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Abstract

High-accuracy localization is essential for underwater reinspection missions, which often require revisiting

sites with complex structures for inspection and maintenance. Traditional localization systems—such as inertial

navigation, Doppler velocity logs, and acoustic positioning—frequently fall short in accuracy or cost-effectiveness

for these tasks. Machine learning-based visual relocalization presents a promising alternative, estimating poses from

monocular images captured by onboard cameras using models trained on data from previous deployments. In this

work, we evaluate the performance of such learning-based estimators in both clear and turbid water environments,

examining the effects of color information, model architecture, and training data diversity. We further propose

a novel view synthesis-based strategy to augment training data, enhancing pose estimation at previously unseen

viewpoints. Finally, we improve localization robustness by fusing pose estimates with additional sensor inputs via

an extended Kalman filter, resulting in smoother and more accurate trajectories.

Index Terms
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I. INTRODUCTION

LOCALIZATION plays a crucial role in underwater reinspection missions [1]. These are tasks

carried out by underwater vehicles to examine the health and function of submerged structures like

pipelines, offshore platforms, and ship hulls, required to ensure the safety and durability of infrastructure

vital to industries like oil and gas, renewable energy, and maritime transport [2], [3]. They stand apart

from many underwater navigation tasks in their complexity and the precision required. Unlike general

L. Peng and M. Chitre are with the Acoustic Research Laboratory, Department of Electrical and Computer Engineering, National University
of Singapore, Singapore 119227 (e-mail: luyuan@nus.edu.sg; mandar@nus.edu.sg).

H. Vishnu, B. Kalyan, R. Mishra and S. P. Tan are with the Acoustic Research Laboratory, Tropical Marine Science Institute, National
University of Singapore, Singapore 119222 (e-mail: harivishnu@gmail.com; bharath@nus.edu.sg; rajat@nus.edu.sg; soopieng@nus.edu.sg).

Y. M. Too is with Subnero Pte. Ltd, Singapore 159836 (email: too@subnero.com).



2

underwater navigation that involves moving from place to place, often prioritizing pathfinding and ob-

stacle avoidance, reinspection missions demand detailed, close-range examination of often complicated

underwater structures [3]. As such, reinspection missions require the precise positioning and orientation

of underwater vehicles to ensure thorough coverage, accurate data collection and the safety of the vehicles

and the structures themselves.

In underwater environments, the use of global positioning systems is hindered due to the rapid dissi-

pation of electromagnetic waves in water [4]. Traditionally, underwater localization has relied on inertial

navigation systems (INS), Doppler velocity loggers (DVL) and acoustic positioning systems. However,

these methods face significant challenges in the context of inspection missions. Acoustic navigation is

often compromised by shadowing effects and multipath interference near marine structures, which can

severely distort signal paths and reduce accuracy. Consequently, achieving precise acoustic navigation

requires complex and costly setups [5]. Furthermore, INS and DVL, despite their widespread use, suffer

from an accumulation of errors over time [5]. This limits their ability to provide the positioning accuracy

required for detailed inspection of underwater structures. Although high-grade INS and DVL may be able

to provide sufficient accuracy, they, too, come with high costs.

In recent years, advancements in underwater localization have explored the use of optical sensors,

such as cameras [6]. Some of these approaches necessitate the deployment of active markers [6], [7]

or elaborate setups by divers [8], [9], adding complexity and expense. In contrast, visual localization

methods—estimating camera poses from images of the surrounding scene—present a more cost-effective

solution. Since inspection vehicles typically come equipped with cameras, visual-based localization can

be implemented without the need for extra hardware. Moreover, visual-based localization methods, such

as simultaneous localization and mapping (SLAM) [5], visual odometry [10]–[14] and visual relocaliza-

tion [15], [16], have shown promise in navigating terrestrial and underwater environments.

Underwater reinspection missions typically involve the vehicle returning to the same sites for routine

monitoring, assessment and/or maintenance. In this sense, these missions have another difference from

normal underwater navigation tasks in that they have prior information of the scene or environment

available, i.e., the environment is “known” to some degree after the first mission. We can use this available

prior information to perform relocalization. This approach can be made effective if in the initial mapping

run, we collect positioning information as accurately as possible using precise (and typically expensive

and complex) positioning infrastructure such as ultra-short baseline acoustic positioning to characterize the
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environment. Using these data collected, visual relocalization methods can directly estimate poses from

camera images in the following runs, significantly reducing the cost and complexity of reinspection. While

SLAM and visual odometry are effective for general navigation, they do not utilize the additional prior

information available in reinspection missions. In contrast, visual relocalization uses prior information

and thus allows us to use more affordable vehicles and setups for localization in subsequent reinspection

missions, significantly simplifying operations.

Visual relocalization techniques are categorized into feature-based methods such as Active Search [17],

and deep-learning methods like PoseNet [15]. Active search achieves image-based localization by sys-

tematically identifying and matching 2D features in query images with 3D points in a scene model. In

contrast, PoseNet is a deep learning model that utilizes a pretrained convolutional neural network (CNN)

to directly regress the 6-degree-of-freedom (6-DOF) camera pose from images, bypassing the need for

feature extraction and matching.

While Active Search has demonstrated state-of-the-art results in structured terrestrial environments, its

reliance on salient features [15] and high computational cost [18] limits its suitability for underwater

scenes, which are often characterized by sparse features and obscured textures due to poor visibility.

Learning-based regressors inspired by PoseNet offer an appealing alternative for these environments by

enabling fast and robust estimations.

Numerous methods have since been developed by building upon the PoseNet framework. For example,

DSAC [19] combines learning-based regression with differentiable RANSAC for robust and accurate

localization, though at significantly higher computational cost. VidLoc [20] extends PoseNet by modeling

temporal dependencies across video sequences using recurrent networks. EffLoc [21], in contrast, retains

a single-image input at inference but uses a transformer-based encoder to capture long-range spatial

dependencies. MapNet [22] introduces additional geometric constraints during training by incorporating

sensor-derived relative poses to improve consistency and robustness.

While these methods achieve impressive results in terrestrial applications, they all share PoseNet

as a foundational architecture. In this work, we focus on PoseNet-based architectures for underwater

relocalization due to their lower computational cost and simpler training requirements. Previous research

has demonstrated PoseNet’s efficacy in conducting inspection tasks within tanks with toy structures and

simulated underwater environments [16], [23], [24]. However, the performance of machine learning-based

pose estimators with realistic structures and in at-sea environments has not been thoroughly investigated.
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A key limitation of learning-based pose estimators is their reliance on diverse and comprehensive training

data. In underwater environments, collecting such data is costly and labor-intensive. To address this, we

propose the use of Novel View Synthesis (NVS) models to generate augmented training data from limited

original samples. Recent advancement in NVS models, such as Neural Radiance Fields (NeRF) [25] and

3D Gaussian Splatting (3DGS) [26], can synthesize photorealistic views of complex 3D scenes from

a sparse set of input views by optimizing an underlying continuous volumetric scene function. When

provided with a camera pose, NVS models utilize classical volumetric rendering techniques to project

synthesized colors and densities into an image [25]. Using a trained NVS model, we can render images

from any viewpoint within the boundary, allowing us to bypass the need for extensive physical data

collection. We can then use these rendered images to augment our training data.

In this paper, our contributions are as follows:

1) We examine the performance of neural-network based pose estimators with different configurations

in inspection missions in confined waters. We investigate the effects of different parameters, such

as using RGB information versus grayscale, on the performance. We present the dataset collected,

methods employed and results obtained in Section II.

2) We propose a new loss function, d-loss, incorporating the geometry of the inspection missions

for training the pose estimators. The d-loss provides interpretability, and improves computation

efficiency and estimation performance. We present the method and results in Section II.

3) We utilize underwater 3D NVS techniques to generate augmented training data. We demonstrate

the performance improvement due to this in Section III.

4) We enhance the localization performance by integrating our pose estimation model with data from

additional sensors, such as altimeters and compasses. We use an extended Kalman filter (EKF)

for tracking and fusion. In Section IV, we present these methods and results showing improved

robustness and accuracy of this approach.

5) We evaluate the performance of our proposed methods in at-sea environments. We present these

results and discuss the overall performance of the entire pipeline in Section V.

Finally, we conclude this paper in Section VI.

II. POSE ESTIMATION

Nielsen et al. [23] evaluated the performance of PoseNet in a small tank, inspecting a subsea connector

attached to a metal stick. In our previous work, we assessed the performance of various pretrained CNNs
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as pose estimators in a simulated underwater environment inspecting a subsea pipe [24]. In this section,

we evaluate the performance of visual localization using two neural-network model architectures inspired

from PoseNet [15]. The data for training and testing were collected from an artificial ocean basin at

the Technology Center for Offshore and Marine, Singapore (TCOMS) [27]. The originally presented

PoseNet [15] works on RGB images. Here, we also evaluate the visual localization performance using

grayscale images instead of RGB images to determine if similar accuracy can be achieved with higher

efficiency, based on the intuition that underwater images typically have limited color information. Finally,

we investigate the models’ capability for (1) estimating pose on test images from the same dataset (i.e.,

capability to interpolate within same dataset), and (2) their capability to generalize to datasets outside that

used for training, by using data from different runs for training and testing, which have different paths

and conditions during acquisition.

A. Methods

1) Architecture: The objective of PoseNet is to estimate a 6-DOF pose from a single monocular RGB

image given as input to a neural network. The pose consists of the position (in 3D coordinates, x-y-z) and

the orientation, which is represented in terms of a quaternion. Thus, the model outputs a 7-dimensional

(7D) estimated pose vector y = [p̂, q̂] containing a position vector estimate p̂ and an orientation vector

estimate q̂, whereˆ represents an estimate.

The PoseNet model originally presented by Kendall et al [15] was a CNN, a modified version of

the GoogLeNet architecture [28] pretrained on the ImageNet dataset [29], with the softmax classifiers

changed to affine regressors, and another fully connected (FC) layer of feature size 2048 inserted before

the final regressor. However, regressing a 7D pose vector from a high dimensional output of the FC

layer is not optimal [30]. A later work aimed to tackle this by modifying PoseNet by reshaping the FC

layer of size 2048 to a 32 × 64 matrix and applying four long-short-term-memory networks (LSTMs)

to perform structured dimensionality reduction [30]. This algorithm, which we refer to as CNN+LSTM,

showed a performance improvement compared to PoseNet in terrestrial environments [30], and also in

an underwater tank environment [16]. We implement and evaluate both model architectures – the CNN

(shown in Fig. 1) and the CNN+LSTM (shown in Fig. 2). Additionally, we assess the performance of

these using a pretrained ResNet50 [31] as the backbone.

2) Loss Function: Kendall et al [15] used a composite loss function that is a weighted sum of the (1)

L2 loss Lp between the predicted positions and the true positions, and the (2) L2 loss Lq between the



6

Fig. 1: Overview of the CNN-based architecture for visual localization.

Fig. 2: Overview of the CNN+LSTM-based architecture for visual localization

predicted quaternions and the true quaternions:

L = Lp + βLq, (1)

where Lp = ||p− p̂||2 and Lq = ||q− q̂/∥q̂∥||2, and p and q represent the true pose. β is a free parameter

that determines the trade-off between the desired accuracy in translation and orientation. In PoseNet and

CNN+LSTM, the value of β is fine-tuned using a grid search to ensure the expected value of position and

orientation errors are approximately equal, which the authors suggest lead to overall optimal performance.

We refer to this loss function as the β-loss.

We argue that the β-loss is not the optimal approach to our problem, due to three reasons. Firstly, we

argue that optimal performance is not necessarily achieved when position and orientation errors are roughly

equal. Instead, the performance criteria and loss should incorporate geometry and physics relevant to the

inspection task at hand. Secondly, the L2 loss between the predicted and true quaternions does not directly

translate to an orientation error interpretable in degrees or radians, and thus, it does not accurately reflect
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the geometric distance between the predicted and true orientations. Thirdly, searching for the optimal β

value often involves extensive computational resources. This search can become a significant bottleneck,

especially in scenarios where training needs to be done fast.

To overcome these shortcomings, we propose a new loss function more relevant to our problem, the

d-loss, to improve the training effectiveness, interpretability and efficiency. The d-loss is defined as:

L = Lp + dLθ. (2)

Note that we have replaced the quaternion loss in (1) with a loss based on the Eulerian angular difference,

Lθ, which is calculated as follows. We first determine the rotation between the estimated and ground truth

quaternions through quaternion multiplication, ∆q = q (q̂/∥q̂∥)∗, where ∗ denotes the conjugate of the

quaternion. ∆q is a unit quaternion which can be expressed as (r, v⃗) where r is the scalar part of the

quaternion, and v⃗ is the vector part. r is related to a spatial rotation around a fixed point of Lθ radians about

a unit axis by the relation r = cos(Lθ/2) [32], thus Lθ = 2 cos−1(r). We approximate Lθ ≈ π
2
(1 − r),

using a Taylor series approximation, which is valid for small rotation angles where r ≈ 1. For large

angle deviations, this approximation becomes less accurate, and using the exact formula Lθ = 2 cos−1(r)

is recommended. In our use case, however, the model is trained to minimize pose errors, and angular

deviations remain small in practice. The approximation also offers computational efficiency for model

training. The Eulerian angular difference loss provides a more intuitive and direct measure of orientation

error.

Additionally, we replace the hyperparameter weight factor β in (1) which required tuning, with the

average distance d between the camera and the object of interest. In our experiments, d is computed

based on prior knowledge of the inspection setup. In more typical deployments, d can be estimated using

onboard sensors such as forward-looking sonars, or stereo depth estimation. The intuition here is that

this factor translates the rotational error to an equivalent “average” translational error (attributed to the

orientation difference). Thus, the overall loss can be interpreted as the “total positional error” in meters,

including contributions from translational and orientation error components. Note that this formulation

relies on several assumptions typical of underwater reinspection scenarios. It assumes that the vehicle

maintains a relatively constant distance d from the structure during inspection, and that the camera is

generally oriented toward the target (i.e., the bearing is aligned). We also assume the orientation errors

are small enough for the small-angle approximation to hold. These conditions are commonly met in many
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Fig. 3: Schematic showing the interpretation of the orientation error in terms of equivalent translational
error. This assumes slow motion, small angles, and constant range.

kinds of underwater inspection tasks, where deliberate movements are required for safety and image

quality.

The translation between rotational error and the “average” translational error is described as follows.

As illustrated in the example in Fig. 3, if the camera has a pitch orientation error Lθ of θ, the point it

observes on the structure remains roughly the same as if the camera had an equivalent translational error

Lp of h (i.e., moves up by h) for small values of h and θ. Based on the geometry, equivalent translational

error can be expressed in terms of orientation error Lθ and the average horizontal range between the

camera and the structure as:

Lp = dtan(Lθ). (3)

Assuming the case when the rotational error is small, we approximate tan(Lθ) ≈ Lθ. Thus, we obtain:

Lp ≈ dLθ. (4)

This modified loss function ( 2) leverages the inherent geometric relationship between positional and

rotational errors in inspection missions. By converting orientation error into an equivalent translational

error using the physical distance d, both terms are expressed in the same unit (meters). This provides a

more interpretable loss function with physical meaning, and avoids the need for manually tuning trade-off

weights like β, simplifying the scaling challenge in pose estimation.

3) Implementation: To evaluate the effectiveness of deeper backbones, additional LSTM layers, the

proposed d-loss, and the color information in images, we tested multiple configurations of the two visual
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localization network architectures. The details of these configurations are summarized in Table I.

TABLE I
DESCRIPTION OF CONFIGURATIONS

ID Architecture Backbone Loss Color

C1 CNN GoogLeNet β-loss RGB
C2 CNN GoogLeNet d-loss Grayscale
C3 CNN GoogLeNet d-loss RGB
C4 CNN ResNet50 d-loss RGB
C5 CNN+LSTM GoogLeNet d-loss RGB
C6 CNN+LSTM ResNet50 d-loss RGB

During both training and testing for all configurations, we rescaled input images directly into a 224×224

pixels input, deviating from PoseNet’s approach of resizing the images to 256×256 before cropping into

224×224. This adjustment was made to minimize the loss of image information, a concern particularly

acute in underwater images where available information is inherently more limited compared to terrestrial

settings. To speed up training, we normalized the images against the ImageNet dataset’s mean and standard

deviation. Additionally, poses are normalized to lie within the range [-1, 1].

As part of our investigation into color information, we explored the use of grayscale input to reduce input

dimensionality and potentially improve computational efficiency, under the assumption that underwater

images often contain limited useful color information due to turbidity and poor lighting. To preserve the

benefits of transfer learning, we adapted a pretrained GoogLeNet model, which is originally designed

for RGB input, to accept grayscale input. This was done by modifying the first convolutional layer to

accept a single-channel input instead of three channels. The weights were initialized by summing across

the RGB channels of the pretrained filters, and the modified layer was fine-tuned during training. This

modification reduced the number of parameters in the first convolutional layer by a factor of three, since

it now operates on a single channel instead of three.

We used the PyTorch deep learning framework to implement and train the models. The experiments were

conducted using an RTX 6000 Ada GPU. For training, we used the stochastic gradient descent optimizer

for configurations C1, C2, and C3. For the remaining configurations, we used the Adam optimizer. A

batch size of 32 was used. Hyperparameters, including the learning rate, weight decay, and β for C1,

were tuned using grid search strategy over a predefined set of values. The best set of hyperparameters

was selected based on validation performance. Training continued until early stopping was triggered.
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B. Testing in Controlled Environment

The artificial ocean basin at TCOMS is an indoor pool measuring 60 m × 48 m × 12 m. As illustrated

in Fig. 4, a structure was placed in the basin, which consisted of six piles interconnected by metallic

pipes, with each pile comprising three metallic oil barrels. The overall dimensions of the structure were

approximately 3.9 m × 4.6 m × 3.0 m. The whole structure was yellow in color. To better differentiate

the barrels, duct tape strips of various colors with different patterns were stuck on each barrel to create

uniquely identifiable features.

We used a customized remotely operated vehicle (ROV) based on the BlueROV2 platform. The ROV

was equipped with a 1080p monocular camera provided by Blue Robotics for collecting RGB image data.

For navigation and sensor integration, the vehicle used the BlueROV2 Navigator Flight Controller (NFC)

mounted on a Raspberry Pi 4. The NFC includes an onboard IMU, compass, depth sensor, and Analog-

to-Digital Converter sensors. The compass and depth sensor were used to provide orientation and depth

information, respectively. To estimate the horizontal (x-y) position of the ROV, we employed a customized

ultra-short baseline (USBL) positioning system. This setup was based on a Subnero high-speed acoustic

modem (model WNC-S40HSS4+xCh) configured with four receivers and deployed near the operating

region, as illustrated in Fig. 5. The USBL system enabled accurate localization of the vehicle during the

trials in the TCOMS basin.

We executed three trials within the environment at different depths to gather data while the ROV

surveyed the structure. Each trial features a roughly similar lawnmower trajectory around the structure,

with a total path length of approximately 37 meters per trial. The trials were conducted at average depth

levels of -1.5 m, -3 m, and -4 m, respectively.

The sensor data from the vehicle was captured using ROS (Robot Operating System) and sampled at

a frequency of 5 Hz. We synchronized the sampled data with the USBL position estimates based on

timestamps and interpolated where necessary. For ground truth, we used the x and y coordinates from the

USBL, and the z coordinate and the orientation data from the NFC.

From the recorded data collected during these trials, we curated three datasets, referred to as D1, D2,

and D3. These datasets vary in depth and size, as summarized in Table II. Notably, D3 was constructed by

downsampling the raw data from the third trial to create a more challenging dataset for testing purposes.

We use D1 as the primary dataset to evaluate the models’ capability of interpolation. We randomly

select 60% points from the data for training, 20% for validation and 20% for testing. We further assess
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(a) Schematic of the structure.

(b) Topview of ROV surveying the structure.

Fig. 4: The structure surveyed in the TCOMS facility.
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Fig. 5: The USBL setup at TCOMS to estimate the location of the ROV (shown).

TABLE II
DESCRIPTION OF DATASETS

ID Dataset Name Dataset Size

D1 Clear Water-Deep 2165
D2 Clear Water-Shallow 2956
D3 Clear Water-Mid 933
D4 Clear Water-NVS 4193
D5 Sea Water-1 2360
D6 Sea Water-2 735
D7 Sea Water-NVS 18918

the models’ ability to generalize to new depths by employing D1 as the training dataset and D3 for

validation and testing. Additionally, we investigate the impact of incorporating data from diverse depths

on the models’ generalization performance by using D1 and D2 together as the training data and D3 as

the validation and test data.
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C. Results & Discussions

1) Model performance: We present the performance of different configurations in Table III. The

benchmark for our evaluation is the performance of C1.

TABLE III
PERFORMANCE OF ALL CONFIGURATIONS TRAINED AND TESTED ON DATASET D1. Lp

AND Lθ TABULATED ARE THE MEDIAN OF ESTIMATES ACROSS THE TEST DATA. L WAS
CALCULATED USING 2 WITH d = 3 M. THE BEST PERFORMANCE FOR EACH METRIC IS

HIGHLIGHTED IN BOLD.

ID L (m) Lp (m) Lθ (°) Inference
time (ms)

C1 2.41 2.36 0.86 2.20
C2 0.61 0.53 1.50 1.65
C3 0.41 0.36 0.99 1.62
C4 0.34 0.29 0.88 1.16
C5 0.30 0.22 1.51 0.78
C6 0.19 0.12 1.34 0.77

We observe the following:

1. Comparing the performance of C3 against C1, our results demonstrate that training with our proposed

d-loss significantly enhances model performance, especially in terms of the overall performance metric

L. This improvement can be attributed to the simplicity and ease of use of the d-loss. Unlike the β-loss,

which requires extensive hyperparameter tuning through grid search to identify an appropriate trade-off

between translation and rotation errors, the d-loss eliminates this need by expressing both components

in the same unit. While an optimally tuned β may achieve comparable results, the d-loss performs well

out-of-the-box, reducing the tuning burden and yielding stable, reliable performance.

2. Comparing the performance of C2 against C3, it can be observed that using grayscale images shows

significantly worse performance and too little an improvement in inference time, contrary to our initial

expectation. The worse performance of grayscale images can be attributed to the fact that since D1 was

collected in a non-turbid fresh water environment, the color information in the underwater images is not as

limited as one might anticipate in an image taken in a sea environment. As shown in Fig. 6, the underwater

RGB images in D1 retain valuable color information that may provide distinguishing features in these

environments. Thus, the grayscale images have much less information than RGB images and thus lead

to poorer performance. The lack of improvement in inference time is due to the fact that we only reduce

the number of channels in the first CNN layer of the pretrained model, resulting in a minimal reduction
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in computational load. To achieve more substantial computational savings, the entire model architecture

would need to be better streamlined for grayscale images, not just the initial layer.

3. Comparing the performance of C6 to C5 and C4 to C3 shows that using ResNet50, a deeper

network, as the backbone, improves performance for both CNN and CNN+LSTM. This is likely due

to ResNet50’s higher representational capacity and its residual connections, which facilitate better feature

extraction and gradient flow during training. These benefits are especially useful in underwater scenes

where discriminative features may be subtle or degraded. The observed improvements were consistent

across several configurations, indicating that the choice of backbone architecture plays a substantial role

in pose estimation accuracy.

4. Comparing the performance of C6 to C4 and C5 to C3 shows that the CNN+LSTM architecture

consistently outperforms the CNN architecture. This improvement can be attributed to the LSTM layers’

ability to perform structured dimensionality reduction, helping the network learn more meaningful and

stable pose representations.

Among all the configurations, C6, which uses the CNN+LSTM architecture with the ResNet50 backbone

and is trained using the proposed d-loss, performs the best, achieving 0.12 m of positional accuracy and

1.34°of orientation accuracy with an inference time of 0.77 ms.

2) Generalization performance: We test the performance of generalization using the model with the

best configuration, C6. We first trained the model on D1 and tested on D3. A significant performance

degradation is observed, as shown in the first row of Table IV. This is on expected lines because the

test data is sampled from a different distribution than the training data with possibly different paths and

conditions, and deep-learning models often fail to extrapolate beyond the bounds of the training data.

To address this issue, we evaluate the use of a larger and more diverse training dataset, by expanding the

training data to include both D1 and D2. This augmentation introduces a wider distribution of data, notably

enhancing the diversity in depth information. This leads to a 49% improvement in model performance in

overall loss, as shown in the second row in Table IV.

These findings underscore the importance of comprehensive baseline mapping to collect sufficiently

diverse training data. This is essential for training models that are robust enough to perform accurate

localization during reinspection tasks.



15

TABLE IV
PERFORMANCE OF CONFIGURATION C6 ON DATASET D3. Lp AND Lθ ARE MEDIAN

VALUES ACROSS THE TEST DATA. L WAS CALCULATED USING 2 WITH THE AVERAGE
DISTANCE d = 3 M. THE BEST PERFORMANCE FOR EACH METRIC IS HIGHLIGHTED IN

BOLD.

Training Dataset EKF Color Jittering Performance Metrics

L (m) Lp (m) Lθ (°)

D1 1.45 1.34 2.09
D1+D2 0.75 0.58 3.20
D1+D2 ✓ 0.47 0.47 0.00

D1+D2+D4 0.52 0.40 2.28
D1+D2+D4 ✓ 0.20 0.15 0.93
D1+D2+D4 ✓ ✓ 0.11 0.11 0.00

Camera image Rendered images

Fig. 6: Camera images and NVS rendered images in the controlled experiment in TCOMS. The rendered
images produce photorealistic views of the structure but exhibit discrepancies in brightness. Some of the
rendered views have artifacts in the background as shown in the right-most image.

III. AUGMENTED TRAINING WITH NOVEL VIEW SYNTHESIS

The previous section demonstrated the importance of diverse training data with good coverage of the

surveyed location. Although it may sometimes be possible to collect such data by extensively covering

areas during the baseline mapping run, the practical constraints of cost and labor often limit this approach

or render it infeasible. We explore alternative approaches to improve model performance in such data-

limited scenarios. We propose to use NVS techniques to create models of the 3D scene, and then use

these to generate more images from new aspects to augment the training data. In this section, we present

the methods of augmenting training data using NVS models and the results of this approach.

A. Methods

We first select 540 images from D1 and D2 to train an NVS model for the TCOMS scene. For this, we

employ COLMAP [33], [34], an open-source Structure-from-Motion computation software, to compute

the camera pose associated with each image within an arbitrary reference coordinate.

We employed the nerfacto pipeline from nerfstudio, an open-source library that provides a modular

and user-friendly framework for training, and evaluating NVS-based 3D scene representations [35], as our
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NVS model to render views for training data augmentation. Nerfacto is a simplistic modular NeRF im-

plementation that adopts recent advancements to improve computational efficiency and handle unbounded

scenes [35].

To train the model, we used 540 images from the original trials, along with their corresponding poses

estimated via COLMAP. Inspired by the RobustNeRF variant [36], we replaced the default nerfacto loss

with a robust photometric loss that down-weights inconsistent or noisy regions during training. This

improves rendering quality in scenes with transient features or non-uniform illumination. The details of

training the model are presented in our previous work [37].

To generate novel camera poses for rendering, we applied controlled perturbations to the original

COLMAP-estimated poses. For each pose, we randomly sampled a new depth value within the feasible

range, defined by the minimum and maximum depths observed in the collected data, and replaced only

the z-coordinate to preserve the viewing direction. Additionally, we perturbed the x and y positions by

scaling the vector from the pose to the structure using a random factor sampled from the range [0.8, 1.2],

effectively varying the lateral distance while maintaining orientation toward the target. These synthesized

poses were kept within the scene bounds to ensure rendering consistency. The trained NVS model was then

used to render photorealistic images at these new viewpoints, which were added to the pose estimator’s

training set to improve generalization. In total, we generate 4193 images, and we refer to this dataset as

D4. We then use D1, D2, and D4 for training, and D3 for validation and testing to test the improvement

provided by using the NVS-based augmentation.

Additionally, it is noted that the images in D4 exhibited different brightness levels and background

noise as compared to the original data, introduced during the NVS model reconstruction. To address the

potential degradation due to this, we further augment the data by jittering the color of each image during

training, thus making the pose estimator robust to minute color and lighting changes. For evaluation, we

use the same GPU, framework, and hyperparameter tuning methods as described in the previous section.

B. Results & Discussion

Our results show that utilizing augmented training data generated by a NVS model leads to a significant

enhancement in localization accuracy. Comparing row 2 and row 4 in Table IV, we find that by augmenting

the training data with D4, the overall localization error can be reduced by 30%.

Color jittering augmentation is also highly effective in further improving the model performance, further

reducing the error by an additional 61.5%. We compare the performance of the augmented training with
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color jittering with the performance without augmented training in Fig. 7 and Fig. 8. These plots show

that the proposed augmented training with NVS significantly improves the pose estimator’s accuracy and

reliability in terms of both position and orientation.
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(a) Orientation error over time.

(b) Positional error over time.

(c) 3D trajectory comparison between the ground truth and
model predictions.

Fig. 7: Comparison of pose estimation results with and without NVS-based training augmentation in a
controlled environment.
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Nonetheless, we observed the presence of outliers. Upon examining the data, we found that these

outliers were caused by transient objects, such as the tether shown in Fig. 9(b), which were not present

in the training data.
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(a)

(b)

Fig. 8: Cumulative distribution function (CDF) of (a) orientation and (b) position errors for models trained
with and without NVS augmentation in controlled environment. The plots show that augmented training
with NVS yields significantly lower errors for both orientation and position compared to training without
augmentation.

IV. LOCALIZATION ENHANCEMENT VIA SENSOR DATA FUSION

While the trained pose estimators yield small median orientation and position errors, their estimates

exhibit some volatility. Our model currently treats each sample independently, ignoring temporal context,

and utilizes only the camera inputs during deployment. However, additional information, such as temporal

information and other sensor inputs from the ROV, is available. To enhance localization accuracy and

achieve a more stable trajectory estimation, we propose sensor fusion using an EKF. This section details

the integration of the pose estimator with additional sensor data and presents the results of the sensor
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(a) (b)

Fig. 9: Test images from Clear Water-Mid with amongst the best and worst pose estimation accuracy.
Panel (a) is the image with one of the best pose estimation accuracy and panel (b) is the image with one
of the worst pose estimation accuracy.

fusion.

A. Methods

Given the sequential nature of data in reinspection missions and the availability of additional sensors,

incorporating temporal information and other sensor data presents a viable strategy for improving the

model’s estimation stability and accuracy. Currently, the visual localization model without sensor fusion

occasionally results in estimation of poses that are physically implausible or outliers, in context of the

dynamics from previous poses. By integrating knowledge of the ROV’s physics model and leveraging

previous pose estimates, we can enhance pose accuracy and stability.

Furthermore, during reinspection missions, ROVs are commonly equipped with depth sensors and

compasses, which have a reasonable accuracy. As such, we could use these reliable depth and orientation

measurements during reinspection to further improve the overall localization accuracy.

We assume that the vehicle moves with a constant translational velocity and constant angular velocity

since the vehicle normally moves slowly during inspection missions. Our EKF fuses measurements

from three sources: the pose estimator (x, y, z position and orientation in quaternion form), compass

(orientation), and depth sensor (z position). The filter maintains a 13-dimensional state vector comprising

position, velocity, quaternion orientation, and angular velocity. The structure of the EKF, including its

iterative prediction-update loop, is illustrated in Fig. 10.

The EKF maintains and updates three covariance matrices: the state covariance P, the process noise

covariance Q, and the measurement noise covariance R. The state covariance P ∈ R13×13 reflects the

uncertainty in the estimated state and is propagated and corrected at each timestep. The process noise
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Fig. 10: EKF schematic for sensor fusion.

covariance Q ∈ R6×6 is treated as a tunable hyperparameter and models uncertainty in the velocity and

angular velocity components. The measurement noise covariance R ∈ R12×12 incorporates nominal noise

levels from manufacturer specifications for the compass and depth sensor.

Characterization of the pose estimator’s measurement noise requires a more involved process. The

noise primarily stem from the fact that network estimations are inconsistent and can sometimes exhibit

substantial errors. As such, setting a static value for the pose estimator’s measurement noise, such as

the standard deviation of localization error derived from validation performance, is inadequate. To more

accurately represent the dynamic noise in the pose estimator, we employ dropout techniques at test time for

Monte Carlo sampling from the model output’s posterior distribution. Dropout is a technique commonly

used as a regularizer in training neural networks to prevent overfitting. Recent works have shown that

using dropout during inference can be used to approximate Bayesian inference over the distribution of the

network’s weights at test time, without requiring any additional model parameters [38]. Here, we apply

Monte Carlo dropout at inference - specifically, we enable dropout in the second-to-last fully connected

layer of the pose estimator using a dropout rate of 0.1. At test time, we perform 100 forward passes
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per image and compute the variance across pose predictions. This variance is then used to populate the

relevant entries in R, allowing the EKF to down-weight lower-confidence visual estimates and improve

robustness in uncertain conditions. As sensor biases were minimized through careful calibration prior to

data collection, we did not observe any consistent bias in the compass and depth sensor measurements

during the trials. As such, we assume the measurement noise is zero-mean and unbiased.

B. Results & Discussion

As shown in Table IV, sensor fusion with the EKF consistently improves pose estimation accuracy

across different training setups. For configuration C6 trained on D1+D2 and tested on D3 (see rows 2

and 3), applying EKF reduces the median position error Lp from 0.58 m to 0.47 m, and the orientation

error Lθ from 3.20° to 0.00°. Similarly, for C6 trained with the NVS-augmented dataset (see rows 5 and

6), EKF reduces the position error from 0.15 m to 0.11 m, and orientation error from 0.93° to 0.00°.

This consistent improvement demonstrates the robustness of the EKF-based fusion method in filtering

noisy frame-level predictions and leveraging inertial priors. As also illustrated in Fig. 11, the estimated

trajectory becomes noticeably smoother and more aligned with ground truth. While the inference time

increases by approximately 10 times due to Monte Carlo sampling, this trade-off may be acceptable in

scenarios where pose stability and accuracy are critical.
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(a) Orientation error over time.

(b) Positional error over time.

(c) 3D trajectory comparison between the ground truth and
model predictions.

Fig. 11: Comparison of pose estimation results with and without EKF in a controlled environment.
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V. FIELD TRIALS AT SEA

To further validate our proposed methods, we conducted field trials in a bay near St. John’s Island,

Singapore (SJI). In this section, we present the methods, results and challenges encountered in using our

proposed methods from the previous section in a real-world setting.

A. Methods

We used the ROV to collect data in an at-sea environment, inspecting a submerged pillar. The pillar

selected was approximately 5 m tall and 0.5 m in diameter. Although the pillar was a simple black

structure, the barnacles and algae growing on its surface provided visual features that could be used for

pose estimation. We drove the ROV following a vertical lawnmower path around the pillar, while recording

the video from the camera. Due to the high turbidity in the water, we operated the ROV in close proximity

to the structure with the average distance being 1 m.

The accuracy of USBL in our at-sea experiments was compromised due to high measurement noise

and the absence of detailed information about the deployment geometry. In contrast, COLMAP was

able to produce camera pose estimates with centimeter-level accuracy using structure-from-motion on

the collected images. We therefore used COLMAP to estimate camera poses using the collected image

data. Although these poses are not ground-truth in the absolute sense, they provide a consistent reference

trajectory suitable for evaluating relative pose estimation performance in the field setting.

We collected two datasets, named as D5 and D6, on two different days. Although the inspection

was carried out on the same structure with similar trajectories, there were noticeable differences in

environmental conditions between the two runs. D6 was collected under higher turbidity compared to D5,

resulting in fewer visual features and noisier images. This variability reflects typical challenges encountered

in real-world underwater inspections, where it is difficult to guarantee the same visibility, lighting, or exact

path between mapping and reinspection runs. Samples of images collected in these datasets are shown in

Fig. 12.

We use D5 to train an NVS model following the method described in Section III. New camera poses

are generated using the same approach. The NVS model is then utilized to create an augmented training

dataset, named D7. Samples of images generated at new poses using the NVS model are shown in Fig. 13.

We train the best visual localization architecture configuration, C6, both with augmented training data

(datasets D5+D7) and without any augmentation (only D5). Dataset D6 is used for validation and testing.
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(a) (b)

(c) (d)

Fig. 12: Sample images from Sea Water-1 and Sea Water-2 dataset. Panels (a) and (b) are from Sea
Water-1 dataset, and (c) and (d) are from Sea Water-2 dataset. The images from Sea Water-2 dataset show
higher turbidity and thus fewer features than images from Sea Water-1.

Camera Image Rendered Images

Fig. 13: Camera image and NVS rendered images in the bay near SJI. The rendered images produce
photorealistic views of the structure but exhibit some artifacts and noise depending on the camera pose.

The training methods are similar to those described in Section II.

B. Results & Discussion

As shown in Fig. 14, augmented training with NVS yields significant improvement in both position

and orientation accuracy compared to training without NVS augmentation. The improvements brought

by NVS can be attributed not only to an increase in training samples, but more importantly to the

expanded coverage of viewpoints, especially those that may be underrepresented or missing due to

inevitable variations in inspection trajectories. This highlights the strength of NVS augmentation in realistic
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underwater applications, where achieving complete and repeatable scene coverage is inherently difficult.

With configuration C6 and augmented training, we are able to achieve a position accuracy of 0.17 m and

orientation accuracy of 5.09°. We present the performance of C6 on D6 in Table V. While the median

accuracy is comparable to the performance in the controlled environment, we note that the standard

deviation in the errors are much larger at sea.

(a)

(b)

Fig. 14: CDF of (a) orientation and (b) position errors for models trained with and without NVS
augmentation in at-sea environment. The plots show that augmented training with NVS yields significantly
lower errors for both orientation and position compared to training without augmentation.

Clearly, the real-world setting at sea presents several challenges that are not present in controlled

environments. The biggest challenge is the turbidity of the water, which significantly affects the quality

of the images. Moreover, lighting is inconsistent at different camera poses and on different days, causing
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TABLE V
PERFORMANCE OF CONFIGURATION C6 ON DATASET D6. Lp AND Lθ ARE MEDIAN

VALUES ACROSS THE TEST DATA. L WAS CALCULATED USING 2 WITH THE AVERAGE
DISTANCE d = 1 M.

Training Dataset Color Jittering Performance Metrics

L (m) Lp (m) Lθ (°)

D5 0.80 0.59 12.15
D5+D7 ✓ 0.26 0.17 5.09

(a) (b)

Fig. 15: Test images from Sea Water-2 with amongst the best and worst pose estimation accuracy. Panel
(a) is the image with one of the best pose estimation accuracy and (b) is the image with one of the worst
pose estimation accuracy.

high variablity in the image quality. This introduced three new challenges. First, the noisy images make

it challenging to compute camera poses in COLMAP, resulting in a sparse number of registered images.

Consequently, the EKF model could not be used for performance improvement since it would not be

feasible to assume constant velocity and angular velocity in the vehicle model. Second, the turbidity and

inconsistent lighting in the training data introduced artifacts in the NVS model. Thus, the rendered images

are more noisy compared to images in clear waters, as shown in Fig. 13. Third, the high variability in

image quality can lead to more estimation outliers and large errors during inference. As illustrated in

Fig. 15, some test images contain rich textures and clear structure boundaries, which are favorable for

accurate pose estimation. In contrast, others suffer from turbidity and challenging environment lighting,

resulting in severely degraded visual features and consequently poor pose estimates. All of these factors

contribute to a decrease in the model’s performance.

VI. CONCLUSION

In this paper, we addressed the challenge of localization in underwater inspection missions with a

neural-network based pose estimator. We proposed a new loss function to train the pose estimator, and
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demonstrated that training with d-loss significantly improved the model’s performance in pose estimation

tasks. This improvement is attributed to the incorporation of domain-specific physics, as the d-loss accounts

for the relevant geometric considerations in the inspection mission. Furthermore, this loss function also

lends more interpretability to the loss. Employing the ResNet50 backbone with a CNN+LSTM architecture

allows us to efficiently use the available visual information to estimate the pose, and yielded improvements

in the localization performance as compared to benchmark architectures.

In terms of the generalization, using more diverse data with a wider distribution significantly enhances

the localization performance on test data that lies outside the training distribution. We additionally

investigated the use of NVS techniques to augment training data and showed that this significantly

improves the estimator’s performance with previously unsurveyed poses. Thus, this provides a cost-

effective and information-efficient method to improve the generalization performance without having to

undertake expensive field trials to collect additional data. Further integrating the pose estimator with

an EKF allows us to fuse sensor data with the visual-based estimates, and we demonstrated that this

further improved the performance and stability. We validated our proposed methods in both controlled

environments in a clear water tank and real-world settings at sea.

Overall, our results show that our proposed methods significantly improve the visual localization

performance in both controlled underwater environments and real-world settings and achieve good local-

ization accuracy to within desired limits, providing a cost-effective alternative or complement to existing

localization solutions. Real-world challenges such as turbidity and noise limit the performance achievable,

but the proposed method still performs reasonably, especially when data augmentation using color-based

augmentation is used to robustify the technique against color distortion.

Potential improvements to this technique may include utilizing temporal information (i.e., more than

one image at a time) to improve the accuracy of pose estimates, fusing more data such as control input

information and sonar data, exploring better sensor fusion techniques such as particle filters and using

per-pixel loss together with NVS rendered images to fine-tune the model.

The algorithm developed in this work is also utilized as part of a model-based image compression

technique for low bandwidth scenarios. The details of this approach and the preliminary results are

presented in our previous work [39].
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