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Abstract8

Underwater acoustic channels exhibit significant temporal and spatial variability, making it challenging to9

design a single communication scheme that works well everywhere and at all times. Adaptive Modulation and Cod-10

ing (AMC) techniques offer a solution by dynamically selecting the optimal Modulation and Coding Scheme (MCS)11

for specific channel conditions but require an accurate model to predict communication performance. We propose12

a Bit Error Rate (BER) estimation model that fuses domain knowledge to aid the evaluation of MCSs. In complex13

sea conditions, we enhance the reliability of AMC by extending our BER prediction model from a point prediction14

to an interval predictor. This extension involves incorporating Gaussian Process Regression (GPR) to address the15

uncertainty in BER. Predictions from such an algorithm are used to drive AMC to maximize communication16

throughput reliably. For AMC, regular feedback from the receiver to the transmitter is necessary to gather Channel17

State Information (CSI). On the one hand, obtaining feedback too often reduces the communication through-18

put in channels with long propagation delays, but on the other hand, insufficient feedback leads to suboptimal19

AMC decisions and hence poor throughput. We propose an algorithm that integrates Tree Search and Deep Q-20

Network (DQN) for feedback scheduling to automatically find the right balance and optimize communication21

performance. We demonstrate the advantages of our algorithm through experiments in a test tank and at sea22

in Singapore. Furthermore, our algorithm also exhibited reliability and achieved optimal throughput in various23

underwater environments in simulation.24
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Estimation, Tree Search, Deep Q-Network27

I. INTRODUCTION28

The Underwater Acoustic Communication (UAC) channels present challenges due to their limited29

bandwidth, huge propagation delays, and frequency-selective fading effects [1]. High-speed communication30

in UAC is crucial for various industries such as marine operations, offshore oil and gas, and defense31

applications. However, the dynamic characteristics of UAC channels make it impractical to find a single32

communication scheme that maintains robust performance in the long-term deployment of UAC sys-33

tems [2]. As a result, there is a growing demand for Adaptive Modulation and Coding (AMC) techniques,34

which enable the selection of Modulation and Coding Schemes (MCSs) based on the current channel35

conditions to achieve both reliability and high throughput [3]–[6].36

Significant progress has been made in the development of AMC techniques in wireless communication.37

Among these studies, data-driven AMC algorithms have gained prominence due to their simple input38

requirements, capability for various problems with limited knowledge about underlying physics, and ability39

to extract insights from datasets. For example, in [7], [8], supervised learning strategies aided in the40

SNR estimation of different MCSs and enabled AMC operation accordingly. Studies [9], [10] utilized41

Machine Learning (ML) tools to find out the relationship between the channel measurements and Bit42

Error Rate (BER) performance or SNR to make MCSs decisions based on the predicted Channel State43

Information (CSI). Work in [11] classified the channels into different types and identified the best MCSs for44

each channel type in long-range UAC. However, data-driven AMC algorithms, as exemplified in existing45

works, require substantial training data sets to cover diverse channel conditions. Collecting such extensive46

data in underwater environments is time-consuming and contradicts the goal of transmitting large files47

within the shortest possible time.48

On the contrary, physics-informed methods, which incorporate knowledge about the underlying channel49

physics, can be an alternative to data-driven methods for operating AMC. An illustrative example from [3]50

revealed how the sparse structure of the channel impulse response can be harnessed to enhance AMC51

while reducing computational demands and memory overhead. In [12], channel physics information in an52

Orthogonal Frequency-Division Multiplexing (OFDM) system helped narrow down the MCSs space and53

build correlations among MCSs, fostering faster convergence speed for the AMC model. Inspired by [12],54

our previous work in [13] proposed a heuristic BER estimation model based on channel physics knowledge55
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in an OFDM system that enhanced AMC performance even when dealing with a high-dimensional MCSs56

space. These studies underscore the potential of channel physics-informed approaches for facilitating the57

adaptability and performance of AMC in UAC systems.58

CSI is a fundamental component of AMC, enabling the UAC system to dynamically tune MCSs based59

on the current channel conditions [3], [14], [15]. The speed of sound in water is approximately 1500 m/s,60

resulting in propagation delays that are 200, 000× higher than those experienced in terrestrial radio com-61

munication networks [16]. These propagation delays are comparable to the typical frame duration in UAC.62

Extensive research has addressed the negative effects of large propagation delays, impacting handshaking63

protocols and retransmission schemes [17], as well as medium-access control layer protocols preventing64

data collisions [18]. In a one-to-one communication system, where data frames are exchanged between65

a transmitter node and a receiver node, the transmitter awaits feedback from the receiver node regarding66

CSI before performing AMC and initiating frame transmission. In such scenarios, the introduction of two-67

way propagation delays can substantially degrade channel throughput. To our knowledge, the research on68

dynamically scheduling feedback to optimize channel throughput is still relatively limited. We propose a69

feedback scheduling strategy and determine relevant decision parameters to address the trade-off between70

communication performance and resource utilization.71

AMC in any communication system, including UAC, necessitates evaluation metrics like BER [19], [20],72

data rate [21]–[23], or throughput [24], [25]. These metrics evaluate MCSs across variable channel condi-73

tions, thereby informing the AMC choice. Throughput assessment is vital in optimizing data transmission74

rates among these metrics, especially when accounting for two-way propagation delays [24], [25]. Thus,75

we adopt throughput to evaluate our AMC and feedback scheduling performance. Given the propagation76

distance between the transmitter node and receiver node, MCSs with higher coded data rates tend to77

achieve higher channel throughput. The coded data rate comprises uncoded data rate and error correction78

overhead. BER knowledge of MCSs aids in the selection of appropriate error correction methods [26]–79

[28], like Forward Error Correction (FEC) [29], [30]. Therefore, we consider the problem of estimating80

BER to enhance AMC to achieve optimal throughput in UAC systems. However, the time-varying behavior81

of UAC channels introduces significant fluctuations in the actual BER. Consequently, a BER distribution82

predictor is needed to provide a range of possible BER values given any modulation configuration for83

reliable MCSs determination. Researchers have proposed several models and techniques to estimate the84

BER in wireless communication systems, like the empirical BER model [31], statistical methods in [32]–85
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[34] via assuming a specific distribution prior or Monte Carlo error count [35], [36]. Recently, ML-based86

approaches have become popular which employ algorithms like Gaussian Process Regression (GPR) [37],87

[38], Neural Networks (NN) [39], or support vector machines [40] to estimate BER. They aim to learn88

the complex relationships between input parameters (such as transmission parameters, channel conditions,89

and noise levels) and the corresponding BER. Usually, ML is applied in a purely data-driven manner90

that relies on the availability and quality of data. With channel physics knowledge incorporated, a BER91

estimation model is proposed in [13] which relaxes the demand for the data availability.92

In our prior study [13], we modeled the sequential MCS decision and feedback scheduling as a Markov93

Decision Process (MDP). We used throughput over multiple frames as the reward to train a NN that94

predicted throughput for any timings of feedback reception. However, when optimizing throughput in95

the long-term transmission, this NN might be sub-optimal since it leans towards immediate rewards. A96

look-ahead tree can potentially optimize long-term rewards, but its time-consuming construction limits its97

real-time applicability [41]. Merging tree search frameworks with Deep Learning (DL) and Reinforcement98

Learning (RL) has emerged as a prominent approach for real-time optimization in planning and scheduling99

tasks [42]. Specifically, [43] and [44] both present integration of tree search with RL. In the former, RL100

aids in the development of value and policy functions within the tree structure, while the latter uses tree101

search to guide RL exploration in intricate tasks. As such, we underscore the significance of incorporating102

RL methodologies with tree search configurations to resolve MDP challenges, particularly in scenarios103

with extensive action or state spaces, to optimize long-term rewards.104

The rest of the paper is organized as follows. The problem formulation is elaborated in Section II.105

The proposed AMC strategy is described in Section III. In Section IV, details of a dynamic feedback106

scheduling strategy are explained. Then, we test our algorithm in a test tank and sea trials and demonstrate107

the advantage of our method in Section V. In Section VI, we show the advantages of our algorithm via108

simulations in diverse channel environments. We then draw our conclusions and consider the possibilities109

for future works in Section VII. The acronyms and symbols used are listed in Table I and Table II,110

respectively.111

Notation: Bold symbols and (·) denote vectors. Symbols in a calligraphic font like A denote tuples.112

Symbols in {·} denote sets. We use the interval notation [a, b) = {x ∈ Z|a ≤ x < b}. |A| denotes the113

size or cardinality of a tuple A. The symbol ≡ represents equivalence. The symbol ⌈a⌉ represents the114

smallest integer greater than or equal to a.115
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TABLE I: LIST OF ACRONYMS.

Acronym Description
AMC Adaptive Modulation and Coding
BER Bit Error Rate
CSI Channel State Information
DQN Deep Q-Network

FHBFSK Frequency-Hopping Binary Frequency
Shift Keying

FRI Feedback Report Interval
FSK Frequency Shift Keying
GPR Gaussian Process Regression
LDPC Low-Density Parity Check
MAE Mean Absolute Error
MCS Modulation and Coding Scheme
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
ML Machine Learning
NN Neural Network

OFDM Orthogonal Frequency Division Multi-
plexing

PSK Phase-Shift Keying
QAD Quantile Absolute Deviation
QAM Quadrature Amplitude Modulation
RL Reinforcement Learning
RX Receiver
TX Transmitter
UAC Underwater Acoustic Communication

II. PROBLEM FORMULATION116

A. Problem Overview117

Consider an UAC system where information frames are exchanged between a transmitter (TX) node118

and a receiver (RX) node. The objective is to transmit N bits from the TX node to the remote RX node119

located at a distance l within the shortest possible time over time-varying UAC channels. Modulation120

and Coding techniques are used to encode these bits onto frames for reliable communication. There are121

multiple variants of modulation schemes in UAC systems. For example, the modulation schemes can122

include phase, frequency, or amplitude modulation, such as Phase-Shift Keying (PSK), Frequency Shift123

Keying (FSK), or Quadrature Amplitude Modulation (QAM). Or in an OFDM system, the modulation124

schemes can represent various OFDM parameters, such as the number of subcarriers, the cyclic prefix125

length, etc. After modulation, the coding techniques, like the FEC, add redundant bits to the modulated126

frames, allowing the RX node to detect and correct errors. Due to the variability in UAC channels, it is hard127
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TABLE II: LIST OF SYMBOLS.

Symbol Description
j Index of state
aj Modulation scheme st state sj
A Modulation scheme space
d(aj) Uncoded data rate of aj

hj Number of frames in the j th FRI
H Set of possible FRI values

k1
j

Number of frames for which “test” mode
is enabled

k2
j

Number of frames for which “test” mode
is disabled

kj Ratio:
k1j

k1j+k2j

l Distance between TX node and RX node
n′
j Percentage of transmitted bits

N Total number of bits to be transmitted
rj Throughput of the j th FRI

sj
State where the CSI of the j th FRI is
updated

S State space

τj
Transmission duration of each frame in
the j th FRI

τm
Duration of frames containing modula-
tion information

τfd
Duration of frames containing feedback
information

τpd
Propagation delay between the TX and
RX nodes

ϵj(aj) Measured BER during the j th FRI
ϵ̂j(aj) Estimated BER at state sj

ηj(·)
Regression analysis model for QAD pre-
diction

ρ(ϵ̂j(aj))
FEC rate selected based on estimated
BER ϵ̂j(aj)

ϱ Set of available FEC rates

θj
Weight parameters for median prediction
from BER distribution

ωj
Weight parameters of FRI determination
model

ζ(·) Model for median prediction from BER
distribution
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to design a single modulation scheme that works well in all situations. Therefore, the demand for AMC128

techniques arises, enabling tuning the modulation scheme and coding strategy based on current channel129

conditions. We establish a DATA link between the TX node and RX node to transmit the modulated and130

coded frames, with the intent of providing as high a data rate as feasible. However, optimal communication131

performance in various environmental conditions necessitates fine-tuning this DATA link.132

Successful transmission is achieved only when the TX and RX nodes employ identical modulation133

schemes. When the modulation schemes are determined at the TX node, a crucial task is to inform the134

remote RX node about the modulation information reliably before the DATA link frames are exchanged.135

A separate communication link, referred to as the CONTROL link, is first established. The CONTROL136

link exhibits robust communication albeit at a lower data rate than the DATA link, and the modulation137

and error correction parameters of the CONTROL link are pre-determined. The modulation information138

for the DATA link is then encoded onto frames and transmitted over this CONTROL link to the remote139

RX node.140

Performing AMC heavily relies on obtaining accurate CSI. The CSI, such as measured BER based141

on the number of bits corrected during FEC decoding, is acquired through feedback from the RX node.142

However, employing modulation schemes and coding rates blindly may lead to failed frame receptions143

at the RX node. Although such failures indicate that the BER exceeds a certain threshold, they hinder144

acquiring accurate BER for reliable AMC. To address this challenge, a “test” mode is introduced, where145

frames carrying known bits are transmitted over the DATA link. In this mode, the BER can be accurately146

computed as the transmitted frames are known, and the CSI is updated. When the “test” mode is disabled,147

the N unknown bits are encoded and transmitted to the RX node over the DATA link. In this case, the148

BER is estimated after demodulation and decoding of the frames at the RX node. All CSI, including149

BER measurements, are then encoded onto frames and sent back to the TX node via the CONTROL link,150

thereby improving the performance of AMC.151

Given the possibly long propagation delay between frames exchanged over DATA and CONTROL152

links, tuning modulation schemes and awaiting feedback for each frame consumes time. Conversely,153

employing a modulation scheme across multiple frames without timely feedback can lead to suboptimal154

performance, resulting in a loss of received frames at the RX node and reduced throughput. This motivates155

the consideration of the optimal timings for tuning modulation schemes and waiting for feedback to156

optimize the channel throughput. Therefore, a Feedback Report Interval (FRI), which decides the number157
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of transmission frames over the DATA link between two consecutive feedbacks, is proposed. In the j th
158

FRI, a specific number of frames (hj), are transmitted using the same modulation scheme aj and its159

corresponding coding rate.160

B. Mathematical Formulation161

We formulate the sequential decision-making of modulation scheme aj and FRI hj as well as the162

subsequent interaction with the environment to receive feedback as a MDP. In this MDP, A is a set163

containing all possible modulation schemes, i.e., aj ∈ A and H is another set including all possible164

values of hj , i.e., hj ∈ H. The action space now has a cardinality of |A × H|. An intelligent decision-165

making algorithm, known as the agent, engages in iterative interactions with the environment to learn166

and optimize a policy denoted as Π. This policy guides the agent for selecting actions from action space167

|A×H| to transmit N bits within the possible shortest time. In the state space S, a state sj+1 is reached168

upon receiving the feedback of the j th FRI. It encompasses the completion ratio of N bits, knowledge169

related to decision-making of actions, and communication performance metrics. The state transitions from170

state sj to state sj+1 follows a transition function Γ. Therefore, Π is a function that maps the state space171

to the action space, i.e., Π : S → |A×H|. After successfully transmitting all N bits, the agent reaches the172

terminal state sJ and hence j ∈ [1, J ]. The round-trip frame exchange duration comprises the transmission173

duration of hj frames, i.e., hjτj , the duration of frames containing modulation information τm, a two-way174

propagation delay 2τpd, and the duration of frames containing feedback τfd, as shown in Fig. 1.

Fig. 1: An illustration of the delays in frame exchange between the TX and RX nodes.
175
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The throughput over the transmission is the performance metric for selecting the actions in our MDP.176

When modulation scheme aj is selected, the coding technique, such as FEC, is then applied. The FEC177

adds redundant bits to the transmitted data frames, facilitating error detection and correction during178

transmission. A set ϱ contains available FEC rates associated with their respective affordable BER levels.179

With knowledge of the BER statistics ϵ(aj), the agent can easily determine the optimal FEC rate ρ(ϵ(aj)).180

Specifically, if no FEC rate in ϱ is available for correcting the BER ϵ(aj), the “test” mode is enabled, in181

which the pre-determined bits are transmitted to aid BER estimation. Given the uncoded data rate d(aj)182

of the modulation scheme aj , the coded data rate is calculated as d(aj)ρ(ϵ(aj)). The coded data rate in183

a communication system is closely correlated to the throughput and thus serves as a valuable metric for184

enhancing channel throughput.185

Knowledge of BER is crucial for calculating the coded data rate in communication systems. However,186

in time-varying UAC channels, measuring accurate BER can be challenging, particularly given a possibly187

large size of A. Obtaining an estimation of BER ϵ(aj) over the action space A is hence required. A188

heuristic BER model based on channel physics knowledge from [13] estimates the median of the BER189

statistics ζ(aj ;θj). θj represents the model weight parameters and are updated given the feedback of the190

latest CSI. However, it may not capture the worst-case performance due to the inherent uncertainty of191

BER measurement. To ensure robust modulation selection in adverse channel conditions, ηj is proposed192

to help estimate the difference between the median prediction and the upperbound of the unknown BER193

distribution. The BER upperbound ϵ̂j(aj) is given by194

ϵ̂j(aj) = ζ(aj ;θj) + ηj(aj). (1)

Obtaining CSI through feedback from the RX node plays a vital role in facilitating accurate BER195

estimation and subsequent AMC. However, the feedback process consumes time due to significant prop-196

agation delays between frames exchange. Therefore, the selection of FRI involves a tradeoff between the197

optimization speed of the AMC strategy and maximizing the throughput of transmitting N bits. When198

the transmission result of the last FRI is poor, choosing a smaller value for the next FRI enables faster199

convergence of the BER estimation model by updating the CSI more frequently. However, this may lead200

to increased latency due to propagation delays. On the other hand, selecting a larger FRI does not always201

guarantee improved channel throughput. In a varying UAC channel, selecting a larger FRI would mean that202

the model would operate far from the optimum and hence result in poorer performance. Thus, a dynamic203
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approach is required to determine the optimal sequence of FRI that balances these two objectives.204

As depicted in Fig. 1, the system transitions from sj−1 to sj upon the completion of the (j − 1)th
205

FRI. Within the state transition, the measured BER ϵj−1(aj−1) from the updated CSI is utilized to train206

(1). The ratio of N bits that have been transmitted till state sj , denoted by a percentage value n′
j , along207

with the timestamps of frames exchange is recorded. n′
j serves as a dynamic indicator of how much of208

the transmission task has been completed, guiding the agent to adapt its strategy by selecting shorter or209

longer intervals based on the remaining bits or urgency. The number of frames with and without the “test”210

mode enabled up to state sj are respectively tracked by k1
j and k2

j . The throughput rj−1 of FRI hj−1 is211

calculated as the measure of (n′
j − n′

j−1)N bits transmitted over the DATA link within a time period212

encompassing hj−1 frames with a transmission duration of τj−1 each, along with the duration of frames213

containing modulation information τm, the feedback frame duration τfd, and a two-way propagation delay214

of 2τpd, i.e.,215

rj−1 =
(n′

j − n′
j−1)N

hj−1τj−1 + 2τpd + τfd + τm
. (2)

At state sj , The parameters n′
j , rj−1, and the ratio kj =

k1j
k1j+k2j

provide valuable insights into the216

communication performance under current policy Π. The throughput rj−1 of FRI hj−1 evaluates the217

performance of the last selected interval, offering the agent direct feedback on the effectiveness of its218

prior decision and helping refine its policy for future selections. Additionally, with the inclusion of kj219

into the state, the agent gains a measure of how much robust, validated information has been gathered,220

reflecting the reliability of the system’s current understanding of the environment. To determine the next221

FRI hj as a function of n′
j , rj−1, and kj , we utilize ML techniques since such a function is analytically222

unknown. We construct a model M(·) with inputs n′
j , kj , and rj−1 to predict the values of all possible223

hj ∈ H. The optimal hj is determined by224

hj = argmax
hj∈H

M
(
aj , hj;

{
n′
j, kj, rj−1

}
,ωj

)
, (3)

where ωj denotes the parameters of M(·), which are updated once CSI is received. The detail of state225

transition between sj−1 and sj is226

sj = Γ(sj−1,aj−1, hj−1)

= {θj , n
′
j,ωj , ηj, kj, rj−1}.

(4)
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To summarize, our objective is to choose the sequence of modulation schemes aj and FRI hj , j = [1, J ],227

where J is unknown, to transmit N bits within the shortest time and thereby maximize the throughput:228

argmin
a1,h1,a2,h2,··· ,aJ ,hJ

(
J∑

i=1

hiτi + J(τfd + 2τpd + τm)

)

s.t. n′
J ≥ 1.

(5)

III. ADAPTIVE MODULATION AND CODING229

In this section, we delve into the adaptation strategy of MCSs, focusing on OFDM given its prevalence230

in modern underwater modems. Leveraging channel physics information, we construct a heuristic BER231

estimation model to guide AMC strategy selection. We validate this model using various datasets and offer232

a reference table for BER-based FEC rate selection. Once the coded data rate for each modulation scheme233

is ascertained, we suggest a dynamic ϵ-greedy policy to address the exploration-exploitation dilemma in234

modulation scheme selection given the high-dimensional MCSs space.235

A. Modulation Scheme236

We perform AMC in OFDM. In OFDM, there are two critical parameters: the cyclic prefix length np and237

the number of subcarriers nc. The cyclic prefix length is required for mitigating intersymbol interference238

caused by the multipath effect. Meanwhile, the number of subcarriers determines the potential for each239

to undergo flat fading relative to the channel’s coherence bandwidth, and must also adhere to constraints240

imposed by the channel coherence time. Bandwidth B also plays a significant role in communication241

performance. A wider bandwidth possibly enables higher data rates but may also affect SNR. Therefore,242

nc, np, and B at the TX and RX nodes need to be tuned to optimize communication performance. A243

modulation scheme aj ≡ (nc, np, B) can be represented as a point in the modulation scheme region A.244

For an OFDM system with Quadrature PSK on each subcarrier, the uncoded data rate d(aj) is245

d(aj) =
2Bnc

nc + np
. (6)

B. BER Estimation Model246

BER information plays a pivotal role in establishing the appropriate code rate and computing the coded247

data rate, thereby offering valuable insights into the selection of modulation scheme aj .248
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1) Estimation of BER Median: In [13], a heuristic BER estimation model ζ(·) based on UAC channel249

physics is introduced. This model defines three boundary planes, namely Bc1, Bc2, and Bc3, which250

divide the (nc, np, B) space into different spaces. As described in [13], for good channel performance,251

the bandwidth of each subcarrier should remain below the coherence bandwidth to achieve flat fading,252

the cyclic prefix length np should be longer than the channel delay spread τds, and the symbol duration253

Ts must be less than the channel coherence time τc to maintain channel stability throughout the symbol’s254

duration, i.e.,255

nc >
Bτds

0.423
= Bc1, (7)

256

np > Bτds = Bc2, (8)
257

nc + np < Bτc = Bc3. (9)

The behavior of these boundaries with respect to a specific bandwidth B is illustrated in Fig. 2 which is258

reproduced from [12]. Within the triangle region, modulation schemes are more aligned with the physics259

constraints, leading to a potentially reduced BER. Conversely, schemes outside this region often do not260

satisfy these constraints, increasing the likelihood of surpassing error correction capabilities and consequent261

frame loss [45]. The position and size of the triangle region vary accordingly as B changes. A sigmoid262

function s(d) = 1
1+e−bid

, i = 1, 2, 3 is built to characterize the BER information based on the relative263

position of the point (nc, np, B) with respect to the three boundaries Bci, i = 1, 2, 3. The values bi,264

i = 1, 2, 3 correspond to the slope of the three sigmoid functions. The parametric model ζ(·) is utilized265

to estimate the median value of the selected aj’s BER distribution at state sj and is built as266

ζ(aj ;θj) = (b4B + c4)s(−d1)s(−d2)s(d3), (10)
267

d1 = nc −Bc1, (11)
268

d2 = np −Bc2, (12)
269

d3 =
nc + np −Bc3√

2
, (13)

where d1, d2, d3 are distances as shown in Fig. 2. Additionally, b4 and c4 represent the slope and intercept270

of the linear term with respect to B. At state sj , these weight parameters θj ≡ (c1, c2, c3, c4, b1, b2, b3, b4)271
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Fig. 2: Visualization of the boundaries Bc1, Bc2 and Bc3 in the (nc, np, B) space at a given B [12].

are updated based on the updated BER measurement over transmission.272

To enhance the accuracy of the model, it is vital to measure how closely the model’s estimates align273

with actual BER values. Hence, we introduce a loss function L(θj) for training ζ(·). The loss function274

evaluates the Mean Absolute Error (MAE) between the output of ζ(ai;θj) and the measured BER ϵi(ai),275

i = [1, j], i.e.,276

L(θj) =
1

|j|

j∑
i=1

(|ζ(ai;θj)− ϵi(ai)|). (14)

Through the minimization of L(θj) at state sj using techniques like gradient descent, the model’s277

weight parameters, θj , of our model, are refined, enhancing its BER estimation during transmission. This278

iterative refinement utilizes measured BER data, ensuring the model’s predictions remain closely aligned279

with empirical observations.280

2) Estimation of BER Uncertainty: The work presented in [13] demonstrates the capability of ζ(·)281

for estimating the median from the time-varying BER distribution. It also illustrates that BER tends to282

cluster around this median value although variability is observed within the actual BER distribution. To283

enhance the reliability of the modulation scheme selection in view of the BER uncertainty, evaluating the284

upperbound in the BER distribution becomes necessary. Using the maximum BER to select a conservative285

FEC maximizes reliability, potentially at the cost of data throughput. We employ the Quantile Absolute286

Deviation (QAD) method [46] to help estimate the BER upperbound.287

The QAD entails computing the qth quantile of the absolute difference between the predicted median288

BER given by ζ(aj ;θj) and the measured BER ϵj(aj) from feedback. The training set Dj to train ηj(·)289
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is composed of:290

{ai → QAD(|ϵi(ai)− ζ(ai;θj)|; q)}, i ∈ [1, j], (15)

which includes attempted modulation schemes ai, i ∈ [1, j] and their corresponding QAD values during291

previous transmissions. To construct Dj , we retain only the latest transmission’s BER for each configu-292

ration, acknowledging the non-stationary nature of the underwater acoustic channel. For each unique ai,293

the absolute deviation between its most recent measured BER and the corresponding predicted median is294

used to compute the qth percentile, which serves as its QAD label. As a result, Dj forms a table mapping295

each tried modulation scheme to its estimated QAD. Upon each state transition, ηj(·) is retrained on the296

incrementally updated Dj using the latest BER feedback. This enables QAD estimation for any candidate297

aj+1 ∈ A at state sj+1. The choice of q in the QAD calculation (15) is set to 75 which guarantees that298

at least 75% of transmitted frames are successfully delivered, as it encompasses the range within which299

75% of the actual BER values reside. It allows for a degree of error tolerance and also considers the300

trade-off between frame loss and data throughput.301

Performing an exhaustive search over all possible modulation schemes in A and storing their corre-302

sponding QAD values is time-consuming. However, BER uncertainty tends to be highly correlated across303

modulation schemes that share similar characteristics in nc, np, or B. Modulation schemes with the304

same nc value tend to exhibit comparable levels of frequency diversity, and modulation schemes with305

similar np values would experience similar levels of protection against intersymbol interference. Similar306

bandwidth B values often encounter comparable channel conditions and noise levels. The QAD estimator307

ηj utilizes GPR [47] to learn these correlations within A based on the observed QAD values up to state308

sj . This correlation enables QAD predictions for all potential modulation schemes, eliminating the need309

for exhaustive evaluation.310

A GPR model includes a crucial component known as the mean function, which establishes a prior311

expectation of the general trend in the predicted QAD. The mean of all the previously observed QAD312

values is used as the mean function, denoted as µQAD. Another essential component is the kernel function,313

which determines the similarity between data points and governs the smoothness and behavior of the GPR314

model. In our approach, we employ the Matérn kernel [48], known for its flexibility in modeling different315

levels of smoothness, to define the correlation and smoothness of the estimated QAD. The kernel function316

is defined as K(·), where its two arguments represent any two modulation schemes from the training317

set Dj . The Matérn kernel has two key parameters: the length scale ℓ and the smoothness parameter ν.318
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The length scale parameter ℓ determines the range over which data points influence each other. A small ℓ319

confines the influence of a modulation scheme ai, i = [1, j] to a narrow (nc, np, B) space, resulting in rapid320

changes in the GPR function over short distances. Conversely, a large length scale allows a modulation321

scheme to have a significant influence on other schemes that are farther apart, even over long distances.322

The smoothness parameter ν controls the flexibility of the Matérn kernel in capturing complex patterns.323

Higher values of ν lead to smoother functions, while lower values introduce more roughness and allow324

for intricate variations in the modeled functions. Euclidean distance is applied to calculate the distance325

between modulation schemes (nc, np, B) and (n′
c, n

′
p, B

′). We choose ℓ = 0.3, approximated using the326

distance between the nearest neighbor modulation schemes in A. To determine an appropriate value of ν,327

a range of commonly used values, namely {0.5, 1.5, 2.5}, is visualized on datasets collected from a tank328

and Singapore water which we list in subsection III-C. ν = 1.5 is finally selected as it achieves superior329

performance by striking a suitable balance between demonstrating regularity in BER and allowing for330

fluctuations between neighboring modulation schemes.331

The QAD estimator ηj(·) predicts QAD for any possible aj ∈ A at state sj follows332

ηj(aj) ∼ GP(µQAD, K(·)). (16)

C. Data Sets333

Two datasets contain the measured BER statistics when tuning nc, np, and B using Subnero M25M334

modems in different water environments. The Subnero M25M modem operating bandwidth is up to 12 kHz,335

i.e., from 20 to 32 kHz. The details of these datasets are provided below.336

• A dataset collected from a test tank shown in Fig. 3. The transmission distance l between the TX and337

RX nodes was about 1.5 m, and the depth of TX and RX modems was 1.5 m. The BER was measured338

for (nc, np, B), where nc was set to different values from the set {128, 256, 512, 1024, 2048, 4096, 8192}339

and np ranged from 0 to 8192, B was set to different values from {2.4, 4.8, 7.2, 9.6, 12, 14.4, 16.8}340

kHz.341

• A dataset, denoted as SEADATA, was collected by colleagues from the Acoustic Research Laboratory342

in Singapore waters, with the experiment as setup from [49]. The transmission range between the343

TX and RX nodes, i.e., the node B and node C in Fig. 4 was about 600 m, and the water depth was344

between 10 and 20 m. The BER was measured for (nc, np, B), where nc was set to different values345
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Fig. 3: Test tank and deployment of modems in the tank.

Fig. 4: Experiment setup for collecting SEADATA [49].

from the set {64, 128, 256, 512, 1024, 2048}, np ranged from 0 to 2046, B was set to different values346

from {4.8, 7.2, 9.6, 10.8} kHz.347

D. BER Estimation Model Validation348

1) Validation on a Large Data Set: The BER estimation model is validated on the dataset SEADATA.349

To assess the model, SEADATA was split into a training set (SEATRAIN) and a test set (SEATEST)350

using a 7 : 3 ratio.351

Fig. 5 compares the measured BER with the estimated BER obtained from the proposed model (1)352

trained on SEATRAIN. To reduce redundancy, the results are presented for each nc, with np binned into353

groups of size 128 due to similar BER values between adjacent np values. Compared to the findings354

reported in [13], the proposed model demonstrates better responsiveness to changes in np and greater355
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Fig. 5: Comparison of the measured BER from SEATEST (the left/green boxplots) and the BER
upperbound estimation (the right/red boxplots).

Notes: The x-axis labels correspond to the values of nc and a range of np, for example, 128 ∗ [0 : 128) → {nc = 128, np ∈
[0 : 128)}.

accuracy in capturing BER uncertainties.356

2) Validation on a Small Data Set: During the early stage of transmission, channel BER knowledge is357

absent and is acquired during transmission. At the beginning of the transmission, modulation scheme and358

FEC rate choices should prioritize a high frame success rate to ensure dependable CSI feedback, which in359

turn aids the training of the BER estimation model and enhances channel throughput in the long term. A360

small data set is available at the beginning of transmission in realistic cold-start scenarios. Our validation361

on a small data set thus aims to show the capacity of our BER estimation model to guide the selection of362

robust modulation scheme from M and FEC rate with fewer training data or transmissions than the pure363

data-driven methods. To demonstrate its superiority, only five pairs of (nc, np, B) and its corresponding364

measured BER sampled from the SEATRAIN dataset randomly are utilized as the training set.365

The GPR is employed as a purely data-driven comparison method, denoted as GP ′ to easily distinguish366

it from the previous QAD estimator GP . The prior mean function for GP ′, µϵ, is the mean of the five367

samples. Assuming QAD and BER estimation share identical correlation functions over A, we employ368

the same Matérn kernel in the QAD estimator GP for GP ′. The Euclidean distance between modulation369

schemes is applied. This purely data-driven GPR method assumes the estimated BER ϵgp(aj) for aj ∈ A370

follows the GP ′ after trained on the five samples, i.e.,371

ϵgp(aj) ∼ GP ′(µϵ, K(·)), (17)

where the two arguments are any two modulation schemes from the five samples. For our physics-informed372
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TABLE III: AN EXAMPLE OF A 5 DATA POINTS TRAINING SET.

Row Number of Subcarriers nc Cyclic Prefix Length np Bandwidth B (kHz) BER
1 2048 47 10.8 0.177
2 64 59 10.8 0.333
3 1024 211 10.8 0.173
4 2048 168 7.2 0.150
5 1024 28 7.2 0.093

Fig. 6: Comparison of the measured BER of 5 samples in SEATEST (the left/green boxplots), the estimated
BER upperbound by our physics-informed model (the middle/red boxplots) and estimated BER ϵgp’(·) via
a pure data-driven GPR model GP ′ (the right/orange boxplots) on 5 data points training set.

Notes: The x-axis labels correspond to the values of nc and a range of np, for example, 128 ∗ [0 : 128) → {nc = 128, np ∈
[0 : 128)}.

model ζ(·) + ηj(·), we first train ζ(·) on the five samples from SEATRAIN dataset for 1000 epochs to373

approximate the BER median values over A. ηj(·), parameters of which is aligned with (16), is then374

employed to estimate QAD values and help BER upperbound estimation. The comparison between our375

physics-informed model ζ(·) + ηj(·) and this purely data-driven GPR model GP ′ is performed on the376

SEATEST set. Table III and Fig. 6 illustrate an example of the training set and the comparison results377

for one five-sample set.378

The results are presented in Fig. 6 where the measured BER (left, green), the predictions from our379

physics-informed model (middle, red), and the purely data-driven GPR model (right, orange), are displayed380

together for each modulation configuration. The advantage of our proposed physics-informed model is381

demonstrated when channel knowledge is limited, as indicated by the middle (red) boxplots. Compared382

to the right (orange) boxplots generated by GP ′, our model aims to approximate the potential upperbound383

of the time-varying BER distribution. Although the BER estimates provided by our model may be384

higher than the measured upperbound for modulation schemes, this conservative approach allows for the385
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selection of a more robust FEC rate during early-stage communication with incomplete channel knowledge.386

Consequently, a better frame success rate can be achieved while still maintaining an acceptable compromise387

in terms of data rate. The selection of the FEC rate leads to reliable CSI feedback for BER estimation388

model training initially. In contrast, the right (orange) boxplots generated by the purely data-driven GPR389

model GP ′ tend to underestimate the BER and are clustered around the lowerbound. This tendency leads390

to an overconfident selection of the FEC rate, resulting in a higher probability of frame loss. Initiating391

transmission with an excessively low frame success rate can hinder the convergence speed of the BER392

estimation model, subsequently impacting the enhancement of long-term channel throughput.393

Despite being trained on only five samples, our model maintains robustness due to its physics-informed394

design. The base BER predictor ζ(·) embeds prior knowledge to capture overall BER trends, while the395

QAD estimator ηj(·) adaptively bounds uncertainties in a conservative manner. This enables effective396

modulation decisions even under severe data scarcity, demonstrating strong cold-start capability.397

E. Forward Error Correction398

Given the estimated BER upperbound, we use low-density parity-check (LDPC) code [50] as the399

FEC technique. To choose an appropriate LDPC rate, Table IV obtained via simulations is consulted. In400

simulation, three different block size frames with 18, 432, 1450 bytes are used and errors are introduced401

manually. We then employ 6 different LDPC rates from {2
3
, 1
2
, 1
3
, 1
4
, 1
5
, 1
6
} to decode that three different402

block size frames with error included and tested the maximal LDPC rate for a certain BER level with 90%403

frame success rate. For BER values less than 0.18, they showed the 6 LDPC rates mentioned previously404

were capable of correcting the errors. When none of the BER ranges specified in Table IV are met, we405

enable the “test” mode, and known bits are sent from the TX node to the RX node.406

F. Exploration & Exploitation in AMC407

During the process of sequential decision-making on modulation schemes aj while simultaneously408

collecting feedback to gain insights into the channel behavior, the agent faces the dilemma of whether409

to exploit the existing knowledge by choosing aj or to explore new, untested schemes to enhance its410

understanding of the channel dynamics and possibly achieve higher rewards. To balance this trade-off, we411
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TABLE IV: LDPC RATE SELECTION CRITERION.

BER Estimation ϵ̂j(aj) LDPC Rate ρ(ϵ̂j(aj))

ϵ̂(aj) = 0 1

ϵ̂(aj) < 0.03 2
3

ϵ̂(aj) < 0.07 1
2

ϵ̂(aj) < 0.12 1
3

ϵ̂(aj) < 0.15 1
4

ϵ̂(aj) < 0.18 1
6

employ a dynamic ε-greedy algorithm to select the modulation scheme aj . The classic ε-greedy policy412

is expressed as413

aj =


argmax

aj∈A,ρ(ϵ(aj))∈ϱ
d(aj)ρ(ϵ̂j(aj)), with probability 1− ε

Random, with probability ε

, (18)

where ε is for exploring aj randomly to avoid being trapped in a local optimum. In our dynamic ε-greedy414

algorithm strategy, ε gradually decayed by415

ε =


εdecay × ε, if ε > εmin

εmin, if ε ≤ εmin

, (19)

where εdecay = 0.9 is the decay coefficient to control the degree of randomness and εmin = 0.1 is the416

minimum value of the random factor. During the initial phase of learning, a larger ε value is applied to417

encourage the agent to explore untried modulation schemes with a higher probability. As the number of418

transmission frames increases, the agent tends to rely and exploit more on the accumulated knowledge419

base, which improves the learning efficiency.420

IV. DYNAMIC FEEDBACK STRATEGY421

Gathering CSI via feedback from the receiver is essential for AMC. However, in UAC systems with long422

propagation delays, tuning modulation schemes aj and waiting for feedback on each frame consume time.423

Furthermore, incomplete channel knowledge in the early stage of communication or channel variability424

during transmission may lead to sub-optimal AMC strategies. Obtaining the feedback after a significant425

number of frames under a sub-optimal AMC strategy possibly results in decreased data throughput.426
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Therefore, we propose a dynamic feedback scheduling strategy to optimize the channel throughput by427

determining the optimal time to tune the modulation scheme and obtain feedback based on the channel428

conditions.429

The sequential decision process involving the modulation scheme aj and FRI hj for transmitting N bits430

is formulated as an MDP. Tree search algorithms are suitable for solving MDPs as they optimize long-431

term rewards and balance exploration-exploitation trade-offs. However, traditional tree search algorithms432

face computational challenges when building search trees in high-dimensional action or state spaces.433

Uncertainty in untried state-action pairs is initially unknown. In large action and state spaces, handling434

uncertainty in tree search also introduces significant computational complexity, potentially resulting in435

suboptimal decisions.436

RL is another popular method that enables the agent to learn an optimal policy in MDPs through437

interactions with the environment, without explicit knowledge of the environment’s dynamics [51]. Deep438

Q-Network (DQN), a powerful RL algorithm, aims to learn a mapping function that predicts the expected439

reward for state-action pairs, known as the Q-value function [9], [13]. The use of DNN as function440

approximators in DQN enhances its ability to generalize to unseen states. However, in DQN, quick but441

possibly biased action selections without planning the potential consequences and future states may result442

in short-sighted decisions and suboptimal long-term outcomes [52].443

Therefore, we propose Tree Search with DQN (TS-DQN) to benefit from the planning capabilities of444

tree search and the generalization capabilities of DQN. DQN focuses on learning the optimal Q-value445

function for state-action pairs using observed experiences, even leveraging its generalization abilities to446

approximate the value function in a continuous state space. Tree search utilizes the updated Q-values447

to guide the exploration process, prioritize promising state-action pairs, and provide a way to estimate448

long-term rewards. Fig. 7 illustrates the fundamental framework of the proposed TS-DQN algorithm and449

Fig. 8 further depicts the details of the tree search procedure. We will explain them in the rest of this450

section.451

A. Q-Value Function452

Agent aims to select aj and hj at state sj to maximize the expected throughput until reaching the453

terminal state sJ . In Fig.7, the output of DQN provides a prediction of the Q-value function, i.e.,454

Q̂(sj ,aj , hj). Q̂(sj ,aj , hj) approximates the throughput till terminal state sJ given any state-action pair455



22

Fig. 7: The framework of the TS-DQN algorithm.

{aj , hj}. The agent prioritizes actions that are likely to yield favorable long-term rewards. Specifically,456

at state sj , the average throughput, Rj , from the current state sj to the terminal state sJ is calculated as:457

Rj =
(1− n′

j)N
J∑

i=j

hiτi + (J − j)(τfd + 2τpd + τm)

. (20)

The feedback of FRI hj from the receiver node updates (n′
j+1 − n′

j)N bits transmitted during FRI hj458

within the time period encompassing hj frames with a transmission duration of τj each, the duration of459

frames containing modulation information τm and feedback τfd, and a two-way propagation delay of 2τpd.460

However, from state sj+1 to the terminal state sJ , the number of transmitted bits and their corresponding461

duration are unknown, as they have not yet been attempted. In TS-DQN, the agent navigates a search tree462

and uses the target DNN to simulate the transmission process from state si to the terminal state, thereby463

enabling the calculation of Ri, i = [j + 1, J ]. Consequently, our Q-value aims to approximate Rj based464

on the actions aj and hj selected at state sj . In the upcoming subsection IV-D, we will present the tree465

search approach for approximating the target Q-value Q(sj ,aj , hj).466
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B. State-value Approximation467

Traditional tree search methods lack explicit policies and require repeated tree building at each state.468

This procedure can be time-consuming and memory-intensive. Our proposed TS-DQN algorithm addresses469

these limitations by leveraging the approximated Q-value function to learn the rewards associated with470

potential state-action pairs during repeated look-ahead tree construction.471

In Fig. 7, the DNN consists of one input layer, three hidden layers, and one output layer, which472

is used to decide hj ∈ H. This DNN is utilized to model the analytical function between the state473

{n′
j, kj, rj−1} ∈ sj , and the estimated reward given the selected aj and hj which represents the predicted474

Q-value Q̂(sj ,aj , hj), i.e.,475

Q̂(sj ,aj , hj) = M
(
aj , hj;

{
n′
j, kj, rj−1

}
,ωj

)
(21)

where ωj is the weights of model M(·) and updated once CSI received.476

C. Replay Memory477

In our TS-DQN framework, as shown in Fig. 7, the agent utilizes a Replay Memory buffer to store478

its experiences pi = {si,ai, hi, si+1} for training. This allows the model to reuse past experiences for479

gradient updates, promoting stability and efficient learning. The target DNN serves as a fixed reference480

model during each training iteration, with its parameters ωtarget copied from the main DNN model481

periodically to stabilize training. Specifically:482

• The target DNN remains frozen throughout a training batch to mitigate instability arising from rapidly483

changing target values.484

• A batch of 32 transitions, denoted as P, is sampled from the Replay Memory to compute target485

Q-values. For each transition pi ∈ P , i = [1, 32], the target throughput from the current state si to486

the terminal state sJ is approximated based on the tree search trajectories depicted in Fig. 8.487

The DQN weights ωj at state sj are updated using the ADAM optimizer, which minimizes the mean488

squared error between the predicted Q̂-value and the computed target Q-value. The optimization objective489

for updating the weight parameters ωj−1 to ωj in the state-action-value function approximator M(·) is490

formulated as:491

ωj = argmin
ωj

(∑
pi∈P

(Q(si,ai, hi)− Q̂(si,ai, hi))
2

)
. (22)
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Fig. 8: The framework of the tree search algorithm.

The replay memory ensures diverse and decorrelated training samples, thereby improving the convergence492

of the TS-DQN framework.493

D. Tree Search494

Fig. 8 illustrates the structure of our lookahead tree search framework, which comprises three main495

stages: Selection, Simulation, and Backpropagation. When the agent reaches the state sj , the three stages496

proceed as follows:497

• Selection: Agent selects a modulation scheme aj using (18) first and determines FRI hj to maximize498

the predicted Q̂-value, i.e.,499

hj = argmax
hj∈H

Q̂(sj ,aj , hj), (23)

with a probability of 0.9. With the remaining probability of 0.1, the agent performs random exploration500

in the decision tree. After aj and FRI hj are determined, frames are encoded for transmission, and501

feedback is used to update the AMC strategy in (18) and the next state sj+1. The tuple pj =502

{sj ,aj , hj, sj+1} is then stored in the Replay Memory.503

• Simulation: For each pi = {si,ai, hi, si+1}, i ∈ [1, j], sampled from the Replay Memory, the agent504

performs simulations starting from the newly added node si+1 to the end of the transmission. During505

this simulation phase, the target DNN estimates the value of possible state-action pairs and selects506

actions following the same exploration strategy during Selection stage until a terminal state is reached.507
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• Backpropagation: The outcomes of the simulation, including FRI values, throughput, and timestamps508

of each FRI between visited states, are backpropagated up the tree to update the target Q-value.509

The cumulative reward obtained through this informed simulated rollout is used as the reference Q-value,510

i.e., target Q-value, serving as a training target for the DQN. By minimizing the difference between the511

predicted and target Q-value for each pi ∈ P as defined in (22), the DQN learns to accurately estimate512

long-term expected throughput over the episode.513

V. EXPERIMENT DESIGN AND RESULTS514

In order to evaluate the performance of our algorithms, we tested our algorithms in a test tank and at515

sea in Singapore. This section provides a detailed description of the experiment setup, testing procedure,516

and results.517

A. Experimental Setup518

In our experiments, the TX and RX nodes are WNC-M25MSS3 modems [53] from Subnero. These519

modems support two types of links: CONTROL and DATA. The CONTROL link employs Frequency-520

Hopping Binary Frequency Shift Keying (FHBFSK) as the modulation technique and LDPC code as the521

FEC method. In different environments, the LDPC code rate and power level of the CONTROL link are522

pre-tuned and remain static. On the DATA link, the LDPC code is used as FEC, and OFDM serves as523

the modulation technique. For each FRI, the number of subcarriers, cyclic prefix length, and bandwidth524

in OFDM are tuned adaptively. The “test” mode on the DATA link in the WNC-M25MSS3 modems can525

be enabled or disabled.526

Frames transmitted over the CONTROL link serve two purposes. The first purpose involves sending527

frames containing modems’ modulation and setup information at the beginning of each FRI. Specifically,528

this information encompasses the number of subcarriers, cyclic prefix length, and bandwidth in the OFDM529

system, the LDPC code rate, “test” mode information, and FRI value. Secondly, the CSI feedback from530

the RX modem to the TX modem is sent over the CONTROL link. The feedback frame contains measured531

BER statistics along with the number of bits transmitted during one FRI.532

To ensure sufficient reception of frames over the DATA link without compromising throughput unnec-533

essarily, we should consider an appropriate wait duration on the RX modem after the modulation setup.534

This wait duration, denoted as τwait, is calculated as hjτj , where τj represents the transmission duration535

of each frame in the j th FRI. Upon receiving the frame with the modulation and setup information of536
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modems over the CONTROL link, the RX modem triggers the waiting phase for the upcoming hj frames537

over the DATA link, lasting for τwait = hjτj .538

The operational procedures on the TX modem and RX modem are detailed in Algorithm 1 and Algorithm539

2, respectively.540

Algorithm 1 Operations on TX Modem over Transmission

INITIALIZATION: state s1 = {θ1,η1,ω1, n
′
1 = 0, k1 = 0.5} where θ1 is randomized, ω1 is pre-trained

in Section V-B and η1(a1) = 0.18 for a1 ∈ A.
for j ∈ [1, J ] do

Estimate BER ϵ̂j(aj) for aj ∈ A using (1).
Determine FEC rate ρ(ϵ̂j(aj)) for aj ∈ A using Table IV.
Select aj using (18) and hj using (23).
Determine whether to enable or disable “test” mode.
Transmit frame carrying modulation and “test” information over CONTROL link.
Transmit hj frames over DATA link.
Detect and decode feedback frames from the RX modem over the CONTROL link.
perform state transition sj → sj+1.
if n′

j+1 ≥ 1 then
Stop transmission.

end if
end for

Algorithm 2 Operations on RX Modem over Transmission
while receive frame over CONTROL link do

Decode and Modulate.
Enable or disable “test” mode according to the “test” mode information.
Calculate τwait.
while in τwait do

if receive frame over DATA link then
Decode and store BER.

end if
end while
Send feedback frame to TX modem.

end while

B. Pre-training of Feedback Model541

The tunable OFDM parameters offer a wide range of potential values, resulting in a considerably large542

action space [A × H]. Training of the model M(·) in sea trials setting becomes challenging and time-543

consuming. To address this, we opt to pre-train M(·) in a test tank, as depicted in Fig. 3. This controlled544

and safe environment allows us to learn the initial features and patterns of model M(·), denoted by ω̂.545

For the CONTROL link, we utilized LDPC with a 1
3

rate FEC, and we set the power level for both DATA546
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and CONTROL links to 155 dB re 1µPa on TX and RX modems. Each pre-training iteration followed547

the operational procedures outlined in Algorithm 1 and Algorithm 2 and was terminated once N bits had548

been transmitted. The ωJ obtained at the terminal state sJ of each iteration was retained and served as the549

initial ω1 for the subsequent iteration. The propagation delay is negligible in the test tank. During the pre-550

training of ω̂, we assumed different distances l between the TX modem and RX modem, specifically 1, 2,551

or 3 km. Consequently, we incorporated τpd =
2
3
, 4
3
, 2 s into each FRI to account for the impact of various552

propagation delays. After 100 pre-training iterations, the refined ω̂ was employed as the initial value of553

ω1 in subsequent experiments, including those conducted in the test tank, sea trials, and simulations.554

C. Tank Experiment555

We first tested our algorithm in the same test tank shown in Fig. 3. We used the same two WNC-556

M25MSS3 modems from Subnero, positioning them in four different locations as illustrated in Fig.9. In this557

setup, the CONTROL link employed LDPC with a 1
3

rate for FEC. The power levels for both CONTROL558

and DATA links were set to 155 dB re 1µPa on TX and RX modems. The selection of modulation schemes559

consistently followed (18). Meanwhile, we compared our feedback scheduling algorithm, TS-DQN, with560

alternative strategies: a Random strategy, which selected h randomly between 1 and 20; a Fixed strategy,561

where h was predetermined at 5, 10, 15, or 20; and a Time-varying policy, in which FRI grew with n′
j ,562

the ratio of transmitted bits. Additionally, we evaluated TS-DQN against the classical DQN approach563

implemented as described in [20] (referred to here as “DQN”). The traditional DQN employs the Bellman564

equation for Q-value updates, defined as follows:565

Q̂(sj ,aj , hj) = (1− α)Q̂(sj ,aj , hj) + α
(
rj + δV (sj+1)

)
, (24)

566

V (sj) = max
aj∈A

Q̂(sj ,aj , hj), (25)

where the learning rate α = 0.1 and the discount factor δ = 0.9. In this implementation:567

• The state is the same as sj .568

• The action is the FRI hj , determined according to (23).569

• The reward is the immediate throughput achieved during each FRI, as defined in (2).570

This setup mirrors the framework outlined in [20], allowing a direct comparison between DQN’s iterative571

Bellman-based updates and TS-DQN’s tree search strategy for reward evaluation. Each transmission run572

employing different feedback strategies was terminated until N = 100, 000 bits have been transmitted.573
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Fig. 9: 4 different deployments in the test tank.

When calculating with negligible propagation delays τpd in the test tank, the throughput results are574

demonstrated in Fig. 10. To observe the impact of propagation delays, we introduced a transmission575

distance l as 3 km, resulting in a propagation delay of τpd = 2 s. The throughput results with propagation576

delays added are presented in Fig.11. Notably, when propagation delays are negligible, selecting a smaller577

FRI value enables the AMC model to converge more quickly by acquiring CSI feedback with fewer578

transmissions, effectively functioning as an optimal strategy in such scenarios. For the Fixed FRI policies,579

we can see the throughput decreases gradually as the fixed FRI value increases. The experimental results580

demonstrate that the proposed TS-DQN algorithm effectively selects smaller FRI values during the initial581

training stage of the AMC model, enabling quicker feedback updates. Along with the transmission, both582

TS-DQN and Time-varying strategies increment the FRI value to save time on propagation while still583

ensuring close-to-optimal AMC performance. However, the slower FRI adjustment speed of the Time-584

varying strategy, compared to our TS-DQN, results in lower throughput. When propagation delays are585

introduced, the advantages of TS-DQN become prominent because of its intelligence in saving time on586

propagation delays and feedback duration when the AMC strategy performs well. Fig.11 also shows587

the throughput results of the Fixed policy with a small value, like 5, and the Time-varying policy588

are significantly reduced. This is because they waste time requesting unnecessary feedback when the589
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Fig. 10: Tank throughput comparison before propagation delays added.

AMC strategy is already performing well. Conversely, a large fixed FRI value, like 20, leads to slow590

convergence when the agent has limited channel knowledge at the beginning of transmission, thereby591

hindering throughput. The baseline DQN model from [20] demonstrates lower throughput compared to TS-592

DQN. The classical DQN algorithm relies on the Bellman equation to update Q-values, which incorporates593

immediate rewards and the maximum estimated future reward. Experiment results demonstrate that the594

classical DQN tends to select conservative, smaller FRI values at each state. While smaller FRIs provide595

quicker feedback and facilitate faster system exploration, the time lost due to extensive propagation delays596

reduces overall throughput. In contrast, TS-DQN evaluates the reward more comprehensively by expanding597

a search tree to terminal states. This approach accounts for the cumulative effects of decisions over entire598

trajectories, resulting in higher throughput and improved system performance.599

D. Sea Trials600

Sea trials were conducted in Singapore waters as shown in Fig.12, with an experimental setup illustrated601

in Fig.13. Two WNC-M25MSS3 modems were used as TX and RX nodes. The TX modem was controlled602

from a nearby ground station via a laptop. A separate laptop connected to the RX modem was responsible603

for receiving modulation setup information, guiding the RX modem in modulating and receiving frames,604

and instructing the RX modem to transmit feedback frames. On Day 1, both TX and RX modems were605

deployed in a marina, with the RX modem positioned 100 m from the TX modem. The depths of TX and606

RX modems were d1 = 5 m and d2 = 3 m, respectively. On Day 2, the RX modem was deployed from a607
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Fig. 11: Tank throughput comparison after propagation delays added.

Fig. 12: Sea trial environment: day 1 (left) and day 2 (right).

boat at a distance of 223 m from the TX modem. The depths of TX and RX modems were d1 = 3 m and608

d2 = 6 m, respectively. In our experimental setup, both TX and RX modems employed LDPC with a 1
6

rate609

for FEC on the CONTROL link. The power levels were configured at 175 dB re 1µPa for the TX modem610

and 185 dB re 1µPa for the RX modem. Each run was terminated after transmitting N = 100, 000 bits,611

following the procedures outlined in Algorithm 1 and 2 for the TX and RX modems, respectively. On Day612

1, the recorded throughput for each feedback strategy, the TS-DQN, Random, Fixed, and Time-varying, is613

averaged over 20 transmissions. On Day 2, we did the comparison between our TS-DQN and the baseline614
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Fig. 13: Sea trial deployment.

Fig. 14: Sea trial throughput comparison before propagation delays added on Day 1.

DQN model from [20]. The recorded throughput for these two feedback strategies is averaged over 10615

transmissions. Fig.14 and Fig.16 depicts results incorporating the actual delay propagation (τpd ≈ l
1500

s616

where l = 100 and 223 m on Day 1 and Day 2 seperately), while Fig.15 and Fig.17 presents throughput617

assuming a distance l = 3 km.618

The timing diagram of a series of transmissions from the sea trial is depicted in Fig. 18 where frames619

labeled “test frames” indicate the “test” mode is on and frames labeled “data frames” indicate the “test”620

mode is switched off. The sea trial throughput results demonstrate a decrease when compared with the621

tank throughput results presented in Fig.10 and Fig.11. This decrease is attributed to the increased noise622

from nearby shipping and construction in the marina. Under the Fixed policy, the throughput shows a623
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Fig. 15: Sea trial throughput comparison after propagation delays added on Day 1.

Fig. 16: Sea trial throughput comparison before propagation delays added on Day 2.

decreasing trend as the fixed FRI value increases, and the advantage of our proposed TS-DQN is not624

notably evident. This is due to the satisfactory convergence speed of the AMC strategy under the Time-625

varying and Fixed policies. When considering propagation delays for a distance of 3 km, the impact of626

the propagation delay increased. Our TS-DQN algorithm outperforms, as it can dynamically determine627

the FRI value based on the channel conditions. Specifically, TS-DQN tends to select a smaller FRI when628

there is limited channel knowledge or when channel conditions change, while it chooses a larger FRI629

when the AMC strategy is optimized or operates in a stable channel condition. With reduced ship traffic630

noise, the environment on Day 2 facilitated an increase in the average throughput for both the TS-DQN631

and DQN models. The comparison with the DQN model from [20] underscores the superior performance632
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Fig. 17: Sea trial throughput comparison after propagation delays added on Day 2.

Fig. 18: An illustration of the timestamps in frame exchange between the TX and RX modems in the sea
trial.

Notes: Frames labeled “test frames” indicate the “test” mode is on and frames labeled “data frames” indicate the “test” mode
is switched off.

of our TS-DQN approach, particularly in adapting to dynamic, real-world environments.633

VI. SIMULATION AND RESULTS634

Sea trials validated algorithm performance in realistic UAC conditions. Because the test tank and sea635

trials offered limited channel conditions, we then verified our algorithm in more diverse underwater636

environments via simulations. We used a surrogate model to represent the DATA link of different UAC637

environments which was built based on [54], where the Pekeris ray model with red Gaussian noise was638

employed. The Pekeris ray model is a very fast fully differentiable 2D/3D ray model for isovelocity639

range-independent environments. There were some parameters in the Pekeris ray model we could modify,640

such as the bathymetry with a constant depth, and the ambient noise model with variance σ2. We fixed641

the isovelocity sound speed profile with sound speed c = 1540 m/s, a flat sea surface, and a sandy clay642
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seabed. We chose the standard deviation in the red Gaussian noise to be 106 (Pa)2/Hz. The transmission643

distance l and the depth of the TX node and RX node d1 and d2 for different simulation surrogate models644

are listed in Table. V.645

In the simulation, the TX and RX nodes ran on the same machine, and the measured BER was provided646

directly by the surrogate model. Therefore, the duration of frames containing modulation information and647

feedback no longer existed. To be consistent with the practical setup in the sea trial, we assumed the648

τm = τfd = 2.7 s. The propagation delay τpd was determined by the distance l, i.e., τpd =
l

1540
s. The FEC649

selection rule was identical to Table IV. To better simulate the real environment, if the measured BER650

given by the environment surrogate model was less than the BER limit of each LDPC rate, the frame had a651

very high probability, 90%, to be successfully received. Meanwhile, a frame had a probability of 10% to be652

received successfully even when its measured BER was larger than the given BER limit. We compared our653

feedback strategy TS-DQN against Random, Fixed, Time-varying, and NN (our previous work presented654

in [13]) strategies. The simulation was stopped when N = 100, 000 bits had been transmitted. The possible655

values of number of subcarrier nc were selected from {64, 128, 256, 512, 1024, 2048, 4096, 8192}, while656

the value of np ranged from 0 to 8192. Additionally, the possible occupied ratio of the 24 KHz was chosen657

from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.658

For different feedback strategies, transmission was executed 20 times given a different UAC surrogate659

model.

TABLE V: UAC SURROGATE MODEL PARAMETERS.

Surrogate Model Water depth TX node depth d1 Rx node depth d2 Distance l

1 50 m 25 m 25 m 3000 m

2 50 m 25 m 25 m 2000 m

3 10 m 5 m 5 m 100 m
660

For different surrogate models listed in Table V, the throughput results of different feedback strategies661

are presented in Fig. 19, Fig. 20, and Fig. 21. The Random strategy yields significantly lower throughput662

compared to the proposed TS-DQN strategy. For the Fixed strategy, the median throughput initially663

increases as the FRI increases but gradually decreases when FRI exceeds a certain point for l = 2000 m664

or 3000 m. However, for l = 100 m, the throughput continues to increase as FRI increases. This is665

due to the surrogate model being sensitive to the distance l between the TX node and RX node. The666

channel becomes more challenging, i.e., higher probability to include errors in the transmitted frames as667
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Fig. 19: Results of average throughput with different feedback strategies given surrogate model 1.

Fig. 20: Results of average throughput with different feedback strategies given surrogate model 2.

l increases. Increasing the value of FRI does not directly improve the throughput since it slows down668

the convergence speed of AMC when UAC channels are complex. That explains why a fixed value of669

FRI determined beforehand is not conducive to optimizing throughput and varies with different UAC670

channels. The difficulty of selecting an optimal FRI in advance emphasizes the significance of studying671

dynamic feedback scheduling strategies like TS-DQN to enhance AMC and optimize channel throughput.672

Additionally, our comparison of TS-DQN with the DQN proposed in [20] shows that TS-DQN exhibits673

improved robustness in complex channel conditions.674
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Fig. 21: Results of average throughput with different feedback strategies given surrogate model 3.

VII. DISCUSSION AND FUTURE WORK675

We integrated knowledge of channel physics to design a heuristic BER estimation model for AMC,676

thereby reducing the dependency on extensive datasets for channel prediction. The BER estimation from677

this model captured the median of the measure BER gathered from Singapore waters. To account for678

variations and enhance robustness in practical UAC channels, we used the GPR algorithm to predict the679

BER upperbound, ensuring that at least 75% of the frames were successfully transmitted. Results from both680

tank and sea experiments, as well as simulations, affirmed the efficacy of our proposed BER distribution681

predictor in operating AMC. Notably, even in preliminary sea trials with limited channel knowledge, our682

AMC strategy can explore a variety of MCSs and procure valuable feedback CSI for AMC model training.683

We also introduced an algorithm framework, TS-DQN, which incorporated tree search and DQN684

to dynamically determine the time to tune MCSs and obtain feedback. TS-DQN capitalized on the685

strategic planning capability of tree search and the generalization ability of DQN. Both experimental and686

simulation results underscored the advantage of TS-DQN over NN and other feedback scheduling policies687

in optimizing long-term channel throughput. Specifically, when compared to the best fixed-feedback policy,688

our TS-DQN algorithm reduced the transmission time for all N bits by up to 25%. This significant689

achievement underscored its potential value in the UAC market.690

Our future efforts will focus on improving the MDP algorithm we introduced, while simultaneously691

tackling the joint exploration and exploitation during the selection of MCSs and FRI. Additionally, the692

existing heuristic BER estimation model encourages us to seek more universal methods for integrating693
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physical information into the AMC algorithm design. Potential research directions include exploring the694

application of our methods to modulation techniques beyond OFDM. Ultimately, we aim to improve the695

adaptability and robustness of our algorithm across various communication systems.696
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