the value of h. Although we typically do not

know wa, we can estimate it from our knowledge of the channel:

wa = max pijd
i, (3.17)

and

rw =
wc

wa
. (3.18)

The value of h can then be adapted using a sigmoidal transformation:

h =

⌈
hm

1 + e−f(rw)

⌉
, (3.19)

in which f(·) is chosen to ensure h stays bounded in the range [1, hm]. The value

of hm is updated according to h′ (the value of h from the previous state), and

△rw (the difference between rw calculated at the previous state Sj−h′ and the

current state sj):

hm = h′(1 + α(△rw)), (3.20)
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where α(△rw) is:

α(△rw) =


(lg N

n )
△rw △rw > 0

△rw
lg N

n

△rw ≤ 0.

(3.21)

Equations (3.19)-(3.21) ensure that h follows the change of rw closely: h will

be larger (or close to the maximal value hm) when rw increases slightly (or

dramatically). If rw becomes smaller, indicating that our selected scheme is not

the most appropriate and we need to reconsider our policy, then a smaller h (or

even h = 1) is selected to help track the channel rapidly.

3.4 Simulation Results

3.4.1 Discussion on Various Look-ahead Levels without Propagation

Delays

In order to select an appropriate look-ahead level K in K-MCTS, we try

K = 0, 1, 2, 3. The simulation is set with the following parameters:

1. The transmitter and receiver are placed very close, i.e., l = 0.

2. Feedback delay duration τfd = 0 and the propagation delay τpd = 0.

3. The fixed feedback strategy is employed in this section with h = 1.

4. When n is set to 2, 5, 10, the examples of simulation parameters are

generated and are tabulated in Table 3.1. The data rate di ∈ [300, 1500]

bps is randomly generated and the probability of frame success is generated

by a Beta distribution γi ∼ Be(2, 4) but is unknown to the agent. ŵu is the

maximal effective data rate, given by ŵu = max γidi and ŵl is the minimal
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effective data rate, given by ŵl = min γidi.

5. We run 1000 simulations for every n and each is associated with different

di and γi. Similarly, n = 100 has also been simulated to test 70th percentile

method.

6. Although the transmission duration τ in practical modems might vary,

we assume τ = 1s and hence the length of frames diτ are possible to be

different depending on di with selected ai.

7. The stopping criteria for all policies is whenN = 50000 bits are successfully

transmitted.

8. ϵ is set to be 10% in the ϵ-Greedy policy.

Table 3.1: Simulation Parameters

Simulations Scheme ai γi di/(bps) ŵu/(bps) ŵl/(bps)

Simulation 1
x1 0.12 1204

526.08 144.48
x2 0.59 896

Simulation 2

x1 0.59 826

768.3 167.2
x2 0.28 861
x3 0.61 1090
x4 0.13 1270
x5 0.53 1452

Simulation 3

x1 0.87 1371

1189 149

x2 0.53 697
x3 0.30 491
x4 0.35 1020
x5 0.30 1391
x6 0.11 1340
x7 0.49 664
x8 0.32 1461
x9 0.46 1141
x10 0.41 586

Simulation results with n = 2, 5, 10, 100 are shown in Fig. 3.3. For n =
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(a) Policy comparison when n = 2. (b) Policy comparison when n = 5.

(c) Policy comparison when n = 10. (d) Policy comparison when n = 100.

Figure 3.3: Policy comparison with different numbers of modulation schemes.

2, 5, 10, the result of Random policy is about 50% between the maximal and

minimal effective data rate as expected. UCB and K-MCTS wisely exploit

by taking advantage of prior knowledge and explore to try new schemes and

hence their advantages are obvious. With the increase of look-ahead levels K,

K-MCTS is more prominent. Especially, when look-ahead level K = 0 which

means no exploration, the action is selected by UCB policy. A similar advantage

of K-MCTS is also observed when n is set to 100.
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3.4.2 Feedback Strategies Comparison with Propagation Delays

K-MCTS policy outperforms the other strategies and therefore we select

this policy for studying the different feedback strategies. For this simulation, the

distance between the transmitter and receiver is l = 1 km. As the sound speed in

underwater environment is around 1500 m/s, the propagation delay τpd = 0.67 s.

The duration of one feedback frame τj = 1 s and the feedback delay τfd = τpd+τj .

For the Time-varying feedback strategy, β is set to 0.1. For target-oriented

feedback strategy, f(rw) = 12(rw − 0.5) in (3.19) is helpful to realize h ∈ [0, hm]

when rw ∈ [0, 1]. Schemes are generated in Table 3.2 and results are shown

in Fig. 3.4. In terms of the Fixed feedback strategies, as the fixed FRI value

increases, the average data rate initially rises, reaching its peak at FRI h = 10,

and then gradually declines. This trend can be attributed to the fact that a

smaller fixed FRI results in extended waiting time for feedback. Conversely,

when the FRI value is significantly large, such as h = 40, the transmission

does not receive timely feedback updates, causing wasted time on suboptimal

or even inferior MCSs and resulting in unsatisfactory data rates. Similarly, the

packet-varying strategy exhibits suboptimal data rate performance initially due

to time wasted on waiting for feedback. Notably, the target-oriented feedback

strategy outperforms other strategies when the feedback delay duration τpd > 0

because of its adaptive FRI adjustment capability based on the transmission

progress.
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Table 3.2: Feedback Strategy Simulation Parameters

Scheme ai γi di/(bps) ŵu/(bps) ŵl/(bps)

x1 0.26 1158

629.2 32.9

x2 0.38 984
x3 0.06 483
x4 0.09 995
x5 0.12 441
x6 0.44 1253
x7 0.28 602
x8 0.54 1149
x9 0.65 351
x10 0.68 348

Figure 3.4: Comparison of different feedback strategies.

3.5 Summary

We have evaluated several popular data-driven methods for AMC, including

the Random policy, Greedy policy, ϵ-greedy policy, and UCB policy.

Additionally, we propose a novel algorithm called K-MCTS, which leverages

MCTS to construct a look-ahead tree with K levels. Simulation results

demonstrate that the K-MCTS algorithm outperforms the aforementioned
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data-driven algorithms in various scenarios while significant training is required

for this data-driven method. Furthermore, we examine the impact of propagation

delays in UAC on channel throughput by comparing heuristic feedback

scheduling strategies. Simulation results for various feedback strategies highlight

the dynamic regulation of feedback timing, influencing the AMC convergence

rate and reducing transmission time. The implementation of these heuristic

feedback scheduling strategies proves indispensable for effective AMC in UAC.
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Chapter 4

Physics-informed AMC with Feedback Scheduling by

Neural Network

In Chapter 3, we presented a data-driven approach for AMC based on MCTS,

i.e., the K-MCTS. Our proposed K-MCTS algorithm achieves a favorable

trade-off in AMC, maximizing the average data rate without prior knowledge

of the UAC channel. Meanwhile, the data requirement of K-MCTS increases

significantly as the size of the action or state space grows due to the expanding

search in the tree structure. As shown in Section 2.1.2, the physics-informed

methods offer an alternative to data-driven models, reducing the need for

extensive training data and computational complexity.

In this chapter, we address the challenge of dealing with an extensive

set of modulation schemes in a practical communication system, rendering

traditional data-driven methods impractical for real-time AMC. Insufficient

data availability and the significant computational complexity associated with

training data-driven models motivate the incorporation of channel physics

knowledge in the design of the AMC algorithm. Specifically, we focus on

OFDM, considering its dominance in contemporary underwater modems, as

our study model for implementing a channel physics-informed AMC approach.

Within the OFDM framework, we adopt channel throughput as the primary
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performance metric for AMC. Notably, in UAC channels, an increased coded

data rate typically signifies superior channel throughput. The understanding of

BER helps in selecting code rates. Leveraging channel physics information, we

construct a heuristic BER estimation model to guide AMC strategy selection.

In order to account for the impact of feedback overhead on channel throughput,

our UAC system incorporates a feedback scheduling algorithm. Due to

difficulties in finding relevant physics information to facilitate the training of the

feedback scheduling algorithm, we introduce a DNN-based dynamic feedback

mechanism, calibrated to balance the convergence speed of our AMC model

and the implications of UAC channel propagation delays, ensuring optimal

communication performance.

4.1 Problem Formulation

Information frames are transmitted from a TX node to a RX node deployed

at a distance l from the TX. This point-to-point channel is modeled as a Binary

Symmetric Channel (BSC) [119]. Prior to each frame transmission, we select a

communication scheme a ∈ A to suit the current channel conditions, based on

the best estimate of the channel that we have. We also decide on a FRI, i.e., the

number of transmission frames h ∈ H between two consecutive feedback frames.

The feedback is sent over a robust link for providing CSI. Therefore the decision

space (also known as the action space) has a cardinality |A×H|. An agent learns

a policy Π via continuous interaction with the environment to make sequential

decisions on a and h to transmit totally N bits. The policy Π is a function that

maps from the state space to the action space, i.e., Π : S → [A × H]. After
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transmitting the jth frame, the agent is in state sj ∈ S. State transitions occur

following a transition function Γ, based on information received via feedback.

Finally, agent transits to the terminal state sJ (and thus j = 0, · · · , J) to have

all N bits transferred with total K feedback frames sent out from RX. The

round-trip frame exchange duration includes the frame transmission duration τj ,

a two-way propagation delay 2τpd and a feedback duration τfd, also as illustrated

in Fig. 3.1.

In state sj , given a modulation scheme a with uncoded data rate d(a), BER

estimation model ζ(·) predicts the uncoded BER ϵ̂(a):

ϵ̂(a) = ζ(a;θj), (4.1)

where θj denotes the parameters of ζ(·), which are adapted as the CSI is

updated. Shannon’s channel capacity [120] determines the code rate limit ρ̂(a)

for error-free communication. With the use of a good FEC technique, one can

achieve robust communication at rates close to (but strictly less than):

ρ̂(a) = 1− f(ϵ̂(a)), (4.2)

where the entropy is computed as f(x) = −x log2 x − (1 − x) log2(1 − x). The

transmitter adds redundant bits to the information, forming codewords, resulting

in an effective data rate:

D̂(a) ≈ d(a)ρ̂(a). (4.3)

The agent then evaluates a scheme a on the basis of D̂(a) and selects the optimal
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scheme a∗ using:

a∗ = argmax
a∈A

D̂(a). (4.4)

We define a model M(·) that helps us decide FRI h:

h = M
(
{N ′

j , rj};ωj

)
, (4.5)

where ωj represents the trainable parameters of model M(·). The model

operates on two parameters: the immediate throughput rj , computed using

previous h frames, and the percentage of transmitted bits N ′
j . The parameters

N ′
j , and rj are good indicators of the quality of a∗.

After gathering the feedback information, the state sj ≡ {θj , N ′
j , rj ,ωj}

transits to the state sj+h using the state transition function Γ(·), i.e.,

sj+h = Γ(sj ,a
∗, h)

= {θj+h, N
′
j+h, rj+h,ωj+h}.

(4.6)

In transmitting N bits, it takes J data frames and K feedback frames (both

of which are unknown). We wish to minimize the total time to transmit all N

bits:

minimize

J∑
i=0

τi +K(τfd + 2τpd). (4.7)

4.2 AMC Strategy

In this section, we delve into the adaptation strategy of MCSs, focusing

on OFDM given its prevalence in modern underwater modems. Leveraging
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channel physics information, we construct a heuristic BER estimation model

to guide AMC strategy selection. We validate this model using a data set

collected from Singapore waters. Given the BER estimation for every possible

modulation scheme, we suggest using a dynamic ϵ-greedy policy to address

the exploration-exploitation dilemma in modulation scheme selection given the

high-dimensional MCSs space.

4.2.1 BER Estimation Model

We consider a modem that uses OFDM for communication but allows several

parameters to be tuned. There are two key parameters in OFDM: the cyclic

prefix length np and the number of subcarriers nc. Another important parameter

is the bandwidth B occupied by the OFDM signal. Before a frame is transmitted,

nc, np and B are selected to optimize for the performance. An AMC scheme a

is therefore defined as a point in (nc, np, B) space. The uncoded data rate d(a)

is then:

d(a) =
mBnc

nc + np
, (4.8)

where m is the number of bits per PSK symbol on each subcarrier used for the

underlying OFDM carrier modulation (e.g. m = 1 for BPSK and m = 2 for

QPSK).

In [16], the channel delay spread τds, channel coherence time τc and,

bandwidth B, were utilized to define boundaries c1, c2 and c3

nc > 2πBτds = Bc1, (4.9)

51



CHAPTER 4. PHYSICS-INFORMED AMC WITH FEEDBACK SCHEDULING BY
NEURAL NETWORK

np > Bτds = Bc2, (4.10)

nc + np < Bτc = Bc3, (4.11)

in the (nc, np) plane. These boundaries divided the region into a relatively good

region represented by blue shaded color and a bad region represented by red

shaded color (see Fig. 4.1 which is reproduced from [27]). Schemes inside the

good region are more likely to achieve a higher frame success rate which is usually

associated with a lower uncoded BER [121]. In line with [16], a sigmoid function

s(d) =
1

1 + e−bid
, i = 1, 2, 3, (4.12)

is utilized to characterize the BER estimation model based on the relative

position of the point (nc, np) with respect to the three boundaries ci, i = 1, 2, 3

(see Fig. 4.1). The slope of the three sigmoid functions is controlled by bi,

i = 1, 2, 3. Additionally, there is a relationship between the bandwidth B and

the BER as a broader bandwidth is likely to contain more noise and thus might

result in a higher BER [122]. Based on this, a simple parametric BER estimation

model ζ(a;θ) to estimate uncoded BER ϵ̂(a) is proposed as:

ζ(a;θ) = (b4B + c4)s(−d1)s(−d2)s(d3), (4.13)

d1 = nc −Bc1, (4.14)

d2 = np −Bc2, (4.15)
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d3 =
nc + np −Bc3√

2
, (4.16)

where d1, d2, d3 are distances as shown in Fig. 4.1 and θ ≡

(c1, c2, c3, c4, b1, b2, b3, b4). To enhance the model’s accuracy, it is vital to

measure how closely the model’s estimates align with actual BER values.

Hence, we introduce a loss function L(θj) for training ζ(·). The loss function

evaluates the Mean Absolute Error (MAE) between the output of ζ(a;θj) and

the measured BER ϵj(a), i.e.,

L(θj) =
1

|A|
∑
a∈A

(|ζ(a;θj)− ϵj(a)|). (4.17)

Through the minimization of L(θj) at state sj using techniques like gradient

descent, the model’s weight parameters, θj , of our model, are refined, enhancing

its BER estimation during transmission. This iterative refinement utilizes

measured BER data, ensuring the model’s predictions remain closely aligned

with empirical observations.

4.2.2 Validation of BER Estimation Model

The BER estimation model presented in Section 4.2.1 is validated using

experimental data that was collected in Singapore waters. Subnero M25M

modems operating in the 18 to 32 kHz band were used for this data collection.

The transmission range between the TX and RX was about 600 m, and the

water depth was between 10 and 20 m. The BER for 1979 schemes a =

(nc, np, B) were measured, where nc was set to different values from the set

{64, 128, 256, 512, 1024, 2048} and np ranged from 0 to 2046.
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Figure 4.1: Visualization of the boundaries c1, c2 and c3 in the (nc, np) plane.

Notes: This figure is reproduced from [27]. Three boundaries c1, c2 and c3 are with bandwidth
B fixed in the (nc, np, B) space.

An ADAM optimizer [123] together with a maximal absolute error loss was

utilized to train θ on 70% of the data set. In Fig. 6.5, we compare the BER

ϵ̂ estimated using the parametric model ζ(·) with the actual BER ϵ measured

for each (nc, np, B) in the remaining 30% of the data set. Since the measured

BER was observed to be similar between adjacent values of np, the result is

only plotted for every nc with np grouped with a bin size of 128. Furthermore,

since the effect of B was observed to be small, all values of B for which the

measurements were performed are clubbed together in the plot. We observe that

the model ζ(·) is able to approximate the median BER from sea measurements

well.
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Figure 4.2: Comparison of the measured BER from a field experiment and the
BER estimated by model ζ(·).

4.2.3 Scheme Selection Policy

Since we have no knowledge of the quality of the communication link

beforehand, the agent needs to make decisions on a while learning about the

channel information via feedback. A well-known problem that occurs in scenarios

like this is the trade-off between exploration and exploitation of different schemes.

We need to select a given ϵ̂(a) estimated using ζ(a;θj). Should we repeat

decisions with lower ϵ̂(a) (exploit) or select schemes that are never tried before

hoping to gain greater rewards and expand the channel knowledge (explore)?

The adaptive ε-greedy policy is a simple but efficient strategy to solve the
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explore-exploit dilemma and determines scheme a∗ as follows:

a∗ =


argmax

a∈A

(
d(a)ρ̂(a)

)
, with probability 1− ε

Random, with probability ε

, (4.18)

where ε gradually decreases from 1 according to the common ratio εd along with

the transmission of frames.

4.3 Neural Network for Feedback Scheduling

Gathering CSI via feedback from the receiver is essential for any AMC

technique. However, due to the long propagation delays in underwater acoustic

communications, waiting for feedback on every individual frame is expensive, and

hence a policy to determine the FRI h that adapts with channel is necessary.

A fixed FRI is commonly used in the literature while being able to adapt h to

optimize for achieving higher throughput is an interesting problem. Conventional

regression algorithms may help determine FRI h, but they require a large number

of samples to train on. Such data with many different values of h is usually hard

to obtain. A feedback strategy based on a heuristic sigmoidal function in [124]

utilizes the immediate data rate of the previous FRI h to deduce the next h and

was demonstrated to achieve a significant reduction in the feedback overhead.

We aim to improve on this heuristic and design a more generic adaptive feedback

strategy next.

While in state sj , we receive the feedback and therefore update N ′
j . The

number of bits in each frame nj and the frame duration τj remain unchanged in

a particular transaction once an action a is selected. Therefore, the immediate
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throughput is computed using:

rj =
hnj

hτj + 2τpd + τfd
. (4.19)

Now that we know, rj , N
′
j and previous FRI, we are interested in determining

h as a function of these. However such a function is analytically unknown, and

so we turn to ML to learn such a function. We build the model M(·) using a

simple 3-layer Neural Network (NN) with input being {rj , N ′
j , h} and output as

the predicted throughput r̃j+h and therefore,

h∗ = argmax
h∈H

M
({

N ′
j , rj , h

}
;ωj

)
, (4.20)

where ωj contains the parameters of M(·). The ADAM optimizer was used for

training of ωj to minimize the MSE loss between the actual rj+h and predicted

r̃j+h.

Since the action space [A×H] is large, collecting samples, i.e., {rj , N ′
j , h} →

rj+h, for training M(·) in real time is infeasible. We, therefore, propose a

method to generate training samples through simulation, and to pre-train an

initial estimate of parameter vector ω0 (see Algorithm 2). We assume θ̄ and thus

ζ(a; θ̄) represent specific ocean environments. To simulate the uncertainty in the

environment, we generate random errors in a frame containing n bits following

a Poisson distribution P , and thus the BER of scheme a is ϵ(a) = P (ζ(a;θ̄)n)
n .

With different values of θ̄, we collect training samples by simulating transmission

with scheme a and h. To generate different values of θ̄, we take inspiration
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from measured values of τds and τc in different ocean [125]–[128], and randomly

generate τds less than 10 ms and τc between 0.01s and 2s and compute c1, c2, c3.

Without an obvious quantitative relationship between the remaining parameters

of θ̄ and BER, b4 and c4 are uniformly generated from 0 to 1. Slopes b1, b2, b3

are also uniformly generated between 0 and 1.

Algorithm 2 Algorithm to obtain an initial parameter estimates ω0

Initialize state s0 = {θ0, N ′
0 = 0, r0 = 0,ω0} where θ0 and ω0 are randomized.

Generate θ̄.
while N ′

j < 1 do
Select a using (4.18) and randomly select h ∈ H.
Transmit frames and receive feedback.
Perform state transition sj → sj+h:
Update θj based on a and ϵ from ζ(a; θ̄).
Update ωj based on {rj , N ′

j , h} → rj+h.
Update N ′

j+h and rj+h.
end while
Reset initial state s0 = {θ0, N ′

0 = 0, r0 = 0,ω0} where θ0 is randomized while
the final ωJ during the previous simulation is assigned to ω0.
Back to line 2 until training ends.
Output ω0.

4.4 Simulation Results

We compare the proposed feedback strategy of adaptive model M(·) with the

pre-trained ω0 with a Random strategy, where h is randomly picked between 1

and 50, and the Fixed strategy where h = 5, 10, 15, · · · , 50 is fixed a priori.

Transmission distance l is set to 3 km and τfd = 100 ms. The number of bits per

PSK symbol m is set to 1 in (4.8) and εd = 0.9 in the adaptive ε-greedy policy.

The simulation stops when N = 100000 bits are transferred. The number of

sub-carriers are set to nc = 64, 128, 256, 512, 1024, 2048, and np ranges from 0

to 2048. 100 different θ̄ values are generated to obtain a pre-trained ω0. For

different feedback strategies, policy Π is executed 100 times, and the average
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Figure 4.3: Average throughput on a point-to-point link when using different
feedback strategies.

throughput computed is shown in Fig. 4.3. We observe that the policy Π

when using Random strategy provides a throughput that is significantly poorer

than what can be achieved via the proposed adaptive strategy. When using

the Regular strategy, the median throughput initially increases with h, but

gradually reduces when the value of h increases beyond a point. While outliers at

h = 35, 40, 45 demonstrate higher throughput results compared to h = 15, which

achieves the highest median among all Regular FRI strategies, our emphasis lies

on optimizing medians to ensure relatively robust transmission performance.

Selecting the optimal h a priori is generally difficult, but our proposed adaptive

policy is able to select it dynamically.

4.5 Summary

In this chapter, We evaluated the joint effect of AMC and the feedback

strategy on the average throughput of a communication link. With the
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assistance of channel physics, our proposed BER estimation model for AMC

achieves satisfactory channel performance with low computational complexity.

An adaptive feedback strategy proved to be essential in deciding the appropriate

times at which the feedback needs to be sent out.
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Chapter 5

Adaptive Feedback Scheduling Strategy

In Chapters 3 and 4, we undertook an exploration of two distinct approaches,

data-driven and physics-informed methods, to enhance the efficiency of AMC in

UAC. In addition, we elaborate on the need to consider feedback scheduling for

optimizing the performance of AMC. The feedback scheduling involves deciding

the appropriate time to obtain CSI through feedback from the receiver and tuning

the modulation and coding schemes. However, in UAC systems characterized

by long propagation delays, the process of tuning modulation schemes a and

waiting for feedback on each frame introduces delays. Additionally, early-stage

communication with incomplete channel knowledge or channel variability

during transmission can lead to sub-optimal AMC strategies. Insufficient

feedback collection under such sub-optimal strategies can further diminish data

throughput.

In Chapter 3, we presented a heuristic strategy addressing feedback

scheduling. This strategy focuses on the real-time performance of the current

AMC policy and exhibits sensitivity to dynamic channel conditions. However,

its applicability is limited by a lack of generality. In Chapter 4, generality was

improved through the use of a NN algorithm. Nevertheless, this approach might

yield sub-optimal results due to the inclination toward optimizing short-term
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throughput, and its efficacy relies on a substantial training dataset that hinders

practical experimentation.

To address these challenges, we propose an algorithmic that combines the

advantages of tree search due to its planning ability, and DQN due to its capacity

to learn from interactions with the environment and generalize to unseen states

in complex MDPs. Illustrated through the example of feedback scheduling in

AMC, our goal with this framework is to showcase its proficiency in enhancing

channel throughput by adaptively deciding modulation scheme modifications and

feedback timings based on channel conditions.

5.1 TS-DQN for Feedback Scheduling

The sequential decision process involving the modulation scheme a and FRI

hj for transmitting N bits is formulated as an MDP. Tree search algorithms

are suitable for solving MDPs as they optimize long-term rewards and balance

exploration-exploitation trade-offs. However, traditional tree search algorithms

face computational challenges when building search trees in high-dimensional

action or state spaces. Uncertainty in untried state-action pairs is initially

unknown. In large action and state spaces, handling uncertainty in tree search

also introduces significant computational complexity, potentially resulting in

suboptimal decisions.

RL is another popular method that enables the agent to learn an optimal

policy in MDPs through interactions with the environment, without explicit

knowledge of the environment’s dynamics [104]. DQN, a powerful RL algorithm,

aims to learn a mapping function that predicts the expected reward for
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state-action pairs, known as the Q-value function [79], [109]. The use of DNN

as function approximators in DQN enhances its ability to generalize to unseen

states. However, in DQN, quick but possibly biased action selections without

planning the potential consequences and future states may result in short-sighted

decisions and suboptimal long-term outcomes [112].

Therefore, We propose Tree Search with DQN (TS-DQN) to benefit from

the planning capabilities of tree search and the generalization capabilities of

DQN. DQN focuses on learning the optimal Q-value function for state-action

pairs using observed experiences, even leveraging its generalization abilities to

approximate the value function in a continuous state space. Tree search utilizes

the updated Q-values to guide the exploration process, prioritize promising

state-action pairs, and provide a way to estimate long-term rewards. Fig. 5.1

illustrates the fundamental framework of the proposed TS-DQN algorithm and

Fig. 5.2 further depicts the details of the tree search procedure. We will explain

them in the rest of this section.

5.1.1 Q-value Function

agent aims to select a and hj+1 at state sj to maximize the expected

throughput until reaching the terminal state sJ . In Fig.5.1, the output of DQN

provides a prediction of the Q-value function, i.e., Q̂(sj ,a, hj+1). Q̂(sj ,a, hj+1)

approximates the throughput till terminal state sJ given any state-action pair

{a, hj+1}. Agent prioritizes actions that are more likely to result in favorable
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Figure 5.1: The framework of the TS-DQN algorithm.

long-term rewards. At state sj , the throughput Rj should be calculated by

Rj =
(1− n′

j)N

J∑
i=j+1

hiτi + (J − j)(τfd + 2τpd + τm)

. (5.1)

The feedback of FRI hj from the receiver node updates (n′
j+1 − n′

j)N bits

transmitted during FRI hj within the time period encompassing hj+1 frames

with a transmission duration of τj+1 each, the duration of frames containing

modulation information τm and feedback τfd, and a two-way propagation delay

of 2τpd. Then in DQN, the target Q-value is updated by

Q(sj ,a, hj+1) =
(n′

j+1 − n′
j)N + (1− n′

j+1)N

hj+1τj+1 +
J∑

i=j+2
hiτi + (J − j)(τfd + 2τpd + τm)

. (5.2)
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However, from state sj+1 to the terminal state sJ , the number of transmitted

bits and their corresponding duration are unknown as they have not been

attempted. In the upcoming subsection 5.1.4, we will present the tree search

approach for approximating the target Q-value Q(sj ,a, hj+1).

5.1.2 State-value Approximation

Traditional tree search methods lack explicit policies and require repeated

tree building at each state. This procedure can be time-consuming and

memory-intensive. Our proposed TS-DQN algorithm addresses these limitations

by leveraging the approximated Q-value function to learn the rewards associated

with potential state-action pairs during repeated look-ahead tree construction.

In Fig. 5.1, the structure of DNN is one input layer with a size of all possible

states, three hidden layers, and one output layer with the size of the H. This

DNN is utilized to model the analytical function between the state sj , and the

estimated reward given the selected a and any possible value of hj+1 which

represents the predicted Q-value Q̂(sj ,a, hj+1), i.e.,

Q̂(sj ,a, hj+1) = M (sj ;ωj |a, hj+1) , (5.3)

where ωj is the weights of model M(·) and updated once CSI received.

5.1.3 Replay Memory

As shown in Fig. 5.1, agent utilizes a Replay Memory buffer to train the

TS-DQN where the experiences of the agent, pi = {si,a, hi+1, si+1}, i ∈ [0, j],

are stored up to state sj . When updating the TS-DQN within the state
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transition, the target DNN is a copy of the DNN model with the weight

parameters ωj updated in state sj . A batch, denoted by P, including 32 samples

from the Replay Memory buffer. For each pi ∈ P, the target throughput from

state si until reaching the terminal state sJ , i.e., Q(si,a, hi+1), is approximated

by the tree search shown in Fig. 5.2. During each memory replay for training

TS-DQN, the parameters of the target DNN remain fixed across the training

batch.

An ADAM optimizer is employed to minimize the DQN Loss based on the

mean squared loss between the predicted Q̂-value and the target Q-value to

update the weight parameters ωj to ωj+1 of our state-value approximator M(·),

i.e.,

ωj+1 = argmin
ωj+1

∑
pi∈P

(Q(si,a, hi+1)− Q̂(si,a, hi+1))
2

 . (5.4)

5.1.4 Tree Search

Fig. 5.2 presents the structure of our lookahead tree search structure with

a three-section procedure: Selection, Simulation, and Backpropagation. When

reaching the state sj , the three sections are depicted as follows.

• Selection: Agent selects modulation scheme a first and determines FRI

hj+1 following a ϵ-greedy strategy, where ϵ is for exploring FRI randomly

to avoid being trapped in a local optimum and with probability 1−ϵ, agent

tends to choose FRI as

hj+1 = argmax
hj+1∈H

Q̂(sj ,a, hj+1). (5.5)
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Figure 5.2: Tree search structure.

After determining a and FRI hj+1, frames are encoded for transmission,

and feedback is obtained to update the AMC strategy and the next state

sj+1. The weight parameters of model M are maintained as ωj in sj+1

and they will be updated later during the Replay Memory. The tuple

pj = {sj ,a, hj+1, sj+1} is then stored in the Replay Memory.

• Simulation: For each pi = {si,a, hi+1, si+1}, i ∈ [0, j] of the sample P

from Replay Memory, the agent conducts simulations from the newly added

node si+1 to the end of the transmission. Throughout the simulation, the

target DNN provides the estimated value associated with any potential

state-action pairs and makes greedy move selections until a terminal state

is reached.

• Backpropagation: The outcomes of the simulation, including FRI values,

throughput, and timestamps of each FRI between visited states, are

backpropagated up the tree to update the target Q-value in (5.2).
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The target Q-value for each pi ∈ P is collected to train ωj+1 using the loss

function defined in (5.4). Then the tuple {sj ,a, hj+1, sj+1} collected from the

state sj+1 is updated with the new value of ωj+1 and stored in the Replay

Memory.

5.2 Simulation Validation

We verify our TS-DQN algorithm with a toy problem. This problem is

formulated similarly to Section. 4.1. The problem scenario encompasses a

high-dimensional action and state space, providing a sufficiently complicated

context for robust evaluation of our feedback scheduling approach. Frames

are transmitted between a TX node and a RX node deployed at a distance

l = 3 km from the TX node. A large file with N = 100, 000 bits is requested to

be transmitted in the communication system within the shortest possible time.

Given the varying nature of the UAC environment, AMC is employed to select

MCS for every frame based on the current channel conditions.

We build a surrogate model to represent an UAC channel based on [129] for

generating the BER given any MCS selected during simulation. In the surrogate

model, the Pekeris ray model with red Gaussian noise is employed. The Pekeris

ray model is a very fast fully differentiable 2D/3D ray model for isovelocity

range-independent environments. In the Pekeris ray model, the isovelocity sound

speed profile is with sound speed c = 1500 m/s, and we assume a flat sea surface

and a sandy clay seabed. We choose the variance in the red Gaussian noise to

be 1e6 which is aligned with Singapore waters. The depth of the TX node and

RX node d1 = 25 and d2 = 25. The number of bits per PSK symbol on each
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subcarrier m is set to 2 in (4.8). The timing diagram is aligned with Fig. 3.1

where the propagation delay τpd = 2 s and the feedback duration τfd is fixed as

100 ms.

We perform AMC in OFDM system. The possible number of subcarrier

values are nc = 64, 128, 256, 512, 1024, 2048, the value np can be selected

from 0 to 2048, the possible occupy ratio of the bandwidth 24 KHz is

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. For any MCS a = {nc, np, B}, BER

prediction will be given by Section. 4.2.1. We aim to compare our TS-DQN for

feedback scheduling with the NN-based model we have proposed in Section. 4.3.

Therefore, in our TS-DQN, the state sj to estimate the Q̂ value to select the

next FRI value in (5.3) is the same as that we have in (4.20), i.e., {N ′
j , rj}. The

parameter N ′
j calculated the transmitted percentage of N bits until state sj and

rj calculates the throughput of the frames during the previous FRI. Simulation

is executed 20 times for both models and their comparison results are shown

in Fig. 5.3 Compared with the throughput under NN guidance to determine

the FRI value, the NN’s throughput result in Fig. 5.3 is lower. The reason is

that in this simulation, BER is provided by a surrogate model which considers

the BER uncertainties in the real sea. BER prediction given by (4.13) tends

to underestimate the BER and takes time to converge around the median BER

value. However, our TS-DQN gains better throughput results than the NN-based

feedback scheduling strategy. Therefore, we will apply TS-DQN for our adaptive

feedback scheduling part in the subsequent chapters.
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Figure 5.3: Throughput comparison given feedback scheduling under TS-DQN
and NN.

5.3 Summary

We explain the details of how to employ our proposed TS-DQN in sequential

decision problems, highlighting its aptitude for long-term rewards in scenarios

with vast action and state spaces. We take the feedback scheduling to

automatically find the right balance and optimize communication performance

for AMC for example. A toy problem of transmitting frames in a one-to-one

communication system is solved via simulation and the results show TS-DQN

achieves better throughput than our previous NN-based model.
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Chapter 6

From Theory to Practice

In the preceding chapters, we conducted extensive simulations to evaluate the

performance of our algorithms and demonstrate their advantages. However, in

order to effectively apply the physics-aided AMC strategy on underwater acoustic

modems, there are practical challenges that need to be addressed. We present

the design, implementation, and testing of a comprehensive communication

system that incorporates the BER upperbound estimation model along with

a consolidated feedback scheduling strategy. Specifically, we report the following

contributions in this chapter:

• To ensure the selection of robust modulation schemes in adverse channel

conditions, we extend our BER prediction model in Chapter 4 from point

prediction to the interval predictor by integrating GPR. This integration

takes into account the inherent uncertainty of the BER and enables reliable

AMC in real-sea experiments with a higher frame success reception rate.

The predictions obtained from the GPR model can balance the trade-off in

AMC by providing a probabilistic estimate of the BERs of different MCSs.

To demonstrate the advantages of our AMC algorithm, including reduced

dependence on data, and improved robustness and accuracy, we conduct a

comparative analysis against a purely data-driven BER estimation method
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on several datasets collected from a test tank and Singapore waters.

• We introduce a more comprehensive and realistic approach for determining

the timing of obtaining feedback. Real-world experiments are conducted

using actual underwater acoustic communication modems, where a “test”

mode is enabled on the modems. By enabling the “test” mode, known bits

are transmitted to facilitate the accurate acquisition of CSI. We consider

the timing of enabling or disabling the ”test” mode as one of the factors

related to feedback scheduling.

• Simulations may not fully capture the complexity and variability of the

challenging and dynamic underwater acoustic environment. We conducted

real-world experiments in a sea environment to bridge the gap between

theoretical and practical applications. These experiments involved the use

of actual underwater acoustic communication modems, taking into account

the limitations and constraints that are not captured in simulations.

While simulations often simplify the modeling of interference and noise

sources, our real experiments encountered unpredictable ambient noise

and potential sources of interference. In real-world experiments, we

demonstrate the efficacy and reliability of our approaches and showcase

their applicability and effectiveness to industry stakeholders. This can

lead to potential technology transfer and adoption in practical underwater

acoustic communication systems.
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6.1 Problem Formulation

6.1.1 Problem Overview

We aim to transmit N bits from the TX node to the remote RX node

located at a distance l within the shortest possible time. Modulation and Coding

techniques are used to encode these bits onto frames for reliable communication.

After modulation, the coding techniques, like the FEC, add redundant bits to the

modulated frames, allowing the RX node to detect and correct errors. Due to the

variability in UAC channels, it is hard to design a single modulation scheme that

works well in all situations. Therefore, AMC techniques are employed, enabling

tuning the modulation scheme a and coding strategy based on current channel

conditions. In the experiment, we establish a DATA link between the TX node

and RX node to transmit the modulated and coded frames, with the intent

of providing as high a data rate as feasible. However, optimal communication

performance in various environmental conditions necessitates fine-tuning this

DATA link.

Successful transmission is achieved only when the TX and RX nodes employ

identical modulation schemes. When the modulation schemes are determined

at the TX node, a crucial task is to inform the remote RX node about the

modulation information reliably before the DATA link frames are exchanged.

A separate communication link, referred to as the CONTROL link, is first

established. The CONTROL link exhibits robust communication albeit at a

lower data rate than the DATA link, and the modulation and error correction

parameters of the CONTROL link are pre-determined. The modulation
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information for the DATA link is then encoded onto frames and transmitted

over this CONTROL link to the remote RX node.

Performing AMC heavily relies on obtaining accurate CSI. The CSI, such as

measured BER based on the number of bits corrected during FEC decoding, is

acquired through feedback from the RX node. However, employing modulation

schemes and coding rates blindly may lead to failed frame receptions at the RX

node. Although such failures indicate that the BER exceeds a certain threshold,

they hinder acquiring accurate BER for reliable AMC. To address this challenge,

a “test” mode is introduced, where frames carrying known bits are transmitted

over the DATA link. In this mode, the BER can be accurately computed as the

transmitted frames are known, and the CSI is updated. When the “test” mode is

disabled, the N unknown bits are encoded and transmitted to the RX node over

the DATA link. In this case, the BER is approximated after demodulation and

decoding of the frames at the RX node. All CSI, including BER measurements,

are then encoded onto frames and sent back to the TX node via the CONTROL

link, thereby improving the performance of AMC.

Given the possibly long propagation delay between frames exchanged

over DATA and CONTROL links, tuning modulation schemes and awaiting

feedback for each frame consumes time. Conversely, employing a modulation

scheme across multiple frames without timely feedback can lead to suboptimal

performance, resulting in a loss of received frames at the RX node and reduced

throughput. This motivates the consideration of the optimal timings for

tuning modulation schemes and waiting for feedback to optimize the channel

throughput. Therefore, a Feedback Report Interval (FRI), which decides the
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number of transmission frames over the DATA link between two consecutive

feedbacks, is proposed. During the jth FRI, a specific number of frames (hj), are

transmitted using the same modulation scheme a and its corresponding coding

rate.

6.1.2 Mathematical Formulation

We formulate the sequential decision-making of modulation scheme a and

FRI hj as well as the subsequent interaction with the environment to receive

feedback as a MDP. In this MDP, A is a set containing all possible modulation

schemes, i.e., a ∈ A and H is another set including all possible values of hj ,

i.e., hj ∈ H. The action space now has a cardinality of |A × H|. An intelligent

decision-making entity, known as the agent, engages in iterative interactions with

the environment to learn and optimize a policy denoted as Π. This policy guides

the agent for selecting actions from action space |A × H| to transmit N bits

within the possible shortest time. In the state space S, a state sj is reached

upon receiving the feedback of the jth FRI as shown in Fig. 6.1. It encompasses

the completion ratio of N bits, knowledge related to decision-making of actions,

and communication performance metrics. The state transitions from state sj−1

to state sj follows a transition function Γ. Therefore, Π is a function that maps

the state space to the action space, i.e., Π : S → |A × H|. After successfully

transmitting all N bits, the agent reaches the terminal state sJ and hence j =

0, · · · , J . The round-trip frame exchange duration comprises the transmission

duration of hj frames, i.e., hjτj , the duration of frames containing modulation

information τm, a two-way propagation delay 2τpd, and the duration of frames
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Figure 6.1: The framework of the state transition.

containing feedback τfd, as shown in Fig. 6.2.

Figure 6.2: An illustration of the delays in frame exchange between the
transmitter and receiver nodes.

The throughput over the transmission is the performance metric for selecting

the actions in our MDP. When modulation scheme a is selected, the coding

technique, such as FEC, is then applied. The FEC adds redundant bits to

the transmitted data frames, facilitating error detection and correction during

transmission. A set ϱ contains available FEC rates associated with their
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respective affordable BER levels. With knowledge of the BER statistics ϵ(a),

the agent can easily determine the optimal FEC rate ρ(ϵ(a)). Specifically, if

no FEC rate in ϱ is available for correcting the BER ϵ(a), the “test” mode

is enabled, in which the known bits are transmitted. Given the uncoded data

rate d(a) of the modulation scheme a, the coded data rate is calculated as

d(a)ρ(ϵ(a)). The coded data rate in a communication system is closely correlated

to the throughput and thus serves as a valuable metric for enhancing channel

throughput.

Knowledge of BER is crucial for calculating the coded data rate in

communication systems. However, in time-varying UAC channels, measuring

accurate BER can be challenging, particularly given a possibly large size of A.

Obtaining an estimation of BER ϵ(a) over the action space A is hence required.

A heuristic BER model based on channel physics knowledge from [79] estimates

the median of the BER statistics ζ(a;θj). θj represents the model weight

parameters and are updated given the feedback of the latest CSI. However, it

may not capture the worst-case performance due to the inherent uncertainty of

BER measurement. To ensure robust modulation selection in adverse channel

conditions, ηj is proposed to help estimate the upperbound of the unknown BER

distribution. The BER upperbound ϵ̂j(a) is given by

ϵ̂j(a) = ζ(a;θj) + ηj(a). (6.1)

Obtaining CSI through feedback from the RX node plays a vital role

in facilitating accurate BER estimation and subsequent AMC. However, the
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feedback process consumes time due to significant propagation delays between

frames exchange. Therefore, the selection of FRI involves a tradeoff between

the optimization speed of the AMC strategy and maximizing the throughput

of transmitting N bits. When the transmission result of the last FRI is poor,

choosing a smaller value for the next FRI enables faster convergence of the BER

estimation model by updating the CSI more frequently. However, this may lead

to increased latency due to propagation delays. On the other hand, selecting

a larger FRI does not always guarantee improved channel throughput. In a

varying UAC channel, selecting a larger FRI would mean that the model would

operate far from the optimum and hence result in poorer performance. Thus,

a dynamic approach is required to determine the optimal sequence of FRI that

balances these two objectives.

As depicted in Fig. 6.2, the system transitions from sj−1 to sj upon the

completion of the jth FRI. Within the state transition, the measured BER ϵj(a)

from the updated CSI is utilized to train (6.8). The ratio of N bits that have

been transmitted, denoted by a percentage value n′
j , along with the timestamps

of frames exchange is recorded. The number of frames with and without the

“test” mode enabled up to state sj are respectively tracked by k1 and k2. The

throughput rj of FRI hj is calculated as the measure of (n′
j − n′

j−1)N bits

transmitted over the DATA link within a time period encompassing hj frames

with a transmission duration of τj each, along with the duration of frames

containing modulation information τm, the feedback frame duration τfd, and
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a two-way propagation delay of 2τpd, i.e.,

rj =
(n′

j − n′
j−1)N

hjτj + 2τpd + τfd + τm
. (6.2)

The parameters n′
j , rj , and the ratio k̄ = k1

k1+k2
provide valuable insights

into the communication performance under current policy Π. Therefore, the

feedback scheduling model M(·) takes inputs n′
j , k̄, and rj to predict the values

of all possible hj+1 ∈ H. The optimal hj+1 is determined by

hj+1 = argmax
hj+1∈H

M
({

n′
j , k̄, rj

}
;ωj |a, hj+1

)
, (6.3)

where ωj denotes the parameters of M(·), which are updated once CSI is

received. The detail of state transition between sj−1 and sj is

sj = Γ(sj−1,a, hj−1)

= {θj , n′
j ,ωj , ηj , k̄, rj}.

(6.4)

To summarize, our objective is to choose the sequence of modulation schemes

a and FRI hj , j = 1, · · · , J , where J is unknown, to transmit N bits within the

shortest time and thereby maximize the throughput:

min

(
J∑

i=1

hiτi + J(τfd + 2τpd + τm)

)

s.t. n′
J ≥ 1.

(6.5)
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6.2 BER Upperbound Predictor

In this section, we delve into the adaptation strategy of MCSs, focusing on

OFDM given its prevalence in modern underwater modems. Leveraging channel

physics information, we construct a heuristic BER estimation model to guide

AMC strategy selection. We validate this model using various datasets and offer

a reference table for BER-based FEC rate selection. Once the coded data rate

for each modulation scheme is ascertained, we suggest a dynamic ϵ-greedy policy

to address the exploration-exploitation dilemma in modulation scheme selection

given the high-dimensional MCSs space.

6.2.1 Estimation of BER Uncertainty

The work presented in Section 4.2.1 demonstrates the capability of ζ(·)

for estimating the median from the time-varying BER distribution. It also

illustrates the BER tends to cluster around this median value although variability

is observed within the actual BER distribution. To enhance the reliability of

the modulation scheme selection in view of the BER uncertainty, evaluating

the upperbound in the BER distribution becomes necessary. Referring to the

maximal BER for selecting the FEC rate ensures a stringent level of error

correction performance and maximizes reliability. However, this approach may

be overly conservative, potentially compromising data throughput. We employ

the Quantile Absolute Deviation (QAD) method [130] to help estimate the BER

upperbound. It entails computing the qth quantile of the absolute difference

between the predicted median BER given by ζ(a;θj) and the measured BER
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ϵj(a) from feedback. The training set Dj to train ηj(·) is composed of

{a → QAD(|ϵi(a)− ζ(a;θi)|; q)}, i = 1, · · · , j, (6.6)

which is composed of attempted modulation schemes a and their corresponding

QAD values during previous transmissions. ηj(·) is trained through regression

analysis on Dj , enabling it to estimate QAD for any potential input a ∈ A. The

choice of q in the QAD calculation (6.6) is set to 75 which guarantees that at

least 75% of transmitted frames are successfully delivered, as it encompasses the

range within which 75% of the actual BER values reside. It allows for a degree

of error tolerance and also considers the trade-off between error rate and data

throughput.

However, performing an exhaustive search over all modulation schemes a ∈ A

and storing their corresponding QAD values is computationally impractical.

However, BER uncertainty tends to be highly correlated across modulation

schemes that share similar characteristics in nc, np, or B. Modulation schemes

with the same nc value tend to exhibit comparable levels of frequency diversity,

and modulation schemes with similar np values would experience similar levels

of protection against intersymbol interference. Similar bandwidth B values often

encounter comparable channel conditions and noise levels. The QAD estimator

ηj utilizes GPR [131] to learn these correlations within A based on the observed

QAD values up to state sj . This correlation enables QAD predictions for all

potential modulation schemes a, eliminating the need for exhaustive evaluation.

A GPR model includes a crucial component known as the mean function,
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which establishes a prior expectation of the general trend in the predicted

QAD. The mean of all the previously observed QAD values is used as the

mean function, denoted as µQAD. Another essential component is the kernel

function, which determines the similarity between data points and governs the

smoothness and behavior of the GPR model. In our approach, we employ

the Matérn kernel [132], known for its flexibility in modeling different levels

of smoothness, to govern the correlation and smoothness of the estimated QAD

for any two modulation schemes a1 and a2 from the training set Dj , denoted as

K(a1,a2). The Matérn kernel has two key parameters: the length scale ℓ and

the smoothness parameter ν. The length scale parameter ℓ determines the range

over which data points influence each other. A small ℓ confines the influence of

a modulation scheme a to a narrow (nc, np, B) space, resulting in rapid changes

in the GPR function over short distances. Conversely, a large length scale allows

a modulation scheme a to have a significant influence on other schemes that are

farther apart, even over long distances. The smoothness parameter ν controls

the flexibility of the Matérn kernel in capturing complex patterns. Higher values

of ν lead to smoother functions, while lower values introduce more roughness

and allow for intricate variations in the modeled functions. In our model, we

choose ℓ = 0.3, approximated using the distance between the nearest neighbor

modulation schemes in A. To determine an appropriate value of ν, a range of

commonly used values, namely {0.5, 1.5, 2.5}, is visualized on datasets collected

from a tank and Singapore water which we list in subsection 6.2.2. ν = 1.5 is

finally selected as it achieves superior performance by striking a suitable balance

between demonstrating regularity in BER and allowing for fluctuations between
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neighboring modulation schemes.

The QAD estimator ηj(·) predicts QAD for a ∈ A at state sj follows

ηj(a) ∼ GP(µQAD,K(a1,a2)), (6.7)

where a1,a2 ∈ Dj . The BER upperbound ϵ̂j(a) is given by

ϵ̂j(a) = ζ(a;θj) + ηj(a). (6.8)

6.2.2 Data Sets

Two datasets containing the measured BER statistics for tuning nc, np, and

B using Subnero [133] M25M modems. The Subnero M25M modem operating

bandwidth is up to 12 kHz, i.e., from 20 to 32 kHz. The details of these datasets

are provided below.

• A data set collected from an easily accessible tank of the Acoustic Research

Laboratory shown in Fig. 6.3. The transmission distance l between the

TX and RX nodes was about 1.5 m, and the depth of TX and RX

modems was 1.5 m. The BER was measured for (nc, np, B), where nc was

set to different values from the set {128, 256, 512, 1024, 2048, 4096, 8192}

and np ranged from 0 to 8192, B was set to different values from

{2.4, 4.8, 7.2, 9.6, 12, 14.4, 16.8} kHz.

• A data set, denoted by SEADATA1, was collected by colleagues from the

Acoustic Research Laboratory. The experiment to collect SEADATA1

was in Singapore waters. Fig. 6.4 is adapted from [134] to show the
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experiment setup to collect SEADATA1. The transmission range between

the TX and RX nodes, i.e., the node B and node C in Fig. 6.4 was about

600 m, and the water depth was between 10 and 20 m. The BER was

measured for (nc, np, B), where nc was set to different values from the

set {64, 128, 256, 512, 1024, 2048}, np ranged from 0 to 2046, B was set to

different values from {4.8, 7.2, 9.6, 10.8} kHz.

These two datasets are separated into a train set and a test set by a ratio 7 : 3

for each iteration of training BER upperbound estimation model in (6.8).

6.2.3 BER Upperbound Estimation Model Validation

6.2.3.1 Validation on a Large Data Set

The improved BER estimation model is validated on the data set

SEADATA1. To assess the model, SEADATA1 was split into a training set

(SEATRAIN1) and a testing set (SEATEST1) using a 7 : 3 ratio.

Fig. 6.5 compares the measured BER with the estimated BER obtained

from the proposed model (6.8) trained on SEATRAIN1. To reduce redundancy,

the results are presented for each nc, with np binned into groups of size 128

due to similar BER values between adjacent np values. The proposed model

demonstrates better responsiveness to changes in np and greater accuracy in

capturing BER uncertainties compared to the findings reported in [79].

6.2.3.2 Validation on a Small Data Set

Determining the optimal modulation scheme a with minimal transmission

is a critical performance indicator in real-world experiments for improving

transmission time efficiency. The ability of a BER model to accurately estimate
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Figure 6.3: Test tank and deployment of modems in the tank.

the BER with limited transmission and CSI feedback is a significant advantage.

Our proposed BER estimation model incorporates knowledge of channel physics,

which is supposed to enhance its ability to make reliable and accurate predictions

with fewer training data or transmissions than pure data-driven methods.

To demonstrate its superiority, five pairs of (nc, np, B) and its corresponding

measured BER sampled from the SEATRAIN1 data set randomly are utilized

as the training set.

The GPR is employed as a purely data-driven comparison method, denoted
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Figure 6.4: Experiment setup for collecting SEADATA1.

Notes: This figure is adapted from [134] to show the experiment setup to collect SEADATA1.

as GP ′ to easily distinguish it from the previous QAD estimator GP. The prior

mean function for GP ′, µϵ, is the mean of the five samples. Assuming QAD

and BER estimation share identical correlation functions over A, we employ the

same Matérn kernel in the QAD estimator GP for GP ′. This purely data-driven

GPR method assumes the estimated BER ϵgp(a) for a ∈ A follows the GP ′ after

trained on the five samples, i.e.,

ϵgp(a) ∼ GP ′(µϵ,K(a1,a2)), (6.9)

where a1,a2 are any two modulation schemes from the five samples. The

comparison between our physics-informed model ζ(·) + ηj(·) and this purely

data-driven GPR model GP ′ is performed on the SEATEST1 set. Table 6.1 and
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Figure 6.5: Comparison of the measured BER in SEATEST1 and the BER
upperbound estimation.

Notes: The x-axis labels correspond to the values of nc and a range of np, for example, 128∗ [0 :
128) → {nc = 128, np ∈ [0 : 128)}. For each nc ∗ np pairs, there are two boxplots, the left
one is the measured BER, and the right one represents the estimated BER upperbound by our
physics-informed model given SEATEST1.

Fig. 6.6 illustrates an example of the training set and the comparison results for

one five-sample set.

Table 6.1: An Example of a 5 Data Points Training Set.

Row Number of Subcarriers nc Cyclic Prefix Length np Bandwidth B (kHz) BER

1 2048 47 10.8 0.177
2 64 59 10.8 0.334
3 1024 211 10.8 0.173
4 2048 168 7.2 0.150
5 1024 28 7.2 0.094

The results presented in Fig. 6.6 demonstrate the superior performance of

our proposed physics-informed model when channel knowledge is limited, as

indicated by the red boxplots. Compared to the yellow boxplots generated by

GP ′, our model exhibits a better ability to identify the potential upperbound of

the time-varying BER distribution. In contrast, the yellow boxplots generated

by the purely data-driven GPR model GP ′ tend to underestimate the BER and

are clustered around the lowerbound. This tendency leads to an overconfident
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Figure 6.6: Comparison of the measured BER, the estimated BER upperbound
by our physics-informed model, and estimated BER via a pure data-driven GPR
model for 5 samples from SEATEST1.

Notes: The x-axis labels correspond to the values of nc and a range of np, for example, 128∗ [0 :
128) → {nc = 128, np ∈ [0 : 128)}. For each nc ∗ np pairs, there are three boxplots, the left
one is the measured BER, the middle one represents the estimated BER upperbound by our
physics-informed model, and the right one is estimated via a pure data-driven GPR model of
5 samples from SEATEST1.

selection of the FEC rate, resulting in a higher probability of frame failures.

Although the BER estimates provided by our model may be higher than the

measured upperbound for modulation schemes a, this conservative approach

allows for the selection of a more robust FEC rate. Consequently, a better frame

success rate can be achieved while still maintaining an acceptable compromise

in terms of data rate.

6.2.4 Forward Error Correction

Given the estimated BER upperbound, we apply the low-density

parity-check (LDPC) code [135] as the FEC technique. To choose an appropriate

LDPC rate, Table 6.2 provided by Subnero is consulted. This table is obtained

via simulations. In the simulation, three different block size frames with

18, 432, 1450 bytes are embedded errors manually. They then employ 6 different
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LDPC rates from {2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6} to decode that three different block size frames

with error included and tested the maximal LDPC rate for a certain BER level

with 90% frame success rate. For BER values less than 0.18, they showed the 6

LDPC rates mentioned previously were capable of correcting the errors. When

none of the BER ranges specified in Table 6.2 are met, we enable the test mode,

and known bits are sent from the TX node to the RX node.

Table 6.2: LDPC Rate Selection Criterion

BER Estimation LDPC Rate

ϵ̂(a) = 0 1

ϵ̂(a) < 0.03 2
3

ϵ̂(a) < 0.07 1
2

ϵ̂(a) < 0.12 1
3

ϵ̂(a) < 0.15 1
4

ϵ̂(a) < 0.18 1
6

Otherwise Enable “test” mode

Notes: This table is provided by Subnero. Colleagues in Subnero operated simulations
where three different block size frames with 18, 432, 1450 bytes are embedded errors
manually. 6 different LDPC rates from { 2

3
, 1
2
, 1
3
, 1
4
, 1
5
, 1
6
} to decode that three different

block size frames with error included and tested the maximal LDPC rate for a certain
BER level with 90% frame success rate. When none of the BER ranges specified in
Table 6.2 are met, the test mode is enabled, and known bits are sent from the TX
node to the RX node.

6.2.5 Exploration & Exploitation in AMC

During the process of sequential decision-making on modulation schemes

a while simultaneously collecting feedback to gain insights into the channel

behavior, the agent faces the dilemma of whether to exploit the existing

knowledge by choosing a or to explore new, untested schemes to enhance its
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understanding of the channel dynamics and possibly achieve higher rewards. To

balance this trade-off, we employ a dynamic ε-greedy algorithm to select the

modulation scheme a. The classic ε-greedy policy is expressed as

a =


argmax

a∈A,ρ(ϵ(a))∈ϱ
d(a)ρ(ϵ̂j(a)), with probability 1− ε

Random, with probability ε

, (6.10)

where ε is for exploring a randomly to avoid being trapped in a local optimum.

In our dynamic ε-greedy algorithm strategy, ε gradually decayed by

ε =


εdecay × ε, if ε > εmin

εmin, if ε ≤ εmin

, (6.11)

where εdecay is the decay coefficient to control the degree of randomness and

εmin is the minimum value of the random factor. During the initial phase of

learning, a larger ε value is applied to encourage the agent to explore untried

modulation schemes with a higher probability. As the number of transmission

frames increases, the agent tends to rely and exploit more on the accumulated

knowledge base, which improves the learning efficiency.

6.3 AMC with TS-DQN-based Feedback Scheduling

When the MCS a and its corresponding LDPC rate, the agent starts to

select the FRI hj+1. TS-DQN introduced in Chapter 5 is employed. As we

demonstrated in Section 6.1, the parameters n′
j , rj , and the ratio k̄ = k1

k1+k2

provide valuable insights into the communication performance under current
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policy Π. The parameter n′
j represents the ratio of completed bits at state sj ,

rj is the throughput of the last FRI hj and computed by (7.1), and k̄ = k1
k1+k2

calculate the ratio between the number of frames with “test” mode enabled

or disabled till state sj . Therefore, when determining the next FRI hj+1, the

estimated Q̂ in (7.8) is updated to

Q̂(sj ,a, hj+1) = M
({

n′
j , k̄, rj

}
;ωj |a, hj+1

)
. (6.12)

As shown in Fig. 5.1, in the tree search selection step, hj+1 is selected based on

(7.8), and the memory replay and TS-DQN training steps are aligned with the

elaboration in Section 5.1.

6.4 Experiments and Results

6.4.1 Experimental Setup

In our experimental setup, the TX and RX nodes are WNC-M25MSS3

modems [136] from Subnero. These modems support two types of links:

CONTROL and DATA. A “type” parameter distinguishes frames transmitted

over these links. A value of 1 indicates transmission over the CONTROL link,

while a value of 2 represents transmission over the DATA link. The use of

different “type” parameter values enables the RX node to make appropriate

decoding decisions.

The CONTROL link employs Frequency-Hopping Binary Frequency Shift

Keying (FHBFSK) as the modulation technique and LDPC code as the FEC

method. In different environments, the LDPC code rate and power level of
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the CONTROL link are pre-tuned and remain static. On the DATA link, the

LDPC code is used as FEC, and OFDM serves as the modulation technique.

For each FRI, the number of subcarriers, cyclic prefix length, and bandwidth

in OFDM are tuned adaptively. The “test” mode of the DATA link in the

WNC-M25MSS3 modems can be enabled or disabled using the true or false

command, respectively.

Frames transmitted over the CONTROL link serve two purposes. The

first purpose involves sending frames containing modems’ modulation and

setup information at the beginning of each FRI. Specifically, this information

encompasses the number of subcarriers, cyclic prefix length, and bandwidth

in the OFDM system, the LDPC code rate, “test” command, and FRI value.

Secondly, the CSI feedback from the RX modem to the TX modem is sent over

the CONTROL link. The feedback frame contains measured BER statistics,

namely the median and 75th QAD of the measured BER values, along with the

number of bits transmitted during one FRI.

To ensure sufficient reception of frames over the DATA link without

compromising throughput unnecessarily, we should consider an appropriate wait

duration on the RX modem after the modulation setup. This wait duration,

denoted as τwait, is calculated as hjτj , where τj represents the transmission

duration of each frame in the jth FRI. Upon receiving the frame with modems’

modulation and setup information over the CONTROL link, the RX modem

triggers the waiting phase for the upcoming hj frames over the DATA link,

lasting for τwait = hjτj .

The operational procedures on the TX modem and RX modem are detailed
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in Algorithm 3 and Algorithm 4, respectively.

Algorithm 3 Operations on TX Modem over Transmission

Initialization: state s0 = {θ0,η0,ω0, n
′
0 = 0, k = 0.5} where θ0 is

randomized, ω0 is pre-trained in Section 6.4.2 and η0(a) = 0.18 for a ∈ A.
for i = 0, 1, · · · , J do
Estimate BER ϵ̂i(a) for a ∈ A using (6.8).
Determine FEC rate ρ(ϵ̂i(a)) for a ∈ A using Table 6.2.
Select a using (6.10) and hi+1 using (7.8).
Determine whether to enable or disable “test” mode.
Transmit frame carrying modulation and “test” information over
CONTROL link.
Transmit hi+1 frames over DATA link.
Detect and decode feedback frames from the RX modem over the
CONTROL link.
perform state transition si → si+1.
if n′

i+1 ≥ 1 then
Stop transmission.

end if
end for

Algorithm 4 Operations on RX Modem over Transmission

while receive frame with “type” = 1 do
Decode and Modulate.
if “test” command is true then
Enable “test” mode.

else
Disable “test” mode.

end if
Calculate τwait.
while in τwait do
if receive frame with “type” = 2 then
Decode and store CSI.

end if
end while
Send feedback frame to TX modem.

end while

6.4.2 Pre-training of Feedback Model

In the action space [A × H] of MDP, the tunable OFDM parameters offer

an extensive range of possible values, which results in a very large action space.
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Real-time training of the model M(·) in the sea trial setting becomes challenging

and time-consuming. To address this, we opt to pre-train M(·) in the Acoustic

Research Laboratory’s easily accessible tank and deploy as depicted in Fig. 6.3.

This controlled and safe environment allows us to learn the initial features and

patterns of model M(·), denoted by ω̂. For the CONTROL link, LDPC with a

1
3 rate FEC is employed, and both DATA and CONTROL links have a power

level set to 155 dB re 1µPa on TX and RX modems. Each pre-training iteration

follows operational procedures aligned with Algorithm 3 and Algorithm 4 and

terminates until N bits have been transmitted. The learned parameters ωJ at

the terminal state sJ of each iteration are stored and utilized as the initial ω0 for

the subsequent pre-training iteration. Given the propagation delay is negligible

in the tank, we assume the distances l between the TX modem and RX modem

as 1, 2, or 3 km, and accordingly, we include τpd = 2
3 ,

4
3 , 2 s into each FRI during

the pre-training of ω̂. After conducting 100 pre-training iterations, the trained

ω̂ is utilized as the initial value of ω0 in subsequent experiments.

6.4.3 Tank Experiment

Before the sea trial, we first test our algorithm in the same tank shown in

Fig. 6.3. The same two WNC-M25MSS3 modems from Subnero are deployed

in four different positions as shown in Fig. 6.7. For the CONTROL link, the

FEC employed LDPC with 1
3 rate. The power level was set to 155 dB re 1µPa

on TX and RX modems on both CONTROL and DATA links. We maintain the

consistent use of the AMC strategy in policy Π within the MDP. Meanwhile,

we compare our feedback scheduling algorithm TS-DQN with other strategies:
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Figure 6.7: 4 different deployments in the test tank.

Random strategy, where h is randomly picked between 1 and 20. The Fixed

strategy where h = 5, 10, 15, 20 is fixed a prior, and a progressive increase policy,

named Time-varying, that FRI increases with n′
j , the ratio of bits transmitted.

Each transmission run employing different feedback strategies is terminated

until N = 100000 bits have been transmitted. As the size of the tank, the

propagation delays τpd are negligible and the average results are demonstrated

in Fig. 6.8. To observe the impact of propagation delays, we assume a distance

l of 3 km, incorporating a τpd = 2 s, and present the throughput results

in Fig.6.9. Notably, when propagation delays are negligible, a smaller FRI

value allows the policy Π to converge faster by acquiring CSI feedback more
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frequently. Conversely, under the Fixed FRI policies, increasing the fixed FRI

value gradually decreases the median throughput. Our proposed TS-DQN

algorithm adaptively selects a small FRI value for quick feedback updates during

AMC strategy optimization. As the confidence in the AMC strategy increases

along with the transmission, both TS-DQN and Time-varying strategies raise the

FRI value to save time on propagation while still ensuring close-to-optimal AMC

performance. However, the Time-varying strategy’s slower FRI adjustment

speed results in lower throughput. Hence, when propagation delays exist, the

advantages of TS-DQN become prominent, saving time on propagation and

feedback delays when the AMC strategy performs well. Fig.6.9 also shows the

Fixed policy with a small value like 5 and the Time-varying policy have lower

throughput results, as they waste too much time on obtaining feedback when the

AMC strategy is already performing well. Conversely, a large fixed FRI value,

like 20, leads to slow convergence when the agent has limited channel knowledge,

consequently hindering throughput.

6.4.4 Sea Trial

Sea trial is conducted at the marina as shown in Fig. 6.10. The setup

of our one-to-one communication system is illustrated in Fig. 6.11. Two

WNC-M25MSS3 modems act as the TX node and the RX node. The TX modem

is controlled from a nearby ground station via a laptop. The RX modem is

operated using a laptop 100 m away. The RX laptop was only responsible for

receiving modulation setup information, guiding the RX modem’s modulating

and receiving frames, and sending the feedback frames. The depths of TX and
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Figure 6.8: Tank throughput comparison before propagation delays added.

Figure 6.9: Tank throughput comparison after propagation delays added.
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Figure 6.10: Test environment of sea trial.

RX are set as d1 = 5 m and d2 = 3 m, respectively. The transmission distance

l = 100 m. In our experiment, both the TX and RX modems utilize LDPC with

a 1
6 rate for FEC on the CONTROL link. The TX modem’s power level is set to

175 dB re 1µPa, and the RX modem’s power level is set to 185 dB re 1µPa. Each

run is terminated after transmitting N = 100, 000 bits. The algorithms on both

the TX and RX modems are aligned with Algorithm 3 and 4, respectively. The

throughput results for each feedback strategy, i.e., TS-DQN, Random, Fixed,

and Time-varying, is the average of 20 transmissions. Fig.6.12 presents the

results with the actual delay propagation (τpd ≈ 0.067 s) at the marina, and

Fig.6.13 shows the throughput when we assume the distance l = 3 km.

The timing diagram of a series of transmissions from the sea trial is depicted

in Fig. 6.14 where frames labeled “test frames” indicate the “test” mode is
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Figure 6.11: Sea trial deployment.

on and frames labeled “data frames” indicate the “test” mode is switched off.

The sea trial throughput results demonstrate a decrease when compared with

the tank throughput results presented in Fig.6.8 and Fig.6.9. This decrease is

attributed to the increased noise from nearby shipping and construction in the

marina environment. Under the Fixed policy, the throughput shows a decreasing

trend as the FRI value increases, and the advantage of our proposed TS-DQN

is not notably evident. This is due to the satisfactory convergence speed of the

AMC strategy under the Time-varying and Fixed policies. When considering

propagation delays for a distance of 3 km, the impact of the propagation delay

increased. Our TS-DQN algorithm outperforms, as it can dynamically determine

the FRI value based on the channel conditions. Specifically, TS-DQN tends to

select a smaller FRI when there is limited channel knowledge or when channel
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Figure 6.12: Sea trial throughput comparison before propagation delays added.

conditions change, while it chooses a larger FRI when the AMC strategy is

optimized or operates in a stable channel condition.

6.5 Simulation and Results

We have verified our algorithm in a controlled tank and open sea

environments. We aim to verify our algorithm in more different underwater

environments via simulations. The surrogate model to represent the DATA link

of different UAC environments is built based on [129], where the Pekeris ray

model with red Gaussian noise is employed. There are some parameters in the

Pekeris ray model we modify, such as the bathymetry with a constant depth,

and the ambient noise model with variance σ2. We fix the isovelocity sound

speed profile with sound speed c = 1540 m/s, a flat sea surface, and a sandy

clay seabed. We choose the variance in the red Gaussian noise to be 1e6 which
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Figure 6.13: Sea trial throughput comparison after propagation delays added.

Figure 6.14: An illustration of the timestamps in frame exchange between the
TX and RX modems in the sea trial.

is aligned with Singapore waters. The transmission distance l and the depth of

the TX node and RX node d1 and d2 for different simulation surrogate models

are listed in Table. 6.3. The number of bits per PSK symbol on each subcarrier

m is set to 2 in (4.8).

In the simulation, the TX and RX nodes are running on the same machine

101



CHAPTER 6. FROM THEORY TO PRACTICE

and the measured BER is provided directly by the surrogate model. Therefore,

the duration of frames containing modulation information and feedback no longer

existed. To be consistent with the practical setup in experiments, we assume the

τm = τfd = 2.7 s. The propagation delay τpd is determined by the distance l,

i.e., τpd = l
1540 s. The FEC selection rule is identical to Table 6.2. To better

simulate the real environment, if the measured BER given by the environment

surrogate model is less than the BER limit of each LDPC rate, the frame has a

very high probability, 90%, to be successfully received. Meanwhile, a frame has

a probability of 10% to be received successfully even when its measured BER is

larger than the given BER limit.

We compare our feedback strategy TS-DQN with Random, Fixed,

Time-varying, and DNN (our previous work presented in [79]) strategies. The

simulation stops when N = 100, 000 bits have been transmitted. The possible

number of sub-carrier values are nc = 64, 128, 256, 512, 1024, 2048, 4096, 8192,

the value np can be selected from 0 to 8192, the possible occupy ratio of the

bandwidth 24 KHz is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. For different feedback

strategies, transmission is executed 20 times given a different UAC surrogate

model.

Table 6.3: UAC Surrogate Model Parameters

Surrogate Model Constant Depth of Bathymetry TX node depth Rx node depth Distance

1 50 m 25 m 25 m 3000 m
2 50 m 25 m 25 m 2000 m
3 10 m 5 m 5 m 100 m

For different surrogate models listed in Table 6.3, the throughput results of

different feedback strategies are presented in Fig. 6.15, Fig. 6.16, and Fig. 6.17.
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The Random strategy yields significantly lower throughput compared to the

proposed TS-DQN strategy. For the Fixed strategy, the median throughput

initially increases as the FRI increases but gradually decreases when FRI exceeds

a certain point for l = 2000 m or 3000 m. However, for l = 100 m, the

throughput continues to increase as FRI increases. This is due to the surrogate

model being sensitive to the distance l between the TX node and RX node.

The channel becomes more challenging, i.e., higher probability to include errors

in the transmitted frames as l increases. Increasing the value of FRI does not

directly improve the throughput since it slows down the convergence speed of

AMC when UAC channels are complex. That explains why a fixed value of FRI

determined beforehand is not conducive to optimizing throughput and varies

with different UAC channels. The difficulty of selecting an optimal FRI in

advance emphasizes the significance of studying dynamic feedback scheduling

strategies like TS-DQN to enhance AMC and optimize channel throughput.

Additionally, our comparison of TS-DQN with the DNN proposed in [79] shows

that TS-DQN exhibits improved robustness in complex channel conditions.

6.6 Summary

We transitioned from simulations to real experiments and tested our

communication system. In our AMC policy, the upperbound BER estimation

provides a safer selection of modulation and coding schemes compared with

the point estimator of BER in Chapter 4 given the UAC channels are usually

associated with high variability. The incorporation of TS-DQN for feedback

scheduling combines the advantages of DQN and tree search that offer low
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Figure 6.15: Results of average throughput with different feedback strategies
under surrogate model 1.

Figure 6.16: Results of average throughput with different feedback strategies
under surrogate model 2.
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Figure 6.17: Results of average throughput with different feedback strategies
under surrogate model 3.

computational complexity and demonstrate universality across different channel

conditions. Our algorithm is modified and embedded on modems due to

the additional information and unique setup on modems. These experiments

complement simulations and provide a comprehensive understanding of system

performance and capabilities.
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Chapter 7

Joint Exploration & Exploitation in AMC and

Feedback Scheduling

In the preceding chapters, we have formalized the AMC problem along

with feedback scheduling as a MDP. Within this MDP framework, the agent

balances exploration and exploitation while independently selecting MCS and

FRI. This sequential approach entails consistently opting for the MCS first

and subsequently determining the FRI based on the chosen MCS at each state.

However, this manner of decision-making holds the potential to yield sub-optimal

outcomes in the MDP due to ignoring the joint impacts of MCS and FRI.

By treating these decisions as separate steps, the agent might miss out on

opportunities to make choices that lead to higher overall rewards or better

performance. In other words, a choice that seems optimal for the MCS might

not be as effective when considering the FRI, and vice versa.To address this

inherent concern and attain a more optimal decision-making approach, this

chapter adopts an alternative strategy. Rather than proceeding sequentially,

we intend to concurrently consider the interplay between MCS and FRI. This

approach is grounded in the TS-DQN algorithm introduced in Chapter 5.
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7.1 Problem Formulation

We focus on a problem where a TX node and a remote RX node are placed at

a distance l in a varying underwater environment. The objective is to transmit

N bits from the TX node to the remote RX node located at a distance l within

the shortest possible time, where N can be any value. A total of |A| MCSs in

action space A are available to transmit these N bits of information between the

TX node and RX node. We aim to tune the MCS based on the varying channel

conditions.

Performing AMC heavily relies on obtaining accurate CSI. The CSI, such as

measured BER based on the number of bits corrected during FEC decoding, is

acquired through feedback from the RX node. However, employing modulation

schemes and coding rates blindly may lead to failed frame receptions at the RX

node. Although such failures indicate that the BER exceeds a certain threshold,

they hinder acquiring accurate BER for reliable AMC. To address this challenge,

a “test” mode is introduced, where frames carrying known bits are transmitted

over the DATA link. In this mode, the BER can be accurately computed as the

transmitted frames are known, and the CSI is updated. When the “test” mode is

disabled, the N unknown bits are encoded and transmitted to the RX node over

the DATA link. In this case, the BER is approximated after demodulation and

decoding of the frames at the RX node. All CSI, including BER measurements,

are then encoded onto frames and sent back to the TX node via the CONTROL

link, thereby improving the performance of AMC.

Obtaining CSI can introduce time costs in UAC due to the huge propagation
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delays. Conversely, employing a modulation scheme across multiple frames

without timely feedback can lead to suboptimal performance, resulting in a loss

of received frames at the RX node and reduced throughput. This motivated an

adaptive feedback strategy to decide the time to tune MCS and request feedback

during transmission to optimize the channel throughput. In the following

content, we use Feedback Report Interval (FRI) to represent the waiting time

between every two feedback frames.

We formulate the sequential decision on MCS and FRI as well as the

subsequent interaction with the environment to receive feedback as a MDP. An

agent in the MDP works as an intelligent decision-making entity that engages

in iterative interactions with the environment to learn a policy Π. Action space

is A ×H where A contains all possible modulation schemes, i.e., a ∈ A and H

includes all possible values of hj , i.e., hj ∈ H. In the state space S, a state sj

which encompasses knowledge related to decision-making of actions. The policy

Π guides the agent for selecting actions from action space A×H to transmit N

bits within the possible shortest time. Π : S → |A ×H|.

There are two main exploration and exploitation dilemmas. The first one

appears when selecting the MCS a. In Chapter 4, we adopted a dynamic

ε-Greedy policy in (6.10) to help balance whether to explore new MCS to

achieve potentially better reward or exploit the current knowledge of the BER

upperbound estimation model ζ(·;θj) + ηj in Section 6.2. The incorporation

of GRP for the BER upperbound prediction provides estimates of uncertainty

guides the agent’s exploration in risk-sensitive decision-making, and generalizes

well to unseen states which are particularly valuable in MDPs with large
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state spaces. However, due to the absence of a holistic consideration of the

intertwined impacts of MCS and FRI, the agent may overlook opportunities

to arrive at decisions that yield elevated cumulative rewards or enhanced

performance. For smaller bit-size file transmissions, excessive exploration can

detrimentally affect channel throughput. However, a sufficiently large N can

facilitate optimal average channel throughput. The second dilemma concerns

determining the appropriate FRI value, balancing AMC strategy optimization

speed, and maximizing N bit throughput. The round-trip frame exchange

duration comprises the transmission duration of hj frames, i.e., hjτj , the duration

of frames containing modulation information τm, a two-way propagation delay

2τpd, and the duration of frames containing feedback τfd, as shown in Fig. 3.1.

As depicted in Fig. 3.1, the system transitions from sj−1 to sj upon the

completion of the jth FRI. Within the state transition, the measured BER ϵj(a)

from the updated CSI is utilized to train (6.8). The ratio of N bits that have

been transmitted, denoted by a percentage value n′
j , along with the timestamps

of frames exchange is recorded. The number of frames with and without the

“test” mode enabled up to state sj are respectively tracked by k1 and k2. The

throughput rj of FRI hj is calculated as the measure of (n′
j − n′

j−1)N bits

transmitted over the DATA link within a time period encompassing hj frames

with a transmission duration of τj each, along with the duration of frames

containing modulation information τm, the feedback frame duration τfd, and

a two-way propagation delay of 2τpd, i.e.,

rj =
(n′

j − n′
j−1)N

hjτj + 2τpd + τfd + τm
. (7.1)
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The parameters n′
j , rj , and the ratio k̄ = k1

k1+k2
provide valuable insights

into the communication performance under current policy Π. Intuitively, to

determine whether the next modulation scheme a and FRI hj+1 as a function

of n′
j , rj , and k̄, we utilize ML techniques since such a function is analytically

unknown. We construct a model F(·) with inputs n′
j , k̄, and rj to predict the

values of all possible action pairs. The optimal a and hj+1 are determined by

a, hj+1 = argmax
a∈A,hj+1∈H

F
({

n′
j , k̄, rj

}
;ϑj |a, hj+1

)
, (7.2)

where ϑj denotes the parameters of M(·), which are updated once CSI is

received. Our model F(·) is to choose the sequence of modulation schemes

a and FRI hj , j = 1, · · · , J , where J is unknown, to transmit N bits within the

shortest time and thereby maximize the throughput:

min

(
J∑

i=1

hiτi + J(τfd + 2τpd + τm)

)

s.t. n′
J ≥ 1.

(7.3)

7.2 TS-DQN for AMC and Feedback Scheduling

In this section, we aim to utilize our proposed TS-DQN framework to

synergize the exploration and exploitation dilemma that existed in AMC and

feedback scheduling. The BER upperbound estimation ϵ̂j(a) at state sj is given

in (6.8). The coding rate, i.e. LDPC rate ρ(ϵ(a)), for any a ∈ A is determined

by Table. 6.2. Given the uncoded data rate d(a) of the modulation scheme a, the

coded data rate is calculated as d(a)ρ(ϵ(a)). If no LDPC rate is available, then
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Figure 7.1: Structure of synergizing exploration & exploitation in AMC and
feedback scheduling

the “test” mode is enabled. As detailed in (6.10), with our MDP framework,

a ε-greedy policy is employed at state sj to balance the trade-off between the

exploration and exploitation in MCS selection given the estimated coded data

rate d(a)ρ(ϵ̂j(a)). A heuristic method to gradually reduce the value of ε, the

exploration rate, is well-aligned with the case channel knowledge accumulated

along with transmission. However, in this Chapter, we will jointly consider the

exploration and exploitation of MCS selection and feedback scheduling to achieve

optimal throughput given different values of N . The structure of our strategy

is shown in Fig. 7.1. The policy Π is a function F that takes n′
j , rj , and k̄ as

inputs and outputs the exploration rate ε in MCS space A and value of FRI

hj+1 from H. For the exploration rate ε, a set E contains all possible values
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Figure 7.2: Framework of TS-DQN to determine the exploration rate and FRI
value.

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} of ε. We then update (7.2) by

ε, hj+1 = argmax
ε∈E,hj+1∈H

F
({

n′
j , k̄, rj

}
;ϑj |ε, hj+1

)
, (7.4)

TS-DQN benefits from the planning capabilities of tree search and the

generalization capabilities of DQN. Based on the TS-DQN we proposed in

Chapter 5, the TS-DQN to help evaluate ε, hj+1 is shown in Fig. 7.2.

The prediction of the Q-value function, i.e., Q̂(sj , ε, hj+1). Q̂(sj , ε, hj+1)

approximates the throughput till terminal state sJ given any state-action pair

{ε, hj+1}. Agent prioritizes actions that are more likely to result in favorable

long-term rewards. At state sj , the calculation of throughput Rj is the same
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with (5.1) and the target Q-value is updated by

Q(sj , ε, hj+1) =
(n′

j+1 − n′
j)N + (1− n′

j+1)N

hj+1τj+1 +
J∑

i=j+2
hiτi + (J − j)(τfd + 2τpd + τm)

. (7.5)

However, from state sj+1 to the terminal state sJ , the number of transmitted

bits and their corresponding duration are unknown as they have not been

attempted. In the upcoming subsection 5.1.4, we will present the tree search

approach for approximating the target Q-value Q(sj , ε, hj+1).

In Fig. 7.1, the structure of DNN is one input layer with a size of all possible

states, three hidden layers, and one output layer with the size of the H. This

DNN is utilized to model the analytical function between the state sj , and the

estimated reward given the selected ε and any possible value of hj+1 which

represents the predicted Q-value Q̂(sj , ε, hj+1), i.e.,

Q̂(sj , ε, hj+1) = F (sj ;ϑj |ε, hj+1) , (7.6)

where ϑj is the weights of model F(·) and updated once CSI received. The

agent employs a Replay Memory buffer to facilitate TS-DQN training, storing

experiences pi = {si, ε, hi+1, si+1}, i ∈ [0, j], up to state sj . During state

transitions, the target DNN replicates the DNN model, adopting the weight

parameters ϑj updated in state sj . A batch, denoted by P, comprises 32 samples

from the Replay Memory. For each pi ∈ P, the target throughput from state si

to terminal state sJ , i.e., Q(si, ε, hi+1), is derived from the tree search depicted

in Fig. 5.2. Throughout each memory replay for TS-DQN training, the target
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DNN’s parameters remain consistent across the batch. Similarly, the ADAM

optimizer is employed to minimize the DQN Loss based on the mean squared

loss between the predicted Q̂-value and the target Q-value to update the weight

parameters ϑj to ϑj+1 of our state-value approximator F(·), i.e.,

ϑj+1 = argmin
ϑj+1

∑
pi∈P

(Q(si, ε, hi+1)− Q̂(si, ε, hi+1))
2

 . (7.7)

The tree search is the same as Fig. 5.2 with a three-section procedure:

Selection, Simulation, and Backpropagation. When reaching the state sj , the

three sections are depicted as follows.

• Selection: Agent selects the exploration rate ε and FRI hj+1 greedily:

ε, hj+1 = argmax
ε∈E,hj+1∈H

Q̂(sj , ε, hj+1). (7.8)

After determining ε and FRI hj+1, modulation scheme a is determined by

(6.10).

• Simulation: For each sample pi = {si, ε, hi+1, si+1}, i ∈ [0, j] in P, the

agent simulates from si+1 until transmission termination. The target DNN

offers estimates for potential state-action pairs and selects the best action

based on these estimates until the terminal state.

• Backpropagation: Simulation results, encompassing FRI values,

throughput, and timestamps for each FRI between states, are

backpropagated through the tree to refine the target Q-value in (7.5).

For each pi ∈ P, the corresponding target Q-value is utilized to train ϑj+1 based
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on the loss function detailed in (7.7). Subsequently, the tuple {sj , ε, hj+1, sj+1}

obtained from state sj+1 is updated using the newly computed value of ωj+1

and archived in the Replay Memory.

7.3 Simulation and Results

As shown in Section 6.5, the surrogate model built based on [129] is capable

of simulating actual BER variation given different transmission ranges and

sea conditions. We, therefore, verify our algorithm in different underwater

environments via simulations. Moreover, leveraging simulations facilitated the

validation and exploration of the effectiveness of our proposed algorithms across

various scenarios. The surrogate model and simulation setup are the same

with Section 6.5. We compare our TS-DQN for balancing the exploration

and exploitation to AMC and feedback scheduling with our previous strategy

to select a by (6.10) and FRI with Random, Fixed, Time-varying, DNN, and

TS-DQN (Presented in Section 6.5). The simulation stops with different numbers

of bits N ∈ {10000, 100000, 300000} have been transmitted. The possible

number of subcarrier values are nc = {64, 128, 256, 512, 1024, 2048, 4096, 8192},

the value np can be selected from 0 to 8192, the possible occupy ratio of

the bandwidth 24 KHz is {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For different

feedback strategies, transmission is executed 20 times. Meanwhile, the different

UAC surrogate model is still listed as Table. 6.3.

Fig. 7.3, Fig. 7.4, and Fig. 7.5 showcase the throughput outcomes for various

feedback strategies. In this chapter, we introduce the TS-DQN2 model, and

the TS-DQN1 model was discussed in Chapter 6. The results from Random,

115



CHAPTER 7. JOINT EXPLORATION & EXPLOITATION IN AMC AND
FEEDBACK SCHEDULING

Figure 7.3: Results of average throughput with different feedback strategies given
surrogate model 1.

Fixed, and Time-varying strategies align with our observations in Section 6.5. In

Fig. 7.3 and Fig. 7.4, our TS-DQN2 notably outperforms TS-DQN1. Specifically,

in the environment with a TX-RX distance of 100 m (as per surrogate model 3),

most MCSs in the action space achieve error-free transmission. Consequently,

learning optimal MCSs becomes easier, requiring less feedback for AMC model

updates. Both TS-DQN2 and TS-DQN1 exhibit similar throughputs to the

Fixed FRI strategy with h = 20. This observation aligns with the notion that

in static and straightforward environments, learning becomes less challenging,

and larger FRI values can save time on feedback while effectively learning the

environment. These findings highlight the advantages of addressing exploration

and exploitation challenges in both AMC and feedback scheduling concurrently.

116



7.3. SIMULATION AND RESULTS

Figure 7.4: Results of average throughput with different feedback strategies given
surrogate model 2.

Figure 7.5: Results of average throughput with different feedback strategies given
surrogate model 3.
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7.4 Summary

Within the framework of MDPs, the exploration-exploitation trade-off

remains crucial to obtaining an optimal policy. Addressing all actions jointly

offers a comprehensive perspective on the entire action space, an approach

that becomes particularly important when actions are intertwined or the

outcomes of one action can modify the perceived utility of another. In

this chapter, we emphasized the significance of integrating exploration and

exploitation dynamics for all possible kinds of actions in MDPs, specifically

concerning AMC and feedback scheduling. Instead of addressing these dynamics

independently, our integrated methodology presented notable advantages in

striving for a more globally optimal policy. Subsequent simulation outcomes

validated these theoretical insights, highlighting the potential benefits of the

integrated approach.
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8.1 Conclusions

We set out to address aspects of AMC with feedback scheduling,

primarily focusing on the optimization of channel throughput within one-to-one

communication systems.

Initially, we delved into the merits and drawbacks of deploying data-driven

techniques within AMC. The simulation results show our K-MCTS approach,

which employs MCTS for a K-level look-ahead tree construction during the

simulation step of MCTS, with superior performance across varied scenarios

in optimizing the long-term throughput than some current policies, such as

random, greedy, UCB. It was evident that while data-driven strategies hold

promise, they are often associated with extensive computational complexity. The

incorporation of channel physics knowledge within these algorithms, therefore,

becomes necessary for AMC in UAC.

Next, we answered how to incorporate channel physics information into AMC

strategy design and took the OFDM system as an example. A heuristic BER

estimation model was proposed based on channel physics knowledge like channel

coherence time, channel coherence bandwidth, and delay spread. The BER

estimation from this model captures the BER median from the real-world BER
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collected from Singapore waters. Furthermore, by leveraging the GPR model,

our BER estimation managed to adeptly capture the fluctuations within the

UAC channel, ensuring at least 75% frames are successfully transmitted during

transmission.

Subsequently, we showed the channel throughput in the one-to-one system

was affected not only by the performance of the AMC strategy but also by

the two-way propagation delays due to the feedback acquisition in AMC. We

proposed an algorithm framework, TS-DQN, to dynamically decide the time

to obtain feedback and tune the modulation scheme. Experimental validations

in the test tank and Singapore waters highlighted the superiority of TS-DQN

over both conventional statistical paradigms and contemporary DL models for

optimizing the channel throughput in the long term. Specifically, comparing our

algorithm TS-DQN to schedule feedback to the best-fixed feedback policy, we

reduced the time to transmit all N bits by up to 25%. Meanwhile, its robustness

to UAC channel fluctuations and prowess in sequential decision-making were also

evident in diverse UAC simulated channels.

In conclusion, our work furnishes an enriched understanding of the interplay

between channel physics and AMC design, combined with insights into

optimizing throughput in systems with significant two-way propagation delays.

The TS-DQN framework proposed in this thesis can be applied in any MDP

that emphasizes the long-term reward with complex exploration and exploitation

dilemma and high-dimensional action or state space.
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8.2 Future Work

In this thesis, the BER estimation model in AMC is built heuristically given

the UAC channel physics knowledge. While the model may perform effectively

under specific conditions for which it was designed, its heuristic nature can limit

its ability to generalize across different channel conditions, especially those not

considered during its formulation. Therefore, in the next step, we aim to design a

hybrid algorithm that utilizes channel physics in data-driven techniques. In our

work, we use BER prediction to aid the AMC and many studies have attempted

the GRP algorithm to do the BER prediction. In developing a GPR-based BER

estimation model in our future work, channel physics will be used to inform

the GPR’s kernel function selection. While standard kernel functions like RBF

and Matérn are employed, we also contemplate composite or custom kernels

incorporating UAC-specific knowledge. Furthermore, the hyperparameters of

the kernel function are usually tuned using techniques like grid search, random

search, or Bayesian optimization. Regularly refining these parameters can have

a significant impact on the model’s predictive capability. UAC channel physics

can also be effective in hyperparameter optimization.

Our inquiry primarily navigates channel physics within OFDM-based

AMC. However, myriad modulation techniques exist, each with unique

channel physics implications. Exploring alternative techniques can reveal

distinct channel physics which is crucial for AMC design. Beyond channel

coherence time/bandwidth and delay spread, factors like path loss, shadowing,

multipath propagation, Doppler spread, and aspects unique to UAC—like
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sound speed profiles influenced by environmental variables—play crucial

roles. Comprehending these facts is necessary for designing communication

systems. Meanwhile, different modulation techniques are required for different

communication requirements. A criterion for determining the parameters to be

tuned in a communication system is also necessary. Ultimately, we will navigate

the integration of varied channel physics elements into the AMC design tailored

for specific UAC channels. This journey promises rich insights, poised to redefine

AMC strategy paradigms.
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