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Abstract

Tether-less Control of Remotely Operated Vehicles

by

PENG Luyuan

Doctor of Philosophy in Department of Electrical and Computer
Engineering

National University of Singapore

Underwater inspection and intervention are essential for the maintenance

of subsea infrastructure, maritime operations, and marine research. These

missions are typically conducted using remotely operated vehicles (ROVs),

which rely on real-time image transmission to support human-in-the-loop

control. Most ROVs remain tethered to surface vessels, primarily to meet

their power and communication needs. However, tethers introduce signif-

icant logistical challenges and operational costs, especially in confined or

cluttered environments. Enabling tetherless ROV operation is therefore

highly desirable for improving the flexibility and scalability of underwater

missions. Achieving this, however, remains difficult due to the limitations

of underwater wireless communication. The most commonly used method,

acoustic communication, while effective over long ranges, does not provide

sufficient bandwidth for transmitting the visual data required for real-time

human supervision.

To address the challenge of real-time image transmission over acoustic

links, this thesis proposes a novel image compression framework that achieves

viii



high compression efficiency by leveraging prior knowledge of the inspection

environment. Since underwater inspection missions are often repeated at the

same sites, we exploit this availability of prior information by constructing

a photorealistic 3D model of the scene. In subsequent reinspection missions,

instead of transmitting full camera images, the system transmits compact

latent representations—such as the estimated camera pose within the 3D

model—along with a compressed difference image between the rendered

view and the actual camera image.

To support this compression pipeline, we evaluate the performance of

various novel view synthesis (NVS) techniques for reconstructing underwater

structures, focusing on their ability to produce high-fidelity reconstructions

efficiently under underwater conditions. We design a deep learning-based

visual relocalization method that integrates navigation sensor inputs with

augmented training data generated from the NVS model. This approach

improves localization accuracy and stability, enabling reliable extraction of

the latent representation. To further reduce transmission size and enhance

reconstruction fidelity, we develop a latent optimization technique that

refines the estimated latent by minimizing the discrepancy between the

rendered and observed images through gradient descent on the NVS model.

We validate the proposed method in both controlled indoor test facilities

and real seawater deployments. Experiments demonstrate that it signifi-

cantly outperforms traditional image compression methods in terms of both

compression efficiency and visual quality. The system also proves robust to

ix



common underwater challenges, including turbidity, lighting variation, and

scene changes. By leveraging prior knowledge for efficient image represen-

tation, this work provides a viable solution for enabling tether-less ROV

operation in underwater inspection scenarios.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background

1.1.1 Underwater inspection and intervention

Underwater inspection and intervention refer to monitoring, assessing,

and maintaining structures and equipments located beneath the water’s

surface. They are a critical aspect of oceanic engineering as they optimize

the lifespan of critical infrastructure.

Their applications span a diverse range of industries [1]. In the energy

sector, these activities are critical for the management of infrastructure

such as offshore oil platforms, underwater pipelines, and renewable energy

systems like offshore wind farms [1]. In maritime construction, they ensure

the stability and integrity of essential structures, including bridges, dams,

and port facilities [2]. Furthermore, underwater inspection and intervention

play a crucial role in defense operations, where they may be used to detect

submerged threats, such as underwater mines, and to inspect naval vessels [3,
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4].

Underwater inspection missions are both routine and technically complex.

They are often repeated at the same site to monitor long-term changes such

as structural degradation or biofouling accumulation [1, 5]. These routine

assessments are essential for enabling timely maintenance, preventing costly

failures, and extending the operational lifespan of underwater infrastructure.

At the same time, each mission can involve intricate tasks—such as navi-

gating around irregular structures, inspecting confined or obstructed areas,

and executing precise manipulations [3, 6]. This combination of routine

execution and technical difficulty places high demands on the reliability,

precision, and adaptability of underwater inspection systems.

To meet these demands, current inspection and intervention tasks rely

on either human divers or ROVs[1]. ROVs are robotic systems operated by

humans from control stations, often equipped with high-definition cameras,

sensors, and manipulators. Their use enables human-in-the-loop operations,

which remain essential for ensuring accuracy, safety, and mission reliabil-

ity—particularly in hazardous or deep-sea environments where direct human

intervention is impractical[7, 8, 9].

1.1.2 Limitations of tethered ROVs

Traditional ROVs rely on a tether to stay connected to the control

station, which supplies power, transmits control commands, and facilitates

the exchange of sensor data [7]. While essential, the tether introduces
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siginificant limitations.

Its use necessitates a heavy and bulky tether management system (shown

in Fig. 1.1) and a large offshore support vessel (OSV), which restricts

operations in high sea states and contributes to high operational expenditure.

The daily charter rate for an OSV supporting work-class ROVs can reach

hundreds of thousands of dollars, depending on the vessel’s size, mission

scope, and location. In addition, ROV operations require highly skilled

personnel and careful handling of the long, heavy tether. Missions are

further constrained by the need for favorable weather conditions due to the

reliance on surface support [10].

The tether also reduces maneuverability and increases the risk of en-

tanglement—particularly during tasks that require precise navigation in

confined environments, such as pipeline inspections or shipwreck exploration.

Entanglement with underwater obstacles like rocks, debris, or structures can

delay operations, introduce safety hazards, and demand constant monitoring

and planning. These challenges collectively reduce mission efficiency and

effectiveness.

1.1.3 Challenges in video transmission underwater

To mitigate these challenges associated with a tether, the development

of tetherless ROVs has been a focus in marine robotics [11], with one of

the greatest challenges being real-time wireless underwater communication

between the ROV and the surface platform.
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Figure 1.1: Deployment of a work-class ROV with a tether management
system on top (Image: IKM Group, CC BY 3.0)

Underwater communication presents unique challenges that differ signif-

icantly from terrestrial and aerial systems. As electromagnetic waves do

not propagate well in water, traditional wireless technologies like radio and

microwave communication become ineffective [12]. Instead, acoustics are

typically used for underwater mid-to-long communication [13, 10]. However,

acoustic communication is characterized by low data rates. Current state-

of-the-art acoustic links provide bit rates in the range of tens of kilobits per
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second (kbps) over distances of several hundred meters to a few kilometers,

depending on channel conditions [14].

While current acoustic links can handle the transmission of commands

and some sensor data, video transmission in real-time or near-real-time,

which is crucial for ROV operators to to effectively monitor the environment

and control the vehicle, remains a significant challenge.

There are two approaches to achieve real-time image data transmission

underwater: increasing the data rate or reducing the size of the data to be

transmitted. Much effort has been spent to increase the data rate of under-

water communications [14]. In this thesis, we focus on the latter approach,

exploring whether efficient data compression can be achieved using the prior

information available in inspection and intervention missions. In particular,

we focus on image compression, as videos are composed of key frames and

motion vectors, with key frames—essentially still images—accounting for

the majority of the bandwidth usage.

1.1.4 Motivation

Underwater inspection is critical across many industries, yet tethered

ROV operations limit flexibility and drive up costs. Tetherless control is

promising, but the low bandwidth of underwater wireless links—especially

for real-time video—remains a barrier. At the same time, many inspection

missions revisit the same sites, allowing rich priors about those environments

to accumulate. These observations motivate us to explore how such prior
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information can be leveraged to enable real-time wireless image transmission,

potentially overcoming acoustic bandwidth limitations and improving the

feasibility of tetherless ROV operations.

1.2 Key Idea

Consider a scenario where you revisit a familiar place—such as a city

square or a mueseum—for which a three-dimensional (3D) model already

exists. Assuming the scene remains largely static, the view observed from

any given pose (i.e., position and orientation) should closely match the one

rendered by the model from the same pose. In theory, this means that

transmitting only the camera pose may suffice to reconstruct a full image.

For example, a 720p RGB image (2.8 megabytes) could be replaced by

just 28 bytes of pose data—achieving a theoretical compression ratio of

100,000:1. This highlights the substantial compression potential offered

by leveraging prior information in underwater inspection and intervention

missions.

Of course, real-world environments are not perfectly static. Dynamic

changes—such as the appearance of new objects or variations in lighting—do

occur. However, the visual differences induced by these changes are often

small and spatially sparse, making them highly compressible.

This idea builds on the concept proposed in CHRIIS [10], which ad-

vocates using a photorealistic digital twin of the operational environ-

ment—constructed during an initial autonomous inspection stage—to render
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Figure 1.2: Rendering outcomes on a real world scene by NeRF. Reproduced
from [15].

virtual camera views onshore or onboard. Only the difference between the

actual and rendered images is transmitted, enabling high-quality video

streaming over bandwidth-limited underwater acoustic links.

Recent advancements in novel view synthesis (NVS), such as Neural

Radiance Fields (NeRF) [15], further demonstrate the feasibility and promise

of this approach. When trained on images collected during a baseline

mapping run, NeRF models can render photorealistic images from arbitrary

poses, enabling pose-driven reconstruction of visual data in subsequent

inspection and intervention runs, as shown in Fig. 1.2.

1.3 Objectives

The main objectives of this thesis are as follows:

• Investigate suitable models for incorporating prior information about

the underwater environment.
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• Explore methods to extract efficient, effective, and robust representa-

tions (e.g., camera poses) from underwater images.

• Develop techniques to reconstruct images using the extracted repre-

sentations and the learned models.

• Validate the proposed framework in real-time underwater scenarios.

By addressing these objectives, this research aims to develop a robust

prior-based image compression framework for real-time underwater image

transmission, ultimately enabling tetherless operation of ROVs.

1.4 Contributions

The followings are the main contributions of this thesis:

1. We present a complete framework for scene-specific image compression

that leverages trained NVS models as priors. While CHRIIS previously

proposed the high-level idea of using scene priors for compression [10],

our work advances this concept by developing the necessary methods,

implementing a practical system, and demonstrating its effectiveness

in real-world underwater settings. To the best of our knowledge, this

is the first work to use trained NVS models for efficient, scene-specific

image compression.

2. We evaluate the feasibility of various NVS models for modeling and

for real-time photorealistic rendering of underwater structures in both
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clear and turbid waters. This study identifies a robust model capable

of handling transient changes, such as novel objects and lighting

variations, while maintaining high rendering quality and efficiency.

3. We develop an image-based pose estimation framework that includes:

a) A geometry-aware loss function to enhance interpretability, com-

putational efficiency, and estimation accuracy.

b) Augmented training data generated using 3D NVS techniques

to improve model robustness and generalization across varied

underwater conditions.

c) Sensor fusion using an extended Kalman filter (EKF) to inte-

grate additional data, such as altimeters and compasses, further

enhancing localization accuracy and robustness in underwater

environments.

4. We introduce a gradient descent-based pose refinement method that

leverages NVS-rendered imagery and vehicle motion priors. In clear

water, the optimization minimizes the photometric difference between

real and rendered views. In turbid water, where photometric cues are

less reliable, we propose a feature-based loss to guide refinement. Both

approaches reduce the size of the difference image, thereby improving

overall compression performance.

5. We validate the proposed framework in field trials conducted in both
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clear and turbid waters. Our results show that the prior-based im-

age compression framework outperforms traditional codecs such as

WebP and JPEG-XL in compression ratio and image quality and

enables real-time image transmission over acoustic links under real-

world conditions. These results underscore the framework’s practical

applicability and effectiveness in bandwidth-constrained underwater

environments.

1.5 Thesis organization

Chapter 2 reviews existing image compression techniques, including

conventional methods, deep learning-based approaches, and recent advance-

ments in underwater image compression. It also surveys 3D reconstruction

techniques with a focus on NVS models, and examines underwater localiza-

tion solutions, highlighting limitations that motivate this thesis.

Chapter 3 introduces the proposed framework, and presents a feasibility

study that assesses the suitability and robustness of various NVS models

for underwater scene reconstruction and real-time rendering. To address

the challenge of extracting effective scene representations from underwater

images for NVS rendering, Chapter 4 presents our proposed image-based

estimators and evaluates them across diverse underwater environments.

Building on this, Chapter 5 presents our inverse NVS method, which refines

the scene representation via gradient-based optimization to minimize view
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synthesis discrepancies, thereby enhancing compression performance. We

evaluate this method in controlled underwater environments. Chapter 6

demonstrates the enhanced framework’s practical viability through real-

world field trials, incorporating additional techniques to improve robustness.

Finally, Chapter 7 summarizes key findings and outlines directions for

future research to address current limitations and extend the framework’s

applicability.
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Chapter 2

Literature Review

We review existing image compression methods, including conventional

approaches, deep learning-based techniques, and recent advancements in un-

derwater image compression, to identify the research gap our work addresses.

Additionally, we examine recent progress in 3D reconstruction methods,

which serve as a key component for incorporating prior information into

our framework. Furthermore, we analyze existing underwater localization

techniques, highlighting their key limitations and the need for a new method

with improved accuracy and robustness.

2.1 Image compression

Traditional image compression methods rely on hand-crafted transforma-

tions and statistical encoding techniques to efficiently represent image data.

JPEG-XL, a state-of-the-art compression format, combines discrete cosine

transform-based block coding with Haar wavelet transforms, enabling high

compression efficiency and scalability [16]. WebP, a widely adopted format

optimized for web applications, employs block-based predictive coding for
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lossy compression and Huffman coding for entropy encoding, making it

well-suited for fast decoding and reduced file sizes [17]. These formats

balance efficiency, scalability, and practical application across various digital

environments.

Recent advances in machine learning have led to the emergence of

end-to-end learned image compression methods, which utilize deep neural

networks to directly learn efficient, low-dimensional latent representations

from large datasets [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. By leverag-

ing content-adaptive latent spaces, these methods achieve rate-distortion

performance comparable to or surpassing classical codecs such as JPEG

2000 and WebP [18, 25, 26, 27]. Among learned compression methods,

Ballé et al. [18] and Minnen et al. [25] introduce hierarchical entropy mod-

eling, employing Gaussian scale hyperpriors that significantly improve the

compression efficiency by capturing spatial dependencies within latent rep-

resentations. Subsequent methods, such as Cheng et al.[26] and MLIC[27],

further improve compression performance through even more sophisticated

context modeling, but this enhancement comes at the expense of substan-

tially higher computational complexity and slower processing speeds. Most

recently, MLIC++ proposes a linear-complexity multi-reference entropy

model, yielding near-linear computational cost [28]. While MLIC++ reports

state-of-the-art results on standard benchmarks, its performance at low

resolutions and in underwater imagery has not, to our knowledge, been

evaluated.
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Given the stringent limitation of data rate in underwater communications,

researchers have also explored image compression specific to underwater

settings, aiming at higher compression ratio. Early works in this area explore

using more efficient transforms to enhance compression performance. Li and

Wang propose a Wavelet Tree-based Wavelet Difference Reduction method

that removes visual redundancy while preserving spatial information [29].

This approach enhances compression efficiency, especially at low bitrates.

Similarly, Zhang et al. utilize adaptive hybrid wavelets and directional

filter banks to achieve high compression efficiency while maintaining image

quality for low-bandwidth underwater communication [30].

Recent works exploit unique characteristics of underwater imagery with

learned compression methods. In the water, light scattering and absorption

lead to color loss, contrast degradation, and hazy appearances. These

effects lead to less color information and lower-detail backgrounds, making

compression strategies that prioritize key regions more effective. Semantic

compression techniques exploit this by reducing the bitrate required for

background areas while preserving essential details [31]. Deep learning

approaches, such as those incorporating physical priors and autoencoder-

based techniques, further optimize compression by reducing redundancy

and improving perceptual quality [32, 33, 34, 35, 36, 37].

Although existing works have explored the use of priors in image com-

pression, these priors are typically generic across all underwater images

rather than tailored to specific scenes. While such generalizations may cap-
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ture broad environmental characteristics, the significant variability across

underwater scenes often limits their effectiveness. Additionally, these meth-

ods generally lack scene understanding—they treat images independently

and do not model relationships between them. At the same time, in under-

water inspection missions, scene-specific information—such as maps or prior

visual data—is often readily available. Motivated by this, our work inves-

tigates how leveraging such priors and incorporating scene understanding

can improve image compression.

2.2 3D reconstruction

3D reconstruction is a widely used approach to reuse prior scene infor-

mation and construct a detailed 3D representation of an environment [38].

3D reconstruction techniques have evolved significantly over the years, be-

ginning with traditional methods that rely on geometric principles and

moving toward machine learning-based approaches that enable highly real-

istic scene reconstruction. Traditional 3D reconstruction methods include

Multi-View Stereo (MVS) [39] and Structure from Motion (SfM) [40]. These

approaches reconstruct 3D models from multiple two dimensional images

by estimating depth and structure from correspondences across different

viewpoints. While these methods have been widely used in terrestrial en-

vironments, they often struggle with occlusions, texture-less surfaces, and

computational inefficiencies, limiting their applicability in complex scenes,

such as underwater environments.
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NVS emerges as an alternative to traditional 3D reconstruction tech-

niques. NVS is the process of generating images of a scene from viewpoints

that were not originally captured. Given a set of input images, NVS pre-

dicts the appearance of the scene from new perspectives by inferring the

underlying geometry, textures, and lighting conditions. Unlike traditional

3D reconstruction methods, which explicitly build geometric models using

SfM and MVS, NVS focuses on synthesizing realistic novel views without

necessarily recovering a full 3D structure.

Earlier NVS models primarily leverage deep learning techniques such

as conditional GANs and autoencoders to generate new perspectives from

limited image inputs [41, 42, 43]. Such approaches typically use an encoder-

decoder framework, where the encoder maps input images to a latent space

representation, and the decoder, which often employs a conditional GAN-

based architecture, reconstructs images from this latent representation

while incorporating a desired viewpoint transformation. While GANs and

autoencoders enable fast, learned image-based synthesis, they lack 3D

fidelity and struggle with multi-view consistency, often introducing artifacts

or distortions in the synthesized views.

Recent advances in radiance field-based methods have addressed many

of the limitations of earlier approaches. NeRF, for example, represents

scenes as continuous volumetric functions and use neural networks to learn

the radiance and density at any point in space, enabling highly detailed and

photo-realistic view synthesis from a sparse set of input images [15]. Building
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on this, 3D Gaussian Splatting (3D-GS) has emerged as a compelling

alternative, modeling scenes as a set of Gaussian primitives in 3D space [44].

This probabilistic representation supports efficient rendering and achieves

better real-time performance than NeRF, while still maintaining high visual

fidelity in novel view synthesis.

The ease of training and real-time, high-quality rendering capabilities of

techniques like NeRF and 3D-GS make them especially well-suited for encod-

ing prior knowledge captured during baseline mapping runs in underwater

inspection missions.

2.2.1 NeRF

NeRF represents 3D scenes by encoding them into a continuous function

using a deep neural network. At the core of NeRF is a fully connected

multilayer perceptron (MLP) that maps 3D spatial coordinates and viewing

directions to color and volume density values. The model is trained using a

sparse set of 2D images with accurate poses, where the goal is to learn a

function that can synthesize novel views of the scene [15].

NeRF models a scene as a volumetric field, which is sampled along

rays cast from a camera. Each ray is divided into discrete points, and the

neural network predicts the RGB color and density at each point. The final

pixel color is obtained by integrating these values using a volume rendering

equation, where the accumulated density determines the contribution of

each sample along the ray. This rendering process allows NeRF to generate
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Figure 2.1: An overview of neural radiance field scene representation and
differentiable rendering procedure. Reproduced from [15].

highly detailed and view-dependent effects such as specular reflections.

A key challenge in training NeRF is aliasing caused by high-frequency de-

tails. To mitigate this, the original NeRF implementation applies positional

encoding, where input coordinates are mapped to a higher-dimensional

space using a set of sinusoidal functions. This enables the MLP to capture

fine details and high-frequency variations, improving reconstruction quality.

An overview of NeRF scene representation and differentiable rendering

procedure is shown in Fig. 2.1.

Despite its high-quality results, NeRF is computationally expensive.

The original model requires querying the MLP thousands of times per ray,

making rendering slow. Various optimization strategies have been intro-

duced to address this, such as hierarchical sampling, which allocates more

samples to regions of higher importance, and efficient caching techniques

like InstantNGP [45], which replaces the MLP with a multi-resolution hash

grid representation. These improvements significantly reduce training and

rendering times while maintaining visual fidelity.

Extensions of NeRF have tackled its limitations, including generalization
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to unseen scenes, adaptation to dynamic environments, and incorporation

of real-world priors to handle complex lighting conditions [46, 47, 48].

However, challenges remain in scalability and efficiency, particularly in

rendering large-scale or interactive applications.

2.2.2 3D-GS

3D-GS is a novel approach for real-time 3D reconstruction and rendering

that has gained significant attention as an alternative to NeRF [44]. Unlike

NeRF, which uses an implicit neural network to represent a scene, 3D-GS

employs an explicit representation based on 3D point-based primitives with

Gaussian attributes.

The core idea of 3D-GS is to model a 3D scene as a collection of

anisotropic Gaussians distributed in space. Each Gaussian is defined by its

center position, covariance matrix (which determines its shape and orien-

tation), opacity, and color. Rendering is achieved through a differentiable

splatting process: the Gaussians are projected onto the image plane and

blended using alpha compositing. This eliminates the need for costly volu-

metric integration required by NeRF and lays the foundation for efficient

real-time rendering.

Optimization in 3D-GS typically follows a two-stage process, as il-

lustrated in Fig. 2.2. First, an initial point cloud is generated using

a SfM pipeline or depth estimation methods. Then, the Gaussian pa-

rameters—positions, densities, colors, and anisotropies—are refined using
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Figure 2.2: Block diagram illustration of the 3D-GS approach. Reproduced
from [44]

gradient-based optimization through differentiable rendering. This process

improves visual fidelity and enables high-quality view synthesis, even from

sparse input views.

One of the key advantages of 3D-GS is its computational efficiency.

Unlike NeRF, which requires querying an MLP thousands of times per ray,

3D-GS relies on an explicit representation that can be directly optimized and

rasterized. This leads to significantly lower computational costs and enables

real-time applications. Kerbl et al. demonstrate interactive frame rates

while maintaining photorealistic quality, marking a major breakthrough in

neural rendering [44].

Despite its advantages, 3D-GS faces certain limitations. Since it relies

on explicit primitives, memory consumption can become a concern when

modeling large-scale scenes, as the number of Gaussians increases with scene

complexity. Additionally, handling dynamic environments and occlusions

remains an open research challenge, as the current approach assumes static

scenes.
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2.3 Pose estimation

In order to render corresponding views from NVS models, we need

accurate camera poses. In underwater environments, the use of global

positioning systems is hindered due to the rapid dissipation of electromag-

netic waves in water [12]. Traditionally, underwater localization has relied

on inertial navigation systems (INS), Doppler velocity loggers (DVL) and

acoustic positioning systems. However, these methods face significant chal-

lenges in the context of inspection missions. Acoustic navigation is often

compromised by shadowing effects and multipath interference near marine

structures, which can severely distort signal paths and reduce accuracy.

Consequently, achieving precise acoustic navigation requires complex and

costly setups [49]. Furthermore, INS and DVL, despite their widespread

use, suffer from an accumulation of errors over time [49]. This limits their

ability to provide the positioning accuracy required for detailed inspection

of underwater structures. Although high-grade INS and DVL may be able

to provide sufficient accuracy, they, too, come with high costs.

In recent years, optical sensors, particularly cameras, have become in-

creasingly popular for underwater localization [50]. Cameras are lightweight,

low-cost, and often already integrated into inspection vehicles, making

them an attractive choice [51]. While some vision-based methods require

diver-assisted setups [52, 53], which add operational complexity and cost,

visual localization methods in general can estimate vehicle poses directly
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from images of the surrounding environment, enabling localization without

such additional infrastructure.

Techniques such as simultaneous localization and mapping (SLAM) [49]

and visual odometry (VO) [54, 55, 56, 57, 58] have been applied in both ter-

restrial and underwater settings. These methods estimate camera motion by

tracking visual features across frames without requiring prior data. However,

SLAM and VO face key limitations in underwater scenarios. Their reliance

on continuous feature tracking makes them sensitive to visual degrada-

tion from turbidity, lighting variability, and repetitive textures—conditions

commonly found in underwater environments. In addition, SLAM sys-

tems must build and maintain a consistent map throughout the mission,

which increases computational load and can reduce reliability in dynamic

or cluttered scenes [59].

In contrast, visual relocalization leverages prior maps or reference images

of the scene to directly estimate the camera pose. This approach avoids

the need for real-time mapping or drift-sensitive tracking, enabling more

robust and efficient localization using only monocular images. Visual

relocalization techniques are categorized into feature-based methods such

as Active Search [60], and deep-learning methods like PoseNet [61]. Active

search achieves image-based localization by systematically identifying and

matching 2D features in query images with 3D points in a scene model.

Using a 3D model reconstructed from SfM, one can estimate poses by

firstly creating 2D-to-3D matches between image features and 3D points in
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SfM and then using a n-point solver for pose estimation inside a random

sample consensus (RANSAC) loop [62]. Using a visual-vocabulary-based

quantization of descriptor space as the prioritization scheme, Active Search

speeds up the 2D-to-3D matching process. It then uses 3D-to-2D matching

to improve the localization accuracy, achieve the state-of-the-art results [60].

In contrast, PoseNet is a deep learning model that utilizes a pretrained

convolutional neural network (CNN) to estimate the 6-degree-of-freedom

(6-DOF) poses of a camera directly from images. This approach simplifies

the camera relocalization problem by bypassing the traditional feature

extraction and matching steps, instead relying on the CNN to learn and

estimate the camera’s position and orientation within a previously mapped

environment directly from the image data. Using transfer learning, PoseNet

leverages models pretrained on ImageNet and reduces the dependency on

large datasets [61].

While Active Search has demonstrated state-of-the-art results in struc-

tured terrestrial environments, its reliance on salient features [61] and high

computational cost [63] limits its suitability for underwater scenes, which

are often characterized by sparse features and obscured textures due to poor

visibility. Learning-based regressors inspired by PoseNet offer an appealing

alternative for these environments by enabling fast and robust estimation.

Numerous methods have since been developed by building upon the

PoseNet framework. For example, DSAC [64] combines learning-based

regression with differentiable RANSAC for robust and accurate localization,
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though at significantly higher computational cost. VidLoc [65] extends

PoseNet by modeling temporal dependencies across video sequences using

recurrent networks. EffLoc [66], in contrast, retains a single-image input at

inference but uses a transformer-based encoder to capture long-range spatial

dependencies. MapNet [67] introduces additional geometric constraints

during training by incorporating sensor-derived relative poses to improve

consistency and robustness. While these methods achieve impressive re-

sults in terrestrial applications, they all share PoseNet as a foundational

architecture.

Previous research has demonstrated PoseNet’s efficacy in conducting

inspection tasks within tanks with toy structures [68]. However, in real

marine environments, underwater images often have much lower visibility

and color information compared to terrestrial images and images from clear

water tanks, as shown in Fig. 2.3. Moreover, real underwater missions have

larger scale and more complicated structures, presenting a more complex

problem than the toy setup in [68]. As such, the performance of learning-

based pose estimators with realistic structures and in at-sea environments

needs to be further investigated.

With the advent of NVS models, recent work has attempted to use

NVS models for pose and refinement [69, 70, 71, 72, 73]. Chen et al.

propose Direct-PoseNet [74] and DFNet [75] which incorporate NVS as

part of the training pipeline of the pose estimator, improving its accuracy

and robustness. iNeRF estimates the camera pose by inverting a single

24



CHAPTER 2. LITERATURE REVIEW

(a) Example image from the Kings College dataset [61].

(b) Example image from an underwater archaeology site (Image:
Ruthven, CC0, via Wikimedia Commons).

Figure 2.3: Example images from terrestrial and underwater scenes. As
compared with typical outdoor terrestrial scenes (a), underwater scenes in
marine environments (b) have lower visibility and less color information.

image using a pretrained NeRF model [69]. It does so by minimizing the

pixel-wise difference between the rendered image and the input camera

image via gradient descent. iComMa proposes a similar approach using

3D-GS models, minimizing both pixel-wise differences in the image, and
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matching loss, which is the mean of Euclidean distances between keypoints in

corresponding images [70]. This hybrid loss is proposed as an alternative for

enhanced robustness towards poor initialization. Both iNeRF and iComMa

use the Adam optimizer [76] for pose optimization. While iComMa has an

improved speed over iNeRF due to faster convergence and high rendering

speed of 3D-GS models, it still requires about a second for one optimization

on a single NVIDIA RTX A6000 GPU, which is prohibitively too slow for

the video transmission speed required for tetherless control.

Despite recent advancements in visual localization and the integration

of NVS models for camera pose estimation, existing methods have not been

tested in real-world underwater environments. Techniques like iNeRF and

iComMa, while demonstrating promising results in controlled settings, are

computationally expensive and impractical for real-time pose estimation

on underwater vehicles. Moreover, their performance in the presence of

underwater-specific challenges—such as lighting variations, turbidity, and

dynamic marine conditions—remains unexplored.

This thesis addresses a key research gap by investigating the performance

and feasibility of pose estimation methods in real underwater environments.

In Chapter 4, we introduce an image-based relocalization framework de-

signed specifically for underwater re-inspection missions. Our approach

integrates geometry-aware loss functions, NVS-based data augmentation,

and sensor fusion, and is evaluated under both controlled and turbid water

conditions.
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2.4 Summary

Recent literature on image compression techniques highlights the bene-

fits of incorporating prior information. However, the use of scene-specific

priors remains largely unexplored. This research gap motivates our investi-

gation into how such priors can be leveraged to improve image compression

performance. Our proposed approach to addressing this gap is presented in

Chapter 3.

Advancements in NVS models, such as NeRF and 3D-GS, offer valu-

able insights into the integration of scene-specific knowledge. Their ability

to produce photorealistic renderings in real time makes them particularly

promising for our image compression framework. Nevertheless, their applica-

tion to underwater environments has not been thoroughly investigated—an

area we explore in Chapter 3.

To effectively utilize NVS models for generating priors, accurate camera

pose estimation is essential. Advances in visual-based relocalization methods

provide new opportunities for underwater localization. Our contributions

in this space are detailed in Chapter 4, Chapter 5, and Chapter 6, where

we present techniques for robust pose estimation and refinement in both

controlled and real underwater conditions.
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Chapter 3

NVS prior-based image compres-
sion

The routine nature of underwater inspection and intervention missions

provides valuable scene-specific prior information, which can be leveraged

to optimize image compression. To understand the benefit of such prior

knowledge more formally, we turn to an information-theoretic perspective.

Without prior information,the image I visible to the ROV at an underwater

site can be modeled as a sample from a distribution p(I). The compressed

size achievable with this image would be bounded by its entropy H(I) =

−E[log (p(I))], where E denotes the expectation operator. When prior

knowledge of the scene is available, it can be encoded as a latent variable

z, allowing us to model the image conditionally as p(I | z), which yields a

lower entropy H(I | z) ≤ H(I). In general, the more informative the prior,

the more predictable the image becomes, and the tighter the lower bound

for compression. Thus, exploiting scene-specific prior information has the

potential to yield an efficient image compression approach that can enable

image transmission in real time via underwater acoustic links.
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As reviewed in Chapter 2, previous works in underwater image com-

pression leverage characteristics of underwater images to improve com-

pression performance. However, there have been no attempts to leverage

scene-specific prior information for underwater image compression. In this

chapter, we propose an NVS prior-based image compression framework,

termed NVSPrior, which exploits prior scene knowledge to compress im-

ages captured by an ROV during underwater inspection missions. We

describe its mechanism, its use of prior information, and the motivation

for its development. Subsequently, we investigate the feasibility of NVS

models for 3D reconstruction of underwater structures in both controlled

environments and real seawater. The work presented in this chapter was

published in [77], [78], [79] and [80].

3.1 Overview of NVSPrior

Image transmission using classic image compression techniques works as

shown in Fig. 3.1. On the ROV side, the camera image is compressed by a

classic image compressor. The compressed image is then transmitted to the

operator side via communication links. On the operator side, the camera

image is reconstructed by decompressing the compressed image.

NVSPrior reduces the size of data to be transmitted between the ROV

and the operator by using a shared NVS model trained with prior knowledge

of the scene. During the baseline mapping run of the underwater mission,

we collect camera images to characterize the scene. Using the collected
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Figure 3.1: Pipeline for image transmission in underwater inspection mis-
sions using classical image compression codecs.

information, we can train a NVS model as reviewed in Chapter 2. We then

store identical copies of the trained NVS models on both the ROV and the

operator’s side.

During the following inspection and intervention runs, we first obtain

the optimal latent representation of the scene which includes the camera
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pose and potentially other elements such as transient embeddings for the

NVS model to render an image closest to the camera image. To capture

the changes in the environment that the NVS model would not be able to

render, such as novel objects that were not present during the mapping

run, we compute the “difference image” between the NVS rendered image

and the camera image, Idiff. We compress Idiff using classic compression

techniques. We transmit the (1) the optimal latent representation, and

(2) the compressed difference image Idiff from the ROV to the operator

side via communication links. On the operator side, we render the image

using the optimal latent representation and decompress Idiff. Adding the

decompressed Idiff onto the rendered image, we reconstruct the estimate of

the camera image. An overview of our approach is shown in Fig. 3.2.

The effectiveness of this approach is based on the assumption that the

environment remains largely static between visits. This is often true in

reality because underwater re-inspection missions occur regularly. In such

cases, the NVS-synthesized view during subsequent inspections will closely

match the actual camera image—provided the pose is accurate—resulting

in a sparse difference image, Idiff, which typically is highly compressible. As

such, we only need to transmit the camera pose, typically just a few bytes,

and a small Idiff. This leads to a significant reduction in data transmission

compared to traditional compression methods. In exceptional cases where

the difference is substantial—i.e., the compressed Idiff exceeds the size of

the compressed camera image—we instead transmit the compressed camera
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Figure 3.2: Pipeline for image transmission using NVSPrior.

image directly.

As the most integral component of our proposed approach is the NVS, we

next conduct a feasibility study on NVS of underwater structures, presented

in the next section.

3.2 NVS of underwater structures via NeRF

As reviewed in Chapter 2, NeRF models offer a computationally efficient

approach for synthesizing novel views of scenes, and have demonstrated

strong performance in photorealistic rendering of static environments. How-

ever, their effectiveness degrades in dynamic settings. NeRF models are

trained to minimize reconstruction error in the RGB color space, assum-
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ing photometric consistency—i.e., that two images taken from the same

viewpoint should be nearly identical except for noise [46]. In real-world

scenarios, particularly underwater, this assumption often breaks down due

to dynamic elements such as sediment, algae, fish, and varying illumination

conditions. These factors introduce inconsistencies across input images,

leading to rendering inaccuracies and visual artifacts.

In this section, we investigate the feasibility of NVS for underwater

structures using NeRF. We evaluate the performance of (i) a vanilla Nerfacto

implementation, (ii) a modified Nerfacto implementation with transient

embedding and (iii) a Nerfacto trained with a robust loss function.

3.2.1 Datasets

3.2.1.1 Controlled underwater environment dataset

To collect data for the study, we conducted an experiment in a large

state-of-the-art Deepwater Ocean Basin (DOB) at the Technology Centre

for Ocean and Marine, Singapore (TCOMS) [81].

The DOB at TCOMS is an indoor pool measuring 60 m × 48 m ×

12 m. As illustrated in Fig. 3.3, a structure was placed in the basin,

which consisted of six piles interconnected by metallic pipes, with each

pile comprising three metallic oil barrels. The overall dimensions of the

structure were approximately 3.9 m × 4.6 m × 3.0 m. The whole structure

was yellow in color. To better differentiate the barrels, duct tape strips of

various colors with different patterns were stuck on each barrel to create
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(a) Schematic of the structure.

(b) Topview of ROV surveying the struc-
ture.

Figure 3.3: The structure surveyed in the TCOMS facility.

uniquely identifiable features.
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Figure 3.4: Customized hybrid ROV: Hydra.

For the purpose of testing our approach, we customized a hybrid ROV

named Hydra (shown in Fig. 3.4), equipped with a wide-angle, low-light

monocular camera for collecting RGB image data, a compass for collecting

orientation information, and an altimeter for collecting altitude information.

The vehicle was deployed within the DOB, and navigated around the

structures, with the camera directed towards the structure. It captured a

series of images during the run emulating a real-world inspection mission.

During the mission, there were occasional transient objects picked up at the

scene apart from the structure. For example, there were instances where

the tether connecting the vehicle to the top-side controller was incidentally

captured on the camera (see Fig. 3.7, row 3, column 1), which is a challenge

that may occur in a regular underwater inspection mission. Additionally,

to study the robustness of NeRF under variable illumination—common in
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real-world scenarios—we varied the lighting in the DOB during some runs

and sporadically toggled the vehicle’s onboard lights.

3.2.1.2 Open marine shipwreck dataset

To evaluate model performance in real-world underwater conditions, we

used the Torpedo Boat Wreck (TBW) dataset [82, 83], a publicly available

collection of images captured during a hybrid ROV survey of a shipwreck

site in the Mediterranean Sea. The dataset features challenging conditions

typical of open marine environments, including murky water, low visibility,

and the presence of marine snow. These characteristics make it well-suited

for testing the robustness of NeRF models in non-controlled underwater

settings.

3.2.2 Methods

3.2.2.1 Original Nerfacto

Let p = [x, y, z] be a 3D point, d = [dx, dy, dz] be a unit-norm camera

viewing direction, c = [r, g, b] be color in red green and blue, and σ be a

density. NeRF leverages MLPs to map (p, d) to (c, σ). By aggregating

colors and densities along a camera ray, denoted by r, through a pixel on

the camera plane, the model predicts the color of the pixel, represented by

Ĉ(r). The model is typically trained by minimizing an L2 reconstruction

loss [15]:

L = ∥Ĉ(r)−C(r)∥2
2 (3.1)
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Figure 3.5: Model structure of Nerfacto.

where C(r) is the observed pixel color of ray r from an input image. As a

baseline model for our comparative study, we employ Nerfacto, which is a

simplistic modular NeRF implementation that adopts recent advancements

to improve computational efficiency and handle unbounded scenes [84].

Figure 3.5 illustrates the Nerfacto model structure. Nerfacto integrates per-

image appearance embeddings to effectively address the impact of diverse

lighting conditions. Each appearance embedding, which is denoted by la, is

a trainable real-valued vector of length na.

3.2.2.2 Nerfacto with transient embedding

Inspired by NeRF variant known as NeRF in the Wild (NeRF-W) [48],

we modify the model structure of Nerfacto as shown in Fig. 3.6. Each

transient embedding, which is denoted by lt (where t denotes “transient”),

is a trainable real-valued vector of length nt. The transient head emits

a field of uncertainty, denoted as β, enabling the model to adaptively

adjust its reconstruction loss function by ignoring pixels and 3D points

that are likely to involve dynamic changes. The color of the pixel is

calculated by aggregating not only the static components (c, σ) but also the
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Figure 3.6: Model structure of Nerfacto with transient embeddings.

transient components (ct, σt). The loss function of Nerfacto with transient

embeddings is written as

Lte = ∥Ĉ(r)−C(r)∥2
2

2β(r)2 + log(β(r)) + λug(r) (3.2)

where β(r) is obtained by accumulating β and σt along r, g(r) represents

the average of σt along r, weighted by a non-negative scalar denoted as λu.

The second term in Equation 3.2 balances the reconstruction loss and the

third term with a multiplier λu enforces sparsity on the transient density.

3.2.2.3 Nerfacto with robust loss

Inspired by the NeRF variant algorithm called RobustNeRF [46], we

replace Nerfacto’s original loss function with a robust loss function:

Lrl = w(r)∥Ĉ(r)−C(r)∥2
2 (3.3)

where w(r) is a binary weight function of r with intuitive parameters that

adapt naturally through model fitting [46]. The robust loss function, char-

acterized as a squared sum of trimmed entries, automatically distinguishes
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inconsistent image regions and treats them as optimization outliers during

the training process. Specifically, the weight function w(r) dynamically

adjusts the classification of inliers and outliers during model training, facili-

tating the rapid learning of fine-grained image details that are not considered

outliers. It categorizes pixels along the rays as either inliers or outliers,

guided by an inductive bias towards the smoothness of the outlier process.

It is essential to note that this assumption may not hold true for small

transient objects, such as marine snow in underwater scenes.

3.2.3 Experiments and results

To evaluate the performance of Nerfacto and its variants, we conducted

training and testing on NVS tasks, focusing on the underwater structure

during the inspection mission. The models were either built upon or adapted

from nerfstudio version 1.0.0 [84]. Nerfstudio is an open-source library that

provides a modular and user-friendly framework for training, and evaluating

NVS-based 3D scene representations [84]. We used the hyperparameters

na = 32, nt = 32, λu = 0.1 to train the models. The full set of DOB data,

consisting of 899 images, underwent a division into training and test sets

using a 90−10 random split. The estimation of camera poses for the images

was accomplished using COLMAP, an SfM package [40, 85]. Number of rays

per batch used for training iterations was 16384. The training set was used

to train the NeRF while the test set was used for performance evaluation.

Fig. 3.7 illustrates the novel view synthesis performance of the mod-
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els on the test dataset collected at the DOB. The first column contains

ground-truth images captured by the camera, while the subsequent columns

display images synthesized by different NeRF models from the same camera

viewpoints. We evaluated the models across four scenarios:

• vehicle light on,

• vehicle light off,

• vehicle light off with the tether present,

• vehicle light on with the tether present,

presented respectively in rows 1-4 in the figure. All the models demonstrate

robust performance under varying lighting conditions. In the third and last

scenario, Nerfacto exhibits artifacts in the image when the vehicle tether is

present. These artifacts likely stem from the presence of the tether, as it was

incidentally captured in some training images taken by the vehicle’s camera

in close proximity to the pose corresponding to the capture of the third

and last scenario’s image. In contrast, the models modified with transient

embeddings or trained with a robust loss function outperform Nerfacto by

consistently generating photorealistic images without the artifact for all four

test scenarios. For quantitative analysis, we compared the camera images

with the synthesized images based on peak signal-to-noise ratio (PSNR),

multi-scale structural similarity index measure (MS-SSIM) [86], and learned

perceptual image patch similarity (LPIPS) [87] as summarized in Table 3.1.
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Table 3.1: Quantitative results on the DOB test dataset. The direction of
the arrow indicates performance preference: ↑ means higher is better.

PSNR ↑ MS-SSIM ↑ LPIPS ↓

Nerfacto 29.382 0.915 0.468
Nerfacto + transient embeddings 30.074 0.934 0.446
Nerfacto + robust loss 30.679 0.929 0.458

Given that camera images may include variable lighting and transient objects

that might not be present in the synthesized counterparts, we took several

preprocessing steps. Firstly, we standardized each synthesized image based

on the mean and standard deviation of the corresponding camera image.

Subsequently, to remove any transient objects present in the camera image,

we applied a manually labeled binary mask on both images. This approach

mitigates the potential differences in lighting and transient elements between

the two sets of images. The resulting modification to the Nerfacto showcases

a slight enhanced image quality compared to the original Nerfacto. The

improvement is marginal as inconsistencies in the scene represent only a

small fraction of the overall training data.

For further validation in real-world conditions, we evaluated the models

on the TBW dataset [82, 83]. The TBW data consists of 442 images, with

90% allocated for training and 10% for testing using a random split. The

performance gap between vanilla Nerfacto and the models with improved

features becomes even more apparent with this dataset, as shown in Fig. 3.8.

Nerfacto with transient embeddings yields sharper results compared to

Nerfacto trained with the robust loss. However, the former method tends
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Figure 3.7: Evaluation on the test set of the DOB scene in terms of
synthesized novel views from different camera viewpoints, compared to
camera ground truth (column 1). The rows indicate the four scenarios, and
columns 2-4 show synthesized views from the 3 NeRF approaches. This
figure is reproduced from [79].

Table 3.2: Quantitative results on the TBW test dataset. The direction of
the arrow indicates performance preference: ↑ means higher is better.

PSNR ↑ MS-SSIM ↑ LPIPS ↓

Nerfacto 26.269 0.863 0.507
Nerfacto + transient embeddings 30.068 0.930 0.434
Nerfacto + robust loss 29.926 0.896 0.447

to produce images with a darker tone which are not true to the scene. The

quantitative results based on the TBW test dataset are shown in Table 3.2.

Based on both the qualitative results in Fig. 3.8 and in Table 3.2, both

enhanced Nerfacto models demonstrate a superior ability to handle the

presence of marine snow in the training images, resulting in the generation

of synthesized images with significantly higher quality compared to the

original Nerfacto model.
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Figure 3.8: Evaluation on the test set of the TBW scene. Each row
corresponds to a different camera viewpoint. This figure is reproduced
from [79].

3.3 NVS of underwater structures via 3D-
GS

In this section, we explore the use of 3D-GS for NVS of underwater

structures. Unlike NeRF, which relies on neural representations and ray-

marching, 3D-GS employs explicit point-based representations, leveraging

Gaussian splats to represent scene geometry and appearance efficiently [44].

This approach allows for real-time rendering and provides a practical solution

for our NVS prior-based image compression approach.

3.3.1 Method

We adopt Splatfacto, an optimized 3D-GS implementation provided by

nerfstudio [84], to train and render novel views of underwater structures. The
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method represents a scene as a collection of anisotropic 3D Gaussians, each

defined by a position, anisotropic covariance, opacity (α), and color. The

rendering process involves projecting these 3D Gaussians onto a 2D image

plane and aggregating their contributions using a differentiable tile-based

rasterizer for α-blending [44]. The training procedure optimizes position,

anisotropic covariance, opacity and color to minimize the reconstruction

error between the rendered and observed images [44].

The key advantage of 3D-GS is its ability to generate high-quality novel

views with significantly faster training and inference times compared to

NeRF-based approaches, primarily due to efficient GPU rasterization. For

instance, rendering an image with Nerfacto typically takes 1–2 seconds,

while Splatfacto renders the same image in under 0.03 seconds. To optimize

visual quality for underwater scenes, we adjusted two key hyperparameters:

the alpha cull threshold and the scale regularizer proposed by PhysGaus-

sian [88]. The alpha cull threshold defines the opacity cutoff for discarding

gaussians—lowering it retains more semi-transparent gaussians, which im-

proves completeness in sparse regions at the cost of slower training. We also

enabled scale regularization to encourage gaussians to adopt more balanced,

compact shapes. While these changes slightly increase training time, they

have no impact on rendering speed, which remains a critical priority for our

application.
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3.3.2 Results in controlled environment

We evaluated the performance of Splatfacto using the data collected

from the DOB described in Section. 3.2.1.1. When we trained Splatfacto

with the default parameters on the DOB data, we observed long, spiky, black

Gaussians on the top of the structures and “cloud”-like artifacts around the

structures. This is likely due to lack of sufficient training data with a view

of the top of the structure, and lighting differences at different depths. After

tuning the hyperparameters of Splatfacto, we managed to remove most of

the artifacts. As shown in Fig. 3.9, Splatfacto successfully reconstructed

the scene and synthesized novel views with high fidelity. Minor artifacts are

observed (as shown in 3.9c and 3.9d), particularly around the boundaries of

the collected data. These artifacts can increase the size of the difference

image between the rendered and actual images. Compared to NeRF-based

approaches, 3D-GS appears to produce more artifacts, potentially leading

to larger difference images and, consequently, greater transmission size.

Nevertheless, due to the significant advantage of 3D-GS in rendering speed,

we select it for our application, which prioritizes real-time performance.

3.3.3 Results in Singapore waters

3.3.3.1 Singapore waters dataset

To further evaluate the effectiveness of 3D-GS on real underwater data,

we collected a dataset from a bay near St. John’s Island, Singapore (SJI).

Using Hydra, our customized ROV, we surveyed a submerged pile approxi-
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(a) Artifact-free 3D-GS rendering of the
DOB structure.

(b) Artifact-free rendering from a dif-
ferent viewpoint.

(c) Artifacts near the top region when
viewed from below due to sparse train-
ing coverage.

(d) Corner artifacts from distant view-
points, where less training data was
available.

Figure 3.9: Evaluation on the test set of the DOB scene using 3D-GS.
Subfigures (a) and (b) demonstrate accurate, artifact-free rendering. Sub-
figures (c) and (d) highlight cases where insufficient training views lead to
noticeable reconstruction artifacts.

mately 5 m tall and 0.5 m in diameter. Although the pile was a plain black

structure, barnacles and algae growing on its surface provided useful visual

features. During the initial mapping run, The ROV followed a vertical

lawnmower path around the pile while recording video with its onboard

camera.

High turbidity in the water severely limited visibility (see Fig.3.10a).

To capture usable imagery, the ROV was operated at close range, with

an average distance of about 1 m from the structure. This proximity

restricted the camera’s field of view and reduced overlap across viewpoints,

making camera pose estimation with COLMAP more difficult. Furthermore,
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while the top 1.5 m of the pile exhibited sharp and distinctive features

(see Fig.3.10b), deeper regions were heavily biofouled. These areas were

covered with soft, repetitive algae structures that moved with the water (see

Fig. 3.10c), further complicating reliable pose computation in COLMAP

due to the lack of static, distinctive features for robust multi-view matching.

3.3.3.2 Results

As shown in Fig.3.11, Splatfacto successfully reconstructs underwater

scenes, particularly the upper portion of the pile, despite the challenging real-

world conditions. Minor artifacts remain near the boundaries of the dataset

(see Fig.3.12a), likely due to limited training data at those viewpoints.

However, these have minimal impact on the overall reliability of the 3D

reconstruction. The lower portion of the pile appears noticeably blurrier

(see Fig. 3.12b), primarily because of the motion of soft biofouling features.

Mitigating such issues may require more advanced modeling techniques

capable of handling non-rigid or dynamic scene elements.

3.4 Summary

In this chapter, we introduced NVSPrior, a novel NVS prior-based

image compression approach for underwater inspection missions. This

approach leverages NVS-rendered priors to enhance compression efficiency

by reducing redundancy in camera-captured images from previously visited

environments.

To evaluate its feasibility, we analyzed the performance of NeRF and
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(a) Low visibility at a distance due to high tur-
bidity.

(b) Top portion of the pile with sharp, distinctive
features.

(c) Heavily biofouled lower portion with soft,
repetitive algae structures affected by water mo-
tion.

Figure 3.10: Representative camera images captured by the ROV during
inspection at Singapore waters, illustrating challenges posed by turbidity,
limited visibility, and biofouling.

3D-GS models in reconstructing underwater structures across different

environments. We first assessed NeRF methods using a dataset collected

in the DOB facility with Nerfacto. The results demonstrated that NeRF
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Figure 3.11: High-quality 3D reconstructions produced by 3D Gaussian
Splatting, demonstrating the method’s effectiveness in recovering static
features in challenging underwater environments.

(a) Boundary artifacts likely caused by limited
training views at dataset edges.

(b) Blurring in the lower pile due to motion of
non-rigid biofouling features.

Figure 3.12: Examples of reconstruction artifacts in 3D-GS results.

models were capable of generating photorealistic underwater reconstructions.

However, standard NeRF models exhibited artifacts caused by transient

objects, such as moving cables, which degraded reconstruction quality.

Our experiments showed that incorporating transient embeddings or using
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robust loss functions effectively mitigated these issues and enabled high-

fidelity image synthesis. These improvements in rendering fidelity translated

directly to smaller difference images—critical for enhancing compression

performance within our framework.

We then extended our evaluation to real-world submarine data col-

lected in turbid waters. Under these challenging conditions, standard NeRF

models failed to produce high-quality novel views due to limited visibility

and increased scattering. In contrast, robustness-enhanced variants suc-

cessfully reconstructed underwater structures by selectively handling scene

inconsistencies, rendering them more suitable for real-world deployment.

Additionally, we explored 3D-GS using Splatfacto and evaluated its

performance on datasets from both the DOB and open waters around

Singapore. Our results indicated that 3D-GS was a compelling alternative

for underwater NVS, offering efficient training and real-time rendering

capabilities. Although artifacts were more pronounced compared to robust

NeRF models, careful hyperparameter tuning substantially reduced these

issues and resulted in visually consistent, reliable reconstructions of complex

underwater structures.

Overall, this study highlighted the potential of NVS techniques—particularly

3D-GS—for efficient underwater scene reconstruction and image compres-

sion. With a rendering speed exceeding 100 frames per second, 3D-GS

enables real-time execution of our NVS prior-based method.
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Chapter 4

Pose Estimation from Camera
Images

Accurately estimating the pose at which the rendered image best matches

the camera image is critical to the effectiveness of NVSPrior. However,

as discussed in Chapter 2, reliable pose estimation remains a significant

challenge in underwater missions. Visual localization offers a promising

solution, with deep learning-based methods like PoseNet [61] capable of

estimating camera pose from a single image in real-world scenes.

In this chapter, we evaluate the performance of deep learning-based

visual localization methods across a range of underwater environments and

propose techniques to improve their robustness and accuracy. Section 4.1

presents a preliminary feasibility study, where we implement PoseNet and its

variants and assess their performance on datasets collected in an underwater

simulator and a tank. We further examine the models’ sensitivity to lighting

variations and explore strategies to enhance their robustness and accuracy.

Section 4.2 extends this evaluation to realistic scenarios by testing pose

estimators in a deep ocean basin with a realistic inspection target, and
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introduces a novel loss function that incorporates geometric constraints spe-

cific to inspection missions. This new formulation improves interpretability,

computational efficiency, and localization performance. In Section 4.3, we

address the challenge of limited training data in underwater environments

by employing NVS techniques, such as NeRF, to generate photorealistic

training samples. Section 4.4 enhances localization accuracy by integrating

additional sensor data—such as altimeters and compasses—into an EKF

for sensor fusion and tracking, increasing robustness in dynamic conditions.

Finally, Section 4.5 presents results from open-sea field trials, demonstrating

the practical applicability and effectiveness of our proposed pose estimation

framework in real-world settings. The work presented in this chapter has

been published in [89], [90] and [91].

4.1 Feasibility study of visual localization
methods

To perform a preliminary feasibility study of visual localization methods

in underwater inspection missions, we implement PoseNet and its variants

and evaluate their performance on datasets collected from an underwater

simulator and a tank. We also investigate the robustness of such deep

learning-based visual localization models against changes in lighting con-

ditions and the effectiveness of different techniques to improve the model

performance and robustness.
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4.1.1 Methods

The pose regression problem is to estimate a 6-DOF pose from a single

RGB image. The pose consists of the x-y-z position and roll-pitch-yaw angle

orientation. We use quaternions to represent orientation to avoid wrap-

around problems associated with Euler angles [92]. Given a monocular RGB

image, I, pose-estimator model outputs a a 7-dimensional (7D) estimated

pose vector y = [p̂, q̂] containing a position vector estimate p̂ and quaternion

vector estimate q̂.

The original PoseNet model proposed by Kendall et al.[61] used a deep

convolutional neural network (DCNN) based on a modified GoogLeNet

architecture[93], pretrained on the ImageNet dataset [94]. The softmax

classifiers were replaced with an affine regressor, and an additional fully

connected (FC) layer with a feature size of 2048 was inserted before the

final regressor. However, directly regressing a 7D pose vector from this

high-dimensional representation proved suboptimal [62]. To address this, a

subsequent study by Walch et al. restructured the FC layer into a 32×64

matrix and applied four long short-term memory (LSTM) networks to

perform structured dimensionality reduction [62]. This approach, referred

to as CNN+LSTM, demonstrated improved pose estimation performance

over the original PoseNet in terrestrial environments. We implement and

evaluate both model architectures – the CNN (shown in Fig. 4.1) and the

CNN+LSTM (shown in Fig. 4.2). For both architectures, we use pretrained
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Figure 4.1: Overview of the CNN-based architecture for visual
relocalization.

Figure 4.2: Overview of the CNN+LSTM-based architecture for visual
relocalization.

DCNNs as the back bone. Pretrained models leverage the benefits of transfer

learning as large underwater datasets are not widely available and it is

computationally expensive to train the model on underwater datasets from

scratch.

For model training, we use a composite loss function that is a weighted

sum of the position error and orientation error squared [61]:

L = Lp + βLq, (4.1)

where Lp = ||p− p̂||2 and Lq =
∥∥∥q − q̂

∥q̂∥

∥∥∥
2
, and p and q represent the true

position and true orientation. β is a free parameter that determines the

trade-off between desired accuracy in position and orientation.

The input images used in the training are rescaled to 256×256 pixels
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Figure 4.3: Underwater simulator (left) and the image captured by the
ROV (right).

Figure 4.4: Example images from our underwater tank datasets.

before cropping into a 224×224 feature input using center cropping. To

speed up training, the images are normalized using their mean and standard

deviation. The poses are also normalized to lie within [-1, 1].

4.1.2 Datasets

To train and test our model, we used one dataset collected from an

underwater robotics simulator [95] as shown in Fig. 4.3 as well as two

datasets collected from a tank as shown in Fig. 4.4.

4.1.2.1 Simulator dataset

In the underwater simulator, we placed a ROV 0.5 m from a vertical

pile with 0.7 m diameter. We then operated the ROV to inspect the pile in

a downwards spiral motion. The total spatial extent covered by the ROV

was about 2 m×4 m×2 m. We recorded the images captured by the front
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Figure 4.5: Image from original dataset (left) and the image from dimmer
dataset (right).

camera of the ROV as well as the poses of the ROV in terms of position

vectors and unit quaternions.

We first collected a dataset containing 14,400 images and corresponding

poses. We refer to this dataset as Simulator. We randomly selected 70% of

the dataset for training and used the remaining 30% for testing. We used

random selection to ensure that both train and test sets had information of

all scenes covered.

One of the common dynamic changes in underwater inspection missions

is change in vehicle lighting. To test the robustness of the pose-estimator

model, we dimmed the light on the ROV and collected another dataset; see

in Fig. 4.5. The only difference between this dataset and the previously

collected is the lighting condition. We refer to this dataset as Simulator-

dimmer. We randomly selected 30% of Simulator-dimmer to test the

robustness of the model against change in lighting conditions.

4.1.2.2 Tank dataset

We collected two datasets from the tank using a customized ROV. The

ROV was equipped with a stereo camera which had an INS integrated. The
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INS reported the pose of the left camera. In the first dataset, the ROV

followed a lawnmower path with minimal rotations, primarily undergoing

translational motion. This dataset contains 3,437 samples and covers a

spatial extent of 0.4×0.6×0.2 m. We refer to this dataset as Tank-1. The

second dataset was collected while the ROV performed rotational maneuvers

at five selected points, resulting in 4,977 samples. We refer to this dataset

as Tank-2.

For both datasets Tank-1 and Tank-2, camera poses were obtained from

the integrated INS. Given the small coverage area, we assume INS drift is

negligible. We only use the images from the left camera.

To study the effect of using a larger dataset, we augmented Tank-1 by

adding the right-camera data, and thereby using the geometry of the stereo

camera placement to provide more training data. We refer to this dataset

as Tank-1-augmented.

4.1.3 Experiments & results

We used a DCNN with GoogLeNet [96] as our baseline model. We

trained the model using stochastic gradient descent with a base learning

rate of 0.003 and with a momentum of 0.9. Training took about an hour with

a batch size of 4 using a RTX2060 Nvidia GPU. We set β as 4 for training

the simulator dataset and 30 for training the tank datasets. The base

learning rate and batch size were chosen through hyper-parameter tuning

using random search while β was chosen using grid search. We used Ray
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Tune [97], an open-source package, for implementing the hyperparameter

searching. To improve the efficiency of hyper-parameter tuning, we utilized

an asynchronous hyperband scheduler [98], which ensured that compute

resources were used efficiently by continuously scheduling new trials and

stopping underperforming ones as soon as possible.

We evaluate the model performance by comparing the predicted camera

poses with the ground-truth poses over all test frames. For each frame, the

positional error is defined as the Euclidean distance between the estimated

and ground-truth translation vectors, and the angular error Lθ quantifies the

rotation discrepancy between the predicted and ground-truth orientations.

Given their quaternion representations q and q̂, we compute the relative

quaternion ∆q = q · q̂∗, and derive the angular error in degrees as:

Lθ = 2 cos−1(|∆qw|)×
180
π

, (4.2)

where ∆qw is the scalar component of ∆q. In this section, we report each

model’s localization performance in terms of mean positional error and

mean angular geodesic error across test dataset; lower values indicate better

performance.

The baseline model demonstrates strong localization performance, achiev-

ing centimeter-level positional accuracy and angular errors consistently below

3° in both simulated environment and small tank, as shown in Table. 4.1.

In the simulator dataset, it reaches a positional error of 0.0891 m and an

angular error of 2.91°. In the Tank 1 dataset, the baseline model achieves
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Table 4.1: Mean localization error on Simulator and Tank datasets across
model variants, reported as positional and angular errors.

Dataset Model Position error (m) Orientation error (°)
Simulator Baseline 0.0891 2.91

ResNet-50 0.0657 2.15
LSTM 0.0624 2.06

Tank-1 Baseline 0.0427 1.29
ResNet-50 0.0507 1.17
LSTM 0.0340 0.79

Tank-2 Baseline 0.0464 1.42
ResNet-50 0.1070 2.18
LSTM 0.0649 1.45

Tank-1 (aug.) Baseline 0.0350 0.67
ResNet-50 0.0234 4.71
LSTM 0.0406 0.57

0.0427 m positional error and 1.29° angular error. Similarly, in the Tank 2

dataset, the model maintains strong performance, with a positional error

of 0.0464 m and an angular error of 1.42°. The errors are minimal and of

comparable magnitude to the noise in the pose recorded by the camera

sensors. This consistency in performance across different datasets highlights

the model’s robustness and reliability. The accurate localization of the

baseline model is further illustrated in Fig. 4.6, Fig. 4.7 and Fig. 4.8. These

plots show that the model effectively estimates both position and orienta-

tion with high precision, demonstrating minimal sensitivity to variations in

movement patterns.

To evaluate the impact of deeper networks on performance, we utilized

ResNet [99] models pretrained on ImageNet. By leveraging residual blocks,

ResNets mitigate exploding and vanishing gradient issues, allowing for signif-
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Figure 4.6: Predicted trajectory (orange) vs real trajectory (blue) for
simulator dataset.

icantly deeper architectures than GoogLeNet. They have also demonstrated

superior performance in various visual recognition tasks, including ImageNet

classification [99]. We implemented four ResNet models of varying depths

and observed a clear trend: deeper networks consistently achieved higher

localization accuracy; see Table. 4.2. However, this improvement comes at

the cost of increased model complexity, requiring more storage and longer

training times. Striking a balance between computational efficiency and
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Figure 4.7: Position estimation for Tank-1 and Tank-2. Estimated
position of the vehicle (orange) is close to the actual position (blue).

Figure 4.8: Orientation estimation for Tank-1 and Tank-2. Estimated
orientation of the vehicle (orange) is close to the actual orientation (blue).

Table 4.2: Mean localization error by backbone. Models are trained on
Simulator and evaluated on Simulator and Simulator-dimmer.

Simulator Simulator-dimmer
Backbone Position (m) Orientation (◦) Position (m) Orientation (◦)
GoogLeNet 0.125 2.63 0.389 15.3
ResNet-18 0.089 3.22 0.421 17.0
ResNet-34 0.078 2.36 0.330 21.3
ResNet-50 0.066 2.15 0.348 11.1
ResNet-101 0.059 1.70 0.370 6.59

accuracy, we selected ResNet-50 as the backbone for subsequent experiments.

To assess the effect of incorporating LSTMs to exploit spatial correla-
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tion of the image features and to achieve more structured dimensionality

reduction, we introduced an LSTM layer on top of the DCNN with the

ResNet-50 model.

As shown in Table. 4.1, on the simulator dataset, which is free from

noise, turbidity, light distortion, and other real-world underwater challenges,

the ResNet-50 and LSTM model outperformed the baseline. However, on

tank datasets, which include distortions typical of underwater environments,

ResNet-50 underperformed compared to the baseline, whereas the LSTM-

enhanced model achieved better results on Tank-1 (which primarily featured

translation with minimal rotation). This suggests that despite regularization,

ResNet-50 may be slightly overfitting, limiting its generalization to the tank

dataset.

Data augmentation using images from both cameras in a stereo setup

significantly improves model performance. Thus, when available, stereo

data should be leveraged to bolster results.

4.1.3.1 Robustness towards change in vehicle lighting

We tested the baseline model, which is trained on the Simulator dataset,

on the Simulator—dimmer dataset. Fig. 4.9 presents the cumulative distri-

bution function (CDF) of position and orientation errors in performance

when tested on the two datasets. The results indicate a significant increase

in localization errors when the baseline model—trained on data collected

under brighter lighting conditions—is applied to scenes with dimmer light-
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Figure 4.9: CDFs of position and angular estimation errors for Simulator
(top) and Simulator-dimmer (bottom). Higher/left-shifted curves indicate
lower error. The dimmer set shows larger errors and heavier tails, especially
for orientation.

ing. This suggests that the model lacks robustness to lighting variations,

which is expected, as differences in illumination can substantially alter the

visual appearance of the scene.

To improve the robustness towards lighting changes, we investigated the

effectiveness of using data augmentation and deeper networks.

We applied color jittering to the standard dataset during training by

randomly changing image brightness, contrast, saturation and hue. As

shown in Table 4.3, after applying color jittering, the robustness to changes

in lighting condition improved slightly. We also tested the effectiveness of

applying contrast limited adaptive histogram equalization, a more advanced

color enhancement method, during training. The robustness towards lighting
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Table 4.3: Effect of training-time photometric augmentation on localization
error under lighting shift. Models are trained on Simulator (with/without
augmentation) and evaluated on Simulator and Simulator-dimmer.

Simulator Simulator-dimmer
Data Augmentation Position (m) Orientation (°) Position (m) Orientation (°)
Disabled 0.089 2.91 0.468 37.8
Enabled 0.125 2.63 0.389 15.3

Table 4.4: Localization error using a model trained on the combined Simu-
lator + Simulator-dimmer dataset.

Test dataset Position (m) Orientation (◦)
Simulator 0.21 1.83
Simulator-dimmer 0.27 2.00

changes was further improved.

We also explored the impact of training with mixed lighting conditions.

We combined the Simulator and Simulator-dimmer datasets to create a larger

dataset, randomly selecting 70% for training. The trained model was then

evaluated separately on test sets from both lighting conditions, as shown in

Table 4.4. Training with more diverse data significantly improved robustness

to lighting changes by making the training set more representative of the

test data. However, performance on Simulator dataset declined notably,

indicating potential overfitting in our previous results. This underscores the

importance of training with a more diverse dataset to enhance generalization.

To assess the impact of deeper networks on robustness, we used ResNet [99]

models of different layers pretrained on ImageNet. As shown in Table 4.2,

deeper networks offer only a modest improvement in robustness to lighting

changes.
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4.2 Pose estimation in controlled environ-
ment

The previous section demonstrated the effectiveness of PoseNet and its

variants in controlled environments, such as tanks with toy structures and

simulated underwater settings. However, their performance in real-world

scenarios remains untested. In this section, we evaluate the performance

of neural network-based pose estimators in confined water environments

with realistic structures and explore several extensions to improve their

applicability to underwater inspection. These include a geometry-informed

loss function tailored for inspection tasks, an investigation into the use

of grayscale inputs for computational efficiency, and an assessment of the

models’ ability to both interpolate within and generalize across different

datasets.

4.2.1 Methods

We implement and evaluate both model architectures – the CNN (shown

in Fig. 4.1) and the CNN+LSTM (shown in Fig. 4.2), following the methods

described in section 4.1.1. Additionally, we assess the performance of these

using a pretrained ResNet50 [100] as the backbone.

Kendall et al. [61] used a composite loss function (Equation 4.1), which is

a weighted sum of the (1) L2 loss Lp between the predicted positions and the

true positions, and the (2) L2 loss Lq between the predicted quaternions and

the true quaternions. It uses a free parameter, β, to determine the trade-off
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between the desired accuracy in translation and orientation. In PoseNet

and CNN+LSTM, the value of β is fine-tuned using a grid search to ensure

the expected value of position and orientation errors are approximately

equal, which the authors suggest lead to overall optimal performance. We

refer to this loss function as the β-loss.

We argue that the β-loss is not the optimal approach to our problem,

due to three reasons. Firstly, we argue that optimal performance is not

necessarily achieved when position and orientation errors are roughly equal.

Instead, the performance criteria and loss should incorporate geometry

and physics relevant to the inspection task at hand. Secondly, the L2 loss

between the predicted and true quaternions does not directly translate to

an orientation error interpretable in degrees or radians, and thus, it does

not accurately reflect the geometric distance between the predicted and

true orientations. Thirdly, searching for the optimal β value often involves

extensive computational resources. This search can become a significant

bottleneck, especially in scenarios where training needs to be done fast.

To overcome these shortcomings, we propose a new loss function more

relevant to our problem, the d-loss, to improve the training effectiveness,

interpretability and efficiency. The d-loss is defined as:

L = Lp + dLθ. (4.3)

Note that we have replaced the quaternion loss in (Equation 4.1) with a loss

based on the Eulerian angular difference, Lθ, which is calculated as follows.
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We first determine the rotation between the estimated and ground truth

quaternions through quaternion multiplication, ∆q = q (q̂/∥q̂∥)∗, where ∗

denotes the conjugate of the quaternion. ∆q is a unit quaternion which

can be expressed as (r, v⃗) where r is the scalar part of the quaternion, and

v⃗ is the vector part. r is related to a spatial rotation around a fixed point of

Lθ radians about a unit axis by r = cos(Lθ/2) [101], thus Lθ = 2 cos−1(r).

We approximate Lθ ≈ π
2 (1− r), using a Taylor series approximation, which

is valid for small rotation angles where r ≈ 1. For large angle deviations,

this approximation becomes less accurate, and using the exact formula

Lθ = 2 cos−1(r) is recommended. In our use case, however, the model is

trained to minimize pose errors, and angular deviations remain small in

practice. The approximation also offers computational efficiency for model

training. The Eulerian angular difference loss provides a more intuitive and

direct measure of orientation error.

Additionally, we replace the hyperparameter weight factor β in (Equa-

tion 4.1) which required tuning, with the average distance d between the

camera and the object of interest. In our experiments, d is computed based

on prior knowledge of the inspection setup. In more typical deployments, d

can be estimated using onboard sensors such as forward-looking sonars, or

stereo depth estimation. The intuition here is that this factor translates the

rotational error to an equivalent “average” translational error (attributed to

the orientation difference). Thus, the overall loss can be interpreted as the

“total positional error” in meters, including contributions from translational
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and orientation error components. Note that this formulation relies on sev-

eral assumptions typical of underwater reinspection scenarios. It assumes

that the vehicle maintains a relatively constant distance d from the struc-

ture during inspection, and that the camera is generally oriented toward

the target (i.e., the bearing is aligned). We also assume the orientation

errors are small enough for the small-angle approximation to hold. These

conditions are commonly met in many kinds of underwater inspection tasks,

where deliberate movements are required for safety and image quality.

The translation between rotational error and the “average” translational

error is described as follows. As illustrated in the example in Fig. 4.10, if

the camera has a pitch orientation error Lθ of θ, the point it observes on

the structure remains roughly the same as if the camera had an equivalent

translational error Lp of h (i.e., moves up by h) for small values of h and θ.

Based on the geometry, equivalent translational error can be expressed in

terms of orientation error Lθ and the average horizontal range between the

camera and the structure as:

Lp = dtan(Lθ). (4.4)

Assuming the case when the rotational error is small, we approximate

tan(Lθ) ≈ Lθ. Thus, we obtain:

Lp ≈ dLθ. (4.5)

This modified loss function (Equation 4.3) leverages the inherent geo-

metric relationship between positional and rotational errors in inspection
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Figure 4.10: Schematic showing the interpretation of the orientation error
in terms of equivalent translational error. This assumes slow motion, small
angles, and constant range.

missions. By converting orientation error into an equivalent translational

error using the physical distance d, both terms are expressed in the same

unit (meters). This provides a more interpretable loss function with physical

meaning, and avoids the need for manually tuning trade-off weights like β,

simplifying the scaling challenge in pose estimation.

To evaluate the effectiveness of deeper backbones, additional LSTM

layers, the proposed d-loss, and the color information in images, we tested

multiple configurations of the two visual localization network architectures.

The details of these configurations are summarized in Table 4.5.

As part of our investigation into color information, we explored the use

of grayscale input to reduce input dimensionality and potentially improve

computational efficiency, under the assumption that underwater images often

contain limited useful color information due to turbidity and poor lighting.

To preserve the benefits of transfer learning, we adapted a pretrained
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Table 4.5: Description of configurations

ID Architecture Backbone Loss Color
C1 CNN GoogLeNet β-loss RGB
C2 CNN GoogLeNet d-loss Grayscale
C3 CNN GoogLeNet d-loss RGB
C4 CNN ResNet50 d-loss RGB
C5 CNN+LSTM GoogLeNet d-loss RGB
C6 CNN+LSTM ResNet50 d-loss RGB

GoogLeNet model, which is originally designed for RGB input, to accept

grayscale input. This was done by modifying the first convolutional layer to

accept a single-channel input instead of three channels. The weights were

initialized by summing across the RGB channels of the pretrained filters,

and the modified layer was fine-tuned during training. This modification

reduced the number of parameters in the first convolutional layer by a factor

of three, since it now operates on a single channel instead of three.

During both training and testing for all configurations, we rescaled

input images directly into a 224×224 pixels input, deviating from PoseNet’s

approach of resizing the images to 256×256 before cropping into 224×224.

This adjustment was made to minimize the loss of image information, a

concern particularly acute in underwater images where available information

is inherently more limited compared to terrestrial settings. To speed up

training, we normalized the images against the ImageNet dataset’s mean

and standard deviation. Additionally, poses are normalized to lie within

the range [-1, 1].

We used the PyTorch deep learning framework to implement and train
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the models. The experiments were conducted using an RTX 6000 Ada

GPU. For training, we used the stochastic gradient descent optimizer for

configurations C1, C2, and C3. For the remaining configurations, we used the

Adam optimizer. A batch size of 32 was used. Hyperparameters, including

the learning rate, weight decay, and β for C1, were tuned using grid search

strategy over a predefined set of values. The best set of hyperparameters

was selected based on validation performance. Training continued until

early stopping was triggered.

4.2.2 Datasets

We collected data from the DOB setup described in Section 3.2.1.1.

We used our ROV, Hydra, for data collection. Hydra was customized

based on the BlueROV2 platform. The ROV was equipped with a 1080p

monocular camera provided by Blue Robotics for collecting RGB image

data. For navigation and sensor integration, the vehicle used the BlueROV2

Navigator Flight Controller (NFC) mounted on a Raspberry Pi 4. The

NFC includes an onboard IMU, compass, depth sensor, and Analog-to-

Digital Converter sensors. The compass and depth sensor were used to

provide orientation and depth information, respectively. To estimate the

horizontal (x-y) position of the ROV, we employed a customized ultra-short

baseline (USBL) positioning system. This setup was based on a Subnero

high-speed acoustic modem (model WNC-S40HSS4+xCh) configured with

four receivers and deployed near the operating region, as illustrated in
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Figure 4.11: The USBL setup at TCOMS to estimate the location of the
ROV.

Fig. 4.11. The USBL system enabled accurate localization of the vehicle

during the trials in the TCOMS basin.

We executed three trials within the environment at different depths to

gather data while the ROV surveyed the structure. Each trial features a

roughly similar lawnmower trajectory around the structure, with a total

path length of approximately 37 m per trial. The trials were conducted at

average depth levels of -1.5 m, -3 m, and -4 m, respectively.

The sensor data from the vehicle was captured using ROS (Robot

Operating System) and sampled at a frequency of 5 Hz. We synchronized

the sampled data with the USBL position estimates based on timestamps

and interpolated where necessary. For ground truth, we used the x and y

coordinates from the USBL, and the z coordinate and the orientation data
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Table 4.6: Description of datasets

ID Dataset Name Dataset Size
D1 Clear Water-Deep 2165
D2 Clear Water-Shallow 2956
D3 Clear Water-Mid 933
D4 Clear Water-NVS 4193
D5 Sea Water-1 2360
D6 Sea Water-2 735
D7 Sea Water-NVS 18918

Table 4.7: Performance of all configurations trained and tested on dataset
D1. Lp and Lθ tabulated are the median of estimation errors across the
test data. L was calculated using Equation 4.3 with d = 3 m. The best
performance for each metric is highlighted in bold.

ID L (m) Lp (m) Lθ (°) Inference
time (ms)

C1 2.41 2.36 0.86 2.20
C2 0.61 0.53 1.50 1.65
C3 0.41 0.36 0.99 1.62
C4 0.34 0.29 0.88 1.16
C5 0.30 0.22 1.51 0.78
C6 0.19 0.12 1.34 0.77

from the NFC.

From the recorded data collected during these trials, we curated three

datasets, referred to as D1, D2, and D3. These datasets vary in depth

and size, as summarized in Table 4.6. Notably, D3 was constructed by

downsampling the raw data from the third trial to create a more challenging

dataset for testing purposes.

4.2.3 Results & discussions

We present the performance of different configurations in Table 4.7. The

benchmark for our evaluation is the performance of C1.

73



CHAPTER 4. POSE ESTIMATION FROM CAMERA IMAGES

We observe the following:

1. Comparing the performance of C3 against C1, our results demon-

strate that training with our proposed d-loss significantly enhances model

performance, especially in terms of the overall performance metric L. This

improvement is attributed to the d-loss’s ability to provide a physically

interpretable measure of pose error by expressing both translation and

orientation errors in the same unit (meters). This eliminates the need for

manual tuning of trade-off weights and leads to more stable training.

2. Comparing the performance of C2 against C3, it can be observed

that using grayscale images shows significantly worse performance and too

little an improvement in inference time, contrary to our initial expectation.

The worse performance of grayscale images can be attributed to the fact

that since D1 was collected in a non-turbid fresh water environment, the

color information in the underwater images is not as limited as one might

anticipate in an image taken in a sea environment. As shown in Fig. 4.12, the

underwater RGB images in D1 retain valuable color information that may

provide distinguishing features in these environments. Thus, the grayscale

images have much less information than RGB images and thus lead to

poorer performance. The lack of improvement in inference time is due to

the fact that we only reduce the number of channels in the first CNN layer

of the pretrained model, resulting in a minimal reduction in computational

load. To achieve more substantial computational savings, the entire model

architecture would need to be better streamlined for grayscale images, not
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just the initial layer.

Figure 4.12: Sample camera image captured in TCOMS.

3. Comparing the performance of C6 to C5 and C4 to C3 shows that

using ResNet50, a deeper network, as the backbone, improves performance

for both CNN and CNN+LSTM. This is likely due to ResNet50’s higher

representational capacity and its residual connections, which facilitate better

feature extraction and gradient flow during training. These benefits are

especially useful in underwater scenes where discriminative features may

be subtle or degraded. The observed improvements were consistent across

several configurations, indicating that the choice of backbone architecture

plays a substantial role in pose estimation accuracy.

4. Comparing the performance of C6 to C4 and C5 to C3 shows that the

CNN+LSTM architecture consistently outperforms the CNN architecture.

This improvement can be attributed to the LSTM layers’ ability to per-

form structured dimensionality reduction, helping the network learn more

meaningful and stable pose representations.
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Among all the configurations, C6, which uses the CNN+LSTM architec-

ture with the ResNet50 backbone and is trained using the proposed d-loss,

performs the best, achieving 0.12 m of positional accuracy and 1.34°of

orientation accuracy with an inference time of 0.77 ms.

We test the performance of generalization using the model with the best

configuration, C6. We first trained the model on D1 and tested on D3. A

significant performance degradation is observed, as shown in the first row of

Table 4.8. This is on expected lines because the test data is sampled from

a different distribution than the training data with possibly different paths

and conditions, and deep-learning models often fail to extrapolate beyond

the bounds of the training data.

To address this issue, we evaluate the use of a larger and more diverse

training dataset, by expanding the training data to include both D1 and D2.

This augmentation introduces a wider distribution of data, notably enhanc-

ing the diversity in depth information. This leads to a 49% improvement in

model performance in overall loss, as shown in the second row in Table 4.8.

These findings underscore the importance of comprehensive baseline

mapping to collect sufficiently diverse training data. This is essential for

training models that are robust enough to perform accurate localization

during reinspection tasks.

76



CHAPTER 4. POSE ESTIMATION FROM CAMERA IMAGES

Table 4.8: Performance of configuration C6 on dataset D3. Lp and Lθ are
median estimation errors across the test data. L was calculated using Equa-
tion 4.3 with the average distance d = 3 m. The best performance for each
metric is highlighted in bold.

Training Dataset EKF Color Jittering Performance Metrics
L (m) Lp (m) Lθ (°)

D1 1.45 1.34 2.09
D1+D2 0.75 0.58 3.20
D1+D2 ✓ 0.47 0.47 0.00

D1+D2+D4 0.52 0.40 2.28
D1+D2+D4 ✓ 0.20 0.15 0.93
D1+D2+D4 ✓ ✓ 0.11 0.11 0.00

4.3 Augmented Training with Novel View
Synthesis

The previous section demonstrated the importance of diverse training

data with good coverage of the surveyed location. Although it may some-

times be possible to collect such data by extensively covering areas during

the baseline mapping run, the practical constraints of cost and labor often

limit this approach or render it infeasible. We explore alternative approaches

to improve model performance in such data-limited scenarios. We propose

to use NVS techniques to create models of the 3D scene, and then use these

to generate more images from new aspects to augment the training data.

In this section, we present the methods of augmenting training data using

NVS models and the results of this approach.

4.3.1 Methods

We first select 540 images from D1 and D2 to train an NVS model for

the TCOMS scene. For this, we employ COLMAP [102, 40], an open-source
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SfM computation software, to compute the camera pose associated with

each image within an arbitrary reference coordinate.

We employed the nerfacto pipeline from nerfstudio, an open-source

library that provides a modular and user-friendly framework for training,

and evaluating NVS-based 3D scene representations [84], as our NVS model

to render views for training data augmentation. Nerfacto is a simplistic

modular NeRF implementation that adopts recent advancements to improve

computational efficiency and handle unbounded scenes [84].

To train the model, we used 540 images from the original trials, along

with their corresponding poses estimated via COLMAP. Inspired by the

RobustNeRF variant [46], we replaced the default nerfacto loss with a robust

photometric loss that down-weights inconsistent or noisy regions during

training. This improves rendering quality in scenes with transient features

or non-uniform illumination. The details of training the model are presented

in our previous chapter 3.

To generate novel camera poses for rendering, we applied controlled

perturbations to the original COLMAP-estimated poses. For each pose, we

randomly sampled a new depth value within the feasible range, defined by the

minimum and maximum depths observed in the collected data, and replaced

only the z-coordinate to preserve the viewing direction. Additionally, we

perturbed the x and y positions by scaling the vector from the pose to

the structure using a random factor sampled from the range [0.8, 1.2],

effectively varying the lateral distance while maintaining orientation toward
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Figure 4.13: NVS rendered images for scenes in TCOMS. The rendered im-
ages produce photorealistic views of the structure but exhibit discrepancies
in brightness. Some of the rendered views have artifacts in the background
as shown in the image on the right.

the target. These synthesized poses were kept within the scene bounds to

ensure rendering consistency. The trained NVS model was then used to

render photorealistic images at these new viewpoints, which were added

to the pose estimator’s training set to improve generalization. In total, we

generate 4193 images, and we refer to this dataset as D4. We then use

D1, D2, and D4 for training, and D3 for validation and testing to test the

improvement provided by using the NVS-based augmentation.

Additionally, it is noted that the images in D4 exhibited different bright-

ness levels and background noise as compared to the original data, introduced

during the NVS model reconstruction. To address the potential degradation

due to this, we further augment the data by jittering the color of each image

during training, thus making the pose estimator robust to minute color and

lighting changes. For evaluation, we use the same GPU, framework, and

hyperparameter tuning methods as described in the previous section.
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4.3.2 Results & discussion

Our results show that utilizing augmented training data generated by

a NVS model leads to a significant enhancement in localization accuracy.

Comparing row 2 and row 4 in Table 4.8, we find that by augmenting the

training data with D4, the overall localization error can be reduced by 30%.

Color jittering augmentation is also highly effective in further improving

the model performance, further reducing the error by an additional 61.5%.

We compare the performance of the augmented training with color jittering

with the performance without augmented training in Fig. 4.14 and Fig. 4.15.

These plots show that the proposed augmented training with NVS signifi-

cantly improves the pose estimator’s accuracy and reliability in terms of

both position and orientation.
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(a) Orientation error over time.

(b) Positional error over time.

(c) 3D trajectory comparison between the ground
truth and model predictions.

Figure 4.14: Comparison of pose estimation results with and without NVS-
based training augmentation in a controlled environment.
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Nonetheless, we observed the presence of outliers. Upon examining the

data, we found that these outliers were caused by transient objects, such

as the tether shown in Fig. 4.16(b), which were not present in the training

data.

4.4 Localization enhancement via sensor data
fusion

While the trained pose estimators yield small median orientation and

position errors, their estimates exhibit some volatility. Our model currently

treats each sample independently, ignoring temporal context, and utilizes

only the camera inputs during deployment. However, additional information,

such as temporal information and other sensor inputs from the ROV, is

available. To enhance localization accuracy and achieve a more stable

trajectory estimation, we propose sensor fusion using an EKF. This section

details the integration of the pose estimator with additional sensor data

and presents the results of the sensor fusion.

4.4.1 Methods

Given the sequential nature of data in reinspection missions and the

availability of additional sensors, incorporating temporal information and

other sensor data presents a viable strategy for improving the model’s

estimation stability and accuracy. Currently, the visual localization model

without sensor fusion occasionally results in estimation of poses that are
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(a) CDF of orientation errors.

(b) CDF of position errors.

Figure 4.15: CDF of errors for models trained with and without NVS
augmentation in controlled environment. The plots show that augmented
training with NVS yields significantly lower errors for both orientation and
position compared to training without augmentation.

physically implausible or outliers, in context of the dynamics from previous

poses. By integrating knowledge of the ROV’s physics model and leveraging

previous pose estimates, we can enhance pose accuracy and stability.

Furthermore, during reinspection missions, ROVs are commonly equipped

with depth sensors and compasses, which have a reasonable accuracy. As
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(a) The test image with one of the lowest pose estimation errors.

(b) The test image with one of the highest pose estimation errors.

Figure 4.16: Test images from Clear Water-Mid with amongst the best and
worst pose estimation accuracy.

such, we could use these reliable depth and orientation measurements during

reinspection to further improve the overall localization accuracy.

We assume that the vehicle moves with a constant translational velocity

and constant angular velocity since the vehicle normally moves slowly during

inspection missions. Our EKF fuses measurements from three sources:

the pose estimator (x, y, z position and orientation in quaternion form),

compass (orientation), and depth sensor (z position). The filter maintains
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Figure 4.17: EKF schematic for sensor fusion.

a 13-dimensional state vector comprising position, velocity, quaternion

orientation, and angular velocity. The structure of the EKF, including its

iterative prediction-update loop, is illustrated in Fig. 4.17.

The EKF maintains and updates three covariance matrices: the state

covariance P, the process noise covariance Q, and the measurement noise

covariance R. The state covariance P ∈ R13×13 reflects the uncertainty in

the estimated state and is propagated and corrected at each timestep. The

process noise covariance Q ∈ R6×6 is treated as a tunable hyperparameter

and models uncertainty in the velocity and angular velocity components.

The measurement noise covariance R ∈ R12×12 incorporates nominal noise

levels from manufacturer specifications for the compass and depth sensor.

Characterization of the pose estimator’s measurement noise requires

a more involved process. The noise primarily stem from the fact that
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network estimations are inconsistent and can sometimes exhibit substantial

errors. As such, setting a static value for the pose estimator’s measurement

noise, such as the standard deviation of localization error derived from

validation performance, is inadequate. To more accurately represent the

dynamic noise in the pose estimator, we employ dropout techniques at

test time for Monte Carlo sampling from the model output’s posterior

distribution. Dropout is a technique commonly used as a regularizer in

training neural networks to prevent overfitting. Recent works have shown

that using dropout during inference can be used to approximate Bayesian

inference over the distribution of the network’s weights at test time, without

requiring any additional model parameters [103]. Here, we apply Monte

Carlo dropout at inference - specifically, we enable dropout in the second-to-

last fully connected layer of the pose estimator using a dropout rate of 0.1.

At test time, we perform 100 forward passes per image and compute the

variance across pose predictions. This variance is then used to populate the

relevant entries in R, allowing the EKF to down-weight lower-confidence

visual estimates and improve robustness in uncertain conditions. We did

not observe any consistent bias in the compass, depth sensor measurements

or pose estimator outputs during the controlled environment trials and thus

did not model a bias term in the EKF formulation. As such, we assume the

measurement noise is zero-mean and unbiased.
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4.4.2 Results & discussion

As shown in Table 4.8, sensor fusion with the EKF consistently improves

pose estimation accuracy across different training setups. For configuration

C6 trained on D1+D2 and tested on D3 (see rows 2 and 3), applying

EKF reduces the median position error L√ from 0.58 m to 0.47 m, and

the orientation error Lθ from 3.20° to 0.00°. Similarly, for C6 trained

with the NVS-augmented dataset (see rows 5 and 6), EKF reduces the

position error from 0.15 m to 0.11 m, and orientation error from 0.93°

to 0.00°. This consistent improvement demonstrates the robustness of

the EKF-based fusion method in filtering noisy frame-level predictions and

leveraging inertial priors. As also illustrated in Fig. 4.18, the estimated

trajectory becomes noticeably smoother and more aligned with ground

truth. While the inference time increases by approximately 10 times due to

Monte Carlo sampling, this trade-off may be acceptable in scenarios where

pose stability and accuracy are critical.
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(a) Orientation error over time.

(b) Positional error over time.

(c) 3D trajectory comparison between the ground
truth and model predictions.

Figure 4.18: Comparison of pose estimation results with and without EKF
in a controlled environment.
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4.5 Field trials at sea

To further validate our proposed methods, we conducted field trials in a

bay near St. John’s Island, Singapore (SJI). In this section, we present the

methods, results and challenges encountered in using our proposed methods

from the previous section in a real-world setting.

4.5.1 Methods

We used Hydra to collect data in the site described in Section. 3.3.3.1.

We drove Hydra following a vertical lawnmower path around the pile, while

recording the video from the camera. Due to the high turbidity in the water,

we operated the ROV in close proximity to the structure with the average

distance being 1 m.

The accuracy of USBL in our at-sea experiments was compromised due

to high measurement noise and the absence of detailed information about

the deployment geometry. In contrast, COLMAP was able to produce

camera pose estimates with centimeter-level accuracy using structure-from-

motion on the collected images. We therefore used COLMAP to estimate

camera poses using the collected image data. Although these poses are

not ground-truth in the absolute sense, they provide a consistent reference

trajectory suitable for evaluating relative pose estimation performance in

the field setting.

We collected two datasets, named as D5 and D6, on two different days.

Although the inspection was carried out on the same structure with similar
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(a) Sample images from the Sea Water-1 dataset.

(b) Sample images from the Sea Water-2 dataset.

Figure 4.19: Representative camera images from the two underwater datasets
collected. The images from Sea Water-2 dataset show higher turbidity and
thus fewer observable features than images from Sea Water-1.

trajectories, there were noticeable differences in environmental conditions

between the two runs. D6 was collected under higher turbidity compared

to D5, resulting in fewer visual features and noisier images. This variability

reflects typical challenges encountered in real-world underwater inspections,

where it is difficult to guarantee the same visibility, lighting, or exact path

between mapping and reinspection runs. Samples of images collected in

these datasets are shown in Fig. 4.19.

We use D5 to train an NVS model following the method described in

Section 4.3.1. New camera poses are generated using the same approach.

The NVS model is then utilized to create an augmented training dataset,

named D7. Samples of images generated at new poses using the NVS model
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Figure 4.20: NVS rendered images for scenes in the bay near SJI. The
rendered images produce photorealistic views of the structure but exhibit
some artifacts and noise depending on the camera pose.

are shown in Fig. 4.20.

We train the best visual localization architecture configuration, C6,

both with augmented training data (datasets D5+D7) and without any

augmentation (only D5). Dataset D6 is used for validation and testing. The

training methods are similar to those described in Section 4.3.1.

4.5.2 Results & discussion

As shown in Fig. 4.21, augmented training with NVS yields significant

improvement in both position and orientation accuracy compared to training

without NVS augmentation. The improvements brought by NVS can be

attributed not only to an increase in training samples, but more importantly

to the expanded coverage of viewpoints, especially those that may be under-

represented or missing due to inevitable variations in inspection trajectories.

This highlights the strength of NVS augmentation in realistic underwater

applications, where achieving complete and repeatable scene coverage is

inherently difficult. With configuration C6 and augmented training, we

are able to achieve a position accuracy of 0.17 m and orientation accuracy
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(a) CDF of orientation errors.

(b) CDF of position errors.

Figure 4.21: CDF of errors for models trained with and without NVS
augmentation in at-sea environment. The plots show that augmented
training with NVS yields significantly lower errors for both orientation and
position compared to training without augmentation.

of 5.09°. We present the performance of C6 on D6 in Table 4.9. While

the median accuracy is comparable to the performance in the controlled

environment, we note that the standard deviation in the errors are much

larger at sea.

Clearly, the real-world setting at sea presents several challenges that
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Table 4.9: Performance of configuration C6 on dataset D6. Lp and Lθ are
median values across the test data. L was calculated using Equation 4.3
with the average distance d = 1 m.

Training Dataset Color Jittering Performance Metrics
L (m) Lp (m) Lθ (°)

D5 0.80 0.59 12.15
D5+D7 ✓ 0.26 0.17 5.09

are not present in controlled environments. The biggest challenge is the

turbidity of the water, which significantly affects the quality of the images.

Moreover, lighting is inconsistent at different camera poses and on different

days, causing high variablity in the image quality. This introduced three

new challenges. First, the noisy images make it challenging to compute

camera poses in COLMAP, resulting in a sparse number of registered

images. Consequently, the EKF model could not be used for performance

improvement since it would not be feasible to assume constant velocity and

angular velocity in the vehicle model. Second, the turbidity and inconsistent

lighting in the training data introduced artifacts in the NVS model. Thus,

the rendered images are more noisy compared to images in clear waters, as

shown in Fig. 4.20. Third, the high variability in image quality can lead to

more estimation outliers and large errors during inference. As illustrated

in Fig. 4.22, some test images contain rich textures and clear structure

boundaries, which are favorable for accurate pose estimation. In contrast,

others suffer from turbidity and challenging environment lighting, resulting

in severely degraded visual features and consequently poor pose estimates.

All of these factors contribute to a decrease in the model’s performance.
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(a) An image with one of the best pose
estimation accuracy.

(b) An image with one of the worst pose
estimation accuracy.

Figure 4.22: Test images from Sea Water-2 with amongst the best and
worst pose estimation accuracy.

4.6 Summary

In this chapter, we addressed the challenge of localization in underwater

inspection missions with a neural-network based pose estimator. We con-

ducted preliminary feasibility studies of using neural-network based pose

estimators for underwater localization using data collected from a simula-

tor and a tank. Our results showed that such pose estimators were able

to localize the vehicle accurately and their performance could be further

improved when trained on a larger and more diverse dataset using deeper

neural networks as the backbone.

To further improve the performance of the pose estimators, we proposed

a new loss function to train the pose estimator, and demonstrated that

training with d-loss significantly improved the model’s performance in pose

estimation tasks. This improvement was attributed to the incorporation of

domain-specific physics, as the d-loss accounts for the relevant geometric

considerations in the inspection mission. Furthermore, this loss function
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also provides more interpretability. Employing the ResNet50 backbone

with a CNN+LSTM architecture enabled us to efficiently use the available

visual information to estimate the pose, and yielded improvements in the

localization performance as compared to benchmark architectures.

In terms of the generalization, using more diverse data with a wider

distribution significantly enhanced the localization performance on test data

that lies outside the training distribution. We also investigated the use of

NVS techniques to augment training data and showed that this significantly

improved the estimator’s performance with previously unsurveyed poses.

Thus, we provide a cost-effective and information-efficient method to improve

the generalization performance without having to undertake expensive field

trials to collect additional data. Further integrating the pose estimator with

an EKF allowed us to fuse sensor data with the visual-based estimates, and

we demonstrated that this further improved the performance and stability.

We validated our proposed methods in both controlled environments in a

clear water ocean basin facility and in real-world settings at sea.

Overall, our results showed that our proposed methods significantly

improved the visual localization performance in both controlled underwater

environments and real-world settings and achieve good localization accuracy

to within desired limits, providing a cost-effective alternative or complement

to existing localization solutions. Real-world challenges such as turbidity

and noise limited the performance achievable, but the proposed method still

performed reasonably, especially when data augmentation using color-based
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augmentation was used to robustify the technique against color distortion.
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Chapter 5

Inverse NVS

In Chapter 3, we propose an NVS prior-based image compression ap-

proach. Our method leverages an NVS model and uses an optimal latent

representation, such as camera pose, as the compressed form of an image.

To account for dynamic changes in the scene, we compute the difference

between the camera image and the corresponding rendered image and

compress it using a classical lossy compression technique.

By transmitting the compressed difference along with the latent represen-

tation instead of the original RGB image captured by the ROV camera, we

aim to achieve high compression ratios while preserving high image quality.

This strategy enables real-time image transmission over bandwidth-limited

acoustic links. The effectiveness of this approach, however, depends on

having an accurate camera pose. When the pose is correct, the rendered

image closely matches the camera view, resulting in a small difference image

that primarily reflects the scene changes.

In practice, pose estimates—whether obtained via neural networks or

localization sensors—inevitably contain errors. Even slight misalignment
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Figure 5.1: Effect of a 5° rotation error on the rendered image. The left
image is the camera image, the middle image is the image rendered at the
latent representation rotated by 5° about the x-axis, and the right image is
the difference between the two images.

of a few pixels between the rendered and actual images can substantially

increase the size of the compressed difference image, Idiff. While the pose

estimators proposed in Chapter 4 provide sufficient accuracy for navigation,

they often fall short for image compression. As illustrated in Fig. 5.1, small

errors in the latent representation can lead to significant visual discrepancies,

especially when the ROV is close to the object of interest.

To address this issue, we propose two techniques to minimize the differ-

ence image: (1) an affine transformation to refine image alignment, and (2)

an inverse novel view synthesis method, dubbed iNVS, which searches for

the optimal latent representation that produces the closest match between

the model-rendered and actual camera images. The work in this chapter

was presented in [77] and [78].

5.1 Minimizing difference image by affine
transform

One effective strategy is to represent the minor differences between

the rendered and actual image using a simple affine transformation. This
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method helps correct small misalignment, thereby reducing the size of Idiff.

5.1.1 Method

An affine transformation is a geometric transformation that preserves

collinearity and parallelism while allowing for scaling, rotation, shearing,

and translation. Given a camera image, Icamera, and a NVS-rendered image,

INVS, we define a transformation that maps coordinates (x, y) in INVS to

new coordinates (x′, y′) in I as:x′

y′

 =

a b

c d


x

y

 +

e

f


where (x, y) are pixel coordinates in INVS, and (x′, y′) are the corre-

sponding transformed coordinates in Icamera. The parameters a, b, c, d define

the linear transformation (scaling, rotation, and shear), while e, f define

the translation.

To determine the optimal affine transformation parameters, we first ex-

tract keypoints from both the rendered and camera images using the Harris

corner detector [104]. These keypoints are then described using FREAK

descriptors [105] and matched to establish correspondences between the

two images. To ensure robustness to outliers, we apply a RANSAC-based

algorithm [106] that iteratively samples minimal sets of correspondences,

estimates candidate affine transformations, and selects the one with the high-

est number of inliers. The final affine parameters are refined by minimizing

alignment error over the inlier set.
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Once the affine transformation is determined, it is applied to the reference

image INVS to obtain a warped image INVS
′. The difference image is then

computed as:

Idiff = Icamera − INVS
′, (5.1)

where INVS
′ is expected to be better aligned with I, leading to a smaller

difference and improved compression performance.

In cases where insufficient keypoint matches are found or the estimated

transformation is ill-conditioned, the transformation is reverted to the

identity matrix, ensuring stability in the compression process. Additionally,

if the condition number of the transformation matrix exceeds a predefined

threshold, it is considered unstable and discarded to ensure compression

reliability.

5.1.2 Experiments & results

We collected data from the TCOMS DOB, conducting two survey runs

where the ROV followed a similar lawnmower trajectory in each trial. These

trials are referred to as the mapping run (M1) and test run (T1).

As introduced in Chapter 3, we used a Splatfacto model [107], a 3D-GS

implementation provided by the nerfstudio framework [84], for training and

image rendering.

We trained the neural network-based latent representation estimator,

referred to as CNN+LSTM, using the approach described in Chapter 4. We

utilize COLMAP [102] to compute the latent representation associated with
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Figure 5.2: Original camera image.

Figure 5.3: Rendered image using the estimated pose.

each image within an arbitrary reference coordinate system. The computed

COLMAP representation and corresponding images serve as the training

data for CNN+LSTM.

For evaluation, we used the trained CNN+LSTM to estimate the camera

poses of the selected images from T1. These estimated poses were then

fed into the trained Splatfacto model to generate corresponding rendered

images. Fig. 5.2 shows an example of an original camera image from T1,

and Fig. 5.3 presents the corresponding rendered image generated using the

estimated pose.

To align the rendered image with the original camera image, we com-

puted and applied an affine transformation. The difference between the
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Figure 5.4: Difference image between the original camera image and the
rendered image.

Figure 5.5: Affine transformed image.

original camera image and the rendered image before applying the affine

transformation is shown in Fig. 5.4. After applying the transformation,

we obtained the adjusted image shown in Fig. 5.5, and the corresponding

difference image is depicted in Fig. 5.6. These visual comparisons illustrate

the impact of affine transformation in reducing misalignment qualitatively.

To quantitatively evaluate the effectiveness of this alignment, we mea-

sured the size of the difference image Idiff compressed using the WebP lossy

image compression format. We performed this evaluation over 1,000 image

pairs. Without affine transformation, the average size was 4905 bytes. With

affine transformation, the average size was reduced to 4164 bytes including

the bytes needed to represent the pose and the transformation parameters.
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Figure 5.6: Difference image of the original camera image and the affine-
transformed image.

These results confirm that applying affine alignment leads to a substantial

improvement in compression performance.

5.2 Inverse NVS for optimal latent represen-
tation

Although affine transformation of the rendered view effectively reduces

the size of the difference image, it is not an ideal solution, as the affine

transform implicitly assumes a 2D world. The model mismatch manifests

in terms of artifacts in the difference image (see Fig. 5.5), thus increasing

the data size to be transmitted. Moreover, with the presence of novel

objects that were not present during the mapping run, the affine transform

technique may not be able to find sufficient matches between the camera

image and rendered image, thus compromising its robustness.

In this section, we propose to optimize the pose being transmitted,

via gradient descent through trained NVS models in order to minimize

the difference image. We refer to this method as iNVS. We conduct an

in-depth examination of various loss functions, optimization algorithms,
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and initialization methods.

We rigorously evaluate the performance of our proposed technique in a

confined underwater environment. The results demonstrate that NVS-based

image compression outperforms existing image compression methods in

both compression ratio and image quality. We assess the robustness of

our method when encountering novel objects and occlusions within the

scene from structures, both large and small. Our findings reveal that our

method can effectively handle these cases, maintaining high image quality

and reliability in dynamic underwater settings.

5.2.1 Methods

iNVS aims to rapidly estimate the latent representation that minimizes

the difference between a real camera image and the image rendered by a

trained 3D-GS model. The steps involved in iNVS are detailed in 5.7,and

its key components—initialization strategy, optimization algorithm, and

objective function—are discussed below.

An effective initialization is crucial for the rapid convergence of opti-

mization algorithms. In inspection missions where the vehicle moves slowly

and steadily, there are minimal changes in the latent representation be-

tween consecutive frames. Assuming such a scenario, we use the optimized

latent representation from the previous frame as an initialization point for

estimating the latent representation in the current frame, provided that a

“good” previous frame exists. This approach leverages the small inter-frame
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variations in the latent representation, enabling faster convergence due to

the proximity of the initial estimate to the true latent representation. By

utilizing the optimized latent representation from the previous frame when-

ever possible, we mitigate the issues associated with sensor drift, biases, and

estimator noise, providing a more accurate starting point for optimization.

To determine whether a previous frame is “good”, we compare the

rendered image at that latent representation with the current camera image.

If their difference falls below a predefined threshold, the estimate is reused.

When a “good” previous frame is unavailable, such as at the start

of a mission, or when the difference exceeds the threshold, alternative

initialization sources are employed. These may include measurements from

vehicle sensors or estimates from learned latent estimators.

The optimization step in iNVS refines the initial latent representation by

minimizing a differentiable image similarity loss between the rendered and

observed images. Since the number of parameters to be optimized is small

(typically a 6-DoF pose), both deterministic and stochastic optimization

methods can be considered. In our implementation, we explore both a

quasi-Newton method and a stochastic gradient-based method, as described

in Section 5.2.2.

The objective function quantifies the discrepancy between the rendered

image and the camera image. A commonly used choice is the mean squared

error (MSE), defined as:
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Lmse = 1
N

N∑
i=1
∥Icamera(i)− Irendered(i)∥2

2 (5.2)

where Icamera(i) and Irendered(i) are the RGB vectors at the ith pixel for

the camera image and the rendered+affine-transformed image, respectively.

∥·∥2 denotes the Euclidean (L2) norm across the color channels, and N is

the total number of pixels.

Alternative loss functions, such as the keypoint-based matching loss,

may improve robustness under poor initialization [70]. These are evaluated

in Section 5.2.3.

We describe the algorithm of iNVS in Algorithm. 1.

Algorithm 1 iNVS: Inverse Novel View Synthesis for Latent Optimization
Require: Camera image Icam, previous latent zprev (optional), external

initialization zext, NVS model M , threshold τ
Ensure: Optimized latent representation z∗

1: if zprev exists and MSE(Icam, M(zprev)) < τ then
2: z0 ← zprev
3: else
4: z0 ← zext ▷ Fallback to external source (e.g., sensor or estimator)
5: end if
6: Initialize z ← z0
7: repeat
8: Irender ←M(z)
9: L ← MSE(Icam, Irender)

10: Update z to minimize L using a gradient-based optimizer
11: until convergence criteria are met
12: return z∗ ← z

5.2.1.1 Datasets

We used the same dataset as the previous section, M1 and T1. On top of

these two datasets, we collected another test run, where the ROV surveyed
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the structure using a similar trajectory. We refer to this trial as test run 2

(T2). In T2, a new metallic structure was placed next to the existing one

to test the robustness of our technique towards novel objects in the scene,

as shown in Fig. 5.8c. We used T2 to investigate the robustness of our

proposed methods towards novel objects. We selected and pre-processed

the images in the same way as described in the previous section.
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Figure 5.7: Flow diagram of the iNVS optimization process. The system
determines whether to initialize the latent representation using the previous
frame or external sources based on availability and difference threshold. The
initialized representation is iteratively refined by minimizing the difference
between the rendered and camera images using a pretrained NVS model.
The resulting optimized latent representation is transmitted along with
the residual image as a compressed representation of the image, enabling
reconstruction at the topside.
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(a) An image from the mapping run (M1), showing the ROV
surveying the original structure.

(b) An image from test run 1 (T1), where the ROV continues to
survey the same structure for performance evaluation.

(c) An image from test run 2 (T2), featuring an additional metallic
structure placed next to the original to test the robustness of our
technique towards novel objects in the scene

Figure 5.8: Example images from the datasets.
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5.2.2 Implementation details

5.2.2.1 iNVS configuration

Scene representation We adopt 3D-GS as the underlying scene represen-

tation due to its high rendering speed, which enables real-time optimization.

To train the 3D-GS model, we use camera images from the initial survey

run (the “mapping run”) and employ the Splatfacto pipeline [107] provided

by the Nerfstudio framework [84].

Pose initialization For the controlled dataset, we use PoseLSTM, a

neural network estimator trained to estimate 6-DoF camera poses from

single RGB images. PoseLSTM is composed of a pretrained ResNet-50 [108]

as a feature extractor and a bidirectional LSTM for dimensionality reduction.

We generate ground-truth poses for training using COLMAP [102]. We

match the generated ground-truth poses with corresponding images from

the mapping run to form the training dataset.

To determine whether the estimated latent representation is suitable for

initializing the next frame, we evaluate the MSE between the normalized

camera image and the normalized NVS-rendered image at the optimized

latent. We set a threshold of 1× 10−3 for the controlled dataset.

Objective functions We evaluate two loss functions for pose refine-

ment. The first is the MSE between the rendered and camera images,

defined in Equation 5.2, which provides a direct pixel-level comparison
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and is computationally efficient. The second is a keypoint-based matching

loss Equation 5.3 introduced by iComMa [70], which uses LoFTR [109] to

extract and match keypoints across the two images. This approach aims

to improve robustness under poor initialization by focusing on larger-scale

structurally meaningful features rather than pixel-level alignment. To bal-

ance computational cost and robustness, we limit the number of keypoints

to 20.

The matching loss is defined as:

Lmatch = 1
M

M∑
i=1
∥kcamera(i)− krendered(i)∥2 (5.3)

where kcamera(i) and krendered(i) denote the ith keypoints in the camera image

and the rendered image, respectively. Each keypoint k(i) ∈ R2 is a 2D

coordinate representing a salient point in the image. The loss computes the

mean squared Euclidean distance between corresponding keypoints across

the two images, serving as a measure of geometric alignment between the

rendered image and the observed camera view.

Optimization methods For refining the latent representation, we evalu-

ate both deterministic and stochastic optimization methods. We select the

Broyden–Fletcher–Goldfarb–Shanno [110, 111, 112, 113] (BFGS) algorithm

as the deterministic optimizer. BFGS is a quasi-Newton method that ap-

proximates the Hessian matrix using gradient evaluations and iteratively

updates parameters to converge towards a local minimum. This choice is

motivated by the deterministic nature of our problem, which involves a
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small number of parameters. Since iNVS starts with a reasonably good

initialization, the solution is often near the global minimum, allowing BFGS

to converge quickly and reliably. We implement the BFGS algorithm us-

ing the pytorch-minimize package [114]. We set the gradient tolerance to

1× 10−5 and the parameter tolerance to 1× 10−6 to ensure convergence.

We also implement Adam [76] as a stochastic optimizer using PyTorch,

with an initial learning rate of 1 × 10−3, halving it if no loss improve-

ment is observed over three epochs. We compare these configurations in

Section 5.2.3.

Difference image compression The difference image Idiff between the

camera and rendered views is compressed using WebP and JPEG-XL. We

select these formats due to their support for fast encoding and decoding,

and their suitability for low-bitrate transmission scenarios.

5.2.2.2 Runtime and Computational Setup

Training of the NVSPrior model was conducted on a high-performance

workstation equipped with an NVIDIA RTX 6000 Ada GPU using PyTorch

for model optimization. Each scene required approximately 14 hours of

training at full resolution. The experiments presented in this chapter were

evaluated on the same workstation at a resolution downsampled by a factor

of 4 for faster iteration. To assess deployability under embedded constraints,

inference and optimization were also tested on an onboard NVIDIA Jetson

Orin module. The onboard runtime was approximately three times longer
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per frame compared to the workstation, reflecting the trade-off between

computational efficiency and real-time feasibility on power-limited ROV

platforms.

5.2.2.3 Benchmarking methods

We compare against two families of baselines: (i) classical codecs—WebP

and JPEG-XL, and (ii) learned codecs implemented with CompressAI [115],

namely, the Mean & Scale Hyperprior method [25] and MLIC++ [27]. For

classical codecs, we compress each RGB frame after resizing to 320×180

pixels.

For the learned baselines, we train the model on resized RGB frames

with the standard rate–distortion objective

L = R+ λ 2552D,

where R denotes bitrate and D is the MSE computed on images normalized

to [0, 1]; the 2552 factor follows CompressAI’s convention. A larger λ

emphasizes minimization of distortion, yielding higher reconstruction quality.

We report the highest-quality operating points using the largest λ provided

by each implementation.

We also benchmark against NVSPrior+Affine, an adaptation of the

approach proposed by Mishra et al. [77], which uses a learned affine transfor-

mation to align the rendered image with the camera image. In this method,

we first estimate the latent representation using PoseLSTM and render the

image using the 3D-GS model. We then compute affine transformation
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parameters to align the rendered image with the camera view. The result-

ing difference image is compressed using either WebP or JPEG-XL. This

approach serves as a baseline to assess the benefits of our proposed iNVS

method, which directly refines the latent representation to minimize the

difference image without relying on affine warping.

5.2.3 Ablation studies

We evaluate different loss functions and optimization methods for iNVS

to identify the component algorithms that deliver the best compression

performance for our proposed NVSPrior framework.

5.2.3.1 Objective functions

In this subsection, we study the performance of iNVS with different

objective functions, and how it varies with the error in the initial latent

representation. We introduce perturbations to the latent representation

to simulate initialization errors that occur during actual survey runs. For

each perturbation, we randomly select either a translation or rotation

axis and sample a perturbation value from a uniform distribution within

specified ranges. Translation perturbations are sampled uniformly within

[-1.58 m,1.58 m], and rotation perturbations are sampled uniformly within

[-40°, 40°]. Using the perturbed latent representation as the initialization,

we optimize the latent representation using either MSE loss or matching

loss until convergence.

After optimization, we compute the PSNR of the rendered images
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compared to the camera images in dB, energy in Idiff and number of bytes

of compressed Idiff between the camera image and rendered image at the

optimized latent representation. These metrics jointly capture both visual

fidelity and communication cost: PSNR reflects reconstruction quality,

energy measures the magnitude of residual errors, and compressed size

relates directly to the data rate, which is the ultimate focus of this work.

We also record the number of iterations required for convergence. This

process is repeated on the 1,422 images from M1. The results are shown in

Fig. 5.9 and Fig. 5.10. The PSNR is defined as:

PSNR = 10 · log10

( 1
Lmse

)
(5.4)

where Lmse is defined in Equation 5.2.

The model trained using MSE loss outperforms that using matching loss

across all metrics and perturbation values in terms of median performance,

despite exhibiting higher variance. Overall, using MSE loss achieves a

rendered image with higher PSNR and thus a more compressed Idiff than

using matching loss. The larger variability in performance observed when

using MSE loss is likely due to its sensitivity to initialization and the

presence of more local minima in its loss landscape. Moreover, MSE loss

converges faster than matching loss, even though it requires more iterations.

As a result, we select MSE loss as the objective function for iNVS.
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Figure 5.9: Comparison of performance using MSE loss and Matching
Loss as objective functions across different levels of rotational initialization
perturbation. In each ribbon plot, the solid line indicates the median value,
while the shaded region denotes the interquartile range across samples.
Metrics include PSNR, energy of the difference image, and compressed size.
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Figure 5.10: Comparison of performance using MSE loss and Matching Loss
as objective functions across different levels of translational initialization
perturbation.
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5.2.3.2 Optimization methods

With the MSE loss as the objective function, we compare the perfor-

mance of the BFGS and Adam optimization algorithms using a similar

approach as described above. Additionally, we investigate the performance

of a combined method, denoted as Adam+BFGS, where Adam is used as

the optimizer until convergence, followed by BFGS for finetuning. This

hybrid approach is a common practice in optimization [116, 117]. We

present the results in Fig. 5.11 and Fig. 5.12. We find that both BFGS

and Adam+BFGS outperform Adam across all three metrics and pertur-

bation values. Adam+BFGS performs slightly better than BFGS at small

translational perturbations; however, overall, BFGS achieves better per-

formance than Adam+BFGS at higher perturbation levels. Adam+BFGS

exhibits the smallest variance among all three optimization methods at high

perturbations and hence better reliability.

Apart from exhibiting better median performance, BFGS also requires

fewer iterations to converge than Adam and Adam+BFGS, and each of its

iterations is faster. This is likely because BFGS, a second-order optimizer,

leverages curvature information and progresses efficiently even when the

initial pose is moderately inaccurate. In contrast, Adam, as a momentum-

based first-order method, may converge more slowly or inconsistently due

to noisy gradients, particularly in this low-dimensional setting. Although

the hybrid Adam+BFGS method is more stable under small perturbations,
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it adds computational overhead without consistent benefits at larger errors.

Therefore, we choose BFGS as the optimization method for iNVS henceforth.

It is important to note that the performance of iNVS degrades rapidly

when the perturbations are large (e.g., greater than 1.3 m in translation or

37° in rotation). Therefore, a good initialization is crucial for the optimal

performance of iNVS.

5.2.3.3 Initialization

We compare the convergence performance of iNVS using two initializa-

tion methods: (1) the latent representation estimated from the previous

frame and (2) the latent representation estimated by PoseLSTM on the

current frame. Our results show that initializing with the previous frame’s

latent representation requires fewer iterations for convergence and is more

computationally efficient, as it eliminates the need for neural network infer-

ence.

5.2.4 Compression performance on controlled dataset

We evaluate the compression performance of NVSPrior on the controlled

dataset T1 using iNVS (shown in Fig. 5.13), configured with BFGS opti-

mization and MSE loss. For both iNVS and the baselines, we test WebP

and JPEG-XL as the codecs for compressing the difference image Idiff.

We compare against the following families of baselines: (1) WebP and

JPEG-XL applied directly to the original RGB image captured by the

ROV camera, (2) Mean & Scale Hyperprior and MLIC++ [25, 27], and (3)
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Figure 5.11: Comparison of performance using Adam and BFGS as opti-
mizers across different levels of rotational initialization perturbation.
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Figure 5.12: Comparison of performance using Adam and BFGS as opti-
mizers across different levels of translational initialization perturbation.
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Figure 5.13: NVSPrior pipeline with iNVS for underwater image transmis-
sion.
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NVSPrior + Affine, which uses affine warping.

Our evaluation metrics are:

1. Transmitted data size (in bytes): the total size of data required

to reconstruct the image. For our method, this includes both the

optimized latent representation and the compressed difference image

Idiff. The size of the latent representation is fixed at 28 bytes, consisting

of 7 float32 values (3 to represent translation of the pose and 4 for

quaternion rotation). For the classical codecs, we report the size

of the compressed image. For the learned compression method, we

report the size of the quantized latent representations after entropy

coding [115].

2. Compression ratio: the ratio between the size of the original un-

compressed RGB image (320 ×180 pixels, 3 bytes per pixel) and the

size of the transmitted data.

3. PSNR: as defined in Equation 5.4, computed between the camera

image and reconstructed image, quantifying reconstruction quality.

4. Processing time per frame: time required to compress and recon-

struct an image, reflecting the method’s computational efficiency and

real-time feasibility.

We report the results in Table 5.1.

123



CHAPTER 5. INVERSE NVS

Table 5.1: Quantitative results on the T1 dataset, averaged over 1000
images. Size stands for the size of the transmitted data in bytes. Ratio
stands for the compression ratio. Time refers to processing time per frame
in milliseconds. Arrows show the increasing/decreasing trend of the metric
indicating improvement.

Method Size ↓ Ratio ↑ PSNR ↑ Time ↓
WebP 3544 48.76 33.30 ∼ 6
JPEG-XL 5711 30.25 33.57 ∼ 1
Mean & Scale Hyperprior [25] 10783 16.03 34.81 ∼100
MLIC++ [27] 4174 41.40 31.19 ∼ 129
NVSPrior+Affine+WebP 4164 41.50 31.85 ∼ 64
NVSPrior+Affine+JPEG-XL 4401 39.26 31.31 ∼ 59
NVSPrior+iNVS+WebP 1219 141.76 35.83 ∼ 62
NVSPrior+iNVS+JPEG-XL 1552 111.34 36.15 ∼ 57

Our results demonstrate that our NVSPrior+iNVS approach achieves

the best overall performance among all methods. It achieves a significantly

higher compression ratio than WebP and JPEG-XL while maintaining a

higher PSNR. iNVS with WebP achieves the highest compression ratio,

which is 2.90 times higher than WebP and 4.67 times higher than JPEG-XL.

In Fig. 5.14, we show an example of the iterative optimization process

of iNVS. Given a camera image, iNVS rapidly optimizes the camera latent

representation to minimize the difference between the camera image and the

rendered image. The optimization process converges within a few iterations,

demonstrating the efficiency and effectiveness of our technique.

iNVS with JPEG-XL achieves the highest PSNR of 36.15 dB, which

is 2.85 dB higher than WebP and 2.58 dB higher than JPEG-XL. In

Fig. 5.15a, we observe the reconstructed image from iNVS is clearer and

sharper than the image compressed and decompressed by classical methods.
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Figure 5.14: iNVS optimization process. Given a camera image, iNVS
rapidly and accurately optimizes the latent representation to minimize the
difference between the camera image and the rendered image.

(a) Reconstructed images for T1

(b) Reconstructed images for T2

Figure 5.15: Visualization of reconstruction quality for T1 and T2. The
left image is the compressed/decompressed image by JPEG-XL, the right
image is the image reconstructed using NVSPrior+iNVS+JPEG-XL.

The results demonstrate that our iNVS technique is more effective than

classical compression methods for real-time image transmission over limited-

bandwidth acoustic links.

Despite strong results on standard learned image compression bench-
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marks [115, 27], Mean & Scale Hyperprior and MLIC++ underperform in

our underwater setting. We attribute this to (i) limited domain-specific

training data, which constrains learned priors and weakens context mod-

eling, and (ii) a resolution mismatch—MLIC++ is primarily evaluated at

higher resolutions, whereas our inputs are small, diminishing the benefit of

its multi-reference context modules. In contrast, our NVS-based approach

exploits a scene-specific 3D prior learned across viewpoints, assimilating

3D information more efficiently from modest training datasets and gener-

alizing across repeat surveys; under these data-scarce, low-resolution, and

underwater-degraded conditions, it achieves better rate–distortion perfor-

mance.

We also find the overall performance of NVSPrior+Affine is worse than

both NVSPrior+iNVS and classical codecs. This is likely due to the affine

transformation method assumes a 2D scene geometry and introduces visual

artifacts. As illustrated in Fig. 5.16b, the latent representation estimated by

PoseLSTM often results in significant misalignment between the rendered

and camera images, leading to larger residuals. This misalignment cannot be

fully corrected by affine warping, which introduces visual artifacts, thereby

increasing the entropy of the difference image. This results in a much

larger compressed size using Affine than using iNVS. This underscores the

effectiveness of the latent representation optimization by iNVS.
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(a) Result of NVSPrior+iNVS.

(b) Result of NVSPrior+Affine.

Figure 5.16: Visualization of the compression performance using NVSPrior
with either the iNVS (a) or the Affine approach (b). In each of the subfigures,
we present the (i) camera image, (ii) rendered image at the estimated latent
representation, (iii) the difference between the two images and (iv) the final
reconstructed image. The visible artifacts in (b) arise from pose estimation
errors and the limitations of affine transformation.
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Using our approach, the average transmitted data size is 1.2 kB, allowing

approximately 10 frames per second to be sent over a 100 kbps acoustic

link. Although our method involves an additional optimization step, iNVS

remains computationally efficient, with a runtime of approximately 62 ms per

frame. This is largely due to effective initialization from the previous frame’s

optimized latent representation, which enables rapid convergence of the

BFGS optimizer. These properties make NVSPrior+iNVS a practical and

scalable solution for real-time image transmission in bandwidth-constrained

underwater inspection scenarios.

5.2.5 Robustness to novel objects in the scene

In inspection missions, it is common to encounter changes in the scene

with time, such as the presence of additional structures or objects (e.g.

fish, biological growth, corrosion, etc). We evaluate the robustness of our

NVSPrior+iNVS technique to novel objects in the scene using dataset T2,

in a similar manner as described above.

We test the performance of iNVS on two examples, representing novel

objects commonly encountered in inspection missions. The first is a thin

yellow safety line that moves with the vehicle and appears on the camera,

as shown in Fig. 5.17a. The second is a stationary metallic object with

dimensions approximately 1.0 m × 0.25 m × 0.25 m, as shown in Fig. 5.17b.

We find that NVSPrior+iNVS handles both types of novel objects well. The

average compressed data size with the presence of these objects is 1.65 kB,
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(a) Result of the NVSPrior+iNVS with the presence of a safety line.

(b) Results of the NVSPrior+iNVS with the presence of a new structure.

Figure 5.17: Visualization of the compression performance using NVSPrior
with iNVS in presence of novel objects. As Fig. 5.16, we present the camera
image, rendered image, difference image, and final reconstruction.

allowing us to transmit about 7 frames per second over a 100 kbps acoustic

link. The results are summarized in Table 5.2.

We find that even with the presence of novel objects in the scene, our

NVS-prior approach remains the most bitrate-efficient and also attains
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Table 5.2: Quantitative results on the T2 dataset, averaged over 1000
images. Size stands for size of the transmitted data in bytes. Ratio
stands for compression ratio. Time refers to processing time per frame in
milliseconds. Arrows indicate the direction of improvement.

Method Size ↓ Ratio ↑ PSNR ↑ Time ↓
WebP 3655 47.28 33.43 ∼ 6
JPEG-XL 5827 29.66 33.86 ∼ 1
Mean & Scale Hyperprior [25] 10889 15.87 34.81 ∼87
MLIC++ [27] 4260 40.57 30.93 ∼ 128
NVSPrior+Affine+WebP 4452 38.81 31.83 ∼ 92
NVSPrior+Affine+JPEG-XL 4629 37.33 31.37 ∼ 86
NVSPrior+iNVS+WebP 1651 104.66 35.32 ∼ 125
NVSPrior+iNVS+JPEG-XL 2073 83.36 35.55 ∼ 119

the highest reconstruction quality. NVSPrior+iNVS+WebP achieves the

smallest transmitted size, improving compression by 2.21 times over WebP

and 3.53 times over JPEG-XL. NVSPrior+iNVS+JPEG-XL yields the

highest PSNR, exceeding WebP by 2.12 dB and JPEG-XL by 1.69 dB,

while still reducing size to 2073 bytes.

Learned baselines do not perform well in this setting: the Mean &

Scale Hyperprior achieves 35.35 dB PSNR but at a much higher bitrate,

and MLIC++ produces lower quality with a larger size than our methods.

Relative to the prior Affine variant, iNVS improves both rate and distortion,

underscoring the importance of latent refinement rather than 2D warping.

Compared to the results in T1, the performance of iNVS degrades slightly

in T2 due to two main reasons. First, the presence of a novel object in the

scene increases the difficulty for the trained estimator to provide a good

initialization. For the initial frames, we rely on the PoseLSTM estimator,
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as the rendered image from the previous frame is determined to be too

different from the current frame, as shown by its MSE which is greater than

the threshold. Hence, the Idiff energies for the first few frames are larger

due to less accurate pose initialization. Second, the presence of the novel

object increases the entropy of Idiff, resulting in a larger compressed size.

Nonetheless, the performance of iNVS remains significantly better than that

of WebP and JPEG-XL, enabling near-real-time image transmission over

limited-bandwidth acoustic links.

5.3 Summary

In this chapter, we proposed affine transformation and iNVS to reduce

the compressed size of Idiff. While applying affine transformation to match

the rendered image to corresponding camera image successfully reduces the

compressed size of Idiff, its implicit assumption of a 2D world causes artifacts

in the difference image, thus increasing the data size to be transmitted. To

further reduce the compressed size of Idiff, we propose iNVS which optimizes

the latent representation through gradient descent by minimizing the MSE

between rendered and camera image. We evaluate the performance of

different loss functions, optimization methods, and initialization methods

for iNVS and demonstrate that MSE loss, BFGS based optimization, and

using the pose of the previously acquired frame as the initialization are

the most effective options. We evaluate the compression efficiency and

reconstruction quality of our NVSPrior approach combined with iNVS in
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a confined underwater environment and demonstrate that it outperforms

existing image compression techniques, such as WebP, in terms of both

compression ratio and image quality. We also examine the robustness of

our method towards novel objects in the scene and demonstrate that it

can handle occlusion from both small and large structures. Overall, our

NVS prior-based technique outperforms both classical codecs and learned

compression methods significantly and is a promising solution for real-time

image transmission over limited-bandwidth acoustic links in inspection

missions.
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Chapter 6

NVSPrior in the wild

By now, we have seen that the NVSPrior image compression framework,

enhanced by iNVS (as shown in Fig. 6.1), can deliver high compression ratios

and superior reconstruction quality, outperforming both classical codecs

and learned compression methods. These results, obtained in controlled

clear-water environments, demonstrated the power of using NVSPrior for

efficient underwater image transmission via bandwidth-limited acoustic

links. But the real world, especially the Singapore waters, presents a far

more complex challenge.

Here, visibility is often compromised by high turbidity, reducing image

Figure 6.1: NVSPrior enhanced by iNVS.
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contrast and introducing haze. Suspended particles and marine snow

introduce noise, while sunlight reflections, shadows, and marine growth

movement create dynamic visual elements that violate the static-scene

assumptions underlying both pose estimation and novel view synthesis.

Earlier chapters have already hinted at these challenges: Chapter 3 showed

that rendered views from a Splatfacto model trained in Singapore waters

suffered from visible artifacts; Chapter 4 revealed that the performance of

our pose estimator degraded under the same conditions. These observations

raise a critical question: Can our system, successful in the tank, stand up

to the noise, uncertainty, and variability of the sea?

In this chapter, we test the complete compression pipeline under real-

world conditions. As shown in Figure 6.2, we conduct this evaluation during

a live ROV deployment in turbid waters at SJI. We investigate whether the

original iNVS configuration remains effective under such conditions, and

explore enhancements—such as improved pose initialization and feature-

based losses—to increase robustness. This final evaluation brings the full

system into an operational setting, assessing the practical effectiveness of

NVSPrior for underwater image compression in challenging environments.

6.1 Field evaluation of the original iNVS

We deployed our ROV, Hydra (shown in Fig. 6.3), at the same SJI site

described in Section 4.5.1, inspecting a submerged pile in turbid coastal

waters.
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Figure 6.2: ROV deployed during our field demonstration in Singapore
waters. The environment features high turbidity.

We conducted two data collection runs on separate days, resulting in

two datasets named Sea Water-1 and Sea Water-2. In both runs, Hydra

followed a vertical lawnmower trajectory around the pile, capturing imagery

at approximately 3 frames per second (fps). Sea Water-1 comprises 1,924

RGB images, while Sea Water-2 contains 399 RGB images. Compared to

Sea Water-1, Sea Water-2 was acquired under higher turbidity, yielding

noisier imagery and fewer trackable features. This natural variability reflects

real-world challenges of underwater inspection, where visibility, lighting,

and vehicle trajectory cannot be perfectly controlled.

We use Sea Water-1 for training the NVS model and evaluate on Sea

Water-2, following the procedure outlined in Chapter 5. This enables us to

test the robustness of our approach under environmental variability.

During this deployment, we tested the original iNVS configuration
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Figure 6.3: Preparation for field deployment at St. John’s Island.

proposed in Chapter 5. To recap, the system first attempts to reuse the

latent representation from a previous frame by computing the MSE between

the normalized camera image and the normalized rendered image generated

from that representation. If the MSE falls below a predefined threshold,

the frame is considered “good” and its latent code is reused. If no such

prior is available, PoseLSTM is used to generate an initial estimate of the

latent representation, which is then refined using the BFGS optimization

algorithm with the MSE as the objective.

The system achieved a higher compression ratio than WebP and enabled

real-time image transmission over the acoustic modem. However, we ob-

served that it operated at only 2–3 frames per second, which is significantly

slower than in controlled environments.

Table 6.1 summarizes the performance of different pose initialization and

refinement configurations on Sea Water-2, evaluated using PSNR, SSIM,

and average compressed size. As shown in Table 6.1, the baseline configu-
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ration of our method (PoseLSTM+refine, row 5) outperformed traditional

compression baselines in terms of quantitative metrics. Compared to the

case with no prior (row 1), which achieved a compressed size of 6720 bytes,

the original iNVS configuration reduced the number of transmitted bytes

to 4101.11—a reduction of approximately 39%. These results confirm that,

under real-world conditions, the baseline iNVS configuration still achieves a

compression performance superior to classical methods.

However, visualization of the rendered views at the optimized poses

reveals that iNVS failed to find the correct latent representation. In par-

ticular, it often produced a nearly fixed viewpoint of the pile, regardless

of the actual camera pose in the input image. As illustrated in Fig.6.4,

even as the camera moves downward along the structure—from Fig.6.4a

to Fig. 6.4b—the rendered image remains largely unchanged. This indi-

cates that pose optimization fails, yet the MSE remains below the preset

threshold, incorrectly identifying the frame as a good prior.

Conversely, in cases where the rendered and camera images are well-

aligned, the MSE is sometimes high, leading to the false rejection of valid

priors. This typically occurs when there are noticeable lighting differences

in the background. We suspect that the observed mismatch between MSE

scores and actual alignment quality arises in part from the simplicity and

repetitive appearance of the structure. The pile’s visual features are largely

uniform due to its cylindrical shape and repetitive patterns, resulting in

minimal variation between different sections. Moreover, the pile typically
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(a)

(b)

Figure 6.4: Visualization of the results in SJI with baseline configuration.

occupies less than half of the image, with the remaining area dominated by

background. As a result, background lighting differences contribute more

to the pixel-wise MSE than structural differences.

These findings indicate that MSE is not a robust indicator for determin-

ing whether a frame is suitable for initialization. Furthermore, they suggest
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that MSE may no longer be an appropriate objective function for pose

optimization in real-world underwater environments, where background

noise and environmental variability can distort pixel-level comparisons.

These observations prompted a re-evaluation of both our reliance on

the NVS-rendered image as a prior and the use of MSE as the objective

function. In the following sections, we investigate whether simpler priors,

such as a static background, can offer similar benefits. We also explore

enhancements to pose initialization and alternative loss functions designed

to improve robustness under the challenging and variable conditions of

real-world underwater environments.

6.2 Revisiting the role of priors

In our baseline, the NVS-rendered image often failed to match the correct

section of the structure but still led to improved compression performance

over classical methods. This raised a key question: how much of this

improvement comes from leveraging prior information about the structure,

and how much simply from having a visually stable background?

To explore this, we tested a much simpler prior—a static image with no

structural content—to isolate the contribution of background similarity.

In this experiment, we used the same image, captured from the water

column with no visible structure, as the prior for every frame. For each

frame, we computed the difference between the camera image and the static

prior, compressed this difference, and transmitted it. At the receiver’s
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Table 6.1: Comparison of different pose initialization and refinement meth-
ods on dataset 2. Best values for PSNR, SSIM, and average compressed
size in bytes are shown in bold.

Method PSNR SSIM Compressed size
No prior - - 6720
Background prior 13.44 0.6362 3760
PoseLSTM 18.14 0.7072 4459

end, the reconstructed image was obtained by adding the decompressed

difference back to the static prior.

Surprisingly, this naive method (background prior) outperformed our

baseline iNVS (PoseLSTM+refine) in terms of compression efficiency. As

shown in Table 6.1, despite a noticeable drop in image quality, the method

achieved better compression performance, with a 9.5% reduction in com-

pressed size compared to the baseline iNVS configuration.

These results indicate that background information plays a critical role

in compression performance. In this case, the static background prior

even outperformed the NVS prior probably because it avoided structural

misalignment errors, which can lead to larger difference images and reduced

compression efficiency.

Although the performance of the simple background prior is primarily

due to the nature of the scene being simple and repetitive, and may not

generalize to more complex environments, it provides a valuable benchmark.

Our method, which incorporates more detailed information about the scene,

should be able to outperform this baseline, even under such unfavorable

conditions.
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The following sections focus on addressing the limitations identified in

our baseline configuration. In particular, we explore improvements to pose

initialization and the introduction of more robust loss functions, with the

goal of enhancing the overall reliability and performance of our approach in

real-world underwater environments.

6.3 iNVS-w: In-the-Wild Variant

To address the limitations identified in our baseline configuration, we

propose iNVS-w, a robustified variant that integrates a DFNet-inspired pose

regressor and a perceptual refinement loss. iNVS-w retains the optimization-

based refinement of the latent representation, but improves robustness

through two key enhancements: (i) a more accurate initialization strategy

based on a DFNet-inspired regressor, and (ii) a perceptual similarity loss

based on multi-scale structural similarity (MS-SSIM).

6.3.1 Pose Initialization with DFNet-inspired Regres-
sor

Original iNVS employed a PoseLSTM regressor, an extension of PoseNet [91,

62]. While effective in structured environments, such regressors tend to

generalize poorly in the wild, particularly underwater, where turbidity, illu-

mination, and scattering induce strong photometric shifts. As a result, pose

predictions can drift significantly when training and deployment domains

differ.

To address this, we adopt DFNet [75], which extends PoseNet by explic-
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itly incorporating image-level feedback from NVS. Rather than regressing

poses solely from ground-truth supervision, DFNet aligns training with

the downstream objective of iNVS: rendering consistency. During training,

a real image and its ground-truth pose are paired with a synthetic view

generated by a pretrained NVS model. Both the real and synthetic images

are fed through a shared feature extractor and pose regressor. Supervision

comes from two components: (i) a standard pose regression loss comparing

predicted poses to ground truth, and (ii) a triplet loss in feature space, which

enforces that features from real and rendered views of the same pose are

closer than those from different poses—thus encouraging domain-invariant,

pose-sensitive representations. This combination enhances robustness to

appearance variations common in images collected underwater.

We implement DFNet in PyTorch with an EfficientNet-B3 backbone [75,

118]. We train the pose estimator using Sea Water-1 images and their

corresponding COLMAP poses. Images are resized to the network resolution

and normalized to ImageNet statistics. To improve generalization in turbid

conditions, we generate synthetic data from the trained 3DGS model by

jittering each training pose.

We train DFNet following a two-stage procedure. First, we optimize

the feature extractor using paired real and rendered images to encourage

consistency between feature representations. Next, we train the full network

for absolute pose regression, using both photometric and feature-matching

losses. Training is performed with the Adam optimizer and early stopping;
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standard hyperparameters are used.

6.3.2 Perceptual Loss

Our previous work adopted a pixel-wise MSE loss between the rendered

image and the input camera image. However, MSE penalizes all pixel-level

differences equally, making it highly sensitive to local lighting variation and

turbidity-induced color inconsistencies.

To provide robustness against photometric variability and transient

changes, we optimize the MS-SSIM between the rendered and observed

images. MS-SSIM extends the structural similarity index by combining

luminance, contrast, and structure components across progressively down-

sampled image scales [86]:

MS-SSIM(x, y) =
[
lM(x, y)

]αM
M∏

j=1

[
cj(x, y)

]βj
[
sj(x, y)

]γj

,

where lM , cj, sj denote the luminance, contrast, and structure terms at scale

j, and αM , βj, γj are scale-dependent weights.

The loss is defined as the dissimilarity:

LDMS-SSIM(Icam, Irend) = 1−MS-SSIM(Icam, Irend).

Compared to MSE, MS-SSIM is less sensitive to global illumination or

contrast shifts, and emphasizes structural alignment, which is particularly

effective for handling transient changes in real-world underwater scenes.
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6.3.3 Results and Discussion

We comprehensively evaluate NVSPrior with iNVS and iNVS-w against

both conventional codecs and representative learned compression models.

The evaluation includes (i) quantitative benchmarks of rate–distortion trade-

offs, perceptual fidelity, and runtime efficiency, (ii) qualitative comparisons

to examine the perceptual quality of reconstructions and their suitability for

operator use, and (iii) ablation studies isolating the effect of loss functions,

feature-space supervision, and temporal initialization.

To emulate realistic transmission conditions, we evaluate the performance

using images of 640 × 360 pixels for high-speed acoustic links (about 100

kbps) and 320 × 180 pixels for standard acoustic links (about 30 kbps),

matching the effective bandwidth of commonly used underwater modems.

Beyond reporting metrics, we interpret results in the context of underwater

deployment, showing how our method achieves modem-feasible bitrates,

what runtime limitations remain, and how these insights extend to real-world

inspection scenarios.

6.3.3.1 Quantitative Evaluation

We benchmark iNVS and iNVS-w against two categories of baselines:

(i) conventional codecs and (ii) learned codecs. For conventional baselines,

we select JPEG XL, the most advanced member of the JPEG family, and

WebP, one of the most widely deployed image compression standards [16,

17]. For learned baselines, we evaluate Cheng’20 and MLIC++, two learned
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Table 6.2: Quantitative results at the highest-compression (lowest-
bitrate) setting. Comparison of iNVS-w with iNVS, conventional codecs,
and learned compression methods. Metrics: PSNR, SSIM, LPIPS, BPP,
and runtime per frame. Best results per column in bold.

(a) 640×360

Method PSNR↑ SSIM↑ LPIPS↓ BPP↓ Time(s)↓
iNVS-w (WebP) 34.57 0.9142 0.1302 0.0353 0.572
iNVS (WebP) 33.49 0.8893 0.1494 0.0438 0.341
JPEG-XL 38.49 0.9398 0.1351 0.0651 0.092
WebP 37.15 0.9324 0.1334 0.0681 0.011
Cheng’20 24.20 0.8674 0.4108 0.0946 4.328
MLIC++ 34.91 0.9263 0.2412 0.0387 0.242

(b) 320×180

Method PSNR↑ SSIM↑ LPIPS↓ BPP↓ Time(s)↓
iNVS-w (WebP) 33.93 0.9364 0.0867 0.0469 0.627
iNVS (WebP) 32.09 0.8536 0.1133 0.0599 0.458
JPEG-XL 37.01 0.9244 0.1367 0.0983 0.043
WebP 35.99 0.9164 0.1240 0.1000 0.003
Cheng’20 22.54 0.8157 0.3824 0.2407 1.077
MLIC++ 33.60 0.9048 0.1926 0.0697 0.187

codecs are representative of state-of-the-art research methods optimized for

rate–distortion performance [26, 115, 27]. Both learned codecs are trained

on the SeaWater-1 dataset. Across all methods, we report compression

efficiency in bits per pixel (bpp), reconstruction fidelity using peak signal-

to-noise ratio (PSNR), SSIM, and learned perceptual image patch similarity

(LPIPS) as well as runtime per frame measured on a single NVIDIA RTX-

3090 GPU.

Performance at highest compression Table 6.2 summarizes the quan-

titative performance of the proposed iNVS-w method against iNVS, conven-

tional codecs and learned compression baselines at both image resolutions.
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At the higher resolution (640 × 360), our proposed iNVS-w achieves

0.0353 bpp, corresponding to approximately 12 fps over a 100 kbps high-

speed acoustic link. At the lower resolution (320 × 180), the operating point

of 0.047 bpp translates to approximately 11 fps on a 30 kbps standard link.

As shown in Fig. 6.5, iNVS-w is the only method capable of exceeding 10

fps using a standard-bandwidth link, confirming its suitability for real-time

transmission under realistic underwater constraints.

Across all metrics, iNVS-w achieves the best balance between compres-

sion efficiency and perceptual fidelity. Relative to iNVS, it improves both

compression efficiency and reconstruction fidelity, albeit with higher runtime.

It also outperforms conventional codecs with markedly lower LPIPS and

comparable SSIM at substantially reduced bitrates, and further achieves

better efficiency and fidelity than state-of-the-art learned codecs.

Rate–distortion performance To comprehensively assess compression

efficiency, we analyze the rate–distortion performance of all methods across

multiple compression levels. As shown in Fig. 6.6, iNVS-w consistently

dominates the low-bitrate regime, achieving higher perceptual quality at

lower bitrates compared with all other methods. We further compute the

Bjøntegaard Delta Rate (BD-Rate) [119] using LPIPS as the quality metric

and WebP as the anchor codec. The proposed iNVS-w achieves an average

45–60% bitrate reduction at equivalent perceptual quality, demonstrating

substantial gains in perceptual rate–distortion efficiency.
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Figure 6.5: Performance of all methods at highest compression (320×180).
The red dashed line marks the communication budget of 30 kbps.

Runtime analysis Table 6.2 reports the per-frame latency measured on

an NVIDIA RTX 3090 GPU. The proposed iNVS-w achieves 0.57–0.63 s

per frame, which is comparable to state-of-the-art learned methods but one

to two orders of magnitude slower than classical codecs. In our framework,

runtime is governed by the number of optimization iterations performed

during compression. More iterations reduce the difference between rendered
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Figure 6.6: Rate–distortion curves across the full operating range (320×180).

and captured images, yielding a lower bit rate at the cost of longer processing

time.

Runtime can be tuned by limiting iterations, tightening convergence

tolerances, or performing coarse-to-fine refinement at lower resolutions.

These adjustments provide significant speedups with modest impact on

compression quality, enabling users to balance bandwidth efficiency against

computational latency based on mission requirements.
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Although iNVS-w is not yet real-time, it offers a practical balance among

quality, bitrate, and runtime, with a clear path toward deployability in

future underwater inspection systems.

6.3.4 Qualitative Results

Beyond numerical metrics, we examine reconstruction quality of NVSPrior+iNVS-

w directly. Figure 6.7 compares a representative raw camera frame with its

reconstruction by NVSPrior+iNVS-w, along with zoomed crops. Despite

operating at only 0.0353 bpp, the reconstruction preserves the key geomet-

ric structures on the pile surface and retains sufficient clarity for operator

situational awareness.

Figure 6.8 shows that our reconstructions consistently preserve high

fidelity across the test set. These results highlight that iNVS-w achieves

modem-feasible bitrates without compromising the level of visual fidelity

required for field deployment.

6.3.5 Ablation Studies

We conduct ablation studies with respect to three design choices in

iNVS-w using the DFNet backbone with WebP: the refinement loss function,

feature-space supervision, and temporal initialization. Figures 6.9 reports

rate–distortion curves; quantitative aggregates appear in Table 6.3.

Choice of loss function We first evaluate the impact of standard pixel-

and perceptual-domain losses. As shown in Table 6.3, using MSE or mean
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(a) Original camera image (b) iNVS-w reconstruction

(c) Zoom of camera image (d) Zoom of reconstruction

Figure 6.7: Qualitative comparison between a raw camera frame and its
reconstruction by iNVS-w.

absolute error (MAE) does not improve performance over the DFNet baseline

and in fact yields slightly lower PSNR and SSIM. In contrast, adopting

MS-SSIM consistently raises PSNR across the bitrate range. This indicates

that pixel-domain errors are not robust to photometric variations induced

by underwater lighting, turbidity, and other factors, whereas perceptual

similarity provides a more reliable optimization target under such conditions.

Loss in alternative spaces We next examine whether computing the loss

in alternative domains can improve robustness. The first variant converts
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Figure 6.8: Representative qualitative comparisons of raw camera frames
(top) and iNVS-w reconstructions (bottom), shown at 0.0353 bpp.

Table 6.3: Ablation study on DFNet with WebP/20, showing the effect
of refinement loss, feature-space loss, grayscale MAE, and previous-pose
initialization. Metrics are averaged over the test set. Best values are in
bold.

Refine
Loss

Feature
Loss

Prev.
Pose

Gray-
scale

PSNR
↑

SSIM
↑

BPP
↓

Time
(s)↓

No refine – – – 32.18 0.923 0.042 0.01
MSE – – – 32.19 0.923 0.043 0.37
MAE – – – 32.15 0.924 0.043 0.38
MAE – – ✓ 32.12 0.923 0.043 0.41
MS-SSIM – – – 32.76 0.940 0.034 0.58
MS-SSIM ✓ – – 32.74 0.940 0.034 1.54
MS-SSIM – ✓ – 32.71 0.939 0.034 0.59

images to grayscale before computing the MAE, with the aim of reducing

sensitivity to unstable color channels. However, as shown in Table 6.3, this

does not yield any benefit over standard MAE and in fact produces slightly

lower PSNR and SSIM. A likely explanation is that color channels may

contain useful cues for pose estimation. In underwater imagery, localized

beams or flares can cause sharp intensity variations, which in grayscale are

integrated into a single channel and therefore penalized more strongly.

The second variant evaluates the effectiveness of computing the loss

in feature space, with the goal of extracting features that are invariant

to such photometric changes. Here, we implement a differentiable version
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Figure 6.9: Ablation of loss domain, feature-space supervision, and temporal
priors with DFNet+WebP. The selected iNVS-w configuration (image-space
MS-SSIM, no auxiliary modules) offers the best quality–bitrate trade-off
with favorable runtime.

of descriptor fields [120] as a feature extractor, and compute MS-SSIM

between rendered and observed images in this feature space. While this

formulation improves robustness to illumination and background variation,

Table 6.3 shows that its quantitative performance is comparable to image-
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space MS-SSIM but incurs a significantly higher computational cost.

Previous-pose initialization Finally, we assess the benefit of initializa-

tion using temporally recent priors instead of a dedicated pose regressor.

Our earlier work [91] adopted this strategy to exploit continuity in ROV

video streams, improving accuracy and reducing runtime. In this study,

we evaluate both reusing the previous pose estimate, and using a constant-

velocity model based pose initialization instead. As shown in Table 6.3,

neither approach provides gains in accuracy, bitrate, or runtime, and both

in fact perform slightly worse than directly using the regressor. This is

because the DFNet-inspired pose regressor is already highly accurate, pro-

ducing pose estimates closer to the ground truth than temporal priors. This

suggests that in our setting, initialization exploiting temporal correlation is

unnecessary, though it may remain useful when weaker regressors are used.

6.3.6 Discussion

The results highlight both the promise and limitations of NVSPrior-

based compression in real-world underwater settings. NVSPrior + iNVS-w

consistently achieves modem-feasible bitrates while maintaining high recon-

struction fidelity, outperforming learned baselines and matching conventional

codecs at a fraction of the bitrate. Ablation studies identify perceptual loss

as the key enabler of robustness under photometric variability. Together,

these findings suggest that iNVS-w is a practical candidate for enabling

continuous video feedback in tetherless ROV operations.
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Nonetheless, NVSPrior+iNVS-w is still not fully adequate as a real-time

solution for tetherless teleoperation: the current latency of 0.58 s/frame

falls short of real-time requirements. Further optimizations such as pruning

or reducing refinement iterations could narrow this gap, especially as em-

bedded GPUs continue to improve. Additional gains may also be achieved

by explicitly modeling transient changes in the scene—such as soft coral

movement, suspended particulates, or lighting variation—so that novel-view

synthesis produces fewer artifacts, enabling faster and more stable gradient

descent during refinement.

In summary, our results show that iNVS-w achieves a favorable balance

between bitrate, quality, and runtime for underwater teleoperation, but

dynamic scene changes and runtime latency remain key challenges. While

perceptual losses mitigate photometric variability, static-scene priors strug-

gle with moving structures, inflating residuals and complicating gradient

refinement. Addressing these limitations will be critical for robust real-time

deployment in natural underwater environments.

6.4 From tank to field: why compression
performance degrades

In the previous section, we showed that our best configuration—iNVS

initialized with DFNet and refined using a feature-based loss—achieves

higher compression efficiency than classical methods. However, results from

the SJI trials remain significantly worse than those obtained in controlled
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environments, with compressed difference images approximately three times

larger.

A large difference image can arise either from rendering at an incorrect

viewpoint or from changes in the scene between the time of reconstruction

and the time of inspection. Here, we aim to determine whether the observed

performance gap is primarily due to inaccuracies in pose estimation or scene

changes.

To investigate this, we evaluate the compression performance of three

configurations: (1) our original iNVS configuration, (2) our best configura-

tion (DFNet + refinement with feature-based loss), and (3) ground-truth

poses. For ground-truth evaluation, each camera image is rendered using

its corresponding Splatfacto pose, and the difference image is compressed

using WebP. As it was not straightforward to apply COLMAP on the test

dataset to estimate reliable ground-truth poses, we restrict this evaluation

to the training dataset.

The results are summarized in Table 6.4. Our best configuration achieves

compression performance close to that of ground-truth poses, with a com-

pressed size of 2476 bytes compared to 2456 bytes and nearly identical

SSIM. Compared to the original configuration, the gap to ground-truth

performance is significantly reduced.

However, even with ground-truth poses, the compressed difference images

remain substantially larger than those obtained in controlled environments

(about 1269 bytes). This confirms that scene changes in the field are a
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Table 6.4: Compression performance on the training set using ground-truth
and predicted poses. Ground-truth poses are only available for the training
set. Best values for PSNR, SSIM, average compressed size in bytes are
shown in bold.

Method PSNR SSIM Compressed Size
No prior - - 7012
Groundtruth 24.01 0.9420 2456
PoseLSTM+refine 24.69 0.8726 3598
DFNet+refine+feature 24.06 0.9413 2476

significant source of compression inefficiency within our proposed framework.

Traditional image compression algorithms such as WebP, which assume

global smoothness and low entropy, are less effective on difference images in

open water, where noise from turbidity, marine snow, and dynamic lighting

is prevalent.

These findings highlight the need to design future approaches that

directly address the compressibility of difference images under real-world

variability.

6.5 Summary

In this chapter, we evaluated the performance of our iNVS-based visual

compression framework in real-world conditions at sea, which present sub-

stantially greater visual complexity than confined underwater environments.

We revisited the same at-sea site used in earlier pose estimation experiments

and established a baseline using the pipeline introduced in the previous

chapter.

We showed that while our approach provided clear compression advan-
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tages over classical methods such as WebP and JPEG-XL, its performance

was initially limited by unreliable pose initialization and sensitivity to ap-

pearance changes. To improve robustness, we replaced PoseLSTM with

DFNet—a learning-based pose regression model trained using feature-space

consistency through novel view synthesis—and introduced a feature-based

loss inspired by descriptor fields. These enhancements led to measurable

improvements in both reconstruction quality and compression efficiency.

Our best-performing configuration, DFNet initialization combined with

feature-based refinement, achieved compression performance close to the

upper bound set by ground-truth poses. This demonstrates that, with

accurate initialization and a robust objective function, iNVS can operate

reliably even under challenging real-world conditions.

Despite these improvements, two major limitations remain. First, the

system is computationally intensive: because MSE is no longer a reliable

indicator for prior reuse, refinement must be performed on every frame, and

the feature-based loss adds additional overhead. Second, even with accu-

rate alignment, difference images in seawater remain difficult to compress

using classical compression techniques due to scene changes, turbidity, and

dynamic lighting, limiting overall efficiency.

These findings underscore both the potential and the challenges of iNVS-

based compression in open-water settings, motivating future research on

accelerating the pipeline and designing methods that directly address the

compressibility of difference images.
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Chapter 7

Conclusion and Future Research

7.1 Conclusion

Underwater inspection missions are essential for ensuring the integrity,

safety, and operational continuity of critical subsea assets such as pipelines,

offshore platforms, and scientific installations. ROVs have long been the

preferred tool for conducting these tasks, offering the capability to perform

complex operations in deep and hazardous environments under the control

of human operators.

The development of tetherless ROVs has become an important objective,

promising greater operational flexibility, reduced deployment costs, and

access to environments that are otherwise challenging for tethered systems.

However, tetherless operations introduce a new set of challenges, chief among

them being the need for real-time visual feeds over severely bandwidth-

constrained acoustic links.

To address this challenge, we proposed NVSPrior, a novel framework that

leverages prior information collected during earlier mapping runs to enable

efficient real-time transmission. Instead of transmitting fully compressed
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images, NVSPrior trains a NVS model using images collected during the

mapping run. During the inspection run, it renders the operator’s view

based on an estimated camera pose, compresses the difference between

the actual camera view and the synthesized view, and transmits both the

estimated pose and the compressed difference image to the operator. Using

the received estimated pose and compressed difference image, NVSPrior

reconstructs the camera view on the operator side. This strategy significantly

reduces the communication load while preserving visual fidelity.

To establish the foundation for this approach, we evaluated the fea-

sibility of novel view synthesis techniques for underwater environments.

We analyzed NeRF and 3D Gaussian Splatting models across controlled

and real-world datasets, addressing challenges such as transient artifacts,

turbidity, and scattering. Our results showed that robustness-enhanced

NeRF variants and carefully tuned 3D-GS models can generate high-fidelity

reconstructions, laying the groundwork for the NVSPrior framework.

Accurate latent estimation is critical for ensuring that the NVS rendered

image aligns closely with the actual camera view, which directly impacts

the compression performance of NVSPrior. To address this, we developed

a neural network-based pose estimator trained with a domain-informed

loss function. We further proposed augmenting the training data with

synthesized views generated by NVS techniques, which significantly improves

the generalization of the pose estimator to unseen poses. In addition,

integrating the pose estimates with sensor measurements through an EKF
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improves the smoothness and stability of the estimates. Together, these

developments enable accurate localization and robust performance under

real-world challenges.

Small pose inaccuracies can lead to large difference images, resulting in

inferior image compression performance. To address this, we proposed iNVS,

which refines the estimated pose by minimizing the difference between the

rendered and camera images. We evaluated NVSPrior in controlled clear

underwater environments and found that incorporating iNVS significantly

improved compression efficiency and reconstruction quality. Our approach

outperformed both traditional codecs and learned compression methods,

demonstrated robustness to novel objects and occlusions, and successfully

enabled real-time underwater image transmission over acoustic links.

In practice, the efficiency and effectiveness of the proposed approaches

may be impacted by highly dynamic and unpredictable elements. Specifi-

cally, such elements can increase the size of the difference image due to pose

estimation errors and mismatches between camera images and rendered

images, thereby affecting both computation efficiency and compressed size

of difference image.

To extend the applicability of our approach to real-world conditions, we

enhanced iNVS by improving pose initialization with a more robust pose re-

gression model and replacing the objective function with a feature-based loss.

Field trials conducted in open seawater environments with varying turbidity

and lighting conditions confirmed the effectiveness of NVSPrior combined
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with enhanced iNVS. Despite the increased environmental complexity com-

pared to controlled settings, the system achieved outstanding improvements

over traditional methods, highlighting its potential for enabling real-time

tetherless ROV operations in the field.

7.2 Future directions

While this thesis has demonstrated the feasibility and effectiveness of

leveraging NVS prior-based image compression for real-time underwater im-

age transmission and tetherless control of ROV, several promising directions

remain for future exploration:

• Handling dynamic elements in the environment

Currently, the NVS models primarily focus on reconstructing static

underwater structures. Future work could extend these models to

better handle moving features such as algae, enabling more robust

novel view synthesis in dynamic underwater scenes.

• Modeling environmental variability

Changing ambient light conditions and turbidity levels can signifi-

cantly affect underwater imaging. Incorporating models that explicitly

account for these environmental factors would improve the realism

and reliability of synthesized views, particularly in highly variable

natural settings.

• Optimizing a richer latent representation for novel view
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synthesis

Rather than regressing and optimizing only the camera pose, future

work could explore predicting a richer latent representation that

captures not only spatial position but also environmental factors

such as ambient light conditions, turbidity, and scene variability.

This enhanced latent representation could then be fed into the NVS

model to generate more realistic and adaptive synthesized views,

improving the overall compression performance in dynamic underwater

environments.

• Learning-based compression of difference images

Instead of using classical image codecs for compressing difference

images, future research could develop learning-based compressors

tailored specifically for the statistical properties of the difference

images produced by NVSPrior. Such compressors could exploit the

structured residual information to achieve higher compression ratios.

• End-to-end joint optimization

A promising direction would be to jointly optimize the latent rep-

resentation prediction and the difference image compression in an

end-to-end manner. By directly optimizing for compression perfor-

mance as the training objective, the system could learn to produce

intermediate representations that are inherently more favorable for

novel view synthesis and efficient transmission.
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• Latency management via predictive modeling

Ensuring low-latency feedback to remote operators is a key challenge in

underwater environments, where acoustic communication introduces

significant and unavoidable delays. Future work could incorporate

a predictive model that simulates both the vehicle’s hydrodynamic

response and its surrounding environment in real time. By mirroring

operator commands on this local model, the system can generate im-

mediate visual feedback, effectively bypassing communication latency.

The predicted outcomes can then be incrementally corrected using

delayed data from the actual vehicle, enabling responsive control while

preserving consistency with real-world observations.

• Autonomous path planning and multi-robot collaboration

The efficient visual representation developed in this work can support

higher-level autonomy tasks such as path planning and cooperative

mapping. By enabling robots to perceive and interpret their environ-

ment in a compact and spatially consistent form, the framework opens

possibilities for extending the current human-in-the-loop operation

toward autonomous decision-making and multi-robot collaboration in

marine environments.

Together, these directions highlight the rich potential for extending

NVSPrior beyond its current scope. By addressing dynamic environments,

environmental variability, and richer latent representations, the system
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could evolve to support more adaptive and intelligent underwater perception.

Moreover, incorporating learning-based compression, joint optimization,

and predictive modeling may unlock unprecedented gains in efficiency and

responsiveness. Advancing along these fronts will not only strengthen the

technical foundations laid in this thesis but also move the field closer to

realizing fully tetherless operation of ROVs in complex, real-world settings.
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Appendix A

Pose Alignment Between Sen-
sor and COLMAP Coordinate
Frames

To align the coordinate frames of the onboard navigation system and

the Splatfacto reconstruction, we compute a similarity transformation

using paired camera poses from each system. Let P(i)
ROV ∈ R4×4 and

P(i)
COLMAP ∈ R4×4 denote the i-th pose from the onboard navigation system

and COLMAP, respectively. We extract their position components, denoted

p(i)
ROV, p(i)

COLMAP ∈ R3.

The similarity transformation is parameterized by:

x = [s, α, β, γ, x, y, z]T

where s ∈ R+ is a scale factor, α, β, γ are Euler angles, and (x, y, z) is a

translation vector.

The corresponding 4×4 transformation matrix is defined as:

T(x) =

s ·R(α, β, γ) t

0T 1



188



APPENDIX A. POSE ALIGNMENT BETWEEN SENSOR AND
COLMAP COORDINATE FRAMES

where R(α, β, γ) ∈ SO(3) is the rotation matrix derived from the Euler

angles, and t = [x, y, z]T .

Using homogeneous coordinates

p̃ =

p

1

 ,

the cost function is defined as:

J(x) =
∑

i

∥∥∥T(x) p̃(i)
ROV − p̃(i)

COLMAP

∥∥∥2

The optimal parameters x∗ are obtained via nonlinear optimization.

Once the transformation is estimated, it is applied to the full ROV pose

matrices as:

P(i)
aligned = T(x∗) ·P(i)

ROV ·C

where C is a fixed coordinate exchange matrix used to account for camera

convention differences between the two systems:

C =



0 0 −1 0

1 0 0 0

0 −1 0 0

0 0 0 1


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