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Abstract

Underwater acoustic channels exhibit significant temporal and spatial variability, making it challenging to
design a single communication scheme that works well everywhere and at all times. Adaptive Modulation and Cod-
ing (AMC) techniques offer a solution by dynamically selecting the optimal Modulation and Coding Scheme (MCS)
for specific channel conditions but require an accurate model to predict communication performance. We propose
a Bit Error Rate (BER) estimation model that fuses domain knowledge to aid the evaluation of MCSs. In complex
sea conditions, we enhance the reliability of AMC by extending our BER prediction model from a point prediction
to an interval predictor. This extension involves incorporating Gaussian Process Regression (GPR) to address the
uncertainty in BER. Predictions from such an algorithm are used to drive AMC to maximize communication
throughput reliably. For AMC, regular feedback from the receiver to the transmitter is necessary to gather Channel
State Information (CSI). On the one hand, obtaining feedback too often reduces the communication through-
put in channels with long propagation delays, but on the other hand, insufficient feedback leads to suboptimal
AMC decisions and hence poor throughput. We propose an algorithm that integrates Tree Search and Deep Q-
Network (DQN) for feedback scheduling to automatically find the right balance and optimize communication
performance. We demonstrate the advantages of our algorithm through experiments in a test tank and at sea
in Singapore. Furthermore, our algorithm also exhibited reliability and achieved optimal throughput in various

underwater environments in simulation.
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I. INTRODUCTION

The Underwater Acoustic Communication (UAC) channels present challenges due to their limited
bandwidth, huge propagation delays, and frequency-selective fading effects [1]. High-speed communication
in UAC is crucial for various industries such as marine operations, offshore oil and gas, and defense
applications. However, the dynamic characteristics of UAC channels make it impractical to find a single
communication scheme that maintains robust performance in the long-term deployment of UAC sys-
tems [2]. As a result, there is a growing demand for Adaptive Modulation and Coding (AMC) techniques,
which enable the selection of Modulation and Coding Schemes (MCSs) based on the current channel
conditions to achieve both reliability and high throughput [3]-[6].

Significant progress has been made in the development of AMC techniques in wireless communication.
Among these studies, data-driven AMC algorithms have gained prominence due to their simple input
requirements, capability for various problems with limited knowledge about underlying physics, and ability
to extract insights from datasets. For example, in [7], [8], supervised learning strategies aided in the
SNR estimation of different MCSs and enabled AMC operation accordingly. Studies [9], [10] utilized
Machine Learning (ML) tools to find out the relationship between the channel measurements and Bit
Error Rate (BER) performance or SNR to make MCSs decisions based on the predicted Channel State
Information (CSI). Work in [11] classified the channels into different types and identified the best MCSs for
each channel type in long-range UAC. However, data-driven AMC algorithms, as exemplified in existing
works, require substantial training data sets to cover diverse channel conditions. Collecting such extensive
data in underwater environments is time-consuming and contradicts the goal of transmitting large files
within the shortest possible time.

On the contrary, physics-informed methods, which incorporate knowledge about the underlying channel
physics, can be an alternative to data-driven methods for operating AMC. An illustrative example from [3]
revealed how the sparse structure of the channel impulse response can be harnessed to enhance AMC
while reducing computational demands and memory overhead. In [12], channel physics information in an
Orthogonal Frequency-Division Multiplexing (OFDM) system helped narrow down the MCSs space and
build correlations among MCSs, fostering faster convergence speed for the AMC model. Inspired by [12],

our previous work in [13] proposed a heuristic BER estimation model based on channel physics knowledge
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in an OFDM system that enhanced AMC performance even when dealing with a high-dimensional MCSs
space. These studies underscore the potential of channel physics-informed approaches for facilitating the
adaptability and performance of AMC in UAC systems.

CSI is a fundamental component of AMC, enabling the UAC system to dynamically tune MCSs based
on the current channel conditions [3], [14], [15]. The speed of sound in water is approximately 1500 m/s,
resulting in propagation delays that are 200,000 x higher than those experienced in terrestrial radio com-
munication networks [16]. These propagation delays are comparable to the typical frame duration in UAC.
Extensive research has addressed the negative effects of large propagation delays, impacting handshaking
protocols and retransmission schemes [17], as well as medium-access control layer protocols preventing
data collisions [18]. In a one-to-one communication system, where data frames are exchanged between
a transmitter node and a receiver node, the transmitter awaits feedback from the receiver node regarding
CSI before performing AMC and initiating frame transmission. In such scenarios, the introduction of two-
way propagation delays can substantially degrade channel throughput. To our knowledge, the research on
dynamically scheduling feedback to optimize channel throughput is still relatively limited. We propose a
feedback scheduling strategy and determine relevant decision parameters to address the trade-off between
communication performance and resource utilization.

AMC in any communication system, including UAC, necessitates evaluation metrics like BER [19], [20],
data rate [21]-[23], or throughput [24], [25]. These metrics evaluate MCSs across variable channel condi-
tions, thereby informing the AMC choice. Throughput assessment is vital in optimizing data transmission
rates among these metrics, especially when accounting for two-way propagation delays [24], [25]. Thus,
we adopt throughput to evaluate our AMC and feedback scheduling performance. Given the propagation
distance between the transmitter node and receiver node, MCSs with higher coded data rates tend to
achieve higher channel throughput. The coded data rate comprises uncoded data rate and error correction
overhead. BER knowledge of MCSs aids in the selection of appropriate error correction methods [26]—
[28], like Forward Error Correction (FEC) [29], [30]. Therefore, we consider the problem of estimating
BER to enhance AMC to achieve optimal throughput in UAC systems. However, the time-varying behavior
of UAC channels introduces significant fluctuations in the actual BER. Consequently, a BER distribution
predictor is needed to provide a range of possible BER values given any modulation configuration for
reliable MCSs determination. Researchers have proposed several models and techniques to estimate the

BER in wireless communication systems, like the empirical BER model [31], statistical methods in [32]-
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[34] via assuming a specific distribution prior or Monte Carlo error count [35], [36]. Recently, ML-based
approaches have become popular which employ algorithms like Gaussian Process Regression (GPR) [37],
[38], Neural Networks (NN) [39], or support vector machines [40] to estimate BER. They aim to learn
the complex relationships between input parameters (such as transmission parameters, channel conditions,
and noise levels) and the corresponding BER. Usually, ML is applied in a purely data-driven manner
that relies on the availability and quality of data. With channel physics knowledge incorporated, a BER
estimation model is proposed in [13] which relaxes the demand for the data availability.

In our prior study [13], we modeled the sequential MCS decision and feedback scheduling as a Markov
Decision Process (MDP). We used throughput over multiple frames as the reward to train a NN that
predicted throughput for any timings of feedback reception. However, when optimizing throughput in
the long-term transmission, this NN might be sub-optimal since it leans towards immediate rewards. A
look-ahead tree can potentially optimize long-term rewards, but its time-consuming construction limits its
real-time applicability [41]. Merging tree search frameworks with Deep Learning (DL) and Reinforcement
Learning (RL) has emerged as a prominent approach for real-time optimization in planning and scheduling
tasks [42]. Specifically, [43] and [44] both present integration of tree search with RL. In the former, RL
aids in the development of value and policy functions within the tree structure, while the latter uses tree
search to guide RL exploration in intricate tasks. As such, we underscore the significance of incorporating
RL methodologies with tree search configurations to resolve MDP challenges, particularly in scenarios
with extensive action or state spaces, to optimize long-term rewards.

The rest of the paper is organized as follows. The problem formulation is elaborated in Section II.
The proposed AMC strategy is described in Section III. In Section IV, details of a dynamic feedback
scheduling strategy are explained. Then, we test our algorithm in a test tank and sea trials and demonstrate
the advantage of our method in Section V. In Section VI, we show the advantages of our algorithm via
simulations in diverse channel environments. We then draw our conclusions and consider the possibilities
for future works in Section VII. The acronyms and symbols used are listed in Table I and Table II,
respectively.

Notation: Bold symbols and (-) denote vectors. Symbols in a calligraphic font like .4 denote tuples.
Symbols in {-} denote sets. We use the interval notation [a,b) = {z € Z|a < x < b}. |A| denotes the
size or cardinality of a tuple .A. The symbol = represents equivalence. The symbol [a] represents the

smallest integer greater than or equal to a.
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TABLE I: LIST OF ACRONYMS.

| Acronym | Description |

AMC Adaptive Modulation and Coding

BER Bit Error Rate

CSI Channel State Information

DQN Deep Q-Network

FHBESK Fre?quency—Hopping Binary Frequency
Shift Keying

FRI Feedback Report Interval

FSK Frequency Shift Keying

GPR Gaussian Process Regression

LDPC Low-Density Parity Check

MAE Mean Absolute Error

MCS Modulation and Coding Scheme

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

ML Machine Learning

NN Neural Network

OFDM Orth.ogonal Frequency Division Multi-
plexing

PSK Phase-Shift Keying

QAD Quantile Absolute Deviation

QAM Quadrature Amplitude Modulation

RL Reinforcement Learning

RX Receiver

X Transmitter

UAC Underwater Acoustic Communication

II. PROBLEM FORMULATION
A. Problem Overview

Consider an UAC system where information frames are exchanged between a transmitter (TX) node
and a receiver (RX) node. The objective is to transmit N bits from the TX node to the remote RX node
located at a distance [ within the shortest possible time over time-varying UAC channels. Modulation
and Coding techniques are used to encode these bits onto frames for reliable communication. There are
multiple variants of modulation schemes in UAC systems. For example, the modulation schemes can
include phase, frequency, or amplitude modulation, such as Phase-Shift Keying (PSK), Frequency Shift
Keying (FSK), or Quadrature Amplitude Modulation (QAM). Or in an OFDM system, the modulation
schemes can represent various OFDM parameters, such as the number of subcarriers, the cyclic prefix
length, etc. After modulation, the coding techniques, like the FEC, add redundant bits to the modulated

frames, allowing the RX node to detect and correct errors. Due to the variability in UAC channels, it is hard



TABLE II: L1ST OF SYMBOLS.

| Symbol | Description

J Index of state
a; Modulation scheme st state s;
A Modulation scheme space
d(a;) Uncoded data rate of a;
hj Number of frames in the j® FRI
H Set of possible FRI values
ol Number of frames for which “test” mode
J is enabled
12 Number of frames for which “test” mode
J is disabled
G
k; Ratio: e
[ Distance between TX node and RX node
n’; Percentage of transmitted bits
N Total number of bits to be transmitted
T Throughput of the ;™ FRI
5. State where the CSI of the j™ FRI is
J updated
S State space
- Transmission duration of each frame in
J the j™ FRI
- Duration of frames containing modula-
m tion information
- Duration of frames containing feedback
fd information
- Propagation delay between the TX and
pd RX nodes
€;j(a;) Measured BER during the ;™ FRI
éj(a;) Estimated BER at state s;
Regression analysis model for QAD pre-
m5() diction
o(é(a;)) FEC rate selected based on estimated
I BER ¢;(a;)
0 Set of available FEC rates
0. Weight parameters for median prediction
J from BER distribution
w. Weight parameters of FRI determination
J model
Model for median prediction from BER
<) distribution
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to design a single modulation scheme that works well in all situations. Therefore, the demand for AMC
techniques arises, enabling tuning the modulation scheme and coding strategy based on current channel
conditions. We establish a DATA link between the TX node and RX node to transmit the modulated and
coded frames, with the intent of providing as high a data rate as feasible. However, optimal communication
performance in various environmental conditions necessitates fine-tuning this DATA link.

Successful transmission is achieved only when the TX and RX nodes employ identical modulation
schemes. When the modulation schemes are determined at the TX node, a crucial task is to inform the
remote RX node about the modulation information reliably before the DATA link frames are exchanged.
A separate communication link, referred to as the CONTROL link, is first established. The CONTROL
link exhibits robust communication albeit at a lower data rate than the DATA link, and the modulation
and error correction parameters of the CONTROL link are pre-determined. The modulation information
for the DATA link is then encoded onto frames and transmitted over this CONTROL link to the remote
RX node.

Performing AMC heavily relies on obtaining accurate CSI. The CSI, such as measured BER based
on the number of bits corrected during FEC decoding, is acquired through feedback from the RX node.
However, employing modulation schemes and coding rates blindly may lead to failed frame receptions
at the RX node. Although such failures indicate that the BER exceeds a certain threshold, they hinder
acquiring accurate BER for reliable AMC. To address this challenge, a “test” mode is introduced, where
frames carrying known bits are transmitted over the DATA link. In this mode, the BER can be accurately
computed as the transmitted frames are known, and the CSI is updated. When the “test” mode is disabled,
the N unknown bits are encoded and transmitted to the RX node over the DATA link. In this case, the
BER is estimated after demodulation and decoding of the frames at the RX node. All CSI, including
BER measurements, are then encoded onto frames and sent back to the TX node via the CONTROL link,
thereby improving the performance of AMC.

Given the possibly long propagation delay between frames exchanged over DATA and CONTROL
links, tuning modulation schemes and awaiting feedback for each frame consumes time. Conversely,
employing a modulation scheme across multiple frames without timely feedback can lead to suboptimal
performance, resulting in a loss of received frames at the RX node and reduced throughput. This motivates
the consideration of the optimal timings for tuning modulation schemes and waiting for feedback to

optimize the channel throughput. Therefore, a Feedback Report Interval (FRI), which decides the number
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of transmission frames over the DATA link between two consecutive feedbacks, is proposed. In the j®
FRI, a specific number of frames (h;), are transmitted using the same modulation scheme a; and its

corresponding coding rate.

B. Mathematical Formulation

We formulate the sequential decision-making of modulation scheme a; and FRI h; as well as the
subsequent interaction with the environment to receive feedback as a MDP. In this MDP, A is a set
containing all possible modulation schemes, i.e., a; € A and H is another set including all possible
values of h;, i.e., h; € H. The action space now has a cardinality of | A x H|. An intelligent decision-
making algorithm, known as the agent, engages in iterative interactions with the environment to learn
and optimize a policy denoted as II. This policy guides the agent for selecting actions from action space
| A x H| to transmit N bits within the possible shortest time. In the state space S, a state s;4 is reached
upon receiving the feedback of the j™ FRI. It encompasses the completion ratio of N bits, knowledge
related to decision-making of actions, and communication performance metrics. The state transitions from
state s; to state s;4q follows a transition function I'. Therefore, II is a function that maps the state space
to the action space, i.e., II : S — | A x H|. After successfully transmitting all N bits, the agent reaches the
terminal state sy and hence j € [1, J]. The round-trip frame exchange duration comprises the transmission
duration of h; frames, i.e., h;7;, the duration of frames containing modulation information 7, a two-way

propagation delay 27,4, and the duration of frames containing feedback 74, as shown in Fig. 1.

. Tpd Trd,
PRI —
Rx ‘ | | | | | ,l |
i / ’
i ,I Select ’/
T, ! 3, h !
A fRin ) FRI k, /
i / Feedback | /
%i detected I I |
Tx i ; :
I hz) ‘ I hyt, !
—ZZ DATAlink —__ CONTROL link
D Frames with “test” mode disabled over DATA link D Frames containing modulation information over CONTROL link
E Frames with “test” mode enabled over DATA link D Frames containing feedback information over CONTROL link

Fig. 1: An illustration of the delays in frame exchange between the TX and RX nodes.
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The throughput over the transmission is the performance metric for selecting the actions in our MDP.
When modulation scheme a; is selected, the coding technique, such as FEC, is then applied. The FEC
adds redundant bits to the transmitted data frames, facilitating error detection and correction during
transmission. A set o contains available FEC rates associated with their respective affordable BER levels.
With knowledge of the BER statistics €(a; ), the agent can easily determine the optimal FEC rate p(e(a;)).
Specifically, if no FEC rate in g is available for correcting the BER ¢(a;), the “test” mode is enabled, in
which the pre-determined bits are transmitted to aid BER estimation. Given the uncoded data rate d(a;)
of the modulation scheme a;, the coded data rate is calculated as d(a;)p(e(a;)). The coded data rate in
a communication system is closely correlated to the throughput and thus serves as a valuable metric for
enhancing channel throughput.

Knowledge of BER is crucial for calculating the coded data rate in communication systems. However,
in time-varying UAC channels, measuring accurate BER can be challenging, particularly given a possibly
large size of A. Obtaining an estimation of BER ¢(a;) over the action space A is hence required. A
heuristic BER model based on channel physics knowledge from [13] estimates the median of the BER
statistics ((a;;0;). 0; represents the model weight parameters and are updated given the feedback of the
latest CSI. However, it may not capture the worst-case performance due to the inherent uncertainty of
BER measurement. To ensure robust modulation selection in adverse channel conditions, 7; is proposed
to help estimate the difference between the median prediction and the upperbound of the unknown BER

distribution. The BER upperbound €;(a;) is given by

¢j(aj) = ((a;;6;) +n;(aj). (1)

Obtaining CSI through feedback from the RX node plays a vital role in facilitating accurate BER
estimation and subsequent AMC. However, the feedback process consumes time due to significant prop-
agation delays between frames exchange. Therefore, the selection of FRI involves a tradeoff between the
optimization speed of the AMC strategy and maximizing the throughput of transmitting /N bits. When
the transmission result of the last FRI is poor, choosing a smaller value for the next FRI enables faster
convergence of the BER estimation model by updating the CSI more frequently. However, this may lead
to increased latency due to propagation delays. On the other hand, selecting a larger FRI does not always
guarantee improved channel throughput. In a varying UAC channel, selecting a larger FRI would mean that

the model would operate far from the optimum and hence result in poorer performance. Thus, a dynamic
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approach is required to determine the optimal sequence of FRI that balances these two objectives.

As depicted in Fig. 1, the system transitions from s;_; to s; upon the completion of the (j — 1)™
FRI. Within the state transition, the measured BER €;_q(a;_1) from the updated CSI is utilized to train
(1). The ratio of N bits that have been transmitted till state s;, denoted by a percentage value n’;, along
with the timestamps of frames exchange is recorded. n; serves as a dynamic indicator of how much of
the transmission task has been completed, guiding the agent to adapt its strategy by selecting shorter or
longer intervals based on the remaining bits or urgency. The number of frames with and without the “test”
mode enabled up to state s; are respectively tracked by kjl and kf The throughput r;_; of FRI h;_; is
calculated as the measure of (n; — n’_ ;)N bits transmitted over the DATA link within a time period
encompassing h;_; frames with a transmission duration of 7;_; each, along with the duration of frames

containing modulation information 7,,, the feedback frame duration 7¢4, and a two-way propagation delay

of 27, 1.,
(n} —nj_4)N
= | 2)
hj—lTj—l + 27—pd + T4 + Tm
kL
p . _ . o .
At state sj, The parameters nj, r;_;, and the ratio k; = W provide valuable insights into the

communication performance under current policy II. The throughput 7;_; of FRI h;_; evaluates the
performance of the last selected interval, offering the agent direct feedback on the effectiveness of its
prior decision and helping refine its policy for future selections. Additionally, with the inclusion of k;
into the state, the agent gains a measure of how much robust, validated information has been gathered,
reflecting the reliability of the system’s current understanding of the environment. To determine the next
FRI h; as a function of n; rj—1, and k;, we utilize ML techniques since such a function is analytically
unknown. We construct a model M(-) with inputs n’;, k;, and 7;_; to predict the values of all possible
h; € H. The optimal h; is determined by
h; = argmax M (a;, hy; {n}, kj,rj1} , w;) 3)

h;€H
where w, denotes the parameters of M(-), which are updated once CSI is received. The detail of state
transition between s;_; and s; is

sj =1(8j-1,@5-1,hj1)

“4)

/
={0;,n}, wj,nj, ki, rj-1}.
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To summarize, our objective is to choose the sequence of modulation schemes a; and FRI h;, j = [1, J],
where .J is unknown, to transmit /V bits within the shortest time and thereby maximize the throughput:
J
argmin (Z hiti + J(Ta + 2Tpa + Tm))

ai,hi,a2,he, - a5,hy \ 2

o)
st. n>1.

III. ADAPTIVE MODULATION AND CODING

In this section, we delve into the adaptation strategy of MCSs, focusing on OFDM given its prevalence
in modern underwater modems. Leveraging channel physics information, we construct a heuristic BER
estimation model to guide AMC strategy selection. We validate this model using various datasets and offer
a reference table for BER-based FEC rate selection. Once the coded data rate for each modulation scheme
is ascertained, we suggest a dynamic e-greedy policy to address the exploration-exploitation dilemma in

modulation scheme selection given the high-dimensional MCSs space.

A. Modulation Scheme

We perform AMC in OFDM. In OFDM, there are two critical parameters: the cyclic prefix length n, and
the number of subcarriers n.. The cyclic prefix length is required for mitigating intersymbol interference
caused by the multipath effect. Meanwhile, the number of subcarriers determines the potential for each
to undergo flat fading relative to the channel’s coherence bandwidth, and must also adhere to constraints
imposed by the channel coherence time. Bandwidth B also plays a significant role in communication
performance. A wider bandwidth possibly enables higher data rates but may also affect SNR. Therefore,
ne, Np, and B at the TX and RX nodes need to be tuned to optimize communication performance. A
modulation scheme a; = (n.,n,, B) can be represented as a point in the modulation scheme region A.
For an OFDM system with Quadrature PSK on each subcarrier, the uncoded data rate d(a;) is

2Bn,

Ne +nyp

d(a;) = ©)

B. BER Estimation Model

BER information plays a pivotal role in establishing the appropriate code rate and computing the coded

data rate, thereby offering valuable insights into the selection of modulation scheme a;.
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1) Estimation of BER Median: In [13], a heuristic BER estimation model ((-) based on UAC channel
physics is introduced. This model defines three boundary planes, namely B¢, Bcs, and Bces, which
divide the (n¢,n,, B) space into different spaces. As described in [13], for good channel performance,
the bandwidth of each subcarrier should remain below the coherence bandwidth to achieve flat fading,
the cyclic prefix length n, should be longer than the channel delay spread 74, and the symbol duration
T must be less than the channel coherence time 7. to maintain channel stability throughout the symbol’s

duration, 1.e.,

BTdS .
c m = Bcy, (7
n, > B1gs = Bea, (8)
ne +np, < Bt = Bes. 9

The behavior of these boundaries with respect to a specific bandwidth B is illustrated in Fig. 2 which is
reproduced from [12]. Within the triangle region, modulation schemes are more aligned with the physics
constraints, leading to a potentially reduced BER. Conversely, schemes outside this region often do not
satisfy these constraints, increasing the likelihood of surpassing error correction capabilities and consequent

frame loss [45]. The position and size of the triangle region vary accordingly as B changes. A sigmoid

1

e hids 1 = 1,2,3 is built to characterize the BER information based on the relative

function s(d) =
position of the point (n.,n,, B) with respect to the three boundaries Bc¢;, ¢ = 1,2,3. The values b,
i = 1,2,3 correspond to the slope of the three sigmoid functions. The parametric model ((-) is utilized

to estimate the median value of the selected a;’s BER distribution at state s; and is built as

((aj;0;) = (4B + ca)s(—d1)s(—d2)s(ds), (10)
dl :nc—Bcl, (11)
dy =ny — Bey, (12)

c — B
ds = 'rL—i—np—\/ﬁc;J,’ (13)

where dy, dy, d3 are distances as shown in Fig. 2. Additionally, b, and ¢, represent the slope and intercept

of the linear term with respect to B. At state s;, these weight parameters 8; = (cy, ¢a, 3, ¢4, by, ba, b3, by)
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BC;

Bey

n
0 Bey ¢

Fig. 2: Visualization of the boundaries B¢, Bey and Beg in the (nc, n,, B) space at a given B [12].

are updated based on the updated BER measurement over transmission.
To enhance the accuracy of the model, it is vital to measure how closely the model’s estimates align
with actual BER values. Hence, we introduce a loss function L(6;) for training ¢(-). The loss function

evaluates the Mean Absolute Error (MAE) between the output of ((a;; 0;) and the measured BER €;(a;),
= [1,7], i.e
1 ]
=i - Z Cas; 0;) — eias)]). (14)

Through the minimization of L(6;) at state s; using techniques like gradient descent, the model’s
weight parameters, 6, of our model, are refined, enhancing its BER estimation during transmission. This
iterative refinement utilizes measured BER data, ensuring the model’s predictions remain closely aligned
with empirical observations.

2) Estimation of BER Uncertainty: The work presented in [13] demonstrates the capability of ((-)
for estimating the median from the time-varying BER distribution. It also illustrates that BER tends to
cluster around this median value although variability is observed within the actual BER distribution. To
enhance the reliability of the modulation scheme selection in view of the BER uncertainty, evaluating the
upperbound in the BER distribution becomes necessary. Using the maximum BER to select a conservative
FEC maximizes reliability, potentially at the cost of data throughput. We employ the Quantile Absolute
Deviation (QAD) method [46] to help estimate the BER upperbound.

The QAD entails computing the ¢ quantile of the absolute difference between the predicted median

BER given by ((a;;0;) and the measured BER €;(a;) from feedback. The training set D; to train 7;(-)
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is composed of:

{a; = QAD(lei(a;) — ((as;05);9)}, i€ [1,7], (15)

which includes attempted modulation schemes a;, i € [1, j] and their corresponding QAD values during
previous transmissions. To construct D;, we retain only the latest transmission’s BER for each configu-
ration, acknowledging the non-stationary nature of the underwater acoustic channel. For each unique a;,
the absolute deviation between its most recent measured BER and the corresponding predicted median is
used to compute the ¢™ percentile, which serves as its QAD label. As a result, D; forms a table mapping
each tried modulation scheme to its estimated QAD. Upon each state transition, 7,(-) is retrained on the
incrementally updated D; using the latest BER feedback. This enables QAD estimation for any candidate
a;j+1 € A at state s;j41. The choice of ¢ in the QAD calculation (15) is set to 75 which guarantees that
at least 75% of transmitted frames are successfully delivered, as it encompasses the range within which
75% of the actual BER values reside. It allows for a degree of error tolerance and also considers the
trade-off between frame loss and data throughput.

Performing an exhaustive search over all possible modulation schemes in A and storing their corre-
sponding QAD values is time-consuming. However, BER uncertainty tends to be highly correlated across
modulation schemes that share similar characteristics in n¢, n,, or B. Modulation schemes with the
same n. value tend to exhibit comparable levels of frequency diversity, and modulation schemes with
similar n, values would experience similar levels of protection against intersymbol interference. Similar
bandwidth B values often encounter comparable channel conditions and noise levels. The QAD estimator
n; utilizes GPR [47] to learn these correlations within .4 based on the observed QAD values up to state
s;. This correlation enables QAD predictions for all potential modulation schemes, eliminating the need
for exhaustive evaluation.

A GPR model includes a crucial component known as the mean function, which establishes a prior
expectation of the general trend in the predicted QAD. The mean of all the previously observed QAD
values is used as the mean function, denoted as jigap. Another essential component is the kernel function,
which determines the similarity between data points and governs the smoothness and behavior of the GPR
model. In our approach, we employ the Matérn kernel [48], known for its flexibility in modeling different
levels of smoothness, to define the correlation and smoothness of the estimated QAD. The kernel function
is defined as K(-), where its two arguments represent any two modulation schemes from the training

set D;. The Matérn kernel has two key parameters: the length scale ¢ and the smoothness parameter v.



319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

15

The length scale parameter ¢ determines the range over which data points influence each other. A small ¢
confines the influence of a modulation scheme a;, i = [1, j] to a narrow (n, n,, B) space, resulting in rapid
changes in the GPR function over short distances. Conversely, a large length scale allows a modulation
scheme to have a significant influence on other schemes that are farther apart, even over long distances.
The smoothness parameter v controls the flexibility of the Matérn kernel in capturing complex patterns.
Higher values of v lead to smoother functions, while lower values introduce more roughness and allow
for intricate variations in the modeled functions. Euclidean distance is applied to calculate the distance
between modulation schemes (nc,n,, B) and (ng,n,, B'). We choose ¢ = 0.3, approximated using the
distance between the nearest neighbor modulation schemes in .A. To determine an appropriate value of v,
a range of commonly used values, namely {0.5,1.5,2.5}, is visualized on datasets collected from a tank
and Singapore water which we list in subsection III-C. v = 1.5 is finally selected as it achieves superior
performance by striking a suitable balance between demonstrating regularity in BER and allowing for
fluctuations between neighboring modulation schemes.

The QAD estimator 7),(-) predicts QAD for any possible a; € A at state s; follows
nj(a;) ~ GP(pqan, K(-)). (16)

C. Data Sets

Two datasets contain the measured BER statistics when tuning n., n,, and B using Subnero M25M
modems in different water environments. The Subnero M25M modem operating bandwidth is up to 12 kHz,
i.e., from 20 to 32 kHz. The details of these datasets are provided below.

« A dataset collected from a test tank shown in Fig. 3. The transmission distance [ between the TX and

RX nodes was about 1.5 m, and the depth of TX and RX modems was 1.5 m. The BER was measured

for (n¢, ny, B), where n, was set to different values from the set {128,256, 512, 1024, 2048, 4096, 8192}
and n, ranged from 0 to 8192, B was set to different values from {2.4,4.8,7.2,9.6,12,14.4,16.8}

kHz.

« A dataset, denoted as SEADATA, was collected by colleagues from the Acoustic Research Laboratory

in Singapore waters, with the experiment as setup from [49]. The transmission range between the
TX and RX nodes, i.e., the node B and node C in Fig. 4 was about 600 m, and the water depth was

between 10 and 20 m. The BER was measured for (n, n,, B), where n. was set to different values
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Fig. 4: Experiment setup for collecting SEADATA [49].

346 from the set {64,128, 256,512,1024, 2048}, n, ranged from 0 to 2046, B was set to different values
347 from {4.8,7.2,9.6,10.8} kHz.

us D. BER Estimation Model Validation

349 1) Validation on a Large Data Set: The BER estimation model is validated on the dataset SEADATA.
ss0 To assess the model, SEADATA was split into a training set (SEATRAIN) and a test set (SEATEST)
st using a 7 : 3 ratio.

2 Fig. 5 compares the measured BER with the estimated BER obtained from the proposed model (1)
ss3  trained on SEATRAIN. To reduce redundancy, the results are presented for each n., with n, binned into
s« groups of size 128 due to similar BER values between adjacent n, values. Compared to the findings

sss reported in [13], the proposed model demonstrates better responsiveness to changes in n, and greater
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Fig. 5: Comparison of the measured BER from SEATEST (the left/green boxplots) and the BER
upperbound estimation (the right/red boxplots).

I[\(I)otels2: 8"1)"1}16 x-axis labels correspond to the values of n. and a range of n, for example, 128 [0 : 128) — {n. = 128,n, €
accuracy in capturing BER uncertainties.

2) Validation on a Small Data Set: During the early stage of transmission, channel BER knowledge is
absent and is acquired during transmission. At the beginning of the transmission, modulation scheme and
FEC rate choices should prioritize a high frame success rate to ensure dependable CSI feedback, which in
turn aids the training of the BER estimation model and enhances channel throughput in the long term. A
small data set is available at the beginning of transmission in realistic cold-start scenarios. Our validation
on a small data set thus aims to show the capacity of our BER estimation model to guide the selection of
robust modulation scheme from M and FEC rate with fewer training data or transmissions than the pure
data-driven methods. To demonstrate its superiority, only five pairs of (n¢,n,, B) and its corresponding
measured BER sampled from the SEATRAIN dataset randomly are utilized as the training set.

The GPR is employed as a purely data-driven comparison method, denoted as GP’ to easily distinguish
it from the previous QAD estimator GP. The prior mean function for GP’, u., is the mean of the five
samples. Assuming QAD and BER estimation share identical correlation functions over A, we employ
the same Matérn kernel in the QAD estimator GP for GP’. The Euclidean distance between modulation
schemes is applied. This purely data-driven GPR method assumes the estimated BER ey,(a;) for a; € A

follows the GP’ after trained on the five samples, i.e.,
egp(a’j) ~ gp/(M€7K())7 17)

where the two arguments are any two modulation schemes from the five samples. For our physics-informed
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TABLE III: AN EXAMPLE OF A 5 DATA POINTS TRAINING SET.

| Row | Number of Subcarriers n. | Cyclic Prefix Length n, | Bandwidth B (kHz) | BER |

I 2048 47 10.8 0.177
2 64 59 10.8 0.333
3 1024 211 10.8 0.173
7} 2048 168 72 0.150
5 1024 28 72 0.093
0.45
0.4 $ B o o
0.35 é GPR
P . : ,
0.3
§0‘25 = ® - ? - ) 2 . - . . A
o ﬁ g e %@ : Q ﬂ : .
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Fig. 6: Comparison of the measured BER of 5 samples in SEATEST (the left/green boxplots), the estimated
BER upperbound by our physics-informed model (the middle/red boxplots) and estimated BER ey, (-) via
a pure data-driven GPR model GP’ (the right/orange boxplots) on 5 data points training set.

1[\(1)0t6152: 8’1)‘?6 x-axis labels correspond to the values of n and a range of n,, for example, 128 * [0 : 128) — {n. = 128,n, €
model ((-) + n;(-), we first train ((-) on the five samples from SEATRAIN dataset for 1000 epochs to
approximate the BER median values over A. 7;(-), parameters of which is aligned with (16), is then
employed to estimate QAD values and help BER upperbound estimation. The comparison between our
physics-informed model ((-) 4+ 7;(-) and this purely data-driven GPR model GP’ is performed on the
SEATEST set. Table III and Fig. 6 illustrate an example of the training set and the comparison results
for one five-sample set.

The results are presented in Fig. 6 where the measured BER (left, green), the predictions from our
physics-informed model (middle, red), and the purely data-driven GPR model (right, orange), are displayed
together for each modulation configuration. The advantage of our proposed physics-informed model is
demonstrated when channel knowledge is limited, as indicated by the middle (red) boxplots. Compared
to the right (orange) boxplots generated by GP’, our model aims to approximate the potential upperbound
of the time-varying BER distribution. Although the BER estimates provided by our model may be

higher than the measured upperbound for modulation schemes, this conservative approach allows for the



386

387

388

389

390

392

393

394

395

396

397

398

399

400

401

402

404

405

406

407

408

409

410

411

19

selection of a more robust FEC rate during early-stage communication with incomplete channel knowledge.
Consequently, a better frame success rate can be achieved while still maintaining an acceptable compromise
in terms of data rate. The selection of the FEC rate leads to reliable CSI feedback for BER estimation
model training initially. In contrast, the right (orange) boxplots generated by the purely data-driven GPR
model GP’ tend to underestimate the BER and are clustered around the lowerbound. This tendency leads
to an overconfident selection of the FEC rate, resulting in a higher probability of frame loss. Initiating
transmission with an excessively low frame success rate can hinder the convergence speed of the BER
estimation model, subsequently impacting the enhancement of long-term channel throughput.

Despite being trained on only five samples, our model maintains robustness due to its physics-informed
design. The base BER predictor {(-) embeds prior knowledge to capture overall BER trends, while the
QAD estimator 7),(-) adaptively bounds uncertainties in a conservative manner. This enables effective

modulation decisions even under severe data scarcity, demonstrating strong cold-start capability.

E. Forward Error Correction

Given the estimated BER upperbound, we use low-density parity-check (LDPC) code [50] as the
FEC technique. To choose an appropriate LDPC rate, Table IV obtained via simulations is consulted. In
simulation, three different block size frames with 18,432, 1450 bytes are used and errors are introduced
manually. We then employ 6 different LDPC rates from {2, 7, 3,1, £, ¢} to decode that three different
block size frames with error included and tested the maximal LDPC rate for a certain BER level with 90%
frame success rate. For BER values less than 0.18, they showed the 6 LDPC rates mentioned previously

were capable of correcting the errors. When none of the BER ranges specified in Table IV are met, we

enable the “test” mode, and known bits are sent from the TX node to the RX node.

FE Exploration & Exploitation in AMC

During the process of sequential decision-making on modulation schemes a; while simultaneously
collecting feedback to gain insights into the channel behavior, the agent faces the dilemma of whether
to exploit the existing knowledge by choosing a; or to explore new, untested schemes to enhance its

understanding of the channel dynamics and possibly achieve higher rewards. To balance this trade-off, we
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TABLE IV: LDPC RATE SELECTION CRITERION.

BER Estimation é;(a;) | LDPC Rate p(é;(a;))
6(0,3') =0 1
é(aj) < 0.03 2
€(aj) < 0.07 %
é(aj) < 0.12 %
é(aj) < 0.15 :
é(aj) <0.18 2

employ a dynamic e-greedy algorithm to select the modulation scheme a;. The classic e-greedy policy

is expressed as

argmax  d(a;)p(é;(a;)), with probability 1 — ¢
a; = ajceAp(e(aj))€e (18)

Random, with probability e
where ¢ is for exploring a; randomly to avoid being trapped in a local optimum. In our dynamic e-greedy
algorithm strategy, € gradually decayed by

Edecay X €, 1f € > emin
€= , (19)

Emin if € S Emin
where gecay = 0.9 is the decay coefficient to control the degree of randomness and e, = 0.1 is the
minimum value of the random factor. During the initial phase of learning, a larger ¢ value is applied to
encourage the agent to explore untried modulation schemes with a higher probability. As the number of
transmission frames increases, the agent tends to rely and exploit more on the accumulated knowledge

base, which improves the learning efficiency.

1V. DYNAMIC FEEDBACK STRATEGY

Gathering CSI via feedback from the receiver is essential for AMC. However, in UAC systems with long
propagation delays, tuning modulation schemes a; and waiting for feedback on each frame consume time.
Furthermore, incomplete channel knowledge in the early stage of communication or channel variability
during transmission may lead to sub-optimal AMC strategies. Obtaining the feedback after a significant

number of frames under a sub-optimal AMC strategy possibly results in decreased data throughput.
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Therefore, we propose a dynamic feedback scheduling strategy to optimize the channel throughput by
determining the optimal time to tune the modulation scheme and obtain feedback based on the channel
conditions.

The sequential decision process involving the modulation scheme a; and FRI A for transmitting N bits
is formulated as an MDP. Tree search algorithms are suitable for solving MDPs as they optimize long-
term rewards and balance exploration-exploitation trade-offs. However, traditional tree search algorithms
face computational challenges when building search trees in high-dimensional action or state spaces.
Uncertainty in untried state-action pairs is initially unknown. In large action and state spaces, handling
uncertainty in tree search also introduces significant computational complexity, potentially resulting in
suboptimal decisions.

RL is another popular method that enables the agent to learn an optimal policy in MDPs through
interactions with the environment, without explicit knowledge of the environment’s dynamics [51]. Deep
Q-Network (DQN), a powerful RL algorithm, aims to learn a mapping function that predicts the expected
reward for state-action pairs, known as the ()-value function [9], [13]. The use of DNN as function
approximators in DQN enhances its ability to generalize to unseen states. However, in DQN, quick but
possibly biased action selections without planning the potential consequences and future states may result
in short-sighted decisions and suboptimal long-term outcomes [52].

Therefore, we propose Tree Search with DQN (TS-DQN) to benefit from the planning capabilities of
tree search and the generalization capabilities of DQN. DQN focuses on learning the optimal ()-value
function for state-action pairs using observed experiences, even leveraging its generalization abilities to
approximate the value function in a continuous state space. Tree search utilizes the updated ()-values
to guide the exploration process, prioritize promising state-action pairs, and provide a way to estimate
long-term rewards. Fig. 7 illustrates the fundamental framework of the proposed TS-DQN algorithm and
Fig. 8 further depicts the details of the tree search procedure. We will explain them in the rest of this

section.

A. QQ-Value Function

Agent aims to select a; and h; at state s; to maximize the expected throughput until reaching the

terminal state sjy. In Fig.7, the output of DQN provides a prediction of the ()-value function, i.e.,

~ N

Q(sj,a;, h;). Q(sj,a;, h;) approximates the throughput till terminal state s; given any state-action pair
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Fig. 7: The framework of the TS-DQN algorithm.

{a;, h;}. The agent prioritizes actions that are likely to yield favorable long-term rewards. Specifically,

at state s;, the average throughput, 1;, from the current state s; to the terminal state sy is calculated as:

1 —n’)N
. (1))

= — )
Yohiti 4+ (J — ) (Tt + 27pa + )
i=

(20)

The feedback of FRI h; from the receiver node updates (n),, — n)N bits transmitted during FRI h;
within the time period encompassing /; frames with a transmission duration of 7; each, the duration of
frames containing modulation information 7,,, and feedback 7, and a two-way propagation delay of 27,q.
However, from state s, to the terminal state sy, the number of transmitted bits and their corresponding
duration are unknown, as they have not yet been attempted. In TS-DQN, the agent navigates a search tree
and uses the target DNN to simulate the transmission process from state s; to the terminal state, thereby
enabling the calculation of R;, i = [j + 1, J]. Consequently, our ()-value aims to approximate R, based
on the actions a; and h; selected at state s;. In the upcoming subsection IV-D, we will present the tree

search approach for approximating the target ()-value Q(s;, a;,h;).
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w7 B. State-value Approximation

468 Traditional tree search methods lack explicit policies and require repeated tree building at each state.
ss9  This procedure can be time-consuming and memory-intensive. Our proposed TS-DQN algorithm addresses
a0 these limitations by leveraging the approximated ()-value function to learn the rewards associated with
a1 potential state-action pairs during repeated look-ahead tree construction.

a72 In Fig. 7, the DNN consists of one input layer, three hidden layers, and one output layer, which
a3 1s used to decide h; € H. This DNN is utilized to model the analytical function between the state
o {n, kj, i1} € 8j, and the estimated reward given the selected a; and h; which represents the predicted

a5 ()-value Q(sj, a;. h;), ie.,

N

Q(sj,aj, h;) =M (aj,hj;{n;,kj,rj_l},wj) 21

a7 where wj is the weights of model M(-) and updated once CSI received.

a7 C. Replay Memory

478 In our TS-DQN framework, as shown in Fig. 7, the agent utilizes a Replay Memory buffer to store
79 its experiences p; = {S;, a;, h;, s;1+1} for training. This allows the model to reuse past experiences for

a0 gradient updates, promoting stability and efficient learning. The target DNN serves as a fixed reference

ford

ss1 model during each training iteration, with its parameters wiqrget copied from the main DNN model

se2 periodically to stabilize training. Specifically:

483 o The target DNN remains frozen throughout a training batch to mitigate instability arising from rapidly
484 changing target values.

485 o A batch of 32 transitions, denoted as P, is sampled from the Replay Memory to compute target
486 ()-values. For each transition p; € P, i = [1, 32|, the target throughput from the current state s; to

487 the terminal state s is approximated based on the tree search trajectories depicted in Fig. 8.

488 The DQN weights w; at state s; are updated using the ADAM optimizer, which minimizes the mean
89 squared error between the predicted Q-Value and the computed target ()-value. The optimization objective
a0 for updating the weight parameters w;_; to w; in the state-action-value function approximator M(-) is

491 formulated as:

©

w; = argmin (Z(Q(si, a;, h;) — Q(si, a;, hi))2> ) (22)

“i p;EP
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Fig. 8: The framework of the tree search algorithm.

The replay memory ensures diverse and decorrelated training samples, thereby improving the convergence

of the TS-DQN framework.

D. Tree Search

Fig. 8 illustrates the structure of our lookahead tree search framework, which comprises three main
stages: Selection, Simulation, and Backpropagation. When the agent reaches the state s;, the three stages

proceed as follows:

o Selection: Agent selects a modulation scheme a; using (18) first and determines FRI /; to maximize
the predicted Q-value, i.c.,

h; = argmax Q(s;, a;, h;), (23)
h;€H

with a probability of 0.9. With the remaining probability of 0.1, the agent performs random exploration
in the decision tree. After a; and FRI h; are determined, frames are encoded for transmission, and
feedback is used to update the AMC strategy in (18) and the next state s;; ;. The tuple p; =
{sj,a;, hj,s;j41} is then stored in the Replay Memory.

« Simulation: For each p; = {s;,a;, h;,si11}, ¢ € [1, j], sampled from the Replay Memory, the agent
performs simulations starting from the newly added node s;4; to the end of the transmission. During
this simulation phase, the target DNN estimates the value of possible state-action pairs and selects

actions following the same exploration strategy during Selection stage until a terminal state is reached.
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« Backpropagation: The outcomes of the simulation, including FRI values, throughput, and timestamps
of each FRI between visited states, are backpropagated up the tree to update the target ()-value.

The cumulative reward obtained through this informed simulated rollout is used as the reference ()-value,

i.e., target ()-value, serving as a training target for the DQN. By minimizing the difference between the

predicted and target (Q-value for each p; € P as defined in (22), the DQN learns to accurately estimate

long-term expected throughput over the episode.

V. EXPERIMENT DESIGN AND RESULTS

In order to evaluate the performance of our algorithms, we tested our algorithms in a test tank and at
sea in Singapore. This section provides a detailed description of the experiment setup, testing procedure,

and results.

A. Experimental Setup

In our experiments, the TX and RX nodes are WNC-M25MSS3 modems [53] from Subnero. These
modems support two types of links: CONTROL and DATA. The CONTROL link employs Frequency-
Hopping Binary Frequency Shift Keying (FHBFSK) as the modulation technique and LDPC code as the
FEC method. In different environments, the LDPC code rate and power level of the CONTROL link are
pre-tuned and remain static. On the DATA link, the LDPC code is used as FEC, and OFDM serves as
the modulation technique. For each FRI, the number of subcarriers, cyclic prefix length, and bandwidth
in OFDM are tuned adaptively. The “test” mode on the DATA link in the WNC-M25MSS3 modems can
be enabled or disabled.

Frames transmitted over the CONTROL link serve two purposes. The first purpose involves sending
frames containing modems’ modulation and setup information at the beginning of each FRI. Specifically,
this information encompasses the number of subcarriers, cyclic prefix length, and bandwidth in the OFDM
system, the LDPC code rate, “test” mode information, and FRI value. Secondly, the CSI feedback from
the RX modem to the TX modem is sent over the CONTROL link. The feedback frame contains measured
BER statistics along with the number of bits transmitted during one FRI.

To ensure sufficient reception of frames over the DATA link without compromising throughput unnec-
essarily, we should consider an appropriate wait duration on the RX modem after the modulation setup.
This wait duration, denoted as 7., is calculated as h;7;, where 7; represents the transmission duration

of each frame in the ;™ FRI. Upon receiving the frame with the modulation and setup information of
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modems over the CONTROL link, the RX modem triggers the waiting phase for the upcoming h; frames
over the DATA link, lasting for 7y.i = h;7;.
The operational procedures on the TX modem and RX modem are detailed in Algorithm 1 and Algorithm

2, respectively.

Algorithm 1 Operations on TX Modem over Transmission

INITIALIZATION: state s; = {61,171, w1,n} = 0,k = 0.5} where 6, is randomized, w; is pre-trained
in Section V-B and 7;(a;) = 0.18 for a; € A.
for j € [1,J] do
Estimate BER ¢;(a;) for a; € A using (1).
Determine FEC rate p(é;(a;)) for a; € A using Table IV.
Select a; using (18) and h; using (23).
Determine whether to enable or disable “test” mode.
Transmit frame carrying modulation and “test” information over CONTROL link.
Transmit h; frames over DATA link.
Detect and decode feedback frames from the RX modem over the CONTROL link.
perform state transition Ss; — Sj41.
if n,, > 1 then
Stop transmission.
end if
end for

Algorithm 2 Operations on RX Modem over Transmission

while receive frame over CONTROL link do
Decode and Modulate.
Enable or disable “test” mode according to the “test” mode information.
Calculate 7yq;.
while in 7,,; do
if receive frame over DATA link then
Decode and store BER.
end if
end while
Send feedback frame to TX modem.
end while

B. Pre-training of Feedback Model

The tunable OFDM parameters offer a wide range of potential values, resulting in a considerably large
action space [A x H]|. Training of the model M(-) in sea trials setting becomes challenging and time-
consuming. To address this, we opt to pre-train M(-) in a test tank, as depicted in Fig. 3. This controlled
and safe environment allows us to learn the initial features and patterns of model M(-), denoted by w.

For the CONTROL link, we utilized LDPC with a % rate FEC, and we set the power level for both DATA
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and CONTROL links to 155dB re 1 yPa on TX and RX modems. Each pre-training iteration followed
the operational procedures outlined in Algorithm 1 and Algorithm 2 and was terminated once /N bits had
been transmitted. The w; obtained at the terminal state s; of each iteration was retained and served as the
initial w; for the subsequent iteration. The propagation delay is negligible in the test tank. During the pre-
training of w, we assumed different distances [ between the TX modem and RX modem, specifically 1, 2,
or 3 km. Consequently, we incorporated 7pq = %, %, 2 s into each FRI to account for the impact of various
propagation delays. After 100 pre-training iterations, the refined w was employed as the initial value of

ws in subsequent experiments, including those conducted in the test tank, sea trials, and simulations.

C. Tank Experiment

We first tested our algorithm in the same test tank shown in Fig. 3. We used the same two WNC-
M25MSS3 modems from Subnero, positioning them in four different locations as illustrated in Fig.9. In this
setup, the CONTROL link employed LDPC with a % rate for FEC. The power levels for both CONTROL
and DATA links were set to 155dB re 1 uPa on TX and RX modems. The selection of modulation schemes
consistently followed (18). Meanwhile, we compared our feedback scheduling algorithm, TS-DQN, with
alternative strategies: a Random strategy, which selected /& randomly between 1 and 20; a Fixed strategy,
where 1 was predetermined at 5, 10, 15, or 20; and a Time-varying policy, in which FRI grew with n’,
the ratio of transmitted bits. Additionally, we evaluated TS-DQN against the classical DQN approach
implemented as described in [20] (referred to here as “DQN”). The traditional DQN employs the Bellman

equation for ()-value updates, defined as follows:

Q(Sj, aj, h]) = (1 — a)@(sj, aj, hj) + Oé(?”j + 5V(Sj+1)), (24)
V(s;) = max Q(s;, aj. hy), (25)

where the learning rate o = (0.1 and the discount factor § = 0.9. In this implementation:

o The state is the same as s;.

o The action is the FRI h;, determined according to (23).

o The reward is the immediate throughput achieved during each FRI, as defined in (2).
This setup mirrors the framework outlined in [20], allowing a direct comparison between DQN’s iterative
Bellman-based updates and TS-DQN’s tree search strategy for reward evaluation. Each transmission run

employing different feedback strategies was terminated until N = 100, 000 bits have been transmitted.
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2.6m

23m

TX depth: 1.5m TX depth: 1.5m
RX depth: 1.5m RX depth: 0.3m

TX depth: 1.5m TX depth: 1.5m
RX depth: 1.5m RX depth: 0.5m

Fig. 9: 4 different deployments in the test tank.

When calculating with negligible propagation delays 7,4 in the test tank, the throughput results are
demonstrated in Fig. 10. To observe the impact of propagation delays, we introduced a transmission
distance [ as 3 km, resulting in a propagation delay of 7,4 = 2 s. The throughput results with propagation
delays added are presented in Fig.11. Notably, when propagation delays are negligible, selecting a smaller
FRI value enables the AMC model to converge more quickly by acquiring CSI feedback with fewer
transmissions, effectively functioning as an optimal strategy in such scenarios. For the Fixed FRI policies,
we can see the throughput decreases gradually as the fixed FRI value increases. The experimental results
demonstrate that the proposed TS-DQN algorithm effectively selects smaller FRI values during the initial
training stage of the AMC model, enabling quicker feedback updates. Along with the transmission, both
TS-DQN and Time-varying strategies increment the FRI value to save time on propagation while still
ensuring close-to-optimal AMC performance. However, the slower FRI adjustment speed of the Time-
varying strategy, compared to our TS-DQN, results in lower throughput. When propagation delays are
introduced, the advantages of TS-DQN become prominent because of its intelligence in saving time on
propagation delays and feedback duration when the AMC strategy performs well. Fig.11 also shows
the throughput results of the Fixed policy with a small value, like 5, and the Time-varying policy

are significantly reduced. This is because they waste time requesting unnecessary feedback when the
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Fig. 10: Tank throughput comparison before propagation delays added.

AMC strategy is already performing well. Conversely, a large fixed FRI value, like 20, leads to slow
convergence when the agent has limited channel knowledge at the beginning of transmission, thereby
hindering throughput. The baseline DQN model from [20] demonstrates lower throughput compared to TS-
DQN. The classical DQN algorithm relies on the Bellman equation to update ()-values, which incorporates
immediate rewards and the maximum estimated future reward. Experiment results demonstrate that the
classical DQN tends to select conservative, smaller FRI values at each state. While smaller FRIs provide
quicker feedback and facilitate faster system exploration, the time lost due to extensive propagation delays
reduces overall throughput. In contrast, TS-DQN evaluates the reward more comprehensively by expanding
a search tree to terminal states. This approach accounts for the cumulative effects of decisions over entire

trajectories, resulting in higher throughput and improved system performance.

D. Sea Trials

Sea trials were conducted in Singapore waters as shown in Fig.12, with an experimental setup illustrated
in Fig.13. Two WNC-M25MSS3 modems were used as TX and RX nodes. The TX modem was controlled
from a nearby ground station via a laptop. A separate laptop connected to the RX modem was responsible
for receiving modulation setup information, guiding the RX modem in modulating and receiving frames,
and instructing the RX modem to transmit feedback frames. On Day 1, both TX and RX modems were
deployed in a marina, with the RX modem positioned 100 m from the TX modem. The depths of TX and

RX modems were d; = 5 m and dy = 3 m, respectively. On Day 2, the RX modem was deployed from a
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Fig. 12: Sea trial environment: day 1 (left) and day 2 (right).

boat at a distance of 223 m from the TX modem. The depths of TX and RX modems were d; = 3 m and
ds = 6 m, respectively. In our experimental setup, both TX and RX modems employed LDPC with a % rate
for FEC on the CONTROL link. The power levels were configured at 175dB re 1 pPa for the TX modem
and 185dB re 1 pPa for the RX modem. Each run was terminated after transmitting N = 100, 000 bits,
following the procedures outlined in Algorithm 1 and 2 for the TX and RX modems, respectively. On Day
1, the recorded throughput for each feedback strategy, the TS-DQN, Random, Fixed, and Time-varying, is

averaged over 20 transmissions. On Day 2, we did the comparison between our TS-DQN and the baseline
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Fig. 14: Sea trial throughput comparison before propagation delays added on Day 1.

DQN model from [20]. The recorded throughput for these two feedback strategies is averaged over 10

transmissions. Fig.14 and Fig.16 depicts results incorporating the actual delay propagation (7pq ~ S

e
where [ = 100 and 223 m on Day 1 and Day 2 seperately), while Fig.15 and Fig.17 presents throughput
assuming a distance [ = 3 km.

The timing diagram of a series of transmissions from the sea trial is depicted in Fig. 18 where frames
labeled “test frames” indicate the “test” mode is on and frames labeled “data frames” indicate the “test”
mode is switched off. The sea trial throughput results demonstrate a decrease when compared with the

tank throughput results presented in Fig.10 and Fig.11. This decrease is attributed to the increased noise

from nearby shipping and construction in the marina. Under the Fixed policy, the throughput shows a
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Fig. 16: Sea trial throughput comparison before propagation delays added on Day 2.

decreasing trend as the fixed FRI value increases, and the advantage of our proposed TS-DQN is not
notably evident. This is due to the satisfactory convergence speed of the AMC strategy under the Time-
varying and Fixed policies. When considering propagation delays for a distance of 3 km, the impact of
the propagation delay increased. Our TS-DQN algorithm outperforms, as it can dynamically determine
the FRI value based on the channel conditions. Specifically, TS-DQN tends to select a smaller FRI when
there is limited channel knowledge or when channel conditions change, while it chooses a larger FRI
when the AMC strategy is optimized or operates in a stable channel condition. With reduced ship traffic
noise, the environment on Day 2 facilitated an increase in the average throughput for both the TS-DQN

and DQN models. The comparison with the DQN model from [20] underscores the superior performance
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Fig. 18: An illustration of the timestamps in frame exchange between the TX and RX modems in the sea

trial.
Notes: Frames labeled “test frames” indicate the “test” mode is on and frames labeled “data frames” indicate the “test” mode
is switched off.

of our TS-DQN approach, particularly in adapting to dynamic, real-world environments.

VI. SIMULATION AND RESULTS

Sea trials validated algorithm performance in realistic UAC conditions. Because the test tank and sea
trials offered limited channel conditions, we then verified our algorithm in more diverse underwater
environments via simulations. We used a surrogate model to represent the DATA link of different UAC
environments which was built based on [54], where the Pekeris ray model with red Gaussian noise was
employed. The Pekeris ray model is a very fast fully differentiable 2D/3D ray model for isovelocity
range-independent environments. There were some parameters in the Pekeris ray model we could modify,
such as the bathymetry with a constant depth, and the ambient noise model with variance o2. We fixed

the isovelocity sound speed profile with sound speed ¢ = 1540 m/s, a flat sea surface, and a sandy clay
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seabed. We chose the standard deviation in the red Gaussian noise to be 10° (Pa)? /Hz. The transmission
distance [ and the depth of the TX node and RX node d; and d, for different simulation surrogate models
are listed in Table. V.

In the simulation, the TX and RX nodes ran on the same machine, and the measured BER was provided
directly by the surrogate model. Therefore, the duration of frames containing modulation information and
feedback no longer existed. To be consistent with the practical setup in the sea trial, we assumed the
Tm = Tta = 2.7 s. The propagation delay 7,¢ was determined by the distance [, i.e., Tpq = 1;—40 s. The FEC
selection rule was identical to Table IV. To better simulate the real environment, if the measured BER
given by the environment surrogate model was less than the BER limit of each LDPC rate, the frame had a
very high probability, 90%, to be successfully received. Meanwhile, a frame had a probability of 10% to be
received successfully even when its measured BER was larger than the given BER limit. We compared our
feedback strategy TS-DQN against Random, Fixed, Time-varying, and NN (our previous work presented
in [13]) strategies. The simulation was stopped when N = 100, 000 bits had been transmitted. The possible
values of number of subcarrier n. were selected from {64, 128,256,512, 1024, 2048, 4096, 8192}, while
the value of n, ranged from 0 to 8192. Additionally, the possible occupied ratio of the 24 KHz was chosen
from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

For different feedback strategies, transmission was executed 20 times given a different UAC surrogate
model.

TABLE V: UAC SURROGATE MODEL PARAMETERS.

Surrogate Model | Water depth | TX node depth d; | Rx node depth d, | Distance [

50 m 25 m 25 m 3000 m
2 50 m 25 m 25 m 2000 m
10 m 5 m 5 m 100 m

For different surrogate models listed in Table V, the throughput results of different feedback strategies
are presented in Fig. 19, Fig. 20, and Fig. 21. The Random strategy yields significantly lower throughput
compared to the proposed TS-DQN strategy. For the Fixed strategy, the median throughput initially
increases as the FRI increases but gradually decreases when FRI exceeds a certain point for [ = 2000 m
or 3000 m. However, for [ = 100 m, the throughput continues to increase as FRI increases. This is
due to the surrogate model being sensitive to the distance [ between the TX node and RX node. The

channel becomes more challenging, i.e., higher probability to include errors in the transmitted frames as
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Fig. 19: Results of average throughput with different feedback strategies given surrogate model 1.
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Fig. 20: Results of average throughput with different feedback strategies given surrogate model 2.

[ increases. Increasing the value of FRI does not directly improve the throughput since it slows down
the convergence speed of AMC when UAC channels are complex. That explains why a fixed value of
FRI determined beforehand is not conducive to optimizing throughput and varies with different UAC
channels. The difficulty of selecting an optimal FRI in advance emphasizes the significance of studying
dynamic feedback scheduling strategies like TS-DQN to enhance AMC and optimize channel throughput.
Additionally, our comparison of TS-DQN with the DQN proposed in [20] shows that TS-DQN exhibits

improved robustness in complex channel conditions.
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Fig. 21: Results of average throughput with different feedback strategies given surrogate model 3.

VII. DISCUSSION AND FUTURE WORK

We integrated knowledge of channel physics to design a heuristic BER estimation model for AMC,
thereby reducing the dependency on extensive datasets for channel prediction. The BER estimation from
this model captured the median of the measure BER gathered from Singapore waters. To account for
variations and enhance robustness in practical UAC channels, we used the GPR algorithm to predict the
BER upperbound, ensuring that at least 75% of the frames were successfully transmitted. Results from both
tank and sea experiments, as well as simulations, affirmed the efficacy of our proposed BER distribution
predictor in operating AMC. Notably, even in preliminary sea trials with limited channel knowledge, our
AMC strategy can explore a variety of MCSs and procure valuable feedback CSI for AMC model training.

We also introduced an algorithm framework, TS-DQN, which incorporated tree search and DQN
to dynamically determine the time to tune MCSs and obtain feedback. TS-DQN capitalized on the
strategic planning capability of tree search and the generalization ability of DQN. Both experimental and
simulation results underscored the advantage of TS-DQN over NN and other feedback scheduling policies
in optimizing long-term channel throughput. Specifically, when compared to the best fixed-feedback policy,
our TS-DQN algorithm reduced the transmission time for all N bits by up to 25%. This significant
achievement underscored its potential value in the UAC market.

Our future efforts will focus on improving the MDP algorithm we introduced, while simultaneously
tackling the joint exploration and exploitation during the selection of MCSs and FRI. Additionally, the

existing heuristic BER estimation model encourages us to seek more universal methods for integrating
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physical information into the AMC algorithm design. Potential research directions include exploring the

application of our methods to modulation techniques beyond OFDM. Ultimately, we aim to improve the

adaptability and robustness of our algorithm across various communication systems.
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